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ABSTRACT

In cooperative multi-agent reinforcement learning, agents often face scalability
challenges due to the exponential growth of the joint action and observation
spaces. Inspired by the structure of human teams, we explore subteam-based
coordination, where agents are partitioned into fully correlated subgroups with
limited inter-group interaction. We formalize this structure using Bayesian net-
works and propose a class of correlated joint policies induced by directed acyclic
graphs . Theoretically, we prove that regularized policy gradient ascent converges
to near-optimal policies under a decomposability condition of the environment.
Empirically, we introduce a heuristic for dynamically constructing context-aware
subteams with limited dependency budgets, and demonstrate that our method out-
performs standard baselines across multiple benchmark environments.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) enables autonomous agents to jointly opti-
mize a common objective and has been applied to domains such as traffic control (Chu et al., 2019),
multi-robot coordination (Corke et al., 2005), and power grid management (Callaway & Hiskens,
2010). In many real-world scenarios, humans naturally organize into subteams, groups that exhibit
tight internal coordination and limited external interaction, allowing for specialization and reduced
communication complexity. Inspired by this, we explore how agents in cooperative MARL can also
benefit from structured subteams that induce localized coordination and scalable learning.

Forming subteams reduces the effective dimensionality of the joint action and observation spaces
within each group, alleviating the curse of dimensionality that plagues centralized coordination.
Moreover, many tasks exhibit weak interdependencies across certain agent clusters, motivating the
design of policies that encourage strong intra-group correlations while ignoring unnecessary global
entanglements. For instance, in a distributed search-and-rescue mission, drones surveying separate
regions need strong coordination within each team but limited communication across distant ones.

To model such structured correlations, we employ Bayesian networks (BNs), where a joint policy is
factorized according to a directed acyclic graph (DAG) over agents. Agents within the same subteam
are fully connected in the DAG, enabling expressive, correlated policies. Across subteams, no edges
are introduced, effectively enforcing conditional independence. This structure allows us to capture
meaningful dependencies without incurring the full complexity of unstructured joint policies. Our
contributions are as follows:

• As a warm-up, we extend Chen & Zhang (2023) by establishing a convergence rate for tabular
softmax BN policy gradient ascent under any fixed DAG, strengthening their asymptotic results.

• Our main theoretical results focus on a subclass of BNs where the agents can be partitioned into
subteams, where agents select actions in a fully correlated manner within a subteam and inde-
pendently in different subteams. Under a decomposability condition on the reward and transition
functions (subject to bounded errors), we prove that for such BNs regularized policy gradient as-
cent converges to a policy with bounded suboptimality. The bound hinges on the decomposition
errors and the sizes of the subteams.

• Finally, we propose a heuristic to construct context-aware DAGs dynamically from local ob-
servations with a limit on the number of edges, relaxing the assumptions such as oracle value
functions and global observability. We integrate this with deep multi-agent reinforcement learn-
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ing algorithms and demonstrate that our method outperforms the state-of-the-art across several
benchmark environments.

2 RELATED WORK

Product policies in MARL. MARL algorithms often adopt product policies, where the joint policy
is represented as the product of agents’ individual policies (Kuba et al., 2022; Yu et al., 2021; Lowe
et al., 2017; Zhong et al., 2024; Foerster et al., 2018; Liu et al., 2024; Egorov & Shpilman, 2022;
Li et al., 2024). This factorization is widespread in MARL due to its scalability and the ability to
execute policies without communication at runtime. Despite their empirical success, policy gradient-
based optimization methods for product policies are generally not guaranteed to converge to the
global optimum (Ye et al., 2023). Most existing theoretical results focus on convergence to Nash
equilibria, which is a weaker solution concept than global optimality (Leonardos et al., 2021; Chen
et al., 2022; Ding et al., 2022; Fox et al., 2022; Sun et al., 2023).

Correlated policies via Bayesian networks. To address the suboptimality of product policies
within the policy gradient framework, a number of works have proposed optimizing correlated joint
policies, since a deeper correlation indicates a stronger expressiveness of the joint policy class, and
thus often a better optimality guarantee. One popular approach for representing a correlated joint
policy is to use Bayesian networks (BNs) (Heckerman, 2020). These methods (Ye et al., 2023; Chen
& Zhang, 2023; Ruan et al., 2022; Christianos et al., 2023) represent the joint policy as a directed
acyclic graph (DAG), allowing the joint policy to be factored into a product of several correlated
conditional distributions. However, suboptimality persists whenever the BN is not fully connected.

Value-based methods in Markov Team Problems. There are also a number of works that have
studied value-based methods in Markov Team Problems such as Littman (2001); Donmez et al.
(2025); Sunehag et al. (2018); Rashid et al. (2018); Wang et al. (2020a). These studies typically
treat the agent as a whole, tackling the scalability issue by the implicit decomposability of their
value functions. In contrast, Phan et al. (2021a); Zang et al. (2023); Wang et al. (2020c;b); Kapoor
et al. (2025) develop methods to explicitly group agents into subteams to learn a uncorrelated or
factorized value function among subteams for better scalability. A more similar concept among
value-based methods is the coordination graph (Guestrin et al., 2002; Böhmer et al., 2020; Li et al.,
2020; Yang et al., 2022; Kang et al., 2022; Wang et al., 2022), which factorizes the joint value
function according to a graph structure that encodes the coordination relationships among agents.
Nonetheless, the optimality of these approaches is affected by the incompleteness of the function
class and the imperfect approximation of the TD target under the imposed graph structure (Fioretto
et al., 2016).

Structural assumptions and sparse correlations. For a policy with weak correlation (e.g., a sparse
BN), the optimality of the algorithm may rely on certain assumptions about the environment. There
is relatively limited theoretical work in this area. Some early research has demonstrated that if
the transitions between agents exhibit some independence, certain algorithms (such as dynamic
programming and independent learning) can achieve global optimality (Lauer & Riedmiller, 2004;
Becker et al., 2004; Zhang & Lesser, 2011). Wang et al. (2021) and Dou et al. (2022) prove the
convergence of the value-based algorithm VDN (Sunehag et al., 2018) under the assumption that the
environment admits a decomposable structure. Building upon similar decomposability assumptions
in Dou et al. (2022), our work extends the theoretical guarantees to the class of policy gradient based
methods with BN represented correlated policies. To our best knowledge, this is the first work that
establishes optimality guarantees for BN policies without requiring full independence among agents.

3 PRELIMINARIES

We consider a cooperative Markov game (MG) defined by tuple ⟨N ,S,A, P, r, µ⟩, involving N
agents indexed by i ∈ N = {1, . . . , N}. The game consists of a state space S, a joint ac-
tion space A = A1 × · · · × AN with Ai being the action space of agent i, a transition function
P : S × A → ∆(S), a shared team reward function r : S × A → R, and an initial state dis-
tribution µ ∈ ∆(S). Here, ∆(X ) denotes the set of probability distributions over X . The game
progresses in discrete time steps with next states and rewards generated from P and r, respec-
tively. The discounted cumulative reward from time step t is denoted as Rt :=

∑∞
l=0 γ

lrt+l

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

with rt := r(st, at). With full observability, meaning each agent observes the global state
s ∈ S, a general joint policy π : S → ∆(A) maps states to distributions over the joint ac-
tion space, inducing its value function Vπ(st) := Est+1:∞,at:∞∼π[Rt|st], the action-value function
Qπ(st, at) := Est+1:∞,at+1:∞∼π[Rt|st, at], and its (unnormalized) discounted state visitation mea-
sure dπµ(s) := Es0∼µ [

∑∞
t=0 γ

tPrπ(st = s|s0)]. The objective is to optimize the joint policy to
maximize its value with respect to the initial state distribution, i.e., maxπ Vπ(µ) := Es0∼µ[Vπ(s0)].
Denote the optimal value as V∗(µ) := maxπ Vπ(µ). We say π is ϵ-optimal if its suboptimality

subopt(π) := V∗(µ)− Vπ(µ) ≤ ϵ.

Given the exponential growth of A with N , the commonly used joint policy subclass is the product
policy, π = (π1, . . . , πN ) : S → ×i∈N∆(Ai), where joint policy π is factored as a product of local
policies πi : S → ∆(Ai), such that π(a|s) =

∏
i∈N πi(ai|s). It is well known that there exists a

deterministic policy (and hence a product policy) with zero suboptimality.

Although the best product policy does not introduce suboptimality, the restriction of conditional
independence among agents’ actions restricts the expressiveness of the joint policy, which creates
difficulties for optimizing the joint policy and often results in suboptimal behavior (Ye et al., 2023).
Chen & Zhang (2023) extended beyond product policies by incorporating correlation in the local
policies through a Bayesian network (BN) among the agents. A BN is represented by a directed
acyclic graph (DAG) G = (N , E) with agents N being the vertices and E ⊆ {(i, j) : i, j ∈
N , i ̸= j} being the set of directed edges. The parents of an agent i are denoted by Pi := {j :

(j, i) ∈ E} with their actions denoted as aP
i ∈ APi

:= ×j∈PiAj . DAG G induces a joint policy
πG = (π1

G, . . . , π
N
G ) : S → ∆(A), where each agent i’s local policy πiG : S × APi → ∆(Ai)

is conditioned on both the global state and the actions of its parents, and therefore joint action
a = (a1, . . . , aN ) is selected as πG(a|s) =

∏
i∈N πiG(a

i|s, aPi

). It is clear that BN policies define
a continuum: πG reduces to a product policy when G has no edges and is as expressive as general
joint policies when G is dense. We define the equilibrium gap of a BN policy as:

gapi(πG) := maxπ̄i
G
Vπ̄i

G,π
−i
G
(µ)− VπG

(µ), gap(πG) := maxi∈N gapi(πG).

