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Abstract

The randomized power method has gained significant interest due to its simplicity and
efficient handling of large-scale spectral analysis and recommendation tasks. However, its
application to large datasets containing personal user information (e.g., web interactions,
search history, personal tastes) raises critical privacy problems. This paper addresses these
issues by proposing enhanced privacy-preserving variants of the method. First, we propose
a variant that reduces the variance of the noise required in current techniques to achieve
Differential Privacy (DP). More precisely, we modify the algorithm and privacy analysis so
that the Gaussian noise variance no longer grows linearly with the target rank, achieving
the same (ε, δ)-DP guarantees with lower noise variance. Second, we adapt our method
to a decentralized framework in which data is distributed among multiple user devices,
strengthening privacy guarantees with no accuracy penalty and a low computational and
communication overhead. Our results also include the provision of tighter convergence
bounds for both the centralized and decentralized versions, and an empirical comparison
with previous work using real recommendation datasets.

1 Introduction

The randomized power method has emerged as an efficient and scalable tool for addressing large-scale linear
algebra problems central to modern machine learning pipelines (Halko et al., 2011). By constructing an
orthonormal basis for a matrix’s range in near-linear time, the method scales seamlessly to practical large
datasets. Its reliance on simple matrix products ensures compatibility with sparse data representations and
enables efficient parallelization and hardware acceleration on modern GPUs and distributed architectures.

Beyond its simplicity, the method provides strong approximation guarantees and accelerates a wide spectrum
of applications. It has been used for principal component analysis (PCA) (Journée et al., 2010), singular
value decomposition (SVD) (Halko et al., 2011), truncated eigendecompositions (Yuan and Zhang, 2013),
and matrix completion (Feng et al., 2018). Extensions have powered recommender systems (e.g., Twitter
(Gupta et al., 2013), GF-CF (Shen et al., 2021), BSPM (Shen et al., 2021)), PageRank-style ranking (Ipsen
and Wills, 2005), partial differential equations (PDE) solvers (Greengard and Rokhlin, 1997), or large-scale
least-squares and linear-system solvers (Rokhlin and Tygert, 2008).

These methods are integrated into large-scale systems involving sensitive user data, whose protection is
paramount. Unfortunately, the standard randomized power method does not inherently provide privacy
guarantees. While its output might seem less sensitive than the input data matrix, there is no formal
guarantee against inference of private information embedded in the outputs of the randomized power method.

To address and quantify privacy leakages, Differential Privacy (DP) has emerged as a powerful framework
that provides strong guarantees and mitigates potential privacy leaks of an algorithm, ensuring that the
output of an algorithm reveals little about any individual record in the input. Several works have attempted
to apply DP to the randomized power method. For example, Hardt and Price (2014); Balcan et al. (2016)
developed centralized Differentially Private variants of the power method, whereas Wang and Xu (2020);
Guo et al. (2024) investigated federated DP protocols that can be used when data is kept locally across
multiple devices. Adjacent works explore DP versions of PCA in both centralized (Liu et al., 2022) and
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federated (Wang and Xu, 2020; Briguglio et al., 2023) settings and claim optimal convergence bounds under
distributional assumptions.

Despite these advancements, existing approaches suffer from several limitations. First, their performance
heavily depends on the number of singular vectors being computed (Hardt and Price, 2014; Balcan et al., 2016;
Guo et al., 2024; Liu et al., 2022; Wang and Xu, 2020), which impacts both utility and privacy guarantees.
Second, some are designed for centralized settings (Hardt and Price, 2014; Liu et al., 2022), where a trusted
curator is assumed to hold the data. Moreover, some methods (Grammenos et al., 2020; Liu et al., 2022) claim
optimality at the cost of strong assumptions about the data distribution (e.g., sub-Gaussianity) which makes
these methods harder to use in practice. Some federated versions (Briguglio et al., 2023; Hartebrodt et al.,
2024) claim to guarantee privacy due to the federated setting, but it has been shown that decentralization
does not offer privacy by design (Geiping et al., 2020). (Dwork et al., 2014; Mangoubi and Vishnoi, 2022)
also claims optimality in Differentially Private singular vector estimation but requires materializing, noising,
and (eventually) releasing the full covariance matrix and computing its exact SVD decomposition. This is
impractical in federated or large-scale settings due to the communication and memory needed and large
full-SVD computational cost.

MOD-SuLQ (Chaudhuri et al., 2013) and its federated and streaming PCA variants (Grammenos et al.,
2020) offer strong guarantees but are specifically tailored for reconstructing the top principal component
(k = 1). These methods add noise directly to the covariance matrix, rely on direct, computationally costly
exact singular value decompositions (SVD) and are tailored for settings for which the number of samples
largely exceeds the dimensionality (n ≫ d). In contrast, the randomized power method iteratively adds noise
directly to the approximation of the singular vectors themselves rather than the input matrix. This strategy
reduces the dependence on the dimensionality of the original data, making it computationally more efficient
and scalable. Memory-limited, streaming PCA methods such as those proposed by Mitliagkas et al. (2013)
are optimized for sequential processing under memory constraints but lack privacy guarantees, requiring
additional modifications.

Finally, no fully decentralized versions exist to our knowledge, making them unsuitable for decentralized
environments (e.g., recommender systems and social networks), where data is partitioned across users/devices
and communications are restricted to a predefined communication graph. The previously introduced versions
either use centralized DP Dwork et al. (2014); Hardt and Price (2014); Mangoubi and Vishnoi (2022), which
requires a central trusted curator, or local DP (Balcan et al., 2016; Wang and Xu, 2020; Guo et al., 2024),
which hinders convergence.

