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ABSTRACT

Multimodal embedding representation has emerged as a hot research topic and
has been applied to multimodal retrieval tasks. Unsupervised contrastive learning,
represented by InfoNCE, serves as the mainstream training paradigm for mul-
timodal retrieval tasks. However, existing methods generally only optimize the
directional alignment of positive pairs in the embedding space, and neglect an-
other fundamental property of the representation tensors: magnitude. Based on
this intuitive insight, we propose a Tensor’s Norm Constraints of Multimodal
Embeddings framework, TNCME, which focuses on aligning the 2-norm of
embedding representations between positive pairs during contrastive learning,
jointly trained with the directional alignment pursued by InfoNCE. This ap-
proach optimizes the Top-1 performance of visual-language models in multi-
modal retrieval tasks. We first rigorously prove that the training objective of
norm alignment of representations is consistent with the training logic of con-
trastive learning, and then adapt this objective to multimodal retrieval tasks. Based
on the VLM2Vec-V2 framework, we perform training and evaluation across a
total of 81 tasks spanning three representative multimodal retrieval categories:
Image-Text, VisDoc-Text, and Video-Text. Experimental results demonstrate
that the proposed TNCME outperforms baseline methods across all Top-1 met-
rics. Code open-sourced on anonymously GitHub: https://anonymous.
4open.science/r/TNCME-ICLR/

1 INTRODUCTION

In multimodal retrieval tasks, existing approaches are primarily categorized into two main
groups. The first group includes dual-tower architectures, such as CLIP (Radford et al., 2021a),
BridgeTower (Xu et al., 2023b), and ManagerTower (Xu et al., 2023a), which encode images and
text independently, often using CLIP-ViT and RoBERTa (Liu et al., 2019), and suffer from limited
cross-modal interaction and fine-grained semantic alignment. The second group comprises some
Vision-Language Models (VLMs) such as LLaVA (Liu et al., 2023a; 2024a;b) and the Qwen-VL
series (Bai et al., 2023; Wang et al., 2025b), which adopt a “ViT-Projector-LLM” architecture to in-
ject visual features into large language models (LLMs) via a projector. These models achieve more
powerful modal alignment, contextual understanding, and semantic reasoning, making VLM-based
representation learning an emerging trend in multimodal retrieval tasks.

Although VLM2Vec(Jiang et al., 2025) and VLM2Vec-V2(Meng et al., 2025) have preliminarily
demonstrated the feasibility of applying multimodal retrieval tasks to VLMs, these methods still
rely on InfoNCE(van den Oord et al., 2018) as the sole training objective, lacking a refined model-
ing of the multimodal alignment process. InfoNCE normalizes representations to focus training on
directional alignment within a unit hypersphere: bringing positive pairs closer while pushing soft
negative pairs more uniform. However, this mechanism has inherent limitations—when semanti-
cally mismatched visual-text pairs exhibit similar directions, the model may struggle to distinguish
them effectively, thereby weakening its discriminative capability. The issue reveals the limitations
of relying solely on directional alignment, prompting us to further focus on another key attribute
of representation vectors—magnitude. In this work, we consider the magnitude of semantic repre-
sentations as their L2 norm. Magnitude reflects the “energy” intensity of embedding vectors in the
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feature space, serving as a crucial dimension for characterizing the semantic density and saliency of
samples. Unlike cosine similarity, which measures only directional similarity, norm reveals more nu-
anced distribution characteristics of samples in high-dimensional space. For instance, semantically
rich or visually salient images or texts may exhibit larger norms. Thus, imposing norm alignment
constraints during training tightens both directional and norm alignment of positive samples, directly
boosting Top-1 retrieval performance, as shown in Fig. 1. TNCSE(Zong et al., 2025) improves upon
SimCSE(Gao et al., 2021) in semantic textual similarity tasks by introducing a norm alignment
constraint on semantic representation tensors, demonstrating the importance of norm alignment in
sentence representation learning. Building upon this, we propose integrating norm alignment into
a multimodal contrastive learning framework to establish a more comprehensive mechanism for
representation alignment. We further propose TNCME, a novel multimodal embedding framework
that jointly optimizes directional alignment and norm consistency to enhance positive-pair match-
ing in magnitude while preserving InfoNCE’s directional modeling, improving generalization in
multimodal retrieval.

To our knowledge, no existing work has conducted a rigorous theoretical analysis of the semantic
tensor norm alignment training objective. This objective neither clarifies whether the optimization
process aligns with expected logic nor explores the existence of multiple local optima, making it
difficult to guarantee convergence stability and alignment consistency. Furthermore, TNCSE is de-
signed for pure text unimodal scenarios, where hidden states encoded by BERT-like models(Devlin
et al., 2019; Liu et al., 2019; Reimers & Gurevych, 2019) exhibit slight variation in their norm dis-
tributions. In contrast, multimodal tasks involve significant differences in semantic representations
between visual and textual from the outset—not only in direction but also in norm scales. There-
fore, directly transferring TNCSE’s norm alignment objective to multimodal scenarios may lead
to training instability or performance degradation. To address these challenges, we first conduct a
rigorous theoretical derivation of the training objective for norm alignment, which proves that the
designed optimization objective possesses a globally optimal solution, thereby avoiding optimiza-
tion difficulties caused by multiple local maxima and enhancing the interpretability of the training
process. Simultaneously, we verify that the loss function’s update direction aligns with the desired
norm alignment trend, demonstrating that this mechanism effectively guides positive samples toward
consistency in the representation space. Building upon this foundation, we refine the original norm
alignment objective to enhance the model’s robustness to multimodal feature discrepancies, making
it more suitable for the demands of multimodal contrastive learning, which ultimately enables the
collaborative optimization of both direction and norm for query-target embedding pairs of positive
samples, leading to an improvement of Top-1 retrieval performance.

We implement training and evaluation of the visual-text retrieval task on the Qwen2-VL-2B model
with the VLM2Vec-V2 framework. First, we locally reproduce VLM2Vec-Qwen2-VL-2B as the
baseline model to ensure consistency in the experimental environment and comparability of results.
Subsequently, based on the proposed TNCME framework, we train the improved model, TNCME-
Qwen2-VL-2B, and compare it with the baseline under an identical testing environment. Exper-
imental results demonstrate that across 36 image-text retrieval tasks, 27 visdoc-text tasks, and 18
video tasks, TNCME-Qwen2-VL-2B outperforms baseline on multiple key metrics, including Hit,
NDCG, Precision, F1, Recall, MAP, and MRR, which fully validates the effectiveness and general-
ization capability of the proposed method in enhancing multimodal retrieval performance. Further-
more, ablation experiments are conducted to validate the rationality of modifying the tensor norm
constraint in the training objective. Visualizations of sample embeddings in two-dimensional space
reveal that under norm alignment, the query and target distributions of positive samples converge
more closely, indicating that this training objective better aligns with retrieval task requirements.

