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ABSTRACT

The increasing impact of climate change and extreme weather events has spurred
growing interest in deep learning for weather research. However, existing studies
often rely on weather data in pixel space, which presents several challenges such
as smooth outputs in model outputs, limited applicability to a single pressure-
variable subset (PVS), and high data storage and computational costs. To address
these challenges, we propose a novel Weather Latent Autoencoder (WLA) that
transforms weather data from pixel space to latent space, enabling efficient weather
task modeling. By decoupling weather reconstruction from downstream tasks,
WLA improves the accuracy and sharpness of weather task model results. The
incorporated Pressure-Variable Unified Module transforms multiple PVS into a
unified representation, enhancing the adaptability of the model in multiple weather
scenarios. Furthermore, weather tasks can be performed in a low-storage latent
space of WLA rather than a high-storage pixel space, thus significantly reducing
data storage and computational costs. Through extensive experimentation, we
demonstrate its superior compression and reconstruction performance, enabling the
creation of the ERA5-Latent dataset with unified representations of multiple PVS
from ERA5 data. The compressed full PVS in the ERA5-Latent dataset reduces the
original 244.34 TB of data to 0.43 TB. The downstream task further demonstrates
that task models can apply to multiple PVS with low data costs in latent space and
achieve superior performance compared to models in pixel space.

1 INTRODUCTION

The profound impact of climate change and extreme weather events on the Earth has attracted
widespread attention (Patz et al., 2005; Wild et al., 2025; Chen et al., 2025). Recently, deep learning
methods have made groundbreaking advancements in meteorology, leading to increasing interest in
their application to weather research (Ravuri et al., 2021; LIU et al., 2022; Yang et al., 2023; Zhang
et al., 2023b; Gong et al., 2024a;b). However, most existing studies focus primarily on weather-related
tasks in the pixel space of weather data (Bi et al., 2023; Chen et al., 2023b;a). The efficiency of
weather models in prior studies is often hindered by the inherent uncertainty of tasks and the diversity
of data, whereas data costs are inflated by expensive storage and processing requirements.

Specifically, performing weather-related tasks in the pixel space presents three main limitations (as
shown in Fig.1): 1) Smooth Model Results. Weather data contain rich small-scale extreme values.
When performing tasks such as weather forecasting and downscaling in the pixel space, the model also
needs to perform weather reconstruction, requiring a fine reconstruction of small-scale extreme values.
However, the inherent uncertainty in weather-related tasks degrades the performance of small-scale
extreme values reconstruction and extreme events prediction, leading to smooth results (Ravuri et al.,
2021). 2) Limited Model Applicability to a Single Pressure-Variable Subset (PVS). Weather data
typically record various weather variables across multiple pressure levels, leading to significant data
diversity in the pixel space (Astruc et al., 2024; Xiong et al., 2024). Different weather-related tasks
and applications often require distinct PVS selections. For instance, the 500 hPa geopotential height
and the 850 hPa wind fields are fundamental in representing atmospheric steering flows and vortex
dynamics, which are key to typhoon path prediction (Hua & Chong-Yin, 2010; Moore & Dixon,
2015). Conversely, the 500 hPa geopotential height, 700 hPa vertical velocity, and 925 hPa specific
humidity serve as essential parameters for short-term rainfall forecasting (Kuligowski & Barros, 1998;
Tian et al., 2015). However, models trained in pixel space are typically restricted to a single PVS,
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limiting their adaptability across multiple weather scenarios requiring different PVS compositions. 3)
High Data Storage and Computational Costs. Pixel-based weather datasets can reach hundreds
of terabytes (TB) or even petabytes (PB), leading to significant storage and computational costs
(Hersbach et al., 2020). This poses a substantial challenge for the large-scale application of deep
learning in meteorology (Klöwer et al., 2021; Han et al., 2024a).

Figure 1: Transforming weather data from diverse and high-storage pixel space to unified and low-
storage latent space for weather tasks using weather latent autoencoder. The weather task model
in pixel space suffers from high data storage and computational costs and limited applicability to
single pressure-variable subset, often yielding ambiguous results. In contrast, the model in latent
space benefits from reduced data storage and computational costs, enabling the use of multiple
pressure-variable subsets and producing sharper results.

To address the above limitations, we propose a novel approach that transforms weather data from
pixel space to latent space for weather-related tasks. Specifically, we introduce the Weather Latent
Autoencoder (WLA), as illustrated in Fig.1. WLA effectively encodes diverse and high-storage
weather data from the pixel space to a unified and lower-storage latent space, facilitating its application
to multiple PVSs. This transformation allows weather-task models to operate directly in the latent
space, eliminating the need for pixel-space data, thereby enhancing their adaptability to different
PVS compositions while significantly reducing data storage and computational costs.

Specifically, WLA addresses the aforementioned issues in three ways: 1) Decoupling Weather
Reconstruction from Weather Tasks. In this approach, weather tasks are performed in the latent
space, while weather reconstruction occurs within the pretrained Weather Latent Autoencoder.
The pretrained WLA ensures that latent features effectively preserve small-scale extreme values,
allowing for high-quality reconstruction from these features. During weather tasks in the latent
space, the uncertainty inherent in these tasks has minimal impact on the small-scale extreme values
reconstruction of WLA, resulting in sharp and accurate outcomes for the weather task model. 2)
Unified Pressure-Variable Representation. We introduce a Pressure-Variable Unified Module
(PVUM) designed to transform any pressure-variable subset to a unified space. PVUM leverages
pressure-variable metadata in weather data to generate adaptive mapping network weights through a
hypernetwork, enabling the conversion of weather data from pixel space into a unified latent space.
This framework allows the weather task model to seamlessly accommodate various types of weather
data inputs in the latent space, enhancing its applicability across diverse weather scenarios. 3) Latent
Space Framework. We propose the Latent Space Framework, which transitions weather task models
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from pixel space to latent space, significantly reducing data storage and computational costs. Thanks
to WLA’s superior compression and reconstruction capabilities, the latent data retain most of the
information from the original pixel data, but with a much smaller storage footprint. This results in
a substantial reduction in storage costs. Furthermore, tasks such as model training, validation, and
testing, which typically require large amounts of data, can be carried out using low-storage latent
data, yielding significant savings in data computational costs.