1.1 Contributions

We develop Differentially Private (DP) variants of the randomized power method for both centralized and
decentralized settings along with their convergence guarantees and empirical benchmarking. Our contributions
are:

• DP randomized power method with tighter sensitivity. We analyze the p-dimensional power
method iterates directly and derive an ℓ2-sensitivity bound eliminating the explicit √

p factor that appears
when extrapolating from the one-dimensional case. This leads to a modification in the algorithm allowing
for smaller Gaussian noise for the same (ε, δ) guarantee. We provide a complete privacy proof via z-CDP
composition and its conversion to (ε, δ)-DP. 1

• Convergence guarantees under DP noise. Using the new sensitivity calibration, we establish a
runtime-dependent bound dependent on approximate eigenvector metrics and a runtime-independent
bound that replaces this term using matrix coherence quantities. The latter yields a reduced dependence
on the iteration rank p compared to previous work.

• Decentralized variant with distributed DP. Prior work either assumes a trusted curator for central
DP, which is often unrealistic and concentrates control over sensitive data, or relies on local DP, which
1This proof addresses some mistakes in a privacy proof from Hardt and Roth (2012; 2013) that have been reproduced in

several follow-up works (Hardt and Price, 2014; Balcan et al., 2016) and allows for a wider range of DP parameters.
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severely degrades utility. Our decentralized design removes the need for a single trusted authority by
employing distributed DP with Secure Aggregation (Bell et al., 2020; Bonawitz et al., 2017; Kadhe et al.,
2020) or private averaging with correlated noise (Sabater et al., 2022; Allouah et al., 2024). This ensures
that individual updates remain private and raw data never leaves local devices. We demonstrate that our
method matches the accuracy of centralized DP while providing stronger privacy guarantees, avoiding the
high noise levels inherent to local DP and keeping communication overheads low.

• Empirical evaluation on recommendation data. We show empirically with a recommender system use-
case that the proposed calibration yields considerably lower noise variance and eigenvector approximation
error at comparable privacy budgets than prior DP power-method baselines.2

The remainder of the paper is organized as follows: In Section 2 we review the necessary background
and notation. Section 3 introduces our dataset adjacency notion, derives the improved sensitivity bound
(Theorem 3.1), and presents the overall privacy proof (Theorem 3.2) together with runtime-dependent
convergence guarantees (Theorem 3.3). In Section 4 we turn this into a fully runtime-independent bound
(Theorem 4.1). Section 5 develops the decentralized variant (Algorithm 2), proves its equivalence to the
centralized version (Theorem 5.2), and analyzes its communication and computation overhead. We empirically
compare the methods on standard recommendation datasets in Section 6.1, and conclude in Section 7 with a
discussion of limitations and future directions.

2 Background Material and Related Work

Matrix Norms and Notations. For any matrix X ∈ Rn×m, the element-wise maximum norm is defined
as ∥X∥max = maxi,j |Xij |, where Xij is the (i, j)-th element of X. The ℓ2-norm is denoted as ∥X∥2 and the
Frobenius norm as ∥X∥F . We use Xj: to denote the j-th row of X.

Eigenvalue Decomposition. Let A ∈ Rn×n be a real-valued symmetric positive semi-definite matrix,
where n is a positive integer. The eigenvalue decomposition of A is given by A = UΛU⊤, where U ∈ Rn×n

is a matrix of eigenvectors and Λ ∈ Rn×n is a diagonal matrix containing corresponding eigenvalues.

QR Decomposition. We will use the matrix QR decomposition obtained using the Gram-Schmidt
procedure. Given a matrix X ∈ Rn×p, the QR decomposition factorizes it as X = QR, where Q ∈ Rn×p is
an orthonormal matrix (i.e., Q⊤Q = I, where I is the identity matrix) and R ∈ Rp×p is an upper triangular
matrix.

Gaussian Random Matrices. We denote by N (µ, σ2)n×p a (n × p)-dimensional random matrix where
each element is an independent and identically distributed random variable, with Gaussian distribution with
mean µ and variance σ2.

Coherence Measures of a Matrix. We define below two coherence measures for the matrix A, which
will be useful to state runtime-independent bounds for our method.
• The µ0-coherence of A is the maximum absolute value of its eigenvectors matrix, defined as µ0(A) =

∥U∥max = maxi,j |Uij |.

• The µ1-coherence of A is the maximum row ℓ2-norm of its eigenvectors matrix, defined as µ1(A) =
∥U∥2,∞ = maxi(∥Ui:∥2).

2.1 Differential privacy

With positive integers n and m specifying the matrix dimensions, let D1 ∈ Rn×m and D2 ∈ Rn×m be two
matrices representing two datasets embedding sensitive information. D1 and D2 are said to be adjacent
(D1 ∼ D2) if they differ on one sensitive element of the dataset (granularity can differ by application). For

2We provide an anonymous code repository here.
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example, in a recommender system application, D1 and D2 can be binary user-item interaction matrices and
a sensitive element of the dataset can be a user-item interaction corresponding to an entry in the matrices.