We summarize the main contributions of this work as follows:

• To our knowledge, we are the first to introduce the concept of norm alignment for semantic
representation tensors into multimodal unsupervised contrastive learning, proposing the
multimodal embedding framework TNCME and applying it to multimodal retrieval tasks.

• Through rigorous mathematical proof, we demonstrate that the training objective for norm-
aligned alignment possesses a unique optimal solution, and we visually illustrate the trend
of this loss function.

• Training and evaluation are conducted within the VLM2Vec-V2 framework. We validate
the effectiveness of the proposed method across 36 image-text retrieval tasks, 27 VisDoc-
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text retrieval tasks, and 18 video-text retrieval tasks. The results demonstrate improvements
across all benchmarks in the Top-1 metrics, indicating more significant precision at the
highest ranking position.

2 RELATED WORKS

Before the ViT-Proj-LLM architecture, CLIP(Radford et al., 2021a) pioneered visual-language
alignment using the InfoNCE loss, which enforces directional consistency between image and text
embeddings for efficient cross-modal alignment. Subsequent models, such as BLIP(Li et al., 2022)
and BLIP-2(Li et al., 2023), introduced cross-attention to enable early multimodal feature fusion,
thereby enhancing intermodal interaction and contrastive learning efficacy. BridgeTower(Xu et al.,
2023b) and ManagerTower(Xu et al., 2023a) further improved fine-grained alignment via structural
optimizations, which still relied primarily on InfoNCE. With the rise of ViT-Proj-LLM architectures,
visual-language alignment has transitioned from complex cross-attention to simpler, more efficient
feedforward networks. Under this paradigm, Both GME(Zhang et al., 2024) and LamRA(Liu et al.,
2025) explore the application of unsupervised contrastive learning in multimodal retrieval tasks.
VLM2Vec(Jiang et al., 2025) introduces the MMEB benchmark(Meng et al., 2025) and applies un-
supervised contrastive fine-tuning on Phi-3.5-V(Abdin et al., 2024), boosting training efficiency and
representation quality via GradCache. VLM2Vec-V2(Meng et al., 2025) introduces a more com-
prehensive benchmark, MMEB-V2, and employs Qwen2VL(Wang et al., 2025b) as its backbone.
According to the VLM2Vec-V2 report, which outperforms mainstream open-source approaches in
the MMEB-V2 benchmark.

3 METHOD

In this section, we review the tensor norm constraint as a training objective for semantic represen-
tations in unsupervised contrastive learning and demonstrate its alignment with the principles of
contrastive learning. We then introduce our core method, the multimodal embedding framework
TNCME, detailing how it integrates tensor norm constraints with InfoNCE loss for joint training.

3.1 REVIEW OF TENSOR NORM CONSTRAINT TRAINING OBJECTIVES

O

qryh
tgtqry hh 

tgth

A

B


(a) Direction only con-
strainted.

O

qryh
tgtqry hh 

tgth

A

B


(b) Direction and norm
are jointly constrained.

Figure 1: These two subfigures illustrate the
advantages of norm alignment and direction
alignment in three-dimensional space.

In multimodal retrieval tasks, existing unsuper-
vised contrastive learning methods typically em-
ploy InfoNCE loss to learn embeddings by model-
ing the semantic representation directions of pos-
itive and negative sample pairs in hyperspherical
space. TNCSE has demonstrated that focusing on
the 2-norm of the representation tensor can opti-
mize the performance of BERT-like models in se-
mantic text similarity tasks. Our objective is to
prove the effectiveness of this approach and apply
it to multimodal retrieval tasks. Therefore, we first
briefly review the training objective of the semantic
representation tensor 2-norm constraint.

If hqry and htgt denote the representations of positive samples in a contrastive learning pair, the
tensor norm constraint training objective is defined as Eq. 1:

LTN (hqry,htgt) =
∥hqry − htgt∥
∥hqry∥+ ∥htgt∥

, (1)

where ∥·∥ denotes the 2-norm of the tensor. Reducing the high-dimensional semantic representations
to a three-dimensional space for visualization, as shown in Fig. 1, it is evident that we can perform
vector subtraction on hqry and htgt. Since all tensors in Eq. 1 have been normalized to the 2-norm,
we obtain a triangle △OAB. Expanding the numerator using the cosine theorem gives Eq. 2:

LTN (hqry,htgt) =

√
∥hqry∥2 + ∥htgt∥2 − 2 ∥hqry∥ ∥htgt∥ cos γ

∥hqry∥+ ∥htgt∥
, (2)
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(d) The direction and magnitude of
the gradient of LTN (k, t).
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Figure 2: The series of subfigures quantitatively analyzes LTN . Subfigures (a)-(c) show trends
of its primitive function and partial derivatives in t and k. Subfigure (d) overlays a gradient field
on the function surface, red and green areas mark decreases driven by t and k, respectively, with
darker shades indicating stronger influence. Subfigures (e) and (f) provide top-down views of sign
distributions for ∂LTN

∂k and ∂LTN

∂t , where blue/red denote negative/positive gradients, and darker
colors show larger absolute values. For clarity, we mark the point (1, 1) in subfigures (a)-(d).

here, γ denotes the angle between tensors hqry and htgt. Since it is impossible to explicitly express
the relationship between hqry and htgt in any pair of positive samples, without loss of generality,
we set ∥htgt∥ = k · ∥hqry∥, k ∈ (0,+∞) and t = cos γ, t ∈ [−1, 1]. Thus, Eq. 2 can be rewritten
as a bivariate function of k and t, as shown in Eq. 3, which is visualized as Fig 2(a).

LTN (k, t) =

√
1 + k2 − 2 · kt

1 + k
. (3)

The ideal objective for LTN is to simultaneously satisfy ∥hqry∥ = ∥htgt∥ and cos γ = 1. This
objective precisely corresponds to k = 1 and t = 1, ensuring perfect alignment between the two in
both norm and direction. Although this configuration is intuitively desirable, existing works have
not provided quantitative convergence proofs for this objective, nor has it systematically explored
whether other local optima exist.