To facilitate research on weather tasks performed directly in latent space, we introduce ERA5-Latent,
a novel dataset derived from ERA5 (Hersbach et al., 2020). While raw ERA5 data offers high fidelity,
its sheer size (hundreds of TB) is prohibitive. Common alternatives like Weatherbench provide
fixed, lower-resolution (128×256 size) subsets with limited variables, restricting their suitability for
contemporary deep learning applications. Addressing these challenges, we utilize our proposed WLA
to transform high-resolution ERA5 data (721×1440 size) from pixel space into a compact latent
representation. This ERA5-Latent dataset substantially reduces data costs and enables research using
the full scope of ERA5 maps and diverse variable sets within the latent domain.

The original ERA5 data includes 164 variables and totals 244.34 TB. Our WLA transformation
compresses this into a latent representation requiring only 0.43 TB, achieving a 566.3× compression
ratio and significantly lowering storage costs. To support diverse modeling needs, ERA5-Latent
offers unified latent representations for commonly used configurations: 6 upper-air variables across 6,
13, and 25 pressure levels; surface variables in sets of 4 and 8; and precipitation variables in sets of 1
and 6. Models can leverage this low-storage latent data for training, validation, and testing across
various scenarios in latent space, minimizing data and computational expenses.

In summary, our main contributions are as follows:

1. We propose a novel framework that transforms weather data from pixel space to latent
space for weather tasks. By transforming data into latent space, we decouple weather
reconstruction from the downstream tasks, enabling the model to generate sharp and accurate
results. The unified representation in the latent space allows task models to handle multiple
pressure-variable subsets, while the latent representation significantly reduces data storage
and computational costs.

2. We introduce the Weather Latent Autoencoder for the pixel-to-latent transformation of
weather data. WLA can effectively transform any pressure-variable subset from pixel space
to a unified latent space, providing excellent compression and reconstruction performance.
It can be combined with weather forecasting models that integrate advanced techniques,
promoting weather research from a data optimization perspective.

3. We have constructed the ERA5-Latent dataset, which provides large-scale ERA5 weather
data with multiple pressure-variable subsets in a smaller data storage footprint and unified
latent space.

2 RELATED WORK

WEATHER DATA COMPRESSION

Weather data compression has advanced from traditional linear quantization (GRIB2-based 17×
compression of CAM (Inness et al., 2019; Klöwer et al., 2021)) to neural representation learning.
Autoencoder-based models (Liang et al., 2023) and coordinate-aware networks (Huang & Hoefler,
2023) achieve high compression ratios through instance-specific overfitting, though often at the
cost of generalization. Meta-learning methods like COIN++ (Dupont et al., 2022) address this
by leveraging shared priors for modality-agnostic compression. More recent advances combine
probabilistic modeling with entropy coding; for example, Mirowski et al. (Mirowski et al., 2024)
achieve 1000× compression using hyperpriors and vector quantization, while CRA5 (Han et al.,
2024a) employs a dual-variational transformer to optimize rate-distortion via hierarchical latent space
modeling. These compression methods have limitations when using meteorological compressed
data: either online decompression of data leads to computational resource consumption, or offline
decompression leads to storage resource consumption. Our weather latent autoencoder avoids the
data decompression step by directly using latent space data, reducing data calculation costs.
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MANAGING THE DIVERSITY OF WEATHER DATA

Earth science modeling is challenged by heterogeneous observational data. Current methods either
rely on specialized architectures such as Omnisat’s modality-specific encoders for cross-modal feature
alignment (Astruc et al., 2024) or on metadata-driven adaptation, as seen in DOFA’s spectral self-
supervision (Xiong et al., 2024). In weather forecasting, the combinatorial complexity of atmospheric
variables and pressure levels often results in brittle models. For instance, FengWu (Chen et al., 2023a)
employs 5 upper-air variables at 37 pressure levels with 4 surface variables, while Pangu (Bi et al.,
2023) and FengWu-GHR (Han et al., 2024b) use 13 pressure levels for similar variables. FuXi (Chen
et al., 2023b) uses 5 upper-air variables (13 levels) with an expanded set of 5 surface variables, and
Gencast (Price et al., 2024) scales to 6 variables each. These differences underscore the need for
unified frameworks that can flexibly handle diverse pressure-variable subsets.

LOW-COST WEATHER DATASETS

The exponential growth of weather data poses significant challenges in storage, computation, and
accessibility. Curated low-cost datasets such as Weatherbench (Rasp et al., 2020) mitigate these
issues by downsampling ERA5 reanalysis data to a 1.405° resolution (128×256) with 13 pressure
levels, cutting storage requirements by 94% compared to native resolutions. In contrast, CRA5 retains
ERA5’s full 0.25° resolution (721×1440) across 159 fields, achieving similar storage efficiency
through neural compression at the expense of requiring decoder reconstruction. Collectively, these
studies highlight the importance of efficient data representation and unified frameworks for advancing
both atmospheric modeling and computer vision applications.

3 METHOD

3.1 OVERVIEW OF WEATHER LATENT AUTOENCODER

The Weather Latent Autoencoder transforms weather data from diverse and high-storage pixel space
into unified and low-storage latent space. As illustrated in Figure 2, our framework integrates
three core components: (1) a Pressure-Variable Unified Module that leverages metadata informa-
tion to align heterogeneous PVS features, (2) a VAEformer Encoder-Decoder pair adopting the
transformer architecture from CRA5’s pretraining stage (Han et al., 2024a) for latent feature compres-
sion/reconstruction, and (3) a Binary Quantization Module (BQM) that generates compact bitwise
tokens through spherical normalization and binary quantization.

[1000, 850, 700, …]

metadata
HyperNet

Linear

Weight & Bias

Unified feature

VAEformer

Encoder
L2 Norm

Binary

Quantize

Bitwise token
L2 NormLinear

Weight & Bias Unified feature

VAEformer

Decoder

HyperNet

Altitude-Variable Unify Module

Binary Quantization Module[1000, 850, 700, …]

metadata

Multiple altitude-

variable subsets

Figure 2: Architecture of the Weather Latent Autoencoder, which compresses weather data from a
diverse, high-storage pixel space into a unified, low-storage latent space, and reconstructs it back into
the pixel space.