A randomized algorithm M is (ϵ, δ)-Differential Private (DP) if for all adjacent datasets D1 and D2, and for
all measurable subsets S ⊆ Range(M), the following holds:

Pr[M(D1) ∈ S] ≤ eϵ Pr[M(D2) ∈ S] + δ, (1)

where ϵ is a small positive scalar representing the maximum privacy loss (smaller values indicate stronger
privacy guarantees), and δ is a (typically chosen to be negligible) probability that the privacy guarantee fails.

Let f : Rn×m → Rd be a query function associated with a mechanism M. DP guarantees of mechanisms are
defined using the sensitivity of f . In our contribution we use the ℓ2-sensitivity, denoted by ∆2(f) or ∆2 and
defined as ∆2 = maxD1∼D2 ∥f(D1) − f(D2)∥2 .

2.2 Privacy-Preserving Randomized Power Method

Let k ∈ N∗ be the target rank, let b ∈ N∗ be a small positive integer, and let η ∈ R∗ be an approximation
tolerance. Let A ∈ Rn×n be a symmetric positive semi-definite (PSD) matrix, p = k + b and L be the number
of power iterations. The aim of the randomized power method is to construct a matrix XL ∈ Rn×p whose
column space approximates that of the top-k eigenvectors of A, i.e., Uk ∈ Rn×k. Specifically, it aims to
satisfy ∥∥Uk − XL(XL)⊤Uk

∥∥ ≤ η. (2)

To protect sensitive user information embedded in A while computing XL, prior work (Hardt and Price,
2014; Balcan et al., 2016) showed that the randomized power method can be implemented as Algorithm 1 to
be (ϵ, δ)-Differential Private, with adjacency defined as a single element change in A. The corresponding
adjacency notion is defined in more detail in Equation 6.

Algorithm 1 Privacy-preserving randomized power method
1: Input: Matrix A ∈ Rn×n, number of iterations L, target rank k, iteration rank p ≥ k, privacy parameters

ϵ, δ
2: Output: approximated eigen-space XL ∈ Rn×p, with orthonormal columns.
3: Initialization: orthonormal X0 ∈ Rn×p by QR decomposition on a random Gaussian matrix G0; noise

variance parameter σ = ϵ−1
√

4L log(1/δ);
4:
5: for ℓ = 1 to L do
6: Compute Yℓ = AXℓ−1 + Gℓ with Gℓ ∼ N (0, σ2

l = ∆2
l · σ2)n×p;

7: Compute QR factorization Yℓ = XℓRℓ;
8: end for

To compute the standard deviation of the noise required to satisfy (ϵ, δ)-DP, one needs to bound the ℓ2-
sensitivity ∆l of the revealed outputs at each iteration l of the algorithm. Here, ∆l bounds the change on
AX l−1 under a single-element perturbation in the sensitive data matrix A. Prior works (Hardt and Price,
2014; Balcan et al., 2016) use the estimate

∆prior
l ≜

√
p∥X l∥max, (3)

which upper-bounds the true sensitivity, i.e., ∆l ≤ ∆prior
l .

Using this bound3, the standard deviation σl of the Gaussian noise added at iteration l to achieve (ϵ, δ)-DP
is σl = √

p
∥∥X l

∥∥
maxϵ−1

√
4L ln(1/δ) , where L is the total number of power iterations.

3See Fig. 3 of Hardt and Price (2014), Alg. 2 of Balcan et al. (2016), and Theorem 6 of Guo et al. (2024).
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2.3 Existing convergence bounds

To our knowledge, the strongest convergence bound for the privacy-preserving randomized power method
(Algorithm 1) uses the bound ∆l ≤ ∆prior

l and is given by Balcan et al. (2016) in their Corollary 3.1. The
following theorems rely on the conditions in Assumption 2.1, which are enforced by judicious choice of the
added noise.
Assumption 2.1. Let A ∈ Rn×n be a symmetric matrix. Fix a target rank k, an intermediate rank
q ≥ k, and an iteration rank p, with k ≤ q ≤ p. Let Uq ∈ Rn×q be the top-q eigenvectors of A and let

λ1 ≥ · · · ≥ λn ≥ 0 denote its eigenvalues. Let us fix η = O

(
λq

λk
· min

{
1

log
(

λk
λq

) , 1
log(τn)

})
.

Assume that at every iteration l of Algorithm 1, Gℓ satisfies, for some constant τ > 0:

∥Gℓ∥2 = O (η(λk − λq+1)) , and ∥U⊤
q Gℓ∥2 = O

(
η (λk − λq+1)

√
p −

√
q − 1

τ
√

n

)
. (4)

We now restate the Private Power Method major result in (Balcan et al., 2016).
Theorem 2.2 (Private Power Method (PPM), reduction to s = 1 from the proof in Appendix C.1 from
Balcan et al. (2016)). Let A ∈ Rn×n be a symmetric data matrix. Fix target rank k, intermediate rank q ≥ k,
and iteration rank p, with 2q ≤ p ≤ n. Suppose the number of iterations L is set as L = Θ( λk

λk−λq+1
log(n)).

Let ϵ, δ ∈ (0, 1) be the differential privacy parameters. Let Uq ∈ Rn×q be the top-q eigenvectors of A and
let λ1 ≥ · · · ≥ λn ≥ 0 denote its eigenvalues. Then Algorithm 1 with ∆l = ∆prior

l is (ϵ, δ)-DP and with
probability at least 0.9

∥(I − XL(XL)⊤)Uk∥2 ≤ η and ∥(I − XL(XL)⊤)A∥2
2 ≤ λ2

k+1 + η2λ2
k (5)

with η = O

(
ϵ−1 maxl (∥X l∥max)

√
4pLn log(1/δ) log(L)

λk − λq+1

)

and also η = O

(
ϵ−1∥U∥max

√
4pLn log(1/δ) log(n) log(L)

λk − λq+1

)
.