3.2 PROOF OF MONOTONICITY FOR TENSOR NORM CONSTRAINED LOSS FUNCTION LTN

While TNCSE empirically shows that norm constraints on semantic representation tensors improve
BERT-like models in semantic similarity tasks, it lacks theoretical justification. Here, we rigorously
analyze why norm constraints benefit contrastive learning.

First, note that the Eq. 3 can be made a simple transformation. For any k ∈ (0,+∞) and t ∈ [−1, 1],
we have Ineq. 4:

0 ≤ |k − 1|
k + 1

=

√
1 + k2 − 2 · k

1 + k
≤

√
1 + k2 − 2 · kt

1 + k
≤

√
1 + k2 + 2 · k

1 + k
= 1, (4)

which implies that LTN(k, t) ≥ 0 throughout training, ensuring stable gradient updates. We expect
k and t to converge to 1, driving hqry and htgt to align in both norm and direction, which is con-
sistent with our design motivation. To guarantee reliable optimization, however, we must formally
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LLM

Projection Layer

Image Encoder

Norm Layer

LoRA

NLHS(T)

PO(T)

InfoNCE for Training Direction Alignment

Projection Layer

Image Encoder LoRA

Copy 
Weights

NLHS(Q)

PO(Q)

Query Mini-Batch Target Mini-Batch

Embedding Layer

Decoder Layers

Norm Layer

EOS Token

Norm Alignment Projector

Normalized Last 
Hidden State(NLHS)

Pooler 
Output(PO)

Norm Alignment Projector

LLM

InfoTN for Training Norm Alignment

Norm Layer Norm Alignment Projector

Figure 3: The architecture of our multimodal embedding representation framework, TNCME, which
adds an FFN (Norm Alignment Projector, NAP) to a VLM. The hidden states are output by the LLM
within the VLM, which passes through both a Norm Layer and the NAP. The resulting normalized
last hidden state and projector output are trained by InfoNCE and InfoTN, respectively, to align the
direction and norm of the multimodal query and target embedding representations.

show that k and t monotonically approach 1 without being trapped in spurious local optima. In the
following, we prove that LTN(k, t) is monotonic in both k and t.

First, we take the partial derivative of LTN (k, t) with the independent variable t to obtain Eq. 5:

∂LTN (k, t)

∂t
= − k

(1 + k) ·
√
k2 − 2kt+ 1

, (5)

It is observed that ∂LTN (k,t)
∂t < 0 holds throughout its domain1. Therefore, LTN (k, t) is monotoni-

cally decreasing in the t-direction, which means that for any k > 0 and k ̸= 1, LTN (k, t) attains its
minimum value at t = 1, and we visualize ∂LTN (k,t)

∂t in Fig. 2(c) and 2(f). Then, we take the partial
derivative of LTN (k, t) with respect to k, obtaining Eq. 6:

∂LTN (k, t)

∂k
=

(k − 1) · (1 + t)

(1 + k)2 ·
√
k2 − 2kt+ 1

. (6)

For any t ∈ [−1, 1), the behavior of LTN(k, t) with respect to k is as follows: when k ∈ [0, 1),
∂LTN(k,t)

∂k < 0, indicating that LTN is decreasing in k; when k > 1, ∂LTN(k,t)
∂k > 0, indicating that

LTN is increasing in k. Thus, LTN(k, t) attains a local minimum at k = 1 along the k-direction.
The behavior of ∂LTN(k,t)

∂k is visualized in Figs. 2(b) and 2(e).

In summary, we rigorously prove that LTN(k, t) has a unique global minimum at (k, t) = (1, 1)
within its domain, where LTN(k, t) = 0. This corresponds to perfect alignment between query
and target in both norm and direction of their semantic representations, precisely the objective of
our training framework. To further illustrate the optimization trajectory of LTN(k, t), Fig. 2(d)
visualizes the dominant influence of each variable during descent. The surface is color-mapped
according to the gradient’s direction and magnitude, highlighting the steepest descent directions
across the domain. This reveals how k and t jointly govern the functional landscape and drive
convergence toward the global minimum.

3.3 MODEL STRUCTURE DESIGN

We employ a Qwen2VL model to encode queries and targets, utilizing the encoded last hidden states
(LHS) for training. We observe that the LLM output representation tensor in the QwenVL series
models will be normalized by RMSNorm(Zhang & Sennrich, 2019) to obtain the LHS. The LHS is
clipped of norm features, retaining only directional features. VLM2Vec-V2 employs InfoNCE to set
directional constraints on the LHS, and we need an FFN to reconstruct the norm features. Inspired
by TNCSE, we observe that during generative tasks, QwenVL’s LHS also passes through an FFN,
referred to as the language model head (LM head). This head maps the LHS into a tensor of the

1We discuss in detail in Appendix A the effect of discontinuities that cause the denominator to become zero
on monotonicity.
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vocabulary size dimension, defined as logits, which are used for autoregressive tasks. Intuitively, one
might consider using logits for tensor norm constraints. However, we find the logit distribution is
excessively sparse and the output dimension of the LM head is prohibitively large, causing memory
overflow even with LoRA(Hu et al., 2022) fine-tuning. Thus, we define a randomly initialized FFN
after the LLM, as the Norm Alignment Projector (NAP). Its purpose is to guide the model toward
focusing on the semantic features required for retrieval tasks. The input and output dimensions
of NAP align with the LHS, preventing memory overflow. We denote the features obtained by
passing LHS through NAP as Projector Output (PO), which captures the norm features of the
representation. We employ PO in LTN and LHS in InfoNCE, and train them jointly, as Fig. 3. NAP
is used only in training, thus, the inference pipelines of TNCME and VLM2Vec-V2 are identical.