During the compression phase, the model starts with selecting multiple PVSs from a multiple
pressure-variables weather dataset. The PVUM first converts pressure-variable metadata into adaptive
parameters through a hypernetwork, enabling cross-scale feature alignment across disparate PVS.
These unified features are subsequently encoded by the VAEformer encoder into low-dimensional
latent representations, preserving essential weather patterns while discarding pixel-space redundancies.
The BQM then projects the latent features onto a unit spherical space through L2-normalization and
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applies binary quantization to produce storage-efficient bitwise tokens. This compression effectively
reduces data storage compared to original pixel-space PVS representations.

The reconstruction phase executes an inverse transformation through three cascaded operations.
Initially, bitwise tokens are mapped back to spherical space via L2-normalization. The VAEformer
Decoder subsequently reconstructs unified features through upsampling operators, ensuring high-
quality weather data reconstruction. Finally, the PVUM regenerates the original PVS by applying
metadata-guided inverse transformations, thereby completing the latent-to-pixel space transformation
cycle.

The latent space framework of WLA offers three fundamental benefits. First, the unified encoding
enables weather-task models to directly operate on a unified latent space, eliminating structural
modifications for cross-PVS generalization. Second, the WLA decouples weather reconstruction
from task modeling. The uncertainty present in the weather tasks does not affect the weather recon-
struction, ensuring that the task model can output sharp and accurate results. Third, data storage and
computational costs are significantly reduced as model training, validation, and inference primarily
utilize low-storage latent features, restricting pixel-space operations to final metric evaluation phases.
This layered approach addresses critical challenges in weather data processing, including multiple
pressure-variable representation learning, storage scalability, and task-specific adaptation.

3.2 PRESSURE-VARIABLE UNIFIED MODULE

Figure 3: Workflow of Pressure-Variable Unified Module, which
transforms diverse weather data into unified representation.

To map any pressure-variable
subset from pixel space to a uni-
fied feature, we designed the
Pressure-variable Unified Mod-
ule, which utilizes the metadata
of the pressure-variable subset to
generate adaptive weights and bi-
ases for a linear layer, thereby en-
abling adaptive feature mapping.

As shown in Figure 3, given
an input PVS tensor X ∈
RC1×H×W with its pressure-
variable metadata M ∈ RC1

(where C1 varies across tasks
and scenarios), PVUM generates a unified feature Y with fixed dimensionality through hypernetwork-
based parameter generation. This process consists of three core operations: Metadata Embedding:
The variable metadata M containing physical attributes (pressure levels and variables) undergoes
positional encoding followed by tokenization. A learnable class token [CLS] is prepended to the
token sequence T ∈ R(C1+1)×d, where d is the embedding dimension. Cross-Variable Relation
Modeling: The token sequence passes through several transformer blocks for learning the relation-
ships between the metadata. Adaptive Parameter Generation: The [CLS] token produces bias
parameters b ∈ RC2 via a linear projection, while the remaining tokens generate a weight matrix
W ∈ RC1×C2 through another linear layer. The resulting weights W and bias b form a linear layer
that maps the features with C1 channels to features with C2 channels. Therefore, the input X is
reshaped from (C1, H,W ) to (L,C1), where L = H ×W , and then mapped to the target feature Y
with shape (L,C2) using the generated linear layer.

The PVUM structure not only adaptively maps any pressure-variable subset to a unified feature in
terms of shape, but also effectively preserves the relationships between weather data in pixel space.
Due to the continuity, smoothness, and vertical mixing of the atmosphere, there is inherent similarity
between different weather pressure levels and variable data, especially between adjacent pressure
levels for the same variable (Zhang et al., 2023a). The hypernetwork of PVUM learns this relationship
when modeling the metadata, allowing it to map similar weather variables and adjacent pressure
levels to similar unified features. As a result, PVUM preserves the relationships between weather
data in the feature space.
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3.3 BINARY QUANTIZATION MODULE

To effectively compress weather features while preserving critical information, we propose the Binary
Quantization Module that establishes a bi-directional mapping between continuous features and
discrete binary tokens. As shown in Figure 2 (right), the module inherits the vector quantization
framework from BSQ (Zhao et al., 2024) which has two key components: (1) spherical space
projection for stable entropy loss estimation, and (2) deterministic binary quantization for hardware-
friendly storage. The quantization process consists of three stages: First, input features undergo
L2 normalization to project them onto a spherical space, which not only stabilizes the subsequent
quantization but also enables computation of the entropy loss with acceptable memory/space cost
(Han et al., 2025). Second, we apply sign-based binary quantization where positive values are mapped
to 1 and negative values to -1, generating compact bitwise tokens. During reconstruction, the bitwise
tokens are inversely projected to the spherical space through L2 normalization before being fed to the
VAEformer decoder for upsampling.

The compression ratio of our weather latent autoencoder can be formally analyzed through the data
storage. Let the input feature tensor F ∈ RC×H×W with float32 representation be compressed into bi-
nary tokens B ∈ {−1, 1}C′×H′×W ′

. The spatial downsampling factors (Ph, Pw) = (H/H ′,W/W ′)
combined with channel dimension adjustment yield a compression ratio

R =
C ·H ·W · 32
C ′ ·H ′ ·W ′ =

C

C ′ · 32 · Ph · Pw. (1)

3.4 LATENT SPACE FRAMEWORK

Figure 4: Overview of the Latent Space Framework. The
data-intensive processes can be performed in the low-
storage latent space, while processes requiring a smaller
amount of data can be carried out in the high-storage
pixel space, thereby effectively reducing data costs.

To reduce the data storage and compu-
tational costs when using deep learning
models for weather tasks, we propose the
Latent Space Framework as illustrated in
Figure 4. Given that the Weather La-
tent Autoencoder has effective compres-
sion and reconstruction of weather data,
our framework leverages two key obser-
vations: (1) Latent representations pre-
serve essential information from pixel-
space data, and (2) Data similarity rela-
tionships remain consistent across both
pixel and latent spaces. Consequently, pro-
cesses that require large amounts of data,
such as training, validation, and testing of
weather models, can be conducted in the
lower-storage latent space.