3 Proposed Differentially Private Power Method Convergence Bounds

In this section, we present a noise-reduced Differentially Private Power Method. First, we introduce a
generalized definition of adjacency that goes beyond single-entry changes in a PSD matrix to allow directly
for more applications. Then, we modify the Private Power Method to calibrate DP noise using a new,
tighter sensitivity bound, eliminating the √

p (associated to target rank) factor in prior work. We then show
analytically that this refinement yields sharper convergence guarantees.

Adjacency notion. In prior work, Hardt and Price (2014) consider symmetric matrices, while Balcan
et al. (2016) restrict to positive semi-definite (PSD) matrices. In practice, the matrices of interest are often
covariance matrices (Mangoubi and Vishnoi, 2022; Mitliagkas et al., 2013; Hardt and Price, 2014)4 , which are
symmetric and PSD. Concretely, two datasets represented by symmetric (resp. PSD) matrices A, A′ ∈ Rn×n

are considered adjacent (denoted A ∼ A′) if they differ in a single entry with a Frobenius norm difference of
at most 1. We can therefore write

A′ = A + c · eie
⊤
j , (6)

where ei, ej ∈ Rn are canonical basis vectors, c ≤ 1 represents the magnitude of the change, and 0 ≤ i, j < n.
This adjacency notion models a sensitive change as a modification to a single element in A to protect individual

4More generally, for a non-symmetric data matrix A ∈ Rn×m, the covariance matrix B = AA⊤ is symmetric PSD and has
the same left singular vectors as A. Hence, approximating the top eigenvectors of B is equivalent to approximating the top left
singular vectors of A. Furthermore, Halko et al. (2011) show that applying the randomized power method to B improves the
convergence rate from a multiplicative eigenvalue gap factor (σk/σk+1)q to (σk/σk+1)2q , accelerating convergence.
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element-wise updates under Differential Privacy. However, since A is symmetric positive semi-definite and
changes must preserve this property, this formulation restricts updates to be diagonal, hindering possible
applications.

We propose a new, more general, notion of adjacency to allow for other types of updates:

A′ = A + C, (7)

where C ∈ Rn×n is a symmetric matrix representing the update, subject to
√∑n

i=1 ∥Ci,:∥2
1 ≤ 1.

The proposed adjacency notion is strictly more general than Equation 6. For example, setting C = c · eie
⊤
j

recovers the original definition. C can have non-zero entries on the diagonal, anti-diagonal, or any symmetric
pattern, allowing directly for a variety of updates maintaining symmetry.

In the context of recommender systems, where A = R⊤R represents the item-item similarity matrix and
R ∈ Rm×n is the user-item interaction matrix, our proposed notion of adjacency enables element-wise
modifications in R (i.e., protecting individual user-item interactions). Such changes in R propagate to
multiple elements of A, which could not be adequately5 accounted for under the previous adjacency definition
(Equation 6). By adopting our more general adjacency definition, we make our privacy guarantees applicable
to a wider range of real-world scenarios.

Sensitivity bound. The previous sensitivity bound ∆prior
l (Hardt and Price, 2014; Balcan et al., 2016)

for AX l−1 defined in Equation 3 was estimated by extrapolating from the case where X l−1 ∈ Rn×1 to the
general case X l−1 ∈ Rn×p, leading to a dependence on √

p. This leads to an overestimation of the sensitivity
and to unnecessarily large noise addition. We directly analyze the change in X l−1 ∈ Rn×p and derive a tighter
bound on the sensitivity ∆l. By using our adjacency notion from Equation 7, we establish the following result
(proof in Appendix A.1):
Theorem 3.1 (Improved Sensitivity Bound). Let A′ be defined as in Equation 7, and consider the sensitivity
∆l = supA∼A′ ∥A′X l − AX l∥F . Then,

∆l ≤ max
i

∥X l
i:∥2 ≜ ∆̂l. (8)

Note. Since ∥X l
i:∥2 ≤ √

p∥X l∥max, our sensitivity bound is always tighter or equal to the prior bound.

Privacy proof. Our algorithm ensures (ϵ,δ)-Differential Privacy by adding calibrated Gaussian noise at
each iteration of the power method. The overall privacy guarantee across iterations is then derived using
results from adaptive composition of DP mechanisms, as initially proposed in (Bun and Steinke, 2016). To
clarify the ambiguities or errors present in the previous privacy proofs (see Appendix A.2), and ensure that
our privacy guarantees are met, we propose a result with a new proof of the Differential Privacy guarantees
for our overall algorithm in Theorem 3.2, whose derivation is in Appendix A.2.3.
Theorem 3.2 (Privacy proof for the PPM). Let δ ∈ (0, 1) and ϵ > 0 such that δ ≤ exp (− ϵ

4 ). Then,
Algorithm 1 with ∆l = maxi ∥X l

i:∥2 is (ϵ, δ)-Differentially Private.