Given TNCSE’s focus on pure text modalities, LTN can be directly utilized for intuitive constraints.
However, since TNCME focuses on multimodal data representation, ablation experiments reveal that
directly applying LTN results in convergence issues for the loss. Therefore, this subsection modifi-
cations to the LTN is outlined in subsection 3.1, aiming to enhance its suitability for unsupervised
contrastive learning of multimodal embeddings. First, we present the InfoNCE, in Eq. 7:

LInfoNCE = − log
esim(hqry,htgt+)/τ

esim(hqry,htgt+)/τ +
∑

tgt−∈N esim(hqry ,htgt−)/τ
, (7)

where sim denotes cosine similarity, τ denotes the temperature coefficient, and N denotes the cur-
rent mini-batch being trained. We observe that in the vast majority of cases, the cosine similar-
ity distribution for multimodal positive and negative sample embeddings ranges from -0.01 to 1.
According to Eq. 4, we have 0 ≤ L(k, t) ≤ 1. Therefore, the range distribution of LTN (k, t)
approximates the actual cosine similarity. Consequently, we define the norm similarity, as Eq. 8:

simTN = 1− LTN . (8)

Since LTN (k, t) is expected to decrease during training while simTN increases, and 0 ≤ simTN ≤
1, we intuitively combine simTN and InfoNCE to propose the contrastive learning objective
InfoTN for multimodal embeddings, defined as Eq. 9:

LInfoTN = − log
esimTN(hqry,htgt+)/τTN

esimTN(hqry,htgt+)/τTN +
∑

tgt−∈N esimTN(hqry,htgt−)/τTN

, (9)

where τTN is also a temperature coefficient, independent of τ . This design effectively mitigates
optimization obstacles caused by excessive differences in norm across different modalities, avoiding
abrupt changes in the loss function triggered by the forced alignment of norm, and promotes stable
convergence of the loss during training. We will visualize the changes in LInfoTN and LTN during
training in ablation experiments to demonstrate the smoothness of InfoTN. Ultimately, we combine
InfoTN and InfoNCE through joint training, defining the overall loss function as Eq. 10.

L = λ · LInfoNCE + (1− λ) · LInfoTN , λ ∈ (0, 1) . (10)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conduct experiments based on the VLM2Vec-V2 framework2, which consists of three train-
ing tasks: Image-Text retrieval, VisDoc-Text retrieval, and Video-Text retrieval. All data are
sourced from MMEB-train(Meng et al., 2025). To validate the method’s generalization capabil-
ity, we design three sets of progressive experiments: (i) Training solely on Image-Text data to
evaluate image-text retrieval performance, and evaluating VisDoc-Text and Video-Text retrieval
tasks under zero-shot conditions; (ii) Jointly training Image-Text and VisDoc-Text data, evaluat-
ing performance on both tasks, and conducting zero-shot evaluation on the Video-Text retrieval
task; (iii) We use the full training set and then evaluate on three-class tasks3. Details of the
datasets are listed in Appendix C. To thoroughly evaluate performance, we use multiple metrics,

2https://github.com/TIGER-AI-Lab/VLM2Vec
3Since the performance of reproduced VLM2Vec-V2 on the all training set shows a decline compared to the

reported results, the issue remains unresolved as the manuscript submission; details are in Appendix B.

6

https://github.com/TIGER-AI-Lab/VLM2Vec


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: We evaluate VLM2Vec-V2-Qwen2VL and TMCSE-Qwen2VL on three multimodal re-
trieval tasks: Image-Text (Im, 36 items), VisDoc-Text (Vd, 27 items), and Video-Text (Vi, 18
items). Results are averaged across subtasks and reported for eight metrics: Hit@k (H@k), NDCG-
Linear@k (NL@k), NDCG-Exponential@k (NE@k), Precision@k (P@k), Recall@k (R@k),
F1@k, MAP@k (MA@k), and MRR@k (MR@k). Top-1 scores are visually highlighted in .
We also report the average improvement of TNCME over VLM2Vec-V2 separately, both the overall
average (Avg) and the average @1 (Avg @1) derived from a total of 81 tasks.

Model VLM2Vec-V2 TNCME VLM2Vec-V2 TNCME VLM2Vec-V2 TNCME
Training Image Only (5000 Steps) Image and VisDoc (5000 Steps) All Training-sets (2000 Steps)