Here, the deviating BN policy (π̄iG, π
−i
G ) is consistent with πG in terms of the underlying G. We

say BN policy πG is an ϵ-approximate equilibrium if gap(πG) ≤ ϵ. Note this equilibrium notion
resembles standard ones like Nash equilibrium (Nash, 1951) and coarse correlated equilibrium (Au-
mann, 1987), but they are different: Nash equilibrium only applies to product policies; the coarse
correlated equilibrium applies to general policies but does not allow the deviating local policy to
condition on any other agent’s action.

Shorthand notations. When the underlying DAG is clear from the context, we will drop subscript
G and write a BN policy as π. For a subsetM⊆ N of the agents and its complement −M, a joint
action is decomposed as a = (aM, a−M). The conditionals of policy π given some a−M is defined
as π(aM|s, a−M) := π(aM, a−M|s)/

∑
āM π(āM, a−M|s), with the corresponding action-value

function Qπ(s, aM) := Ea−M∼π(·|s,aM)

[
Qπ(s, a

M, a−M)
]
. Let Pi+ := Pi ∪{i} denote the set of

agent i and its parents.

4 WARM-UP: CONVERGENCE OF TABULAR BN POLICY GRADIENT ASCENT

Prior work (Chen & Zhang, 2023) established the asymptotic convergence of tabular softmax BN
policy gradient ascent under any fixed DAG. To provide formality and as a warm-up, we here extend
their result to get a finite-time convergence rate with the help of log barrier regularizer.

Fixing DAG G, we consider parameterizing local policies of a BN policy in the tabular softmax
manner from the global state and parent actions as in Chen & Zhang (2023), i.e., for each agent i,
we have its policy parameter and the induced softmax policy as

θi =
{
θi(s, aPi

, ai) ∈ R : s ∈ S, aPi

∈ APi

, ai ∈ Ai
}
, πi

θi

(
ai|s, aPi

)
∝ exp

(
θi(s, aPi

, ai)
)

(1)

and the BN policy is therefore parameterized as πθ = (π1
θ1 , · · · , πNθN ).
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To provide a finite-time convergence guarantee, we optimize a log barrier regularized objective in a
similar fashion to Agarwal et al. (2021) for the single-agent counterpart:

Lλ(θ) :=Vθ(µ)− λ
∑
i∈N

E
s,aPi∼Unif

S×APi

[
KL

(
UnifAi , π

i
θi(·|s, a

Pi

)
)]

(2)

where Vθ and Qθ are shorthands for Vπθ
and Qπθ

in this paper; λ > 0 is the regularization parame-
ter; UnifX is the uniform distribution over X ; KL(·, ·) denotes the KL divergence. The log barrier
regularization, i.e., the KL divergence with respect to the uniform action-selection distribution, is
applied to each agent’s policy independently. The standard gradient ascent for Lλ(θ) in (2) is

θit+1 = θit + η∇θiLλ(θt) ∀i ∈ N (3)

where η is a fixed stepsize. The explicit regularized policy gradient form is shown in Lemma 1.
Lemma 1 (Proof in A.2). For the BN policy parameterized as in Equation (1), we have:

∂Lλ(θ)

∂θi(s, aPi , ai)
=

1

1− γ
dπθ
µ (s, aPi

)πi
θi(a

i|s, aPi

)Ai
θ(s, a

Pi

, ai) +
λ

|S||APi |

(
1

|Ai| − πi
θi(a

i|s, aPi

)

)
where d

πθ
µ (s, aPi

) := d
πθ
µ (s)

∑
a−Pi πθ(a

−Pi

, aPi

|s), Ai
θ(s, a

Pi

, ai) := Qθ(s, a
Pi

+)−Qθ(s, a
Pi

) .

The gradient form in Lemma 1 enables us to extend the single-agent finite-time convergence guaran-
tees (Agarwal et al., 2021) to BN joint policies under the same assumptions used in the convergence
results for product policies (Zhang et al., 2022; Chen et al., 2022), which we state below and are
required in all of the theoretical results in this paper.
Assumption 1. For any joint policy π and any state s of the Markov game, dπµ(s) > 0.

Assumption 1 is standard (e.g., Agarwal et al. (2021); Zhang et al. (2024; 2022); Chen & Zhang
(2023)) and holds if the initial-state distribution satisfies µ(s) > 0 for all s ∈ S, ensuring every state
is reachable with positive probability under any policy.
Assumption 2. The reward function r is bounded in the range [0, 1], such that the value function is
bounded as ∀s, π, 0 ≤ Vπ(s) ≤ 1/(1− γ).

Let M := maxπ,π′

∥∥∥dπµ/dπ′

µ

∥∥∥
∞

quantify the maximum pointwise ratio between state visitation
measures induced by any two policies. By Assumption 1,M is well-defined and finite. This constant
appears in Lemma 2 that extends the results in the single-agent setting (Agarwal et al., 2021) and the
multi-agent setting with product policies (Zhang et al., 2022; Chen et al., 2022), stating that, with
the log barrier, approximate first-order stationary points are approximate equilibria.
Lemma 2 (Proof in A.3). If θ is such that ∥∇θLλ(θ)∥2 ≤ λ/(2|S||A|maxi |Ai|), BN policy πθ is
a 2λM -approximate equilibrium.

With Lemma 2, we establish the convergence rate as stated in Theorem 1.
Theorem 1 (Proof in A.4). For any ϵ > 0, under updates (3) beginning with θ0 = 0 and using
λ = ϵ

2M and stepsize η ≤ 1
βλ

with βλ = 8N
(1−γ)3 + 2λN

|S| being an upper bound on the smoothness of
Lλ(θ), we have mint≤T gap(πθt) ≤ ϵ whenever

T ≥256NM2|S|2 maxi |Ai|2

(1− γ)4ϵ2
+

32NM |S|maxi |Ai|2

(1− γ)ϵ
. (4)

The key idea in our proof is to reinterpret parent actions aP
i

as part of the state for agent i, treating
the tuple (s, aP

i

) as an augmented state. Under this formulation, the joint distribution dπθ
µ (s, aP

i

)
becomes the state visitation measure over the augmented state space. This transformation brings
the gradient ascent updates (3) into close alignment with those for the product policy (Zhang et al.,
2022; Chen et al., 2022), enabling a natural generalization of the analysis to the BN policy setting.

Although Theorem 1 establishes a convergence rate to an approximate equilibrium, which is the
strongest type of result one can expect for general cooperative MGs, it may still yield arbitrarily
suboptimal policies. To address this, we next characterize a subclass of MGs where optimality
can be guaranteed via regularized policy gradient ascent, along with an approximation where the
suboptimality is explicitly quantified by deviations from the defining conditions for this subclass.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

5 CONVERGENCE TO NEAR-OPTIMALITY VIA SUBTEAMS DECOMPOSITION

If the transition and reward functions of a cooperative MG can be decomposed into components
associated with disjoint subsets of agents, then strong dependencies exist among the agents within
each subset while agents in different subsets exhibit limited dependencies. In such a case, if the BN
policy only preserves full correlation in the local policies within each subset (but not between the
subsets), it turns out that the regularized policy gradient ascent can achieve near-optimal coordina-
tion, as we will establish in this section. As a first step, we define our notion of a subteam:

Definition 1 (Subteam). Given DAG G = (N , E) and a subset of its vertices (i.e., agents) C ⊆ N .
The subgraph of G induced by C is denoted as GC = (C, EC) with EC := {(i, j) : i, j ∈ C, (i, j) ∈
E}. Subset C is a subteam in G if, for every pair of distinct i, j ∈ C, either (i, j) or (j, i) is in EC .

By Definition 1, agents in a subteam are fully connected by directed edges, subject to the the acyclic-
ity constraint. For example, any single agent is a subteam; any pair of two connected agents is a
subteam. Intuitively, for a BN policy with G being the underlying DAG, the local policies in a sub-
team of G are fully correlated in the sense that the BN policy is expressive enough to represent any
joint action distribution of the agents in the subteam. We will partition all agents into subteams for
a BN policy, which is reasonable when the cooperative MG of interest can be well decomposed by
this partition. We define a cooperative MG’s decomposability by a partition of its agents as follows:

Definition 2 (Decomposition of a cooperative MG by a partition of agents). Consider a cooperative
MG ⟨N ,S,A, P, r, µ⟩ and a collection ofK subsets of agentsN , {Ck}Kk=1, being a partition ofN ,
i.e.,

⋃K
k=1 Ck = N and Ck ∩ Ck′ = ∅ ∀1 ≤ k ̸= k′ ≤ K. The MG is decomposed by the partition

with errors (ϵP , ϵr) if its transition function P and reward function r can be decomposed as

P (s′|s, a) =
∑K
k=1 P

k(s′|s, aCk) + ϵP (s
′|s, a), r(s, a) =

∑K
k=1 r

k(s, aCk) + ϵr(s, a) (5)

for any s, s′ ∈ S, a ∈ A and some real-valued functions ϵP , ϵr, and {P k, rk}1≤k≤K .