Improved convergence bound. Building on Equation 8, we present in Theorem 3.3 a tighter convergence
bound than the one proposed in (Balcan et al., 2016). Additionally, unlike past proofs (Hardt and Price,
2014; Balcan et al., 2016), our proposed privacy proof (given in Theorem 3.2) does not restrict ϵ ≤ 1. We
provide the proof in Appendix A.3.
Theorem 3.3 (Improved PPM with Runtime-Dependent Bound). Let A ∈ Rn×n be a symmetric data matrix.
Fix target rank k, intermediate rank q ≥ k and iteration rank p with 2q ≤ p ≤ n. Suppose the number of
iterations L = Θ( λk

λk−λq+1
log(n)). Let δ ∈ (0, 1) and ϵ > 0 be privacy parameters such that δ ≤ exp (− ϵ

4 ). Let
Uk ∈ Rn×k be the top-k eigenvectors of A and let λ1 ≥ · · · ≥ λn ≥ 0 denote its eigenvalues. Then Algorithm
1 is (ϵ,δ)-DP with ∆l = maxi ∥X l

i:∥2 and with probability at least 0.9

∥(I − XL(XL)⊤)Uk∥2 ≤ η and ∥(I − XL(XL)⊤)A∥2
2 ≤ λ2

k+1 + η2λ2
k (9)

5Such accounting would require additional steps using for instance group privacy.
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with η = O

(
ϵ−1 maxi,l ∥X l

i:∥2
√

Ln log(1/δ) log(L)
λk − λq+1

)
. (10)

4 Proposed Runtime-Independent Convergence Bound

We presented in Theorem 3.3 a convergence bound involving maxi ∥Xi:∥2, which is only observable during
the execution of the algorithm. To provide a more practical analysis, we now derive a runtime-independent
convergence bound in Theorem 4.1 by careful bounding of maxi ∥Xi:∥2. We provide a proof in Appendix A.4.
This bound makes it possible to have a tight analysis in two regimes:

• Small µ0-coherence, small p: Previously proposed in Balcan et al. (2016), this bound is useful in a
regime with small µ0 when computing few eigenvectors, with a dependence on

√
p log(n) · µ0(A).

• Larger µ0 or p: We propose a new bound tailored for the multi-dimensional power method, depending
on µ1(A), with a reduced dependence on the number of eigenvectors p.

We note that we are likely to be in the second regime in practice, as we highlight in Section 6.1.
Theorem 4.1. Improved PPM with Runtime-Independent Bound. Let A ∈ Rn×n be a symmetric
data matrix. Fix target rank k, intermediate rank q ≥ k and iteration rank p with 2q ≤ p ≤ n. Suppose
the number of iterations L is set as L = Θ( λk

λk−λq+1
log(n)). Let Uq ∈ Rn×q be the top-q eigenvectors of A

and let λ1 ≥ · · · ≥ λn ≥ 0 denote its eigenvalues. Let δ ∈ (0, 1) and ϵ > 0 be privacy parameters such that
δ ≤ exp (− ϵ

4 ) . Then Algorithm 1 is (ϵ,δ)-DP and we have with probability at least 0.9

∥(I − XL(XL)⊤)Uk∥2 ≤ η and ∥(I − XL(XL)⊤)A∥2
2 ≤ λ2

k+1 + η2λ2
k (11)

with η = O

(
ϵ−1 · min(µ0(A)

√
p · log(n), µ1(A)) ·

√
Ln log(1/δ) log(L)

λk − λq+1

)
. (12)

5 Decentralized version

A natural approach to Differentially Private data analysis is to centralize the data on a trusted server and
apply a centralized DP mechanism. However, this requires full trust in the curator, which is not always
acceptable in practice. Relying on a single trusted party raises both technical and governance concerns:
it concentrates sensitive information in one location and further reinforces the dependence on large data
custodians. By contrast, our decentralized approach, based on Secure Aggregation or private averaging,
avoids exposing raw data to a central server and distributes trust across participants. We demonstrate that
this decentralization comes at no loss in accuracy compared to centralized DP, while providing strengthened
privacy guarantees under the same threat model.

In this section, we consider a decentralized setting in which the matrix A is distributed across multiple
clients. Specifically, each client i holds a private matrix A(i) ∈ Rn×n, such that the global matrix is the sum
of these local matrices: A =

∑s
i=1 A(i). The goal is for the clients to collaboratively compute an orthonormal

basis for the range of A, similar to the centralized randomized power method, but without revealing their
individual private matrices A(i) to the server or to other clients.

The randomized power method involves linear operations, making it well-suited for parallelization and
distributed computation. Balcan et al. (2016); Guo et al. (2024) proposed private and federated power
methods using communication over public channels between clients and a server. However, these approaches
rely on Local Differential Privacy, since the data exchanged can be observed by everyone, which requires high
levels of noise to ensure privacy.

To enhance privacy while retaining the benefits of distributed computation, we propose to integrate Secure
Aggregation into the method, a lightweight Multi-Party Computation protocol. Secure Aggregation allows
clients to collaboratively compute sums without revealing individual data, enabling the use of distributed
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DP. This approach offers privacy guarantees similar to central DP and eliminates the need for a trusted
curator. Distributed DP has been extensively studied in the literature (Goryczka et al., 2013; Ghazi et al.,
2019; Kairouz et al., 2021; Chen et al., 2021; Wei et al., 2024).

In distributed DP, each client adds carefully calibrated noise to their local contributions before participating in
the Secure Aggregation protocol. The variance of the noise is chosen such that the sum of locally added noises
across clients has a variance comparable to that used in central DP, thereby achieving similar Differential
Privacy guarantees without requiring a trusted aggregator, and allowing clients to keep data locally.