Specifically, when conducting weather
tasks, the input bitwise token passes
through the weather task model, and the
output prediction is compared to the target to compute the binary cross-entropy loss. During the
training phase, the loss is used for gradient backpropagation and parameter updates. During the
validation and testing phases, model performance can be directly evaluated on the low-storage latent
space. In processes that only contain a small amount of data, such as calculating pixel metrics for
weather tasks, we use the weather latent decoder to decode and reconstruct the predictions back to
the high-storage pixel data, from which the corresponding pixel metrics can be calculated.

By utilizing the Latent Space Framework, we can store large amounts of data in the low-storage latent
space and small amounts of data in the high-storage pixel space, effectively reducing data storage
costs. Additionally, weather task models can be trained, validated, and tested in the latent space,
where large amounts of data are required, while pixel space can be used for processes like metrics
calculation that need only a small amount of data, thereby lowering the data computational costs.
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4 EXPERIMENTAL RESULTS

4.1 ORIGINAL DATASET

The ERA5 dataset (Hersbach et al., 2020) is serves as a standard for evaluating the Weather Latent
Autoencoder in comparison to other models. To meet various weather-related needs, we organized
three categories of variables: upper-air, surface, and precipitation variables. Considering the physical
characteristics of different weather variables, we treat them as different modalities and designed
distinct WLA architectures (Chen et al., 2023a): individual WLAs are trained for each upper-air
variable to capture multi-pressure-level dependencies, while unified WLAs handle surface and
precipitation variables to exploit intra-category correlations. Experimental details can be found in
Section A.1 of the supplementary materials.

4.2 OVERALL RESULTS

To demonstrate the effectiveness of the WLA in data compression, we compared it with several
state-of-the-art compression methods (Elic (He et al., 2022), IEN (Xie et al., 2021), VQVAE (van den
Oord et al., 2017), VAGAN (Esser et al., 2021), VAEformer (Han et al., 2024a)) across three metrics:
compression ratio, bits per sub-pixel (bpsp) (Mentzer et al., 2019), and weighted RMSE (Han et al.,
2024b) on representative upper-air variables, surface variables, and precipitation variables. The
results are summarized in Table 1. Due to significant differences in numerical ranges among weather
variables, we included a ”Variable Std” row as a reference. Generally, variables with higher variances
exhibit larger reconstruction errors. Since the number of input variables in WLA influences both
the compression ratio and reconstruction quality, we evaluated its performance using the maximum
input configurations: 25 pressure levels for upper-air variables, 8 variables for surface variables, and
6 variables for precipitation variables. The compression ratio and bpsp values reported for WLA in
Table 1 correspond to its performance on these three variable categories, respectively.

Table 1: Compression Result of WLA and several state-of-the-art compression methods.

Method
Weighted RMSE ↓

Comp.
Ratio ↑

bpsp ↓Upper-air Variables Surface Variables Precipitation
w500 w700 q700 q1000 TCC SP tp6h

Var. Std (ref.) 0.218 0.240 0.0025 0.0059 0.36 9584.49 1.57 – –
Elic (He et al., 2022) 0.197 0.233 0.00076 0.00087 0.18 537.82 1.19 648.3 0.112
IEN (Xie et al., 2021) 0.213 0.247 0.00084 0.00092 0.23 688.27 1.03 202.5 0.158
VQVAE (Mirowski et al., 2024) 0.382 0.401 0.00108 0.00113 0.19 673.32 1.29 1100.0 0.029
VQGAN (Mirowski et al., 2024) 0.367 0.371 0.00101 0.00107 0.18 652.38 1.20 1100.0 0.029
VAEformer (Han et al., 2024a) 0.117 0.134 0.00031 0.00035 0.12 376.90 0.80 323.1 0.099
WLA (Upper-air) 0.076 0.083 0.00027 0.00028 – – – 625.9 0.051
WLA (Surface) – – – – 0.055 257.88 – 200.3 0.159
WLA (Precipitation) – – – – – – 0.47 600.9 0.053

As shown in Table 1, WLA achieves superior overall compression performance across upper-air, sur-
face, and precipitation variables compared to existing methods, characterized by higher compression
ratios, lower bpsp values, and competitive weighted RMSE scores. This demonstrates that WLA
effectively balances weather data compression with reconstruction. Notably, WLA demonstrates
remarkable flexibility and versatility, enabling seamless adaptation to diverse variable combinations
and complex application scenarios. The visualization results and information loss analysis of WLA
can be found in Section A.5 of the supplementary materials.

4.3 OUT-OF-DOMAIN GENERALIZATION

To validate the generalization capability of WLA on unseen pressure levels and out-of-domain data,
we conducted experiments using two distinct datasets. The first is the ERA5 dataset, which includes
37 pressure levels, of which only 25 were used during the training phase. The second is the HRES
dataset, which was downsampled to match the spatial resolution of the ERA5 data.
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Figure 5: Generalization performance on unseen
pressure level and out-of-domain data.

The experimental results in Fig.5 show the per-
formance of WLA on the temperature variable
across 12 pressure levels. These results indi-
cate that WLA achieves robust reconstruction
performance on pressure levels for which it
was not trained (denoted by *). Furthermore,
the model shows a reconstruction performance
on the HRES data that is comparable to its
performance on the ERA5 data. This demon-
strates that WLA possesses strong generaliza-
tion capabilities, both for unseen pressure lev-
els and for out-of-domain data. This indicates
that WLA can transform diverse weather data into a unified latent space representation, even for
out-of-domain data, thereby enabling the model in the latent space to naturally adapt to diverse data.

4.4 ABLATION STUDY

Figure 6: Ablation studies evaluated on the atmospheric temperature variable. (a) Ablation study on
compression ratio and reconstruction quality of the WLA under varying input pressure levels (6, 13,
25 layers) and codebook sizes (216 to 2128). (b) Ablation study on the BQM, which can be seen as an
comparsion of discrete and continuous latent space.

To identify the optimal balance between compression efficiency and reconstruction quality, we
conducted ablation studies on the atmospheric temperature variable using the upper-air dataset. We
evaluated the WLA across three input configurations (6, 13, and 25 pressure levels) and five codebook
sizes (216, 232, 264, 296, 2128).