In words, the transition/reward function is decomposed into components, one per subset of the par-
tition, where each component depends on actions taken by only the agents in the corresponding
subset. We here make a few remarks on Definition 2: 1) We do not impose any regularity assump-
tions on P k and rk; especially, P k needs not be a probability measure. 2) Because the errors (ϵP , ϵr)
can be arbitrarily chosen, the decomposition of P and R given in Equation (5) is always feasible
for any partition {Ck}Kk=1 of N , as one can simply accommodate the decomposition errors into
(ϵP , ϵr). As one might expect, our suboptimality guarantee will degrade as the errors increase. Let-
ting |ϵP | := maxs,a,s′ |ϵP (s′|s, a)| and |ϵr| := maxs,a |ϵr(s, a)|, we have the following proposition
confirming the intuition that finer partitions only introduce larger decomposition errors.

Proposition 1 (Proof in A.7). Suppose {Ck}Kk=1 and {C′k′}K
′

k′=1 are two partitions of N , and the
latter is finer than the former in the sense that, for all 1 ≤ k′ ≤ K ′, C′k′ ⊆ Ck for some 1 ≤ k ≤ K.
If the MG is decomposed by {C′k′}K

′

k′=1 with errors (ϵ′P , ϵ
′
r), then the MG can be decomposed by

{Ck}Kk=1 with errors (ϵP , ϵr) such that |ϵP | ≤ |ϵ′P | and |ϵr| ≤ |ϵ′r|.

We are ready to state the conditions that a DAG needs to satisfy for our main theoretical result:

Assumption 3. For the cooperative MG of interest equipped with DAG G = (N , E), there is a
collection of subsets {Ck}Kk=1 satisfy the following conditions:

(i) {Ck}Kk=1 is a partition of N ; each Ck is a subteam in G for all 1 ≤ k ≤ K;

(ii) The MG is decomposed by {Ck}Kk=1 with errors (ϵP , ϵr);

(iii) For any 1 ≤ k ̸= k′ ≤ K, E does not have any edge (i, j) for i ∈ Ck and j ∈ Ck′ .

Conditions (i) and (ii) are directly taken from Definitions 1 and 2. Condition (iii) excludes any edge
between any two subsets. While any additional edges increase the expressiveness of the induced BN
policy and therefore should ease the policy optimization, (iii) is technically required in our proof.
Specifically, a key step in Lemma 3’s proof is to upper bound the gain of ack over the subteam base-
line V kθ (s), which derived from a telescoping sum that would fail if subteams are not independent,
as shown in the proof in Appendix A.5.
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In the remainder of this section, we consider the regularized policy gradient ascent (3) to optimize
the tabular softmax BN policy induced by a DAG that satisfies the conditions in Assumption 3 for
a given cooperative MG. The following lemma states that, in this case, the approxmiate equilibrium
guarantee in Lemma 2 can be strengthened into a near-optimality one. For ease of exposition, define
g({Ck}Kk=1) :=

∑K
k=1 2

|Ck| −K, where g(·) is a real-valued function of an arbitrary collection of
sets {Ck}Kk=1; its output value depends on the number and the sizes of the sets.

Lemma 3 (Proof in A.5). Suppose BN policy πθ is parameterized in the tabular softmax manner
as in Equation (1) with the underlying DAG satisfying all conditions in Assumption 3 with partition
{Ck}Kk=1. If θ is such that ∥∇θLλ(θ)∥2 ≤ λ/(2|S||A|maxi |Ai|), πθ is(

2λMg({Ck}Kk=1) + 2K
( |ϵr|
(1−γ) +

γ|S||ϵP |
(1−γ)2

))
- optimal. (6)

Compared with Lemma 2, the requirement on θ being an approximate stationary point remains the
same, yet the bound of the equilibrium gap is strengthen to a suboptimality bound in (6) consisting
of two terms. The first term can be made arbitrarily small by choosing a sufficiently small regular-
ization parameter λ like in Lemma 2 but also quantifies the impact of the partition with function g(·),
the value of which becomes smaller as the partition gets finer as stated in the following proposition:

Proposition 2 (Proof in A.8). Suppose {Ck}Kk=1 and {C′k′}K
′

k′=1 satisfy the same conditions in Propo-
sition 1. We have g

(
{C′k′}K

′

k′=1

)
≤ g
(
{Ck}Kk=1

)
.

The second term captures the impact of the decomposition errors, which increases as the decom-
position errors become larger as stated in Proposition 1. Therefore, the suboptimality bound in (6)
reveals a tradeoff when choosing the fineness/coarseness of the decomposition.

In a similar manner, the guarantee of finite-time convergence to an approximate equilibrium in
Theorem 1 can be strengthened into a near-optimality one as stated below.

Theorem 2 (Proof in A.6). Suppose the underlying DAG G of BN policy πθ satisfies the same
conditions as in Lemma 3. For any ϵ > 0, under updates (3) beginning with θ0 = 0 and using
λ = ϵ

2M
−1g({Ck}Kk=1)

−1 and η ≤ 1
βλ

(βλ as in Theorem 1), we have

mint≤T subopt(πθt) ≤ ϵ+ 2K
( |ϵr|
(1−γ) +

γ|S||ϵP |
(1−γ)2

)
(7)

whenever

T ≥ 256NM2|S|2|A|2 maxi |Ai|2
ϵ2(1−γ)4 g({Ck}Kk=1)

2 + 32NM |S||A|2 maxi |Ai|2
ϵ(1−γ) g({Ck}Kk=1). (8)

The second term in (7) matches the second term of (6) from Lemma 3, which quantifies the asymp-
totic suboptimal bias caused by the decomposition errors. In the extreme case of K = 1, all agents
form a single subteam, making the decomposition error-free (|ϵP | = |ϵr| = 0) and ensuring ϵ-
optimality. A larger K tries to impose stronger independence assumptions across the subteams,
often resulting in larger |ϵP | and |ϵr| and therefore a larger asymptotic suboptimal bias. Regarding
the convergence rate of (8), the dominating term is the first one that scales with 1/ϵ2, which matches
the first term of (4) from Theorem 1 up to the factor of g({Ck}Kk=1)

2 that favors finer partitions into
subteams according to Proposition 2. Increasing K can create finer partitions and speed up the con-
vergence. However, this speedup comes at the cost of potentially larger decomposition errors and
thus greater suboptimality. This reveals a fundamental trade-off in subteams design.

Proof sketch. We here provide the key steps in our proof of Theorem 2. 1) Value function de-
composition: By Definition 2, the transition function and reward function decompose by the sub-
teams {Ck}Kk=1 with additive errors ϵP and ϵr. Consequently, the global value functions admit ad-
ditive decompositions: Qθ(s, a) =

∑K
k=1Q

k
θ(s, a

Ck) + ϵQθ
(s, a), Vθ(s) =

∑K
k=1 V

k
θ (s) + ϵVθ

(s),
where error terms ϵQπ and ϵVπ accumulate from errors (ϵP , ϵr). 2) Bounding subteam advantage:
From Lemma 1, the regularized policy gradient provides a bound on local advantage Aiθ(s, a

Pi

, ai).
Consider a topological ordering over the agents in a subteam Ck. For agents i and j such that j
directly precedes i in the ordering, we have aP

i

= aP
j
+ due to the full connectivity in Ck and

no cross-subteam connectivity, implying Qθ(s, aP
i

) = E
ā
−Pj

+∼πθ(·|s,a
Pj
+ )

[
Qθ(s, a

Pj
+ , ā−Pj

+)
]
=
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Qθ(s, a
Pj

+). Applying this in the reverse topological order and combining with the local advan-
tage bound yields a bound on Qθ(s, aCk) − Vθ(s). 3) Bounding Qkπ(s, a

Ck) − V kπ (s): Apply the
value function decomposition from step 1 to separate Qθ(s, aCk) and Vθ(s) into components de-
pendent on aCk and a−Ck . Their difference cancels out unrelated components, producing a bound
on Qkπ(s, a

Ck) − V kπ (s) up to approximation errors that can be bounded using errors (ϵP , ϵr). 4)
Lemma 3 and the finite-time convergence: Summing the bounds from the previous step across all
subteams gives a bound on Qθ(s, a) − Vθ(s), which leads to the suboptimality guarantee as stated
in Lemma 3. Using the same convergence argument as in Theorem 1, we choose a sufficiently small
stepsize η for gradient ascent. Since Lλ(θ) is smooth, we can guarantee that after enough iterations,
the gradient norm becomes small enough to invoke Lemma 3. With a proper choice of λ, this leads
to the statement in Theorem 2.

6 EMPIRICAL RESULTS

Our empirical study progresses in two parts. In Section 6.1, we begin with experiments that exactly
adhere to the setting in Section 5, providing an empirical analysis of our theoretical results. Next,
informed by the theoretical insights, in Section 6.2 we propose a practical heuristic that constructs
subteams that potentially induce low decomposition errors given an edge budget, which is integrated
into and improves state-of-the-art deep MARL algorithms.

6.1 TABULAR EXACT GRADIENT ASCENT WITH FIXED DAG IN THE COORDINATION GAME

We consider anN -agent extension of the two-player Coordination Game in Zhang et al. (2024) with
N ∈ {2, 3, 5}. Each agent has a binary local state and action space, Si = Ai = {0, 1}. The reward
function encourages agents to align their local states, with a preference for global configurations
containing more agents in state 0 when majority counts are tied. The local state transition of agent i
depends only on its own action: P (si = 0|ai = 0) = 1− ϵ, P (si = 0|ai = 1) = ϵ, where ϵ = 0.05.