We operate under the honest-but-curious threat model, where clients follow the protocol correctly but may
attempt to learn information from received data. We also assume that there are no dropout users during
the computation, and that the result of Secure Aggregation is revealed to every party at each iteration. For
simplicity, this paper neglects the effects of data quantization or errors introduced by modular arithmetic
in distributed DP and refer to Kairouz et al. (2021) for a more technical implementation taking this into
account.

It is also possible to use a fully decentralized DP protocol to perform secure averaging without relying on
a central server, as demonstrated by Sabater et al. (2022). Adopting such approaches can further enhance
decentralization while maintaining similar utility and communication costs for the method.

5.1 Decentralized and private power method using distributed DP:

We introduce a federated version of the Privacy-Preserving Power Method in Algorithm 2. This version
significantly reduces the noise variance by a factor of sp log n ∥U∥2

∞ compared to the method in Balcan et al.
(2016). The improvement comes from the fact that we emulate centralized Differential Privacy (DP) over
secure channels, avoiding the higher noise required in local DP settings with public channels, and that we use
our generally tighter sensitivity bound.

We now give a simplified definition of Secure Aggregation and demonstrate the equivalence between Algorithm 2
and our centralized Algorithm 1 in Theorem 5.2 (proof in Appendix A.4).
Definition 5.1. Let SecAgg(Y (i)

ℓ , {i|1≤i≤s}) the Secure Aggregation of matrices Y
(i)

ℓ held by users indexed
by {i|1≤i≤s}. It is equivalent to computing Yℓ =

∑s
i=1 Y

(i)
ℓ over secure channels.

Algorithm 2 Federated private power method
1: Input: distributed matrices A(1), · · · , A(s) ∈ Rn×n, number of iterations L, target rank k, iteration rank

p ≥ k, privacy parameters ϵ, δ.
2: Output: approximated eigen-space XL ∈ Rn×p, with orthonormal columns.
3: Initialization: orthonormal X0 ∈ Rn×p by QR decomposition on a random Gaussian matrix G0; noise

variance parameter ν = ϵ−1
√

4L log(1/δ)
s ;

4:
5: for ℓ = 1 to L do
6: The central node broadcasts Xℓ−1 to all s computing nodes;
7: Computing node i computes Y

(i)
ℓ = A(i)Xℓ−1 + G

(i)
ℓ with G

(i)
ℓ ∼ N (0, ∆2

l ν2)n×p;
8: The central node computes with the clients Yℓ = SecAgg(Y (i)

ℓ , {i|1 ≤ i ≤ s});
9: The central node computes QR factorization Yℓ = XℓRℓ;

10: end for

Theorem 5.2 (Privacy and utility of Algorithm 2). The Decentralized Privacy-Preserving Power Method
(Algorithm 2) provides the same privacy guarantees and achieves equivalent utility (in terms of convergence)
as its centralized version (Algorithm 1).

5.2 Cost analysis:

A central distinction between the different methods lies in whether they require explicit materialization
of the covariance matrix. Classical approaches such as AnalyzeGauss (Dwork et al., 2014) and its re-
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analysis (Mangoubi and Vishnoi, 2022) construct, noise, and release the full covariance matrix and assume
that the user can compute its exact SVD. While this yields strong theoretical guarantees, it is impractical in
large-scale or federated settings where the input matrix is distributed, as both the memory and communication
overhead scale quadratically in the number of features due to the covariance matrix computation and
communication.

In contrast, methods based on the randomized power method such as DistPrivPCA (Balcan et al., 2016),
FedPower (Guo et al., 2024), and our proposed decentralized PPM never require forming the full covariance
matrix. Instead, they operate through repeated sparse matrix-vector products combined with dense Gaussian
noise addition applied only to the evolving eigenvector estimates of dimensions n × p. Since p ≪ n in
practice, this strategy dramatically reduces both the communication and memory burden while still ensuring
differential privacy.

Table 1 summarizes the overall communication costs. DistPrivPCA and FedPower both involve transmitting
np-dimensional updates from each client to the server at each round, leading to O(Lnp) total communication
per client and O(Lsnp) at the server. AnalyzeGauss incurs a prohibitive O(n2) transmission cost per client.
We note that our decentralized variant integrates Secure Aggregation into the randomized power method.
This introduces an additional logarithmic communication factor log(s) per round, but since log(s) ≪ np in
practical regimes (e.g., for MovieLens-10M, n = 10, 677, p = 32, L = 2, while log(s) ≈ 5), the asymptotic
communication costs are dominated by the same np terms as in prior work.

Overall, our approach matches the low-dimensional communication footprint of FedPower and DistPrivPCA,
while providing stronger privacy through distributed DP and avoiding the impractical explicit covariance
materialization of AnalyzeGauss, which requires n2 memory.

Table 1: Communication complexities comparison across methods.
Client Server

DistPrivPCA (Balcan et al., 2016)
FedPower (Guo et al., 2024) Lnp Ls np

AnalyzeGauss (Dwork et al., 2014) n2 sn2

Proposed L [np + log(s)] Ls [np + log(s)]

6 Empirical comparison of the proposed bounds

We introduced runtime-dependent and runtime-independent convergence bounds for our algorithm. The
runtime-dependent bound depends on A and the iteratively computed X l, whereas the runtime-independent
bound (Theorem 4.1) only depends on A. To illustrate the practical impact of our changes, we focus on an
application in recommender systems and compare how our algorithms perform in this context. Additionally,
we use a statistical approximation to see how the bounds compare at the first step of the algorithm (sketching
step), regardless of the application in Section 6.2.