Metric Im
36

Vd
27

Vi
18

Im
36

Vd
27

Vi
18

Im
36

Vd
27

Vi
18

Im
36

Vd
27

Vi
18

Im
36

Vd
27

Vi
18

Im
36

Vd
27

Vi
18

H@1 63.7 22.9 30.0 64.9 24.5 31.4 64.5 47.9 32.9 65.3 49.1 33.0 62.4 49.4 35.0 62.8 50.3 35.2
H@5 84.1 42.5 70.3 85.0 43.0 72.1 84.5 71.1 73.2 84.9 72.2 72.9 83.9 73.0 74.1 83.9 72.2 74.1
H@10 88.7 52.1 82.0 89.5 52.1 83.1 89.3 78.6 83.6 89.5 80.1 83.2 88.7 79.6 84.3 88.7 79.1 84.3
NL@1 63.7 21.6 30.0 64.9 23.3 31.4 64.5 46.2 32.9 65.3 47.4 33.0 62.4 47.8 35.0 62.8 48.6 35.2
NL@5 75.0 28.5 51.3 76.1 29.7 52.8 75.6 54.7 54.2 76.2 56.0 54.2 74.3 56.2 55.7 74.5 56.3 55.9
NL@10 76.5 30.9 55.1 77.6 32.0 56.4 77.1 56.7 57.5 77.7 58.3 57.6 75.9 57.9 59.0 76.1 58.0 59.2
NE@1 63.7 20.7 30.0 64.9 22.5 31.4 64.5 45.1 32.9 65.3 46.2 33.0 62.4 46.7 35.0 62.8 47.4 35.2
NE@5 75.0 28.0 51.3 76.1 29.3 52.8 75.6 54.0 54.2 76.2 55.4 54.2 74.3 55.6 55.7 74.5 55.7 55.9
NE@10 76.5 30.6 55.1 77.6 31.7 56.4 77.1 56.3 57.5 77.7 57.9 57.6 75.9 57.5 59.0 76.1 57.6 59.2
P@1 63.7 22.9 30.0 64.9 24.5 31.4 64.5 47.9 32.9 65.3 49.1 33.0 62.4 49.4 35.0 62.8 50.3 35.2
P@5 16.8 11.9 14.1 17.0 11.4 14.5 16.9 19.9 14.7 17.0 20.5 14.7 16.8 20.5 14.9 16.8 20.5 14.9
P@10 8.9 8.8 8.3 9.0 8.1 8.4 8.9 13.7 8.4 9.0 14.1 8.4 8.9 13.6 8.5 8.9 13.6 8.5
R@1 63.7 16.2 29.9 64.9 18.3 31.3 64.5 36.9 32.8 65.3 38.3 32.9 62.4 38.2 34.8 62.8 38.6 35.1
R@5 84.1 31.5 70.2 85.0 32.9 72.0 84.5 57.5 73.2 84.9 58.5 72.8 83.9 59.1 74.0 83.9 58.6 74.1
R@10 88.7 40.2 82.0 89.5 40.9 83.1 89.3 65.7 83.6 89.5 67.4 83.2 88.7 66.6 84.3 88.7 66.2 84.3
F@1 63.7 16.8 29.9 64.9 18.9 31.3 64.5 38.1 32.9 65.3 39.5 32.9 62.4 39.5 34.9 62.8 40.0 35.1
F@5 28.1 13.0 23.5 28.3 13.2 24.1 28.2 23.2 24.5 28.3 23.8 24.4 28.0 23.9 24.8 28.0 23.9 24.8
F@10 16.1 10.7 15.0 16.3 10.3 15.2 16.2 17.2 15.3 16.3 17.7 15.2 16.1 17.3 15.4 16.1 17.2 15.4
MA@1 63.7 22.9 30.0 64.9 24.5 31.4 64.5 47.9 32.9 65.3 49.1 33.0 62.4 49.4 35.0 62.6 50.3 35.2
MA@5 72.0 25.2 44.9 73.1 26.7 46.4 72.6 50.5 47.8 73.2 52.1 48.0 71.1 51.9 49.5 71.3 52.2 49.9
MA@10 72.6 25.6 46.5 73.7 27.0 48.0 73.2 50.6 49.2 73.9 52.3 49.4 71.7 51.7 50.9 72.0 52.0 51.1
MR@1 63.7 22.9 30.0 64.9 24.5 31.4 64.5 47.9 32.9 65.3 49.1 33.0 62.4 49.4 35.0 62.8 50.2 35.2
MR@5 72.0 29.9 45.0 73.1 31.1 46.5 72.6 56.7 47.9 73.2 57.9 48.0 71.1 58.5 49.6 71.3 58.8 49.9
MR@10 72.6 31.2 46.7 73.7 32.3 48.0 73.2 57.7 49.3 73.9 59.0 49.4 71.7 59.4 50.9 72.0 59.7 51.2
Avg 63.2 25.3 41.7 64.1 26.4 42.9 63.8 47.6 44.1 64.3 48.8 44.0 62.5 48.8 45.4 62.7 49.0 45.6
Avg @1 41.9 43.3(+1.4%) 50.9 51.7(+0.8%) 50.9 51.4(+0.5%)

including Hit@1,5,10, NDCG-linear@1,5,10, NDCG-exponential@1,5,10, Precision@1,5,10, Re-
call@1,5,10, F1@1,5,10, MAP@1,5,10, and MRR@1,5,10, which capture retrieval quality from
complementary perspectives as summarized in Appendix D4. Consistent with VLM2Vec-V2, we
employ Qwen2-VL-2B as the backbone, and use the EOS token as the pooling method. All training
is completed on 8 H100 GPUs with a total batch size set to 1024, a learning rate set to 5e-5, and a
linear decay strategy is adopted. We adopt the LoRA fine-tuning strategy with rank set to 16 and
scaling factor α set to 64. LoRA is implemented based on the PEFT(Mangrulkar et al., 2022) frame-
work. In the first two experiments, which are conducted on subsets of the training data, we train for
5,000 steps. Due to computational resource constraints, we reduce the training steps to 2,000 when
using the full training set5. The InfoNCE temperature τ is kept at its default value of 0.02 and λ is
fixed at 0.5 across all configurations. To account for differences in training set distribution, we set
τTN to 10−4 for the full training set, while the subset-based experiments use τTN = 0.05.

4.2 BASELINE SETTING

VLM2Vec-V2 has demonstrated that VLM2Vec-V2-Qwen2VL-2B outperforms several recently
open-sourced visual-language retrieval baselines across Image-Text, Video-Text, and Visdoc-Text
tasks, such as ColPali-v1.3(Faysse et al., 2025a), GME-2B/7B(Zhang et al., 2024), LamRA-

4VLM2Vec-V2 employs Hit@1 as the metric for image-text retrieval tasks and VisDoc-text retrieval tasks,
while NDCG@5 is used for video-text retrieval tasks. To comprehensively evaluate the model’s performance
across different tasks, we utilize all available evaluation metrics for a comprehensive evaluation.

5In VLM2Vec-V2, the authors mention training for either 2K or 5K steps; our settings are thus aligned with
the original paper.
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Qwen2/2.5-VL(Liu et al., 2025), VLM2Vec-2B/7B(Jiang et al., 2025), etc, as summerized in Ap-
pendix B. To demonstrate the superiority of our proposed method over VLM2Vec-V2, we retrain
VLM2Vec-V2-Qwen2VL-2B as a baseline comparison using the same GPUs, official source code,
and default parameters under three experimental conditions.

4.3 RESULTS ANALYSIS

We report the evaluation results of three experimental sets in Table 1. The experiments fully vali-
date TNCME’s significant advantage in enhancing Top-1 retrieval performance: across three distinct
training set configurations, TNCME consistently outperforms the baseline model VLM2Vec-V2 on
Top-1 metrics for all multimodal retrieval tasks (Image-Text, VisDoc-Text, Video-Text), demonstrat-
ing consistent and cross-modal generalization capabilities. Even when trained solely on image-text
data, regardless of whether VisDoc or Video data is introduced, TNCME consistently maintains its
lead, which demonstrates that the norm alignment mechanism exhibits strong robustness to training
data composition, does not rely on specific modality distributions, and possesses broad applicability.
Notably, even under the All-training-sets setting with only 2000 training steps, TNCME maintains
its lead in Top-1 metrics, further demonstrating its stability. Although some metrics exhibit fluctua-
tions at @5 and @10, which reflects a reasonable trade-off made to prioritize first-hit accuracy and
does not undermine the model’s core strengths.

5 ANALYSIS AND ABLATION STUDY

5.1 EMBEDDING SPACE ANALYSIS

Table 2: This table reports ablation re-
sults about whether to add FFN and
whether to combine the training ob-
jective with InfoNCE, comparing with
VLM2Vec-V2 and TNCME. All exper-
iments are completed on image-text re-
trieval tasks.