We intentionally choose this minimal and didactic domain, so that we are able to afford the require-
ments of the theoretical results: exact gradient ascent for the tabular softmax BN policy parame-
terization with a fixed DAG. We compare the following DAG topologies: 1) the product DAG
with no edges; 2) the full DAG where every pair of agents is connected, so it is K = 1 subteam
including all agents; 3) DAGs with K subteams and have no edges between any two subteams are
labeled with the subteam sizes, e.g., 2+3 for N = 5 agents; 4) the line DAG where each agent
i < N is connected to agent i+1, as considered in prior work (Böhmer et al., 2020; Chen & Zhang,
2023). Note that all DAGs satisfy Assumption 3, except for the line DAG.

Figure 4 in the appendix confirms that all DAGs converge to equilibria, in agreement with Theo-
rem 1. We assess the optimality gap across subteam partitions in Figure 1: For N = 2, 5, policies
with coarser partitions (i.e., fewer, larger subteams) consistently achieve higher final performance.

Table 1: Fitted decomposition errors.
N DAG |ϵP | |ϵr|

2 product 2.04e-01 1.26e+00
full 3.57e-03 2.38e-07

3
1+2 2.94e-01 1.50e+00

product 3.96e-01 2.00e+00
full 2.21e-05 2.79e-09

5

1+4 3.38e-01 1.44e+00
2+3 4.80e-01 2.38e+00

product 6.03e-01 1.56e+00
full 7.13e-08 3.73e-08

For example, with N = 5, full performs similarly to 1+4
and are the best, followed by 2+3, and finally the product.
For N = 3, full still performs the best, while line and
product perform similarly, with 1+2 slightly worse.

To explain this ordering, we fit {P k, rk}Kk=1 with three-
layer multilayer perceptrons by minimizing the decompo-
sition errors when regressed to the transition and reward
functions (cf. Definition 2). Table 1 presents the fitted er-
rors across subteam partitions. Notably, the partitions that
yield smaller decomposition errors consistently correspond
to better-performing policies for most cases, which aligns
with Theorem 2. The only exception is N = 3, where
1+2 has smaller errors product, but the product performs
slightly better. A possible reason is that the additional correlation introduced by 1+2 may not yet be
significant enough to yield a performance gain over product. Meanwhile, product, with fewer
parameters, may be easier to optimize and thus achieves better performance in this particular case.
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Figure 1: Results of tabular softmax BN policy gradient ascent under various DAG topologies.
Averaged over 50 seeds, with shaded areas showing standard error; normalized suboptimality at
iteration t is defined as 1− Vθt(µ)/V∗(µ) and initial policy θ0 ∼ N (0, 1).

6.2 PRACTICAL METHODS

We have been focusing on exact gradient updates of (3) to optimize BN policies with fixed DAGs.
Further, while our results so far justify partitions that induce low decomposition errors, finding
such partitions is non-trivial. These issues motivate us to introduce below a heuristic approach that
dynamically constructs subteams in a way that potentially induces low decomposition errors given
an edge budget. This method can be easily integrated into deep MARL algorithms for practical use.

Dependency-based subteams construction. Given a limit of at mostB edges, our heuristic method
constructs a DAG, along with a collection of subteams in the DAG that satisfies the conditions in
Assumption 3. The construction is guided by dependency scores, {dij}i,j∈N , which are given
a priori based on domain knowledge that roughly quantify the dependency between any pair of
agents. Initialized with singleton subteams with no edges, the core idea is to iteratively merge two
subteams C, C′ that maximize the average pair-wise dependency score between the agents in the two
subteams: d(C, C′) := 1

|C||C′|
∑
i∈C,j∈C′ dij . The chosen two subteams are merged by adding edges

between them, and the merging will repeat until reaching edge limit B, as outlined in Algorithm
1 in the appendix. Because merging larger subteams needs more edges, the averaging encourages
efficiently use of the edge budget. The dependency scores can change dynamically, e.g., based on
the state/episode information, to minimize decomposition errors in a context-aware manner.

6.2.1 BN POLICY WITH DYNAMIC DAG IN DEEP MULTI-AGENT ACTOR-CRITIC

For practical usage, we integrate the BN policy as the actor into deep multi-agent actor-critic algo-
rithms such as MAPPO (Yu et al., 2022) and MADDPG (Lowe et al., 2017). During training, parent
actions are detached from the computation graph to prevent backpropagation, which we find ensures
proper credit assignment and stabilizes training. To handle the variable number of parent actions in-
duced by the dynamic DAG, we construct a fixed-length input vector of size N ·

∑
i∈N |Ai|, where

the actions of non-parent agents are zero-padded. This design enables consistent input formatting
across different DAG topologies and supports efficient batch processing. The implementation details
are provided in Appendix B.

Environments and their dependency score. For the Coordination Game, we treat each agent’s
local binary state as its 1D position, enabling a natural way to compute pairwise dependency scores
based on positional proximity. We consider two more environments. Aloha from Wang et al. (2022)
involves 10 agents arranged in a 2× 5 grid, each maintaining a message queue and chooses whether
to transmit at each timestep. With probability 0.6, a new message is added to each queue at every
step. A successful, collision-free transmission yields a global reward of 0.1, while a collision incurs
a shared penalty of−10. We use Manhattan distances between the agents to define their dependency
scores. Predator-Prey from Li et al. (2020) has N = 15 controllable predators and multiple uncon-
trollable preys moving in a 2D space. The environment introduces additional challenges compared
to the previous ones, including stochastic initial positions and higher coordination complexity due to
continuous movement. The dependency scores we define again rely on predators’ spatial locations.

Base algorithms, DAGs. We select MAPPO as the base algorithm for Coordination Game and
Aloha as they involve discrete action spaces. Predator-Prey involves continuous action spaces, so
we adopt MADDPG. We compare four types of DAG topologies: full and product as described

8
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Figure 2: Results of integrating dynamic decomposition with MAPPO/MADDPG. Averaged over
60, 60, and 10 seeds for Coordination Game, Aloha, and Predator-Prey, respectively, with shaded
areas showing standard error.

previously, the dynamic DAG constructed via our heuristic approach, and the random DAG.
For fair comparison, heuristic and random are constrained under the same edge budgetB with
B = 4, 10, 50 for Coordination Game, Aloha, and Predator-Prey, respectively.

Results. As shown in Figure 2, our heuristic achieves the highest performance in all three
environments. In Coordination Game, the performance is ordered as heuristic ≈ full >
random ≈ product. In Aloha, while the four methods are comparable by end of training,
heuristic and full clearly learns fastest. In Prey, heuristic is still best while full be-
comes the worst, with random comparable to product.

6.2.2 VALUE FACTORIZATION PER AGENT SUBGROUPS IN CENTRALIZED TRAINING
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Figure 3: Our heuristic for VAST.
Averaged over 10 and 5 seeds
for Warehouse and Battle, respec-
tively, with shaded areas showing
standard error.

We here repurpose our heuristic in Section 6.2 for central-
ized training methods that involves value factorization per
agent subgroups. Specifically, we consider VAST (Phan et al.,
2021b): given partition {Ck}Kk=1, VAST replaces agent-wise
values as in traditional works like QTRAN (Son et al., 2019)
with subgroup-wise ones {Qkπ(s, aCk)}Kk=1 and these values
are fed into the mixer to estimate joint value Qπ(s, a) as
QVAST(s, a) = Φψ

(
Q1(s, aC1), . . . , QK(s, aCK )

)
, where

Φψ is the mixer parameterized by ψ. Phan et al. (2021b) con-
sider various methods to determine subgroups {Ck}Kk=1 and
their meta-learned approach performs the best. Our VAST
variant instead determines {Ck} by our heuristic, with the
mixer and learning losses follow the original VAST algorithm.
We use the same edge budget in Phan et al. (2021b), which
sets K = ⌈ηN⌉ with η = 1/4. Notably, like QTRAN, VAST
falls into the centralized training and decentralized execution
(CTDE) paradigm, which equivalently employs product poli-
cies with no inter-agent correlation. This is a fundamental dif-
ference from the previous sections of this paper.

Environments and their dependency score. Warehouse:
N=16 robots move on a grid with shelves and stations. The
objective is to pick items and deliver them efficiently. Rewards
are positive for successful deliveries and include small penal-
ties for wasted moves or blocking. Battle: N=40 units move
and attack on a grid against forty opponents. The objective is to
win local fights and advance. Rewards are positive for damag-
ing or defeating enemies and negative for losses or ineffective
actions. In both tasks dependency scores are computed from 2D positions as in Predator-Prey.

Results. Figure 3 shows that, in both Warehouse and Battle, VAST with our heuristic outperforms
original VAST with their meta learning approach to determine the subgroups, which is the best
variant reported in Phan et al. (2021b), and both VAST variants surpass the ungrouped QTRAN.
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7 CONCLUSION

Our theoretical results establish finite-time convergence and suboptimality guarantees for BN policy
gradient methods under decomposability assumptions on the reward and transition functions. These
results highlight the role of subteam structures in achieving near-optimal coordination. In our em-
pirical study, we propose a heuristic for dynamically constructing context-aware DAGs that induce
subteam policies, and demonstrate its effectiveness across tabular and deep MARL benchmarks.
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A PROOFS

A.1 THE SMOOTHNESS BOUND

Lemma 4. Lλ(θ) is βλ-smooth with βλ = 8N
(1−γ)3 + 2λN

|S| .

Proof. Lemma A.3 in Chen & Zhang (2023) establishes that Vθ is 8N
(1−γ)3 -smooth. From the per-

spective of the augmented state, Lemma D.4 in Agarwal et al. (2021) implies that the regularizer for
each agent i is 2λ

|S||APi |
-smooth. Therefore, the overall smoothness of Lλ(θ) is bounded above by

8N

(1− γ)3
+
∑
i

2λ

|S||APi |
.