6.1 Application to recommender systems

State-of-the-art recommender systems like GF-CF (Shen et al., 2021) and BSPM (Choi et al., 2023) utilize
singular or eigenvalue decomposition as part of their algorithms. Specifically, they represent the dataset
(user-item interactions) using a normalized adjacency matrix R̃, from which they compute a normalized
item-item matrix P̃ . To get rid of noise in R̃, they compute an ideal low-pass filter based on the top-p
eigenvectors of P̃ and apply it to R̃. Detailed definitions are provided in Appendix B.

The first four columns of Table 2 present key statistics of popular recommendation datasets used in the
literature. Depending on the use case, these datasets may be held by a central curator, or distributed
among the users of a recommender system. Accordingly, either the centralized PPM (Algorithm 1) or the
decentralized PPM (Algorithm 2) can be used to compute the leading eigenvectors. To demonstrate the
practicality of our proposed methods, we focus on a decentralized setting where each user has access to its own

9
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ratings and collaborates with other users to compute the desired eigenvectors. ∆prior
l = µ0(A)

√
p · log(n)

denotes the sensitivity bound proposed in (Balcan et al., 2016) while ∆̂l = µ1(A) uses our multidimensional
refinement.

Table 2: Statistics of datasets
Dataset Users Items Interactions µ0 µ1 ∆prior

l (prior) ∆̂l (ours)
Amazon-book 52,643 91,599 2,984,108 0.33 0.99 1.12 ×√

p 0.99
MovieLens 71,567 10,677 7,972,582 0.39 1.00 1.19 ×√

p 1.00
EachMovie 74,425 1,649 2,216,887 0.49 1.00 1.33 ×√

p 1.00
Jester 54,906 151 1,450,010 0.73 1.00 1.64 ×√

p 1.00
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(a) MovieLens dataset.
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Figure 1: Comparison of the impact of the Differential Privacy parameter ϵ on the relative approximation
error ∥R̃p−Rp∥F

∥Rp∥F
, where R̃p represents the approximated matrix and Rp the original matrix. Results are

means on 10 runs with shaded bands indicating 99% confidence intervals (computed via bootstrap), shown
for the MovieLens and EachMovie datasets, with p = 32, L = 3 and δ = 10−4.

Empirical comparison of the runtime-independent bounds. As discussed in Section 4, our proposed
runtime-independent bound is tighter than those in Hardt and Price (2014); Balcan et al. (2016) when
µ1(A) ≤ µ0(A)

√
p · log(n), where U denotes the eigenvectors of A. The last two columns from Table 2 show

that this condition holds for popular recommender system datasets. As we can deduce from Table 2, the
proposed bound theoretically allows us to converge to solutions with much smaller η values, especially when
the desired number of factors p is large.

Practical utility of the proposed algorithms. We saw that the proposed runtime-independent bounds
were practically tighter than the previous one for the task of interest. We now demonstrate that Algorithm 2
can be used to compute the top-p eigenvectors Up of the item-item matrix P̃ under (ϵ,δ)-DP (proof in
Appendix B):
Lemma 6.1. Algorithm 2 with ∆l =

√
2 maxi ∥X l

i:∥2 can approximate Up, the top-p eigenvectors of P̃ in a
decentralized setting under (ϵ, δ)-Differential Privacy.

Both GF-CF (Shen et al., 2021) and BSPM (Choi et al., 2023) use Up to compute the ideal low-pass
filter and apply it to the interaction matrix R, yielding Rp. To illustrate the practicality of our proposed
method, we compute approximations of Up (denoted by Ũp) using either our decentralized PPM, the previous
PPM versions in Balcan et al. (2016), FedPower from Guo et al. (2024) or the centralized Analyze Gauss
method (Dwork et al., 2014; Mangoubi and Vishnoi, 2022). We then use Ũp to compute an approximation of
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Rp (denoted by R̃p), and compute the relative approximation error ∥R̃p−Rp∥F

∥Rp∥F
associated to each version.

We provide experimental details in Appendix B.2.

Figure 1 illustrates the impact of the privacy parameter ϵ6 on the approximation error for the EachMovie
and MovieLens datasets, with p = 32, L = 3 and δ = 10−4, clearly showing the advantage of our method
over prior decentralized methods. Our decentralized PPM achieves relative approximation error of ≈ 1/10
for values of ϵ ∈ (5, 10) for EachMovie and ϵ ≈ 20 for MovieLens. In contrast, other decentralized methods
(Balcan et al., 2016; Guo et al., 2024) require ϵ to be of the order of at least 103 to achieve comparable errors,
which does not seem to provide meaningful privacy protection7. (Guo et al., 2024) yields the worst relative
approximation errors. We hypothesize that this is because it uses worst case, non-adaptive sensitivity bounds
for DP, as opposed to our proposed method and those of Balcan et al. (2016). For a fixed approximation
error, both our centralized and decentralized methods yield ϵ roughly four times smaller than required by
the centralized method of Balcan et al. (2016), demonstrating that our propositions significantly strengthen
privacy guarantees for a target approximation error. We also see that our decentralized method performs on
par with the centralized Analyze Gauss (Dwork et al., 2014; Mangoubi and Vishnoi, 2022) on EachMovie
and Jester, and we recall that Analyze Gauss would incur prohibitive communication and memory overhead
in a decentralized setting (See Section 5.2). Due to its high memory requirements, we did not benchmark
Analyze Gauss on MovieLens-10m. We additionally evaluate the impact of the number of eigenvectors on the
performance of the different methods in Appendix B.3.