Method 36 Avg Hit@1
VLM2Vec-V2 63.7
w/o. NAP 62.4
InfoNCE+LTN 63.8
Our setting 64.9

To more intuitively demonstrate the multimodal align-
ment between query and target embeddings, we employ t-
SNE(Cieslak et al., 2020) visualization to analyze the em-
bedding spaces of Qwen2VL, VLM2Vec-V2-Qwen2VL,
and TNCME-Qwen2VL. Specifically, we randomly se-
lect 100 identical query-target sample pairs from the test
set, reduce their high-dimensional embeddings to a two-
dimensional space using t-SNE, and compute the Eu-
clidean distance between each pair in this space. To en-
hance visualization, we connect queries and targets that
are positive samples with each other using gray lines, as
shown in Fig. 4. Visualization results indicate that the
original Qwen2VL, untrained with contrastive learning,
exhibits highly dispersed distributions of image and text
embeddings, reflecting a lack of alignment between modalities. After introducing InfoNCE for di-
rectional alignment in VLM2Vec-V2-Qwen2VL, the distribution of positive pairs converges signifi-
cantly, though some misalignment persists between modalities. TNCME-Qwen2VL achieves tighter
positive sample clustering in the embedding space by jointly optimizing directional and norm align-
ment, significantly enhancing multimodal consistency. We quantitatively measure alignment per-
formance by labeling the average Euclidean distance of the corresponding model in the 2D space
on 100 sample pairs for each subgraph. Experimental, results show that compared to Qwen2VL
and VLM2Vec-V2-Qwen2VL, TNCME-Qwen2VL reduces the average distance by 89.24% and
46.18%, respectively, fully validating the proposed method’s significant advantage in enhancing
cross-modal retrieval alignment capabilities for Qwen2VL.

5.2 WHY NOT USE LTN DIRECTLY?

Fig. 4 illustrates a significant semantic gap between visual and textual representations in the back-
bone’s initial state. Due to the batch size of 1024 during training, substantial discrepancies emerged
in the norm of query and target representations, causing the LTN loss to fluctuate violently during
optimization and hindering convergence. This phenomenon doesn’t occur in the pure text-modal
TNCSE, indicating that the variance in representation norm distributions poses a challenge to train-
ing stability in multimodal scenarios; thus, the original method performs ineffectively. To address
this, we construct InfoTN by combining LTN with InfoNCE, which effectively mitigates the con-
vergence issues caused by the variance in multimodal representation norm distributions, leading to
a smoother and more stable loss curve. Fig. 5(b) compares the overall loss trends under both strate-
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Figure 4: This series of subfigures visualizes the embedding distributions of Qwen2VL, VLM2Vec-
V2-Qwen2VL, and TNCME-Qwen2VL across 100 random sample pairs in a 2-dimensional space.
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Figure 5: Subfigure (a) illustrates the difference in training architecture with and without the NAP;
Subfigure (b) reports that the loss fails to converge when training directly with LTN in the image-
text retrieval task.

gies, while Table 2 reports the final training performance results, confirming the proposed method’s
advantages in convergence and effectiveness.

5.3 WHY USE AN EXTERNAL FFN (NAP)?

The purpose of adding a feedforward neural network NAP in TNCME is to reconstruct the norm
feature of the normalized last hidden state for joint training. Since the LLM output representation
in Qwen2VL is not normalized and inherently possesses norm features, this representation passes
through a final RMSNorm for normalization. The resulting LHS is then utilized for unsupervised
contrastive learning training. To obtain the norm feature, an intuitive approach is to use the hidden
state input to InfoTN without RMSNorm for norm alignment, while employing LHS for InfoNCE to
achieve directional alignment, as shown in Fig. 5(a). However, this may be influenced by generative
pretraining, introducing noise unrelated to norm alignment. Therefore, our approach involves ini-
tializing a decoupled FNN that maps raw hidden states to a new representation space, making their
norm features more suitable for the InfoTN loss. We evaluate on 36 image-text retrieval tasks with
consistent training hyperparameters, reporting results in Table 2.

6 CONCLUSION

In this paper, we first prove that norm alignment for embeddings is theoretically consistent with con-
trastive learning objectives. Building on this, we adapt the norm alignment objective for multimodal
retrieval, aiming to boost Top-1 performance across metrics. Based on the VLM2Vec-V2 frame-
work, we propose TNCME, a novel embedding approach trained with Qwen2VL-2B as the back-
bone. Evaluated on image-text, VisDoc-text, and video-text retrieval tasks, TNCME-Qwen2VL-2B
consistently outperforms the replicated VLM2Vec-V2 baseline across all metrics. Ablation studies
further validate the effectiveness of our method.
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FUTURE WORKS

We adopt the latest Qwen2.5-VL(Bai et al., 2025) as both our backbone and the backbone for
VLM2Vec-V2; however, experimental results show that it underperforms Qwen2-VL. This may
stem from Qwen2.5VL employing an overly flexible dynamic pixel scaling strategy. Under large
batch sizes, it necessitates compressing maximum pixel values to prevent out-of-memory errors.
This may limit Qwen2.5VL’s semantic expression capabilities, leading to suboptimal results. In the
future, we will explore multimodal representation learning methods for VLM with flexible dynamic
pixel scaling, exemplified by Qwen2.5-VL.

THE USAGE OF LLM

In this work, we use LLM to polish the mathematical derivation subsection in Appendix A and
polish the Introduction and Method sections.

REPRODUCIBILITY STATEMENT

We have open-sourced the training and evaluation code for TNCME on an anonymous GitHub repos-
itory. Key hyperparameters are detailed in the Experimental Setup section of the paper. For further
details, please refer to the training code.

ETHICS STATEMENT

This study does not involve any personal data, sensitive information, or high-risk application sce-
narios. No ethically controversial datasets or models were used. All experimental data are drawn
from publicly available multimodal benchmark datasets, and the sole purpose of this research is to
advance the development of multimodal representation learning. The study adheres strictly to data
usage guidelines and does not involve any processing of the original data that could raise privacy or
bias concerns. Therefore, we believe this work poses no significant ethical risks.
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A ANALYSIS OF PARAMETERS FOR ∂LTN (k,t)
∂t

The partial derivative of LTN (k, t) with respect to t is given by

∂LTN (k, t)

∂t
= − k

1 + k
· 1√

1 + k2 − 2kt
, (A-1)

where the domain is defined as k ∈ [0,+∞) and t ∈ [−1, 1]. Observe that for all k > 0, the
prefactor − k

1+k < 0, and at k = 0, the derivative vanishes (a trivial case). Thus, the sign of
∂LTN (k,t)

∂t is entirely governed by the term:

h(k, t) =
1√

f(k, t)
, where f(k, t) = 1 + k2 − 2kt. (A-2)

Since h(k, t) involves a square root in the denominator, we require f(k, t) > 0 for well-definedness.
We now analyze where f(k, t) = 0 within the domain k ≥ 0, t ∈ [−1, 1].