Since
∑
i

1

|APi |
≤ N , we have ∑

i

2λ

|S||APi |
≤ 2λN

|S|
.

Thus, βλ = 8N
(1−γ)3 + 2λN

|S| serves as an upper bound on the smoothness of Lλ(θ).

A.2 PROOF OF LEMMA 1

Proof.

∂Lλ(θ)

∂θi(s, aPi , ai)
=

∂Vθ(µ)

∂θi(s, aPi , ai)︸ ︷︷ ︸
(1)

−
∂

(
λ
∑N
i=1 Es,aPi∼Unif

S×APi

[
KL(UnifAi , πθ(·|s, aP

i

))
])

∂θi(s, aPi , ai)︸ ︷︷ ︸
(2)

According to Lemma 5.1 in Chen & Zhang (2023),

(1) =
1

1− γ
dπθ
µ (s, aP

i

)πiθi(a
i|s, aP

i

)Aiθ(s, a
Pi

, ai).

By the definition of KL Divergence,

(2) =

∂

(
λ
∑N
i=1 Es,aPi∼Unif

S×APi
λ
∑N
i=1

(∑
s,aPi

,ai log πi
θi

(ai|s,aP
i
)

|S||APi ||Ai|
+ log |Ai|

))
∂θi(s, aPi , ai)

=− λ

|S||APi |

(
1

|Ai|
− πiθi(a

i|s, aP
i

)

)
.

Therefore,

∂Lλ(θ)

∂θi(s, aPi , ai)

= (1)− (2)

=
1

1− γ
dπθ
µ (s, aP

i

)πiθi(a
i|s, aP

i

)Aiθ(s, a
Pi

, ai) +
λ

|S||APi |

(
1

|Ai|
− πiθi(a

i|s, aP
i

)

)
.
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A.3 PROOF OF LEMMA 2

Proof. The proof extends the proof of Theorem 5.2 in Agarwal et al. (2021) by the usage of the
multi-agent performance difference lemma (Lemma C.1 in Leonardos et al. (2021)).

Similar to the proof of Theorem 5.2 in Agarwal et al. (2021), we can establish an upper bound on
the advantage function Aiθ(s, a

Pi

, ai) for any (s, aP
i

, ai)-pair. It suffices to consider the case where
Aiθ(s, a

Pi

, ai) ≥ 0 (since when Aiθ(s, a
Pi

, ai) < 0, any positive number serves as a valid upper
bound):

λ/(2|S||A|max
j
|Aj |)

≥λ/(2|S||APi

||Ai|) (=: ϵopt)

≥ ∂Lλ(θ)

∂θi(s, aPi , ai)

(i)
=

1

1− γ
dπθ
µ (s, aP

i

)πiθi(a
i|s, aP

i

)Aiθ(s, a
Pi

, ai) +
λ

|S||APi |

(
1

|Ai|
− πiθi(a

i|s, aP
i

)

)
≥ λ

|S||APi |

(
1

|Ai|
− πiθi(a

i|s, aP
i

)

)

where the last inequality is due to Aiθ(s, a
Pi

, ai) ≥ 0, and by rearranging we get

πiθi(a
i|s, aP

i

) ≥ 1

2|Ai|
. (9)

Solving (i) for Aiθ(s, a
Pi

, ai), we have

Aiθ(s, a
Pi

, ai) =
1− γ

dπθ
µ (s, aPi)

(
1

πiθi(a
i|s, aPi)

∂Lλ(θ)

∂θi(s, aPi , ai)
+

λ

|S||APi |

(
1− 1

πiθi(a
i|s, aPi)|Ai|

))
≤ 1− γ
dπθ
µ (s, aPi)

(
2|Ai|ϵopt +

λ

|S||APi |

)
(πiθi(a

i|s, aP
i

) ≥ 1

2|Ai|
)

≤ 2(1− γ)λ
dπθ
µ (s, aPi)|S||APi |

(ϵopt = λ/(2|S||APi

||Ai|)) (10)

We are now ready to use the multi-agent performance difference lemma on two BN policies with
only agent i’s parameters changed. For convenience, denote

∑
a−Pi πθ(a

−Pi

, aP
i |s) as πPi

θ (·|s) so
that dπθ

µ (s, aP
i

) = dπθ
µ (s)πPi

θ (·|s). Fix an arbitrary agent i ∈ N and suppose it deviates from πiθi to
an optimal policy πi

θ̃i
w.r.t. the corresponding single-agent MDP specified by θ−i. Let θ′ = [θ−i, θ̃i]

be the parameters of any joint policy where only agent i’s parameters are changed to the optimal

16
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policy in the the corresponding single-agent MDP. We have

Vθ′(µ)− Vθ(µ)

=
1

1− γ
E
s̄∼d

π
θ′

µ
Eā∼πθ′

[
Aθ(s̄, ā)

]
(performance difference lemma)

=
1

1− γ
E
s̄∼d

π
θ′

µ (·)EāPi∼πPi

θ′ (·|s̄)Eāi∼πi
θ̃i

(·|s̄,āPi )E
ā
−Pi

+∼π
−Pi

+

θ′ (·|s̄,aP
i
+ )

[
Qθ(s̄, ā

Pi

, āi, ā−Pi
+)− Vθ(s̄)

]
( Since (θ′)−i = θ−i which means πPi

θ′ (·|s̄) = πPi

θ (·|s̄), π−Pi
+

θ′ (·|s̄, aP
i
+) = π

−Pi
+

θ (·|s̄, aP
i
+) )

=
1

1− γ
E
s̄∼d

π
θ′

µ (·)EāPi∼πPi

θ (·|s̄)Eāi∼πi
θ̃i

(·|s̄,āPi )E
ā
−Pi

+∼π
−Pi

+
θ (·|s̄,aP

i
+ )

[
Qθ(s̄, ā

Pi

, āi, ā−Pi
+)− Vθ(s̄)

]
=

1

1− γ
E
s̄∼d

π
θ′

µ (·)EāPi∼πPi

θ (·|s̄)Eāi∼πi
θ̃i

(·|s̄,āPi )

[
Qiθ(s̄, ā

Pi

, āi)− Vθ(s̄)
]

=
1

1− γ
E
s̄∼d

π
θ′

µ (·)EāPi∼πPi

θ (·|s̄)Eāi∼πi
θ̃i

(·|s̄,āPi )

[
Qiθ(s̄, ā

Pi

, āi)− Vθ(s̄)
]

=
1

1− γ
E
s̄∼d

π
θ′

µ (·)EāPi∼πPi

θ (·|s̄)Eāi∼πi
θ̃i

(·|s̄,āPi )

[
Aiθ(s̄, ā

Pi

, āi) +Qiθ(s̄, ā
Pi

)− Vθ(s̄)
]

=
1

1− γ
E
s̄∼d

π
θ′

µ (·)EāPi∼πPi

θ (·|s̄)Eāi∼πi
θ̃i

(·|s̄,āPi )A
i
θ(s̄, ā

Pi

, āi)

+
1

1− γ
E
s̄∼d

π
θ′

µ (·)EāPi∼πPi

θ (·|s̄)Eāi∼πi
θ̃i

(·|s̄,āPi )

[
Qiθ(s̄, ā

Pi

)− Vθ(s̄)
]

≤ 1

1− γ
E
s̄∼d

π
θ′

µ (·)EāPi∼πPi

θ (·|s̄)Eāi∼πi
θ̃i

(·|s̄,āPi )

2(1− λ)λ
dπθ
µ (s̄, āPi)|S||APi |

+
1

1− γ
E
s̄∼d

π
θ′

µ (·)EāPi∼πPi

θ (·|s̄)

[
Qiθ(s̄, ā

Pi

)− Vθ(s̄)
]

=
1

1− γ
E
s̄∼d

π
θ′

µ (·)EāPi∼πPi

θ (·|s̄)
2(1− γ)λ

dπθ
µ (s̄, āPi)|S||APi |

=
1

1− γ
E
s̄∼d

π
θ′

µ (·)EāPi∼πPi

θ (·|s̄)
2(1− γ)λ

dπθ
µ (s)πPi

θ (·|s)|S||APi |

=E
s̄∼d

π
θ′

µ (·)
2λ

dπθ
µ (s̄)|S||APi |

=
∑
s̄

dπθ′
µ (s̄)

2λ

dπθ
µ (s̄)|S||APi |

≤ 2λ

|APi |
max
s

(
d
πθ′
µ (s)

dπθ
µ (s)

)
≤ 2λ

|APi |
M ≤ 2λM.

By definition of ϵ-approximate equilibrium, we know that the BN (joint) policy πθ = (π1
θ1 , ..., π

N
θN )

is a 2λM -approximate equilibrium.

A.4 PROOF OF THEOREM 1

Proof. Since Lλ(θ) is βλ-smooth, we have

min
t≤T

∥∥∥∇θLλ(θ(t))∥∥∥2
2
≤ 2βλ(Lλ(θ

∗)− Lλ(θ0))
T

≤ 2βλ(Vmax − Vmin)

T
≤ 2βλ
T (1− γ)

where the second inequality holds because we initialize θ0 = 0. We can choose T large enough such
that √

2βλ
T (1− γ)

≤ λ/(2|S|max
i
|Ai|).