The general ablation results, illustrated in Fig. 6(a), demonstrate the inherent trade-off in our frame-
work: the compression ratio is inversely proportional to the codebook size but positively correlated
with the number of input pressure levels (consistent with Eq. 1). Conversely, reconstruction quality
improves with larger codebook sizes but decreases as the input data dimensionality grows. Based on
these observations, we selected a codebook size of 2128 for our final model, as further increasing the
size yields diminishing returns in reconstruction quality.

To further investigate the role of discretization by BQM in data compression and reconstruction,
we compared our discrete framework against a continuous baseline. To ensure a fair comparison
under identical data compression rates, we constructed a continuous variant where the BQM is
replaced by a linear layer, which maps features to a latent space representation stored as a float32
with log2(codebook size)//32 channels. The channel dimensions were adjusted such that the total
bit-width remains constant. For example, for a codebook size of 2128, 128 binary channels are
compared against 4 float32 channels.

As shown in Fig.6(b), the discrete latent space achieves reconstruction performance comparable to the
continuous baseline at lower compression ratios. Notably, at higher compression ratios, the discrete
model significantly outperforms its continuous counterpart. This suggests that the BQM effectively
preserves essential semantic information during discretization, offering superior efficiency over a
bitrate-matched continuous representation.
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4.5 DERIVED ERA5-LATENT DATASET

Leveraging the excellent compression and reconstruction performance of the Weather Latent Au-
toencoder, we transformed the multiple PVSs of ERA5 data into unified latent space, yielding the
ERA5-Latent dataset. By utilizing the high compression rate of WLA, the ERA5-Latent dataset
reduces the original 244.34 TB of data down to 0.43 TB, while providing a unified representation for
multiple PVS. Dataset details can be found in subsection A.2.1 of supplementary materials.

4.6 DOWNSTREAM TASK VERIFICATION: WEATHER FORECASTING

Figure 7: Comparison on the weather forecasting task. (a) Extreme weather forecasting performance
on the SEDI metric. (b) RMSE for weather forecasting over a 7-day period. The number following
”Window-ViT-latent” indicates the number of input pressure levels.

Figure 8: Extreme weather forecasting per-
formance on the RQE metric. For eas-
ier visual comparison in the radar figure,
the RQE is transformed using the formula
1+10·RQE, with the optimal performance
being closer to 1.

To demonstrate that models operating in a unified latent
space can adapt to multiple PVS and generate sharper
results compared to pixel-space models, we conducted
experiments on the weather forecasting task. We used
two models to conduct weather forecasting: the Window-
ViT (WT) in the pixel space, and the Window-ViT-
Latent (WTL) in the latent space. The experiments were
performed on the ERA5 dataset and the ERA5-Latent
dataset. Specifically, following the settings in (Bi et al.,
2023), we conduct 7-day weather forecasting at 6-hour
intervals. For the WT, we use 13 pressure levels for five
upper-air variables along with four surface variables. In
contrast, to evaluate the WTL’s adaptability to multiple
PVS, we experiment with multiple pressure levels (25,
13, 6) for the upper-air variables for the latent model.
This experiment almost takes the same configuration as
the state-of-the-art model (Chen et al., 2023a).

To comprehensively evaluate performance on extreme
events, we employed two distinct metrics: the Symmet-
ric Extremal Dependency Index (SEDI) (Kurth et al.,
2023; Xu et al., 2024) to assess event detection capabil-
ity, and the Relative Quantile Error (RQE) (Kurth et al.,
2023) to evaluate the preservation of extreme event magnitudes. We benchmarked our models against
the physics-based Operational Integrated Forecasting System (IFS) (Bougeault et al., 2010) and the
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AI-based Pangu-Weather (Bi et al., 2023). Experimental details are provided in Section A.2 of the
supplementary materials.

Superior preservation of extreme events. As illustrated in Fig.7 (a) and Fig.8, WTL achieves
superior performance in extreme weather forecasting compared to the pixel-space baseline. The SEDI
scores confirm that WTL maintains high accuracy in detecting extreme occurrences. Furthermore,
the radar charts based on the RQE metric demonstrate that WTL effectively minimizes errors in
extreme value magnitudes. By operating in the latent space, WTL achieves superior accuracy and
sharpness in extreme weather forecasting compared to WT and other baselines like Pangu-Weather
and FourCastNet, confirming the advantage of latent space prediction for preserving extreme values.

Competitive overall forecast skill. Fig.7 (b) shows that WTL remains competitive with WT in
terms of overall forecast skill. Both models exhibit performance comparable to Pangu-Weather, and
surpass baselines like Operational IFS and FourCastNet. Notably, WTL consistently produces sharp
and accurate forecasts while adapting to multiple PVS inputs. These results suggest that conducting
weather forecasting in the latent space is a viable and efficient strategy: it matches the performance
of pixel-space models while substantially reducing data storage and computational costs.

4.7 DOWNSTREAM TASK VERIFICATION: PRECIPITATION FORECASTING

Figure 9: Comparison on the precipitation forecasting task.
The smaller the RQE is than 0, the worse the performance in
precipitation forecasting.

To further substantiate the utility
of our proposed framework beyond
general weather forecasting , we
conduct additional evaluations on
the precipitation forecasting task.
Precipitation forecasting presents a
unique challenge compared to stan-
dard atmospheric variables due to
its probability distribution, which
typically peaks strongly at zero and
exhibits a heavy tail towards posi-
tive values (Kurth et al., 2023). Ad-
dressing this challenge, we adopt
the post-processing methodology suggested by Kurth et al. (2023); Zhou et al. (2022). Specifically,
we construct a lightweight mapping network to project the 6-hour forecast states of the weather
prediction model onto 6-hour accumulated precipitation (TP6h).

Following the experimental protocol in Kurth et al. (2023), we employ the RQE metric and
ERA5 dataset to assess the model. We compare two variants of our framework: the Window-
ViT-Precipitation (WTP) in the pixel space, and the Window-ViT-Latent-Precipitation (WTLP) in the
latent space.