Treat f(k, t) as a quadratic in k with parameter t ∈ [−1, 1]:

f(k, t) = k2 − 2tk + 1.

Its discriminant is
∆ = (−2t)2 − 4 · 1 · 1 = 4(t2 − 1).

We consider the following cases:

• Case 1: ∆ > 0, i.e., |t| > 1. This implies two distinct real roots in k, but such values of t
lie outside the domain [−1, 1]. Hence, no solutions exist in the feasible region.

• Case 2: ∆ = 0, i.e., t = ±1.
– If t = 1, then f(k, 1) = (k − 1)2, which vanishes when k = 1. Thus, (k, t) = (1, 1)

is a zero of f(k, t).
– If t = −1, then f(k,−1) = (k + 1)2, which vanishes when k = −1. However, since
k ≥ 0, this point lies outside the domain and is discarded.

• Case 3: ∆ < 0, i.e., |t| < 1. Then f(k, t) > 0 for all k ∈ [0,+∞), meaning no real roots
exist and the expression under the square root remains strictly positive.

Therefore, the only point in the domain where f(k, t) = 0 is (k, t) = (1, 1). Consequently,

• f(k, t) > 0 for all (k, t) ∈ [0,+∞)× [−1, 1] \ {(1, 1)};

• At (1, 1), f(k, t) → 0+, causing 1√
f(k,t)

→ +∞, and thus ∂LTN (k,t)
∂t → −∞.

Hence, ∂LTN (k,t)
∂t has a single isolated infinite discontinuity at (k, t) = (1, 1), and is strictly negative

everywhere else in the domain:

∂LTN (k, t)

∂t
< 0, ∀(k, t) ∈ [0,+∞)× [−1, 1] \ {(1, 1)}. (A-3)

This implies that, for any fixed k > 0 with k ̸= 1, the function LTN (k, t) is strictly decreasing
in t over [−1, 1). Although the derivative is undefined at (1, 1), we verify that LTN (k, t) itself
remains continuous at this point (by direct substitution into the original loss function). Therefore,
the minimum value of LTN (k, t) with respect to t occurs at the right endpoint t = 1, for all k > 0.

For all k > 0, the function LTN (k, t) attains its global minimum over t ∈ [−1, 1] at t = 1, despite
the singularity in the derivative at (k, t) = (1, 1).

The discontinuity in the derivative does not affect the existence or location of the minimum because
the function LTN (k, t) is continuous on the closed domain [0,+∞) × [−1, 1]. The monotonicity
holds almost everywhere, and the endpoint t = 1 remains the unique minimizer by continuity and
boundary analysis.

This result justifies our choice of t = 1 as the optimal setting in the training objective, ensuring
stability and convergence properties in the optimization landscape.
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B DIFFERENCES BETWEEN REPRODUCED RESULTS OF VLM2VEC-V2 FOR
FULL TASKS AND THE ORIGINAL PAPER

We first acknowledge the open-source release of VLM2Vec-V2. In the original VLM2Vec-V2 paper,
the authors report an average performance of 65.4 on the Hit@1 metric for the VisDoc task across
the full-task training set. However, in our work, we reproduce the results using the same hardware
configuration as the original paper and strictly follow its open-source code with default hyperparam-
eters. Our results are only 61.16, significantly lower than the original reported value, multiple issues
in the official code repository report similar reproduction failures78. Currently, we and our peers
preliminarily speculate that this inconsistency may stem from version differences in the DATASETS
package. There may be implicit behavioral changes in data loading, sampling order, or preprocess-
ing workflows across different versions of the datasets package9, which could affect the stability of
model training and evaluation. However, as of the submission of this paper, the official repository
for VLM2Vec-V2 still does not explicitly specify the exact versions of its dependencies. To en-
sure fairness and comparability in experimental evaluation, we still adopt the currently reproducible
baseline result as the comparison baseline. Our method achieves superior performance under identi-
cal training and evaluation environments, leading to a reasonable inference: compared to the current
implementation of VLM2Vec-V2, our approach inherently demonstrates greater effectiveness and
robustness. We report the results of the original VLM2Vec-V2 paper and our reproduction in Table
B-1 and compare them with our proposed TNCME. We commit to retraining and reevaluating our
method in an environment that can reproduce the original results, and to reporting the results in our
open-source repository if this reproducibility issue is resolved in the future. We once again sincerely
thank the VLM2Vec-V2 team for their valuable contributions to the open-source community.

C TRAINING AND EVALUATION DATASETS

VLM2Vec-V2 constructs a training-evaluation framework for multimodal retrieval tasks called
MMEB-V2. The training dataset comprises three categories: image-text, VisDoc-text, and video-
text retrieval data. The following table details the sub-datasets and quantities within each dataset
category. The MMEB-V2 benchmark test set comprises 81 sub-tasks across three major retrieval
task categories, organized under nine meta-tasks. These cover the three primary modalities: images,
videos, and visual documents. Completely independent of the training set, this test set measures
the model’s generalization capabilities. Tables C-1 and C-2 detail the sources and quantities for
each task. To uniformly evaluate model performance across multimodal retrieval tasks, we use the
average performance across each modality’s test set as the evaluation metric.

D EVALUATION METRICS

In this section, we summarize the evaluation metrics employed in the task in Table D-1.

6The benchmark MMEB-V2, introduced by VLM2Vec-V2, actually encompasses 27 VisDoc tasks. How-
ever, VLM2Vec-V2 evaluated only 24 of them, excluding three multilingual tasks. In our evaluation, we have
tested all 27 VisDoc tasks.