Solving the above inequality we obtain T ≥ 8βλ|S|2 maxi |Ai|2
λ2(1−γ) . By Lemma 2, we should set λ = ϵ

2M

to achieve the specified equilibrium-gap of ϵ. Plugging in λ = ϵ
2M and βλ = 8N

(1−γ)3 + 2λN
|S| , we

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

have

T ≥32M2|S|2 maxi |Ai|2βλ
ϵ2(1− γ)

=
256NM2|S|2 maxi |Ai|2

(1− γ)4ϵ2
+

64λNM2|S|maxi |Ai|2

(1− γ)ϵ2

=
256NM2|S|2 maxi |Ai|2

(1− γ)4ϵ2
+

32NM |S|maxi |Ai|2

(1− γ)ϵ

Lemma 5 (Properties of subteams-decomposed cooperative MGs). Suppose the underlying DAG of
a BN policy π satisfies all conditions in Assumption 3 with partition {Ck}1≤k≤K decomposing the
cooperative MG of interest with errors (ϵP , ϵr). We have

(i) Factorized joint policy. For any state s ∈ S and joint action a ∈ A, the BN policy is
factorized into the K subteams as: π(a|s) =

∏K
k=1 π

Ck(aCk |s).

(ii) Decomposed value functions. The global action-value function Qπ(s, a) and state-value
function Vπ(s) are decomposed additively by the subteams as

Qπ(s, a) =
∑K
k=1Q

k
π(s, a

Ck) + ϵQπ (s, a) and Vπ(s) =
∑K
k=1 V

k
π (s) + ϵVπ (s)

where Qkπ(s, a
Ck) :=rk(s, aCk) + γE s′ ∼Pk(·|s,aCk ) [Vπ(s

′)] ,

V kπ (s) :=EaCk∼πCk (· | s)
[
Qkπ(s, a

Ck)
]
,

ϵQπ
(s, a) :=ϵr(s, a) + γE s′ ∼ ϵP (·|s,a) [Vπ(s

′)] , ϵVπ
(s) := Ea∼π(· | s) [ϵQπ

(s, a)]

(iii) Marginal Consistency Property. This property captures that each subteam’s partially ag-
gregated Q-function (i.e., after marginalizing out actions of agents outside the subteam)
differs from the value function V in exactly the same way that the subteam’s local Q̃ differs
from its local baseline Ṽ . Formally, for every subteam Ck and any joint action aCk of
agents in that subteam,

Qπ(s, a
Ck) − Vπ(s) = Qkπ(s, a

Ck) − V kπ (s) +
(
ϵQπ

(s, aCk)− ϵVπ
(s)
)
.

where
ϵQπ

(s, aCk) := E a−Ck∼π−Ck (·|s)

[
ϵQ(s, a

Ck , a−Ck)
]

Proof. (i) Factorized Joint Policy Functions. No edges exist between agents in different subteams,
so each subteam Ck’s local policy depends only on s and its intra-subteam parents:

πCk(aCk | s) =
∏
i∈Ck

πi
(
ai | s, aP

i)
, where Pi ⊆ Ck.

Because these subteams are disjoint, the overall joint policy factors:

π(a | s) =

K∏
k=1

πCk(aCk | s).

Hence Property (i) follows.

(ii) Factorized Critic and Value Function. We first show Q(s, a) factorizes. By definition,

Q(s, a) = r(s, a) + γ E s′∼P (·|s,a)
[
Vπ(s

′)
]
.

By the factorized transition and reward defined in Equation (5), we have

Q(s, a) = ϵr(s, a)+

K∑
k=1

rk(s, aCk) + γ

(
E s′∼ϵP (s′|s,a)

[
Vπ(s

′)
]
+

K∑
k=1

E s′∼Pk(·|s,aCk )

[
Vπ(s

′)
])
.
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Define
Qkπ(s, a

Ck) := rk(s, aCk) + γ E s′∼Pk(·|s,aCk )

[
Vπ(s

′)
]
.

and
ϵQπ

(s, a) := ϵr(s, a) + γ E s′ ∼ ϵP (·|s,a)

[
Vπ(s

′)
]
,

Hence

Q(s, a) =

K∑
k=1

Qkπ(s, a
Ck) + ϵQπ

(s, a).

We can then show Vπ(s) factorizes as the following

Vπ(s) = Ea∼π(·|s)
[
Q(s, a)

]
= Ea∼π(·|s)

[ K∑
k=1

Qkπ(s, a
Ck) + ϵQπ

(s, a)
]

Define
V kπ (s) := EaCk∼πCk (· | s)

[
Qkπ(s, a

Ck)
]
,

and
ϵVπ (s) := Ea∼π(· | s)

[
ϵQπ (s, a)

]
Hence,

Vπ(s) =

K∑
k=1

V kπ (s) + ϵVπ
(s),

Therefore, both Q(s, a) and Vπ(s) factor over the subteams, establishing Property (ii).

(iii) Marginal Consistency Property. For each subteam Ck, we first define

ϵQπ (s, a
Ck) := E a−Ck∼π−Ck (·|s)

[
ϵQ(s, a

Ck , a−Ck)
]

By definition we have

Qπ(s, a
Ck) = E a−Ck∼π−Ck (·|s)

[ K∑
ℓ=1

Qℓπ(s, a
Cℓ) + ϵQ(s, a

Ck , a−Ck)
]
+ ϵQπ

(s, aCk)

= Qkπ(s, a
Ck) +

∑
ℓ̸=k

E a−Ck∼π−Ck (·|s)
[
Qℓπ(s, a

Cℓ)
]
+ ϵQπ

(s, aCk)

= Qkπ(s, a
Ck) +

∑
ℓ̸=k

E a−(Ck∪Cℓ)∼π−(Ck∪Cℓ)(·|s)

[
E aCℓ∼π

[
Qℓπ(s, a

Cℓ)
]]

+ ϵQπ
(s, aCk)

= Qkπ(s, a
Ck) +

∑
ℓ̸=k

E a−(Ck∪Cℓ)∼π
[
V ℓ(s)

]
+ ϵQπ

(s, aCk)

= Qkπ(s, a
Ck) +

∑
ℓ̸=k

V ℓ(s) + ϵQπ
(s, aCk)

and

Vπ(s) =

K∑
ℓ=1

V kπ (s) + ϵVπ (s) = V kπ (s) +
∑
ℓ̸=k

V ℓ(s) + ϵVπ (s).

Hence,

Qπ(s, a
Ck) − Vπ(s) = Qkπ(s, a

Ck) − V kπ (s) +
(
ϵQπ

(s, aCk)− ϵVπ
(s)
)
.

This establishes the Marginal Consistency Property (iii) and completes the proof of Lemma 5.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Below we define the bounds for the decomposition errors for the transition and reward.

Lemma 6 (Bound on Deviations in Factorized Critic and Value Functions). For any policy π, state
s ∈ S, joint action a ∈ A, and subteam action aCk , the following deviations are upper bounded:{

|ϵQπ (s, a)|, |ϵVπ (s)|, |ϵQπ (s, a
Ck)|

}
≤ |ϵr|︸︷︷︸

reward error

+ |S||ϵP |︸ ︷︷ ︸
transition error

· γ/(1− γ)︸ ︷︷ ︸
cumulative reward bound

The bound consists of two parts: 1) ϵr quantifies the one-step error due to reward decomposition,
and 2) the second term captures the cumulative effect of transition decomposition, scaled by the
worst-case return bound γ/(1− γ). The overall deviation becomes small when both decomposition
errors are small, and vanishes entirely when K = 1, in which case no decomposition is needed.

Proof. We begin with the definition:

ϵQπ (s, a) := ϵr(s, a) + γEs′∼∆P (·|s,a)[Vπ(s
′)].

Taking the absolute value and applying the triangle inequality:

|ϵQπ
(s, a)| ≤ |ϵr(s, a)|+ γ

∑
s′

|ϵP (s′ | s, a)| · |Vπ(s′)|.

Since we have:

|ϵr(s, a)| ≤ |ϵr|,
∑
s′

|ϵP (s′ | s, a)| ≤ |S||ϵP |, |Vπ(s′)| ≤
1

1− γ
,

we obtain:

|ϵQπ
(s, a)| ≤ |ϵr|+ γ|S||ϵP | ·

1

1− γ
= |ϵr|+ |ϵP |

γ|S|
1− γ

.

Now consider the deviation in the value function:

ϵVπ
(s) := Ea∼π(·|s)[ϵQπ

(s, a)].

Applying Jensen’s inequality:

|ϵVπ
(s)| ≤ Ea [|ϵQπ

(s, a)|] ≤ |ϵr|+ |ϵP |
γ|S|
1− γ

.

Finally, for any subteam Ck:

ϵQπ
(s, aCk) := Ea−Ck∼π−Ck (·|s)[ϵQ(s, a

Ck , a−Ck)].

Again applying Jensen’s inequality:

|ϵQπ
(s, aCk)| ≤ Ea−Ck

[
|ϵQ(s, aCk , a−Ck)|

]
≤ |ϵr|+ |ϵP |

γ|S|
1− γ

.

A.5 PROOF OF LEMMA 3

Proof. By bound on the advantage inequality (10), we know that ∀s,APi

, ai,

Aiθ(s, a
Pi

, ai) ≤ 2(1− γ)λ
dπθ
µ (s, aPi)|S||APi |

=
2(1− γ)λ

dπθ
µ (s)πθ(aP

i |s)|S||APi |
. (11)

By inequality (9), we know

πθ(a
Pi

|s) =
∏
j∈aPi

πθ(a
j |s, aP

j

) ≥
∏
j∈aPi

1

2|Aj |
=

1

2|aP
i |

1

|APi |
.
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Plugging in (11), we have

Aiθ(s, a
Pi

, ai) ≤ 2|a
Pi

|+1(1− γ)λ
dπθ
µ (s)|S|

.