The experimental results in Figure 9 shows that the performance of the pixel-based WTP is comparable
to that of FourCastNet (Kurth et al., 2023), and the latent-based WTLP consistently outperforms
both WTP and FourCastNet. It demonstrates a stronger capability in characterizing the heavy-tailed
distribution of precipitation data in the latent space. While WTLP shows improvements over other
baselines, its performance remains lower than that of Operational-IFS. This highlights that accurate
extreme precipitation forecasting remains a significant challenge for purely data-driven models and
warrants further investigation.

5 CONCLUSION

We presented the Weather Latent Autoencoder, a novel method for learning efficient latent rep-
resentations of weather data. WLA circumvents key issues of pixel-space approaches, including
prediction smoothness and inaccuracy, single PVS limitations, and prohibitive costs. By separating
task modeling from reconstruction and unifying PVS representations, WLA facilitates accurate, PVS-
agnostic weather predictions with high efficiency. Our resulting ERA5-Latent dataset compresses
ERA5 data significantly (from 244.34 TB to 0.43 TB). WLA and the ERA5-Latent dataset offer a
robust foundation for advancing meteorological research within latent space. Future work will target
improved reconstruction and application to higher-resolution weather datasets.
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6 STATEMENT

6.1 ETHICS STATEMENT

The development and training phases of the presented models necessitate substantial computational
resources, inherently leading to significant energy consumption. This energy expenditure constitutes
a critical environmental concern, contributing materially to the carbon footprint and other associated
ecological impacts. Recognizing these externalities, we emphasize the importance of mitigating
strategies focused on energy sourcing. Specifically, transitioning towards renewable and low-carbon
energy infrastructure for powering computational tasks is paramount to lessening the environmental
burden associated with large-scale model training.

Adopting sustainable energy solutions can demonstrably reduce the ecological ramifications of the
computational pipeline, aligning technological advancement with environmental stewardship. It
is incumbent upon the research community to proactively evaluate and address the environmental
costs inherent in deploying computationally demanding methodologies. Key mitigation approaches
encompass not only the adoption of sustainable energy but also advancements in energy-efficient
hardware architectures and the continuous pursuit of algorithmic optimization to reduce computational
overhead. Promoting such holistic sustainable computational practices is crucial for ensuring that
progress in artificial intelligence does not inadvertently exacerbate environmental challenges, but
rather contributes responsibly to future development.

6.2 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide comprehensive training details for the weather latent autoen-
coder in the supplementary materials. Code, ERA5-latent data, and pre-trained models are available
at WLA.
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A SUPPLEMENTARY MATERIAL

A.1 EXPERIMENTAL DETAILS OF WEATHER LATENT AUTOENCODER

A.1.1 ERA5 DATASET DETAILS

The ERA5 dataset (Hersbach et al., 2020) is a global atmospheric reanalysis product from the
European Center for Medium-Range Weather Forecasts (ECMWF) and serves as a standard for
evaluating the Weather Latent Autoencoder in comparison to other models. This dataset is highly
valued in climate research due to its high spatial resolution of 0.25° and extensive weather coverage.
The dataset is temporally partitioned into training sets (1979–2021, 233.48 TB), validation sets (2022,
5.43 TB), and test sets (2023, 5.43 TB). To meet various weather-related needs, we organized three
categories of variables within the ERA5 dataset: upper-air, surface, and precipitation variables.

For upper-air variables, we selected three configurations spanning 25, 13, and 6 pressure levels,
each containing six core weather variables: geopotential height (z), longitudinal wind speed (u),
meridional wind speed (v), vertical velocity (w), atmospheric temperature (t), and specific humidity
(q), in which variables are presented by abbreviating their short name and pressure levels (e.g., q1000
denotes the specific humidity at a pressure level of 1000 hPa).

The surface variables include two subsets: an 8-variable set comprising 10m v-component of wind
(10v), 10m u-component of wind (10u), 100m v-component of wind (100v), 100m u-component of
wind (100u), 2m temperature (t2m), Total cloud cover (tcc), surface pressure (sp) and Mean sea-level
pressure (msl); and a streamlined 4-variable subset (10v, 10u, tcc, msl).

The precipitation variables cover cumulative hourly precipitation over six intervals (tp1h, tp2h,
tp3h, tp4h, tp5h, tp6h), with two additional single-variable subsets (tp1h and tp6h).

A.1.2 IMPLEMENTATION DETAILS

To accommodate the distinct physical properties of atmospheric data, we employ a variable-specific
training strategy. Specifically, we train separate WLAs for each of the six upper-air variables, and
distinct models for the surface and precipitation variables. This design treats different variables as
independent modalities (Chen et al., 2023a), ensuring that the unique physical laws governing each
variable do not interfere during feature extraction, thereby maximizing reconstruction fidelity.

All WLAs are trained with identical configurations across weather variables. The models are
optimized for 500K steps on 4 Tesla A100 GPUs. The codebook size is set to 2128 for upper-air and
surface variables, while precipitation variables employ a reduced codebook size of 232 due to their
higher compressibility. The input data are processed through patches of size 15× 14 with a stride of
10× 10 and a padding of 2× 2.

Following the architectural insights of (Hansen-Estruch et al., 2025), where decoder upscaling
demonstrated significant reconstruction benefits without comparable encoder gains, we design the
VAEformer with asymmetric depths: a 16-layer encoder versus a 32-layer decoder. Training employs
the AdamW (Loshchilov & Hutter, 2019) optimizer with an initial learning rate of 3.2× 10−5, batch
size 8, and a hybrid learning schedule that combines a linear warm-up phase increasing the learning
rate from 3.2× 10−6 to 3.2× 10−5, followed by a cosine decay phase.

Following the settings in BSQ (Zhao et al., 2024), the total loss function comprises three parts:
entropy loss, MSE loss, and GAN loss. Among them, entropy loss is used to improve the utilization
rate of the codebook, and MSE loss and GAN loss are used to improve the accuracy and clarity of the
reconstruction results.