7https://github.com/TIGER-AI-Lab/VLM2Vec/issues/130
8https://github.com/TIGER-AI-Lab/VLM2Vec/issues/149
9To avoid breaking double-blind protocols, this is the outcome of our discussions conducted through alter-

native communication channels rather than via issues in the VLM2Vec-V2 official repository.
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Table B-1: We report the original results of VLM2Vec-V2 in this table, including several baselines.
We also report our reproduced results for VLM2Vec-V2 under identical conditions, along with the
results for TNCME. The evaluation metrics are consistent with the VLM2Vec-V2.

Model
Image

(Hit@1)
36 Avg.

Video
(Hit@1)
18 Avg.

VisDoc
(NDCG@5)

24 Avg.
All Train Sets

ColPali-v1.3 34.9 28.2 71.0 44.5

Not Reported
in VLM2Vec-V2

GME-2B 51.9 33.9 72.7 54.1
GME-7B 56.0 38.6 75.2 57.9
LamRA-Qwen2-7B 54.1 35.2 23.9 40.4
LamRA-Qwen2.5-7B 52.4 33.7 50.2 47.4
VLM2Vec-Qwen2VL-2B 59.7 29.0 41.6 47.0
VLM2Vec-Qwen2VL-7B 65.5 34.0 46.4 52.4
VLM2Vec-V2-2B
Reported 5k steps 64.9 34.9 65.4 58.1

All SetsVLM2Vec-V2-2B
Reproduced 5k steps 64.4 33.4 61.1 56.2

VLM2Vec-V2-2B
Reproduced 2k steps 62.4 35.0 57.9 54.7 All Sets
TNCME-2B 2k steps 62.8 35.2 58.1 55.0
VLM2Vec-V2-2B
Reproduced 5k steps 63.7 30.0 29.9 45.5 Image-Text Only
TNCME-2B 2k steps 64.9 31.4 31.2 46.8
VLM2Vec-V2-2B
Reproduced 5k steps 64.5 32.9 56.8 54.8 Image-Text &

VisDoc-TextTNCME-2B 2k steps 65.3 33.0 57.9 55.6
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Table C-1: Sub-datasets for the Image-Text retrieval tasks and VisDoc-Text retrieval tasks in
MMEB-V2.

Task Type Task Name Reference

Visual Question Answering

OK-VQA (Marino et al., 2019)
A-OKVQA (Schwenk et al., 2022)
DocVQA (Mathew et al., 2021)
InfoVQA (Mathew et al., 2022)
ChartQA (Masry et al., 2022)
Visual7W (Zhu et al., 2016)
ScienceQA (Lu et al., 2022)
GQA (Hudson & Manning, 2019)
TextVQA (Singh et al., 2019)
VizWiz (Gurari et al., 2018)

Image Classification

Voc2007 (Everingham et al., 2010)
N24News (Wang et al., 2022)
SUN397 (Xiao et al., 2010)
ObjectNet (Barbu et al., 2019)
Country211 (Radford et al., 2021b)
Place365 (Zhou et al., 2018a)
ImageNet-1K (Russakovsky et al., 2015)
ImageNet-A (Hendrycks et al., 2019)
ImageNet-R (Hendrycks et al., 2021)
HatefulMemes (Kiela et al., 2020)

Image-level Retrieval

MSCOCO I2T (Lin et al., 2014)
MSCOCO T2I (Lin et al., 2014)
VisDial (Das et al., 2017)
CIRR (Liu et al., 2021b)
VisualNews I2T (Liu et al., 2021a)
VisualNews T2I (Liu et al., 2021a)
NIGHTS (Diament et al., 2023)
WebQA (Chang et al., 2022)
EDIS (Liu et al., 2023b)
OVEN (Hu et al., 2023)
WIKI-SS-NQ (Ma et al., 2024a)
FashionIQ (Wu et al., 2021)

Visual Document Retrieval

ViDoRe (Faysse et al., 2025b)
ViDoRe-v2 (Macé et al., 2025)
VisRAG (Yu et al., 2025)
ViDoSeek (Wang et al., 2025a)
MMLongBench-Doc (Ma et al., 2024b)

Visual Grounding

MSCOCO (Lin et al., 2014)
RefCOCO (Kazemzadeh et al., 2014)
RefCOCO-Matching -
Visual7W-Pointing (Zhu et al., 2016)
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Table C-2: Sub-datasets for the VisDoc-Text retrieval tasks in MMEB-V2.

Task Type Task Name Reference

Video Question Answering

Video-MME (Fu et al., 2025)
MVBench (Li et al., 2024)
NExT-QA (Xiao et al., 2021)
EgoSchema (Mangalam et al., 2023)
ActivityNetQA (Yu et al., 2019)

Video Classification

UCF101 (Soomro et al., 2012)
HMDB51 (Kuehne et al., 2011)
Kinetics-700 (Carreira et al., 2019)
Breakfast (Kuehne et al., 2014)
Something-Something V2 (Goyal et al., 2017)

Video-level Retrieval

MSR-VTT (Xu et al., 2016)
MSVD (Chen & Dolan, 2011)
DiDeMo (Hendricks et al., 2017)
VATEX (Wang et al., 2019)
YouCook2 (Zhou et al., 2018b)

Moment Retrieval
QVHighlights (Lei et al., 2021)
Charades-STA (Gao et al., 2017)
MomentSeeker (Yuan et al., 2025)

Table D-1: Evaluation Metrics and Their Meanings

Metric Description
Hit@K Proportion of queries where the correct item is ranked within top-K.

NDCG@K
Normalized ranking quality; supports linear (0/1) or
exponential (2rel − 1) relevance gain.

Precision@K Fraction of retrieved top-K items that are relevant.
Recall@K Fraction of all relevant items retrieved in top-K.
F1@K Harmonic mean of Precision@K and Recall@K.
MAP@K Mean of Average Precision across queries, truncated at rank K.
MRR@K Mean reciprocal rank of the first relevant item (capped at K).

24


	Introduction
	Related Works
	Method
	Review of Tensor Norm Constraint Training Objectives
	Proof of Monotonicity for Tensor Norm Constrained Loss Function LTN
	Model Structure Design

	Experiments
	Experimental Setup
	Baseline Setting
	Results Analysis

	Analysis and Ablation Study
	Embedding Space Analysis
	Why Not Use LTN Directly?
	Why Use an External FFN (NAP)?

	Conclusion
	Analysis of Parameters for LTN(k,t)t
	Differences Between Reproduced Results of VLM2Vec-V2 for Full Tasks and the Original Paper
	Training and Evaluation Datasets
	Evaluation Metrics