Assume without loss of generality that agents in Ck have agent id 1, 2 · · · |Ck| and have a corre-
sponding topological ordering of 1, 2 · · · · · · |Ck| determined by G. Note that in this case, since each
subteam Ck is disjoint to other subteams and agents within each subteam are fully connected, we
have ∀i ∈ Ck, aP

i

= [aP
i−1
+ ], which means that

Qθ(s, a
Pi

) = Eā−Pi∼πθ(·|s,aPi )

[
Qθ(s, a

Pi

, ā−Pi

)
]

= E
ā
−Pi−1

+ ∼πθ(·|s,a
Pi−1
+ )

[
Qθ(s, a

Pi−1
+ , ā−Pi−1

+ )
]
= Qθ(s, a

Pi−1
+ ). (12)

Following the reverse topological ordering, we have ∀aCk = [aP
|Ck|

, a|Ck|],

Qθ(s, a
Ck)

=Qθ(s, a
P|Ck|

, a|Ck|)

≤Qθ(s, aP
|Ck|

) +
2(|Ck|−1)+1(1− γ)λ

dπθ
µ (s)|S|

(by inequality (10))

≤Qθ(s, aP
|Ck|−1

) +
(2|Ck| + 2|Ck|−1)(1− γ)λ

dπθ
µ (s)|S|

(by Equation (12))

≤Qθ(s, aP
|Ck|−1

) +
(2|Ck| + 2|Ck|−1)(1− γ)λ

dπθ
µ (s)|S|

(by inequality (10))

=Qθ(s, a
P|Ck|−2

, a|Ck|−2) +
(2|Ck| + 2|Ck|−1)(1− γ)λ

dπθ
µ (s)|S|

(by Equation (12))

(keep doing the same procedure above)

≤Qθ(s, aP
1

) +
(
∑|Ck|
j=1 2

j)(1− γ)λ
dπθ
µ (s)|S|

=Qθ(s, a
P1

) +
(2|Ck|+1 − 2)(1− γ)λ

dπθ
µ (s)|S|

=Vθ(s) +
(2|Ck|+1 − 2)(1− γ)λ

dπθ
µ (s)|S|

(since aP
1

= ∅).

By property (iii) in Lemma 5, we get

Qkθ(s, a
Ck) ≤ V kθ (s) +

(2|Ck|+1 − 2)(1− γ)λ
dπθ
µ (s)|S|

+
(
ϵVπ

(s)− ϵQπ
(s, aCk)

)
.
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By property (ii), we can bound the difference between Global Q and V by the following:

Qθ(s, a) =

K∑
k=1

Qkθ(s, a
Ck) + ϵQ(s, a)

≤
K∑
k=1

(
V kθ (s) +

(2|Ck|+1 − 2)(1− γ)λ
dπθ
µ (s)|S|

+
(
ϵVπ

(s)− ϵQπ
(s, aCk)

))
+ ϵQ(s, a)

=

K∑
k=1

V kθ (s) +
(
∑K
k=1 2

|Ck|+1 − 2K)(1− γ)λ
dπθ
µ (s)|S|

+

K∑
k=1

(
ϵVπ

(s)− ϵQπ
(s, aCk)

)
+ ϵQ(s, a)

=Vθ(s) +
(
∑K
k=1 2

|Ck|+1 − 2K)(1− γ)λ
dπθ
µ (s)|S|

+

K∑
k=1

(
ϵVπ

(s)− ϵQπ
(s, aCk)

)
+
(
ϵQ(s, a)− ϵVπ

(s)
)

=Vθ(s) +
(
∑K
k=1 2

|Ck|+1 − 2K)(1− γ)λ
dπθ
µ (s)|S|

+ (k − 1)ϵVπ (s)−
K∑
k=1

ϵQπ (s, a
Ck)
)
+ ϵQ(s, a)

≤Vθ(s) +
(
∑K
k=1 2

|Ck|+1 − 2K)N(1− γ)λ
dπθ
µ (s)|S|

+ 2K
(
|ϵr|+ ϵP γ|S|/(1− γ)

)
(by Lemma 6).

Letting θ∗ be the parameters of the optimal joint policy, we have

Vθ∗(µ)− Vθ(µ)

=
1

1− γ
Es̄∼dπθ∗

µ
Eā∼πθ∗

[
Aθ(s̄, ā)

]
(by performance difference lemma)

≤ 1

1− γ
Es̄∼dπθ∗

µ
Eā∼πθ∗

[ (∑K
k=1 2

|Ck|+1 − 2K)(1− γ)λ
dπθ
µ (s)|S|

+ 2K
(
|ϵr|+ |ϵP |γ|S|/(1− γ)

)]
=

1

1− γ
∑
s̄

dπθ∗
µ (s̄)

[ (∑K
k=1 2

|Ck|+1 − 2K)(1− γ)λ
dπθ
µ (s)|S|

]
+ 2K

(
|ϵr|/(1− γ) + |ϵP |γ|S|/(1− γ)2

)
≤ 1

1− γ
∑
s̄

M
[ (∑K

k=1 2
|Ck|+1 − 2K)(1− γ)λ

|S|

]
+ 2K

(
|ϵr|/(1− γ) + |ϵP |γ|S|/(1− γ)2

)
=

(
K∑
k=1

2|Ck|+1 − 2K

)
λM + 2K

(
|ϵr|/(1− γ) + |ϵP |γ|S|/(1− γ)2

)
.

Thus, we know that (π1
θ1 , · · · , πNθN ) is an

(
(
∑K
k=1 2

|Ck|+1 − 2K)λM + 2K
(
|ϵr|/(1 − γ) +

γ|S||ϵP |/(1− γ)2
))

-optimal policy.

A.6 PROOF OF THEOREM 2

Proof. Since Lλ(θ) is βλ-smooth, we have

min
t≤T

∥∥∥∇θLλ(θ(t))∥∥∥2
2
≤ 2βλ(Lλ(θ

∗)− Lλ(θ0))
T

≤ 2βλ(Vmax − Vmin)

T
≤ 2βλ
T (1− γ)

,

where the second inequality holds because we initialize θ0 = 0. We can choose T large enough such
that √

2βλ
T (1− γ)

≤ λ/(2|S||A|max
i
|Ai|).

Solving the above inequality we obtain T ≥ 8βλ|S|2|A|2 maxi |Ai|2
λ2(1−γ) . By Lemma 3, we should set λ =

ϵ
(
∑K

k=1 2|Ck|+1−2K)M
to achieve the specified optimality-gap of ϵ+2K

(
|ϵr|/(1−γ)+γ|S||ϵP |/(1−
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γ)2
)
. Plugging in λ = ϵ

(
∑K

k=1 2|Ck|+1−2K)M
and βλ := 8N

(1−γ)3 + 2λN
|S| , we have

T ≥
8M2βλ|S|2|A|2 maxi |Ai|2(

∑K
k=1 2

|Ck|+1 − 2K)2

ϵ2(1− γ)

=
64NM2|S|2|A|2 maxi |Ai|2(

∑K
k=1 2

|Ck|+1 − 2K)2

ϵ2(1− γ)4
+

8M2 2λN
|S| |S|

2|A|2 maxi |Ai|2(
∑K
k=1 2

|Ck|+1 − 2K)2

ϵ2(1− γ)

=
256NM2|S|2|A|2 maxi |Ai|2(

∑K
k=1 2

|Ck| −K)2

ϵ2(1− γ)4
+

32NM |S||A|2 maxi |Ai|2(
∑K
k=1 2

|Ck| −K)

ϵ(1− γ)

A.7 PROOF OF PROPOSITION 1

Proof. Let {Ck}Kk=1 be the coarser partition and {C′k′}K
′

k′=1 be its refinement, i.e. C′k′ ⊆ Cφ(k′) for a
mapping φ : {1, . . . ,K ′}→{1, . . . ,K}.
Because the Markov game is decomposed by {C′k′} with errors (ϵ′P , ϵ

′
r), by Definition 2 we have,

for all s, s′ ∈ S and a ∈ A,

P (s′ | s, a) =

K′∑
k′=1

P k
′
(s′ | s, aC

′
k′ ) + ϵ′P (s

′ |s, a), r(s, a) =

K′∑
k′=1

rk
′
(s, aC

′
k′ ) + ϵ′r(s, a).

(13)

Constructing a decomposition for the coarser partition. For each coarse block Ck define

P k(s′ | s, aCk) :=
∑

k′:φ(k′)=k

P k
′
(s′ | s, aC

′
k′ ), rk(s, aCk) :=

∑
k′:φ(k′)=k

rk
′
(s, aC

′
k′ ).

Summing over k = 1, . . . ,K and substituting (13),
K∑
k=1

P k(s′ | s, aCk) =

K′∑
k′=1

P k
′
(s′ | s, aC

′
k′ ) = P (s′ | s, a)− ϵ′P (s′ |s, a),

K∑
k=1

rk(s, aCk) =

K′∑
k′=1

rk
′
(s, aC

′
k′ ) = r(s, a)− ϵ′r(s, a).

Hence P and r admit the coarse decomposition

P (s′ |s, a) =

K∑
k=1

P k(s′ | s, aCk) + ϵ′P (s
′ |s, a)︸ ︷︷ ︸

=: ϵP (s′|s,a)

, r(s, a) =

K∑
k=1

rk(s, aCk) + ϵ′r(s, a)︸ ︷︷ ︸
=: ϵr(s,a)

.