A.1.3 BASELINE

The compared state-of-the-art compression methods include Elic (He et al., 2022), IEN (Xie et al.,
2021), VQVAE (van den Oord et al., 2017), VQGAN (Esser et al., 2021), and VAEformer (Han et al.,
2024a). ELIC (He et al., 2022) introduces an efficient architecture that utilizes unevenly grouped
space-channel contextual adaptive coding, striking a balance between rate-distortion performance and
computational complexity. IEN (Xie et al., 2021) enhances the compression pipeline by proposing
a more powerful invertible encoding network, which improves the modeling of the latent repre-
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sentations’ distribution. The comparison also includes methods based on discrete representations.
VQ-VAE (van den Oord et al., 2017) is a foundational model that learns a discrete codebook for latent
variables, effectively preventing posterior collapse. Building upon this, VQGAN (Esser et al., 2021)
combines the discrete quantization of VQ-VAE with the high-fidelity synthesis power of Transformers
and GANs. Lastly, VAEformer (Han et al., 2024a) adapts a variational transformer architecture
specifically for the extreme compression of large-scale scientific data, leveraging the transformer’s
ability to capture complex long-range dependencies.

For the Elic (He et al., 2022), IEN (Xie et al., 2021), we use the code in CompressAI 2 (Ballé et al.,
2017) to reimplement and retrain them. For the VQVAE (van den Oord et al., 2017), VQGAN (Esser
et al., 2021), we fine-tune their pre-trained models on meteorological data. For VAEformer (Han
et al., 2024a), since its pre-trained model uses data consistent with this study, we directly use its
pre-trained model for comparison.

The most challenging baseline among all baselines is VAEFormer. VAEFormer is specifically
designed for meteorological data compression. It uses the atmospheric circulation transformer block
as a basic block to effectively capture the characteristics of atmospheric circulation. Meanwhile,
VAEFormer includes two stages: pre-training and fine-tuning. The pre-training stage trains a VAE-
style transformer encoder that generates the compressed latent representation, and a transformer-based
decoder restores it to the reconstructed data. The fine-tuning stage trains another encoder and decoder
to predict the mean and scale hyperpriors for the Arithmetic Encoder and Decoder process, which
further losslessly compresses the data via entropy coding.

A.2 EXPERIMENTAL DETAILS OF DOWNSTREAM

A.2.1 ERA5-LATENT DATASET DETAILS

The partitioning of ERA5-Latent data and the selection of PVS remain consistent with Section 4.1.
By utilizing the high compression rate of WLA, the ERA5-Latent dataset reduces the original 244.34
TB of data down to 0.43 TB, while providing a unified representation for multiple PVS. These subsets
include three for upper-air variables corresponding to 25, 13, and 6 pressure levels, two for surface
variables (4 and 8 variables), and three for precipitation variables (tp1h, tp6h, tp1-6h). To facilitate
the computation of pixel metrics, the ERA5-Latent dataset also incorporates the raw pixel data for
July 2023, which has been compressed using the Lempel-Ziv-Markov chain-Algorithm (LZMA) and
occupies 0.117 TB of storage. LZMA is a widely used lossless compression algorithm developed by
Igor Pavlov and implemented via the Python standard library.

Building upon the ERA5-Latent dataset, deep learning models for large-scale meteorological research
can utilize the unified latent representation to seamlessly handle multiple PVS, making the models
adaptable for a wide range of meteorological tasks and scenarios. Moreover, processes that typically
require large datasets, such as training, validation, and testing, can be conducted using the compact
latent data, significantly reducing both storage and data computational costs. For tasks requiring only
a limited amount of pixel data, pixel data from a single month within the ERA5-Latent dataset can be
used to compute metrics and visually compare model outputs with the original data.

A.2.2 MODEL DETAILS

Window-ViT employs the multimodal encoder-decoder from FengWu (Chen et al., 2023a) and the
backbone of the weather latent autoencoder, conducting weather forecasting task in the pixel space.
It treats each upper-air variable and the grouped surface variables as distinct modalities, and uses
local and global self-attention to model complex atmospheric dynamics. In contrast, Window-ViT-
Latent omits the downsampling and upsampling components present in WT while keeping all other
components unchanged, conducting weather forecasting task in the latent space.

A.2.3 VARIABLE AND METRIC DETAILS

The variables used in the weather forecasting experiment are consistent with the settings of PanGu-
Weather, including five upper-air variables (z, u, v, t, q) and four surface variables (10v, 10u, t2m,
msl).
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The SEDI metric classifies each pixel into extreme or normal weather using high quantile thresholds
(90%, 95%, 98%, and 99%) and then calculates the hit rate, a value closer to 1 indicates a more
accurate prediction of extreme weather.

The RQE (Kurth et al., 2023) is an indicator used to assess a model’s ability to capture extreme
values within a given field, such as wind speed or precipitation. Its calculation involves summing up
the relative difference between the predicted and true values across a range of high quantiles (like
the 90th to 99.99th percentiles), focusing on the most extreme events. Essentially, the RQE reveals
systematic biases: a negative RQE suggests the model is consistently under-predicting the magnitude
of these extremes, while a positive RQE would indicate over-prediction.

A.2.4 COMPARED MODELS

The optional Integrated Forecasting System of the European Centre for Medium-Range Weather
Forecasts (ECMWF) is widely regarded as the world’s leading global numerical weather prediction
(NWP) system (Bougeault et al., 2010). It utilizes a comprehensive Earth system model and an
advanced data assimilation system to produce forecasts for the medium-range and beyond. The IFS
simulates the complex interactions within the Earth’s atmosphere and its coupled systems, solving
mathematical equations that govern their dynamics and physics to predict future weather conditions.

PanGu-Weather is a deep learning-based weather forecasting system (Bi et al., 2023). It is a data-
driven model that employs a 3D deep neural network architecture to capture intricate patterns in
atmospheric data. Trained on decades of global reanalysis data, PanGu-Weather demonstrates strong
performance in medium-range forecasting for various atmospheric variables. Unlike traditional NWP
models, it does not explicitly solve physical equations but learns the evolution of weather patterns
directly from historical data.

Figure S1: Comparison on the weather forecasting task over a 7-day period. The number following
”Window-ViT-latent” indicates the number of input pressure levels.

A.3 IMPACT OF ADVERSARIAL LOSS

To address the concern regarding whether the improved sharpness in extreme event prediction is
merely a methodological artifact of the loss function rather than a benefit of our proposed latent
framework, we conducted an ablation study comparing our approach against a pixel-space baseline
trained with adversarial loss.

We trained the baseline pixel-space WT with an additional Generative Adversarial Network (GAN)
loss, referred to as Window-ViT-GAN (WTG). All other hyperparameters and training configurations
remained identical to the standard WT baseline to ensure a fair comparison.

The results in Figure S1 show that the WTG model failed to surpass the standard baselines. Instead of
improving extreme event prediction, the instability compromised the model’s ability to learn correct
temporal dynamics, resulting in inferior predictive performance across standard metrics compared
to both the vanilla WT and other baselines. These results underscore the non-triviality of applying
adversarial training to global weather forecasting. Merely altering the loss function in pixel space
leads to optimization difficulties. This validates the design of our Latent Framework, which effectively
decouples the objectives: the WLA utilizes GAN loss to ensure sharp reconstruction, while the WTL
employs Binary Cross-Entropy loss to stably learn temporal dynamics in the latent space.
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A.4 LIMITATIONS AND EXPECTATIONS

Although the weather latent autoencoder effectively transforms weather data from pixel space to
latent space, we acknowledge certain limitations, particularly regarding the computational trade-offs
and scalability.

First, to accommodate the distinct physical properties of atmospheric variables and ensure high-fidelity
reconstruction, we trained separate autoencoders for distinct variable groups (upper-air, surface, and
precipitation). This approach is both data-intensive and computationally expensive. Consequently,
both the model training and the generation of the comprehensive ERA5-Latent dataset entail a
substantial upfront computational investment. We frame this as a necessary trade-off: a significant
one-time cost is incurred to enable substantial long-term reductions in storage and computational
overhead for downstream applications and the broader research community.

Second, the current architecture is primarily optimized for ERA5 data at a resolution of 0.25◦. Scaling
to higher-resolution datasets (e.g., HRES at 0.09◦) remains a challenge, as the exceedingly large
global weather images impose significant computational demands during training.

In future work, we plan to build upon the foundation of the ERA5-based autoencoder and employ
efficient fine-tuning techniques to adapt the model to both global and regional datasets at higher
spatial resolutions. This strategy aims to further mitigate computational barriers and facilitate a
paradigm shift towards conducting scalable weather research within the latent space.

A.5 VISUALIZATION OF RECONSTRUCTED RESULTS

To provide a detailed assessment of our model’s reconstruction fidelity and to transparently analyze
potential information loss due to compression, this section presents a comprehensive visual analysis.
We examine six key variables from the ERA5 dataset: Atmospheric temperature at 850hpa (T850),
Geopotential height at 500hpa (Z500), Temperature at 2 meters (t2m), U-component of wind at 10
meters (10u), Mean sea-level pressure (msl), and 6-hour accumulated precipitation (tp6h).

As illustrated in Figures S1 through S6, we present three case studies for each variable. Each case
includes a side-by-side comparison of: (a) the original field from ERA5, (b) the field reconstructed
from our model’s latent representation, and (c) a difference map (i.e., reconstruction error) to precisely
identify the magnitude and location of any information loss.

The reconstruction and difference maps demonstrate that our model achieves superior reconstruction
quality across this diverse set of atmospheric variables. Critically, the model proves highly effective at
preserving the fine-grained, small-scale extreme values that are vital for meteorological applications.
For instance, the visualizations confirm the retention of sharp gradients in Z500 fields associated
with atmospheric troughs and ridges, the intricate structures of precipitation bands (tp6h) within
storm systems, and the tight pressure contours (msl) that define the core of cyclones. This robust
performance underscores the model’s ability to effectively capture and represent the essential features
of the original data.

While the overall reconstruction fidelity is high, a closer examination of the difference maps reveals
that some localized information loss does occur. This loss is not random but is systematically
correlated with regions of extreme values in the original data. The spatial patterns of this information
loss are variable-dependent, as the distribution of extreme values is intrinsically tied to the physical
nature of each atmospheric field. For example:

1. For 6-hour accumulated precipitation (tp6h), information loss predominantly manifests in
localized cores of intense convective rainfall, such as within tropical cyclones or severe
thunderstorms.

2. For temperature at 2 meters (t2m), larger reconstruction errors are more likely to appear in
areas with extreme temperatures, such as the polar regions or hot deserts.

3. For geopotential height at 500hpa (Z500), the most notable discrepancies are found at the
centers of deep, low-pressure troughs or high-pressure ridges, which represent the maxima
and minima of the atmospheric wave patterns.
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This detailed visual analysis provides a transparent and nuanced understanding of our model’s
performance, confirming its high fidelity while also characterizing the predictable and physically
grounded nature of the minor information loss.

Era5 Era5-latent Mean Absolute Error

Atmospheric temperature at 850hpa (T850)

Figure S2: Visualization samples of T850 on the ERA5 and the compressed ERA5-Latent. From the
left to the right column: ERA5, ERA5-Latent, and their absolute error map.
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Era5 Era5-latent Mean Absolute Error

Geopotential height at 500hpa (Z500)

Figure S3: Visualization samples of Z500 on the ERA5 and the compressed ERA5-Latent. From the
left to the right column: ERA5, ERA5-Latent, and their absolute error map.
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Era5 Era5-latent Mean Absolute Error

Temperature at 2 meter (t2m)

Figure S4: Visualization samples of t2m on the ERA5 and the compressed ERA5-Latent. From the
left to the right column: ERA5, ERA5-Latent, and their absolute error map.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Era5 Era5-latent Mean Absolute Error

U-component of wind at 10 meters (10u)

Figure S5: Visualization samples of 10u on the ERA5 and the compressed ERA5-Latent. From the
left to the right column: ERA5, ERA5-Latent, and their absolute error map.
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Era5 Era5-latent Mean Absolute Error

Mean sea-level pressure(msl)

Figure S6: Visualization samples of msl on the ERA5 and the compressed ERA5-Latent. From the
left to the right column: ERA5, ERA5-Latent, and their absolute error map.
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Era5 Era5-latent Mean Absolute Error

6-hour accumulated precipitation (tp6h)

Figure S7: Visualization samples of tp6h on the ERA5 and the compressed ERA5-Latent. From the
left to the right column: ERA5, ERA5-Latent, and their absolute error map.
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