Error comparison. Because we have simply reused the original error terms,
|ϵP | = max

s,s′,a
|ϵP (s′ |s, a)| = max

s,s′,a
|ϵ′P (s′ |s, a)| = |ϵ′P |, |ϵr| = |ϵ′r|.

Consequently |ϵP | ≤ |ϵ′P | and |ϵr| ≤ |ϵ′r|, completing the proof.

A.8 PROOF OF PROPOSITION 2

Proof. Recall g({Ck}Kk=1) :=
∑K
k=1 2

|Ck| −K. We show that splitting any block into two (thereby
refining the partition) never increases g; applying this operation repeatedly proves monotonicity for
an arbitrary refinement chain.

Let a partition {Ck}Kk=1 be given, and fix some C1 with |C1| = m ≥ 2. Split it into two non-empty
disjoint sets A,B such that A ∪ B = C1 and |A| = a, |B| = b with a, b ≥ 1 and a + b = m. The
new (refined) partition therefore has K + 1 blocks, and its g-value is

gnew =
(
2a + 2b

)
+

K∑
k=2

2|Ck| − (K + 1).
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The change ∆ := gnew − gold satisfies

∆ =
(
2a + 2b

)
− 2m − 1

(
since gold contains 2m − 1 for C1

)
= 2a + 2b − 2a+b − 1.

Because a, b ≥ 1, we have 2a, 2b ≤ 2a+b−1, and therefore

2a + 2b ≤ 2a+b−1 + 2a+b−1 = 2a+b.

Therefore ∆ ≤ −1 ≤ 0. Equality is impossible, so g strictly decreases after any non-trivial split.

Since any refinement can be obtained by a finite sequence of such splits, it follows that if {C′k′}K
′

k′=1

refines {Ck}Kk=1, then
g
(
{C′k′}

)
≤ g

(
{Ck}

)
.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B EXPERIMENTS DETAILS

B.1 ALGORITHM 1

Algorithm 1 Dependency-based subteams construction under an edge budget
Require: Agents N , dependency scores dij for i, j ∈ N , edge budget B

1: Initialize subsets {i} for i ∈ N and edge set E ← ∅ ▷ Singleton subteams with no edges
2: while there are more than one subset and E < B do
3: Find the two subsets C, C′ that maximize d(C, C′)
4: Enew ← {(u, v) : u ∈ C, v ∈ C′} ▷ All edges from C to C′
5: if |E|+ |Enew| > B then break ▷ Budget would be exceeded
6: E ← E ∪ Enew, merge C and C′ ▷ Merge the two subteams
7: end while
8: return Subteams {Ck}k partitioning a DAG G = (N , E)

B.2 DETAILS OF DECOMPOSITION ERROR FITTING

We measure the decomposition errors |ϵP | and |ϵr| (cf. Definition 2) by fitting local models {P k, rk}
for each subteam Ck. The goal is to estimate how well the environment’s dynamics and rewards can
be factorized according to different subteam partitions.

B.2.1 NEURAL NETWORK ARCHITECTURE

For each subteam Ck, we implement two multi-layer perceptron models:

• A transition model P kψk
: ACk → R|S| that maps subteam actions to transition components

• A reward model rkϕk
: S → R that maps subteam states to reward components

Both networks use a three-layer architecture with hidden dimension 128:

FC(in dim, 128)→ ReLU→ FC(128, 128)→ ReLU→ FC(128, out dim)

B.2.2 GLOBAL APPROXIMATION

We reconstruct global approximations by summing the outputs of the subteam-specific networks:

P̂ψ(·|a) =
∑
k

P kψk
(·|aCk), r̂ϕ(s) =

∑
k

rkϕk
(s).

The decomposition errors are then computed as the maximum absolute differences between the true
environment dynamics and our factorized approximations:

|ϵ̂P | = max
a,s′
|P̂ψ(s′|a)− P (s′|a)|, |ϵ̂r| = max

s
|r̂ϕ(s)− r(s)|.

B.2.3 TRAINING PROCEDURE

The models for each partition structure were trained using the Adam optimizer with a learning rate
of 10−3 over 10,000 epochs. The training process minimizes two Mean Squared Error losses:

LP (ψ) =
1

|A||S|
∑

a∈A,s′∈S

(
P (s′|a)−

∑
k

P kψk
(s′|aCk)

)2

(14)

Lr(ϕ) =
1

|S|
∑
s∈S

(
r(s)−

∑
k

rkϕk
(sCk)

)2

(15)
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B.3 DYNAMIC DAG CONSTRUCTION

Handling variable parents. To accommodate the variable parent sets Pi induced by the dynamic
DAG at each timestep, we construct the input to agent i’s actor as the concatenation of its own
observation (or encoded state) and the actions (and optionally observations) of its parents:

Inputi = Concat(oi or ϕ(oi), {aj , oj}j∈Pi),

where ϕ(·) is an optional encoder. For agents that are not parents of agent i, their actions are zero-
padded to ensure a fixed input dimension. This design enables consistent batching across agents and
supports seamless integration into standard actor-critic architectures.

Dependency score computation. The pairwise dependency scores dij reflect the spatial proximity
between agents and are computed as the negative pairwise distances, with specific formulations for
each environment:

• Coordination Game:
dij = −|si − sj |,

where si ∈ {0, 1} denotes the binary state of agent i.
• Aloha: Agents are fixed on a 2× 5 grid at positions (xi, yi) ∈ {0, 1} × {0, 1, 2, 3, 4}. The

dependency score is the negative Manhattan distance:

dij = −(|xi − xj |+ |yi − yj |).

• Predator-Prey, Warehouse, and Battle: Each agent i occupies a continuous 2D position
(xi, yi) ∈ R2. The dependency score is the negative Euclidean distance:

dij = −
√
(xi − xj)2 + (yi − yj)2.

B.4 PSEUDOCODE FOR THE REWARD FUNCTION IN COORDINATION GAME

Algorithm 2 Compute Team Reward for N Agents in State s
1: if N ∈ {2, 3} then
2: difference bound← 1
3: else
4: difference bound← 2
5: end if
6: c0 ← s.count(0)
7: c1 ← s.count(1)
8: if | c0 − c1 | ≤ difference bound then
9: if c0 < c1 then

10: reward← 1
11: else
12: reward← 0
13: end if
14: else if c0 > c1 then
15: reward← 3
16: else
17: reward← 2
18: end if
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B.5 HYPERPARAMETERS

Table 2: Hyperparameters for MAPPO (Coordination Game and Aloha), MADDPG (Predator-Prey)
Hyperparameter Value

Environment steps 2× 105 (CG), 5× 105 (Aloha), 4× 105 (Predator-Prey)
Episode length 20 (CG), 25 (Aloha and Predator-Prey)
PPO epochs 5 (CG and Aloha)
Actor/Critic learning rate 7× 10−4 (CG and Aloha), 1× 10−2 (Predator-Prey)
Optimizer Adam
Evaluation episodes 100 (CG and Aloha), 200 (Predator-Prey)
Rollout threads 32 (CG and Aloha)
Training threads 32 (CG and Aloha)
Hidden size 64 (CG and Aloha), 128 (Predator-Prey)
Random seeds 60 (CG and Aloha), 10 (Predator-Prey)

Actor architecture (CG) Concat(Base(s), aP
i

)→ FC(|Ai|)→ Softmax
Actor architecture (Aloha) Concat(Base(oi),Base(Concat(oP

i

, aP
i

)))→ FC(|Ai|)→ Softmax
Actor architecture (Predator-Prey) Concat(oi, aP

i

)→ FC→ ReLU→ FC→ ReLU→ FC(|Ai|)
Critic architecture (CG/Aloha) Joint state or observation→ Base→ FC(1)
Critic architecture (Predator-Prey) [oi; ai]i∈N → GCN1 → FC→ GCN2 → FC→ MaxPool→ FC(1)

Notation: CG = Coordination Game. Base: FC(hidden)→ ReLU→ FC(hidden)→ ReLU

Table 3: Hyperparameters for value-based methods (Warehouse and Battle)
Hyperparameter Value

Environment steps 1.5× 106 (Warehouse), 2× 106 (Battle)
Episode length 50 (Warehouse), 100 (Battle)
Learning rate 1× 10−3

Optimizer Adam
Evaluation episodes 10
Hidden size 64 (Subteam QCk ), 128 (Mixer)
Random seeds 10 (Warehouse), 5 (Battle)
Subteam ratio η 1/4 (K = ⌈ηN⌉)
Subteam QCk architecture (per subteam Ck) s→ FC→ ELU→ FC(64)→ ELU→ FC(|ACk |)
Mixer architecture (QTRAN/VAST) Concat(QC1 , . . . , QCK )→ FC(128)→ ELU→ FC(128)

→ ELU→ FC(1)

Notes: All hyperparameters follow VAST (Phan et al., 2021b).
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C ADDITIONAL RESULTS
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Figure 4: Equilibrium gap of tabular softmax BN policy gradient ascent under various DAG topolo-
gies (average over 50 random seeds). Policies are initialized with θ0 ∼ N (0, 1).
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D RESULTS ON SMAC
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Figure 5: Full DAG vs. product DAG with MAPPO on the SMAC bane vs. bane map.

The learning curves in Figure 5 display the mean and standard error over 12 random seeds on the
SMAC bane vs. bane map, a heterogeneous large-scale scenario with 24 controllable agents (20
Zerglings and 4 Banelings). The fully correlated DAG and the product DAG achieve nearly iden-
tical performance, indicating that additional correlation provides little benefit in this environment
and therefore the heuristic is not expected to outperform the product structure when even the fully
expressive DAG offers no advantage.
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