6.2 Matrix-agnostic comparison of the runtime-dependent bounds

We analyze the tightness of our proposed runtime-dependent bound compared to the previous bound in a
matrix-agnostic manner, focusing on the first iteration of the algorithm.

At iteration l = 0, the leading singular vectors are initialized as X0 = Q(Ω), where Ω ∼ N (0, 1)n×k and
Q(Ω) denotes the orthonormal matrix obtained from the QR decomposition of Ω. Since X0 is independent
of the matrix A, it allows us to assess the relative tightness of the proposed bound ∆̂0 compared to the
previous bound ∆prior

0 at the first step. We note that when the randomized power method runs for only one
step, it is akin to sketching (Halko et al., 2011).

Let r(k, n) be the ratio of the expected values of the two bounds, as a function of the desired number of
eigenvectors k and the matrix dimension n, i.e. r(k, n) = E[∆prior

0 ]
E[∆̂0]

.

Theoretical approximation of r(k, n). We derive an asymptotic approximation of r(k, n) using Approxi-
mation 6.2, whose derivation is in Appendix C.
Approximation 6.2. Let X0 = Q(Ω) where Ω ∼ N (0, 1)n×k and Q(Ω) is the orthonormal matrix Q from
the QR decomposition of Ω. Let µ = n

n−2 and variances σ2 = 2n2(n−1)
(n−2)2(n−4) . We can approximate E[∆̂0]2 and

E[∆prior
0 ]2 as follows:

E[∆prior
l ]2 ≈

(√
2σ2 · log(kn) k2

n2 + kµ

n

)
and E[∆̂l]2 ≈

(√
2σ2 · log(n) k

n2 + kµ

n

)
. (13)

Empirical approximation of r(k, n). To compare the tightness of our proposed bound ∆̂0 to the previous
bound ∆prior

0 , we perform both theoretical and empirical analyses at the first iteration, where the noise scaling
depends only on the random initialization X0. Since X0 is independent of A, we can estimate E[∆prior

0 ] and
E[∆̂0] by sampling a random Gaussian matrix X0.

Experiment: r(k, n) depends on the number of factors k and on n, where (n×n) is the size of A. We therefore
seek to compute it for multiple values of n (n ∈ {8000, 12000}) and a range of values for k (between 64

6Some work advocate reporting σ2 instead (Balle and Wang, 2018). With fixed and using our CDP analysis, there is a
one-to-one correspondence between the privacy budget ϵ and the noise variance σ2. We opted to report ϵ because it conveys the
level of privacy loss in our context (using composition) for the mechanism as a whole rather than raw noise variance at each step.

7We refer to Dwork et al. (2019) for more practical details on how to set ϵ and provide additional comparisons and details in
Appendix B.1.
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and 4000, with steps of 64), for each value of n. We use Approximation 6.2 to approximate it theoretically.
To measure it empirically, we compute ∆prior

0 and ∆̂0 based on X0 in the first step of the algorithm (it is
independent of the matrix of interest A), for t runs of the algorithm. We can then use the t measures to
estimate E[∆prior

0 ] and E[∆̂0]. We find that t = 5 is enough to see a general trend, as we have estimates for
many (k, n) couples. We can also compare the empirical estimates to the proposed asymptotic approximations
specified in Approximation 6.2.
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(a) n = 8000.
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(b) n = 12000.

Figure 2: Comparison of empirically (green dots) and theoretically (blue line) estimated r(k, n) ratios for k
ranging between 64 and 4000 with a step of 64. Empirical ratios are estimated using t = 5 runs of the first
step of our algorithm, while theoretical ratios are based on Theorem 6.2. Results are shown for two different
values of n: 8000 and 12000.

Figures 2(a) and 2(b) present the comparison between empirical (blue dots) and theoretical (green line)
estimates of r(k, n) for n = 8000 and n = 12000, respectively. The empirical ratios are calculated from the
averages over the t = 5 runs for each value of k. The results indicate that both empirically and theoretically
the proposed noise scaling ∆̂l is much tighter than ∆prior

l at the first step of the algorithm. Our theoretical
approximation is conservative and underestimates how much tighter the bound is initially, compared to
what we observe in practice. The proposed bound is tighter by a multiplicative factor on the first step and
therefore drastically reduces the impact of the noise introduced by DP at the first iteration. By noting that
the power method is usually run for very few steps (L is usually in the range of 1-5), this result complements
our general convergence bounds on the overall algorithm derived in Theorems 3.3 and 4.1 and gives further
intuition on the tightness and usefulness of our proposed sensitivity bound.

7 Conclusion

We presented Differentially Private versions of the centralized and decentralized randomized power method
that addresses privacy concerns in large-scale spectral analysis and recommendation systems. We introduced
a new sensitivity bound, which we show theoretically and empirically to improve the accuracy of the method
while ensuring privacy guarantees. By employing Secure Aggregation in a decentralized setting, we can
reduce the noise introduced for privacy, maintaining the efficiency and privacy of the centralized version but
adapting it for distributed environments. Our methods could enable organizations (from healthcare networks
to social platforms) to extract useful structure from data without compromising individual records.

Limitations. Our privacy guarantees require no dropout from participants to ensure distributed DP, which
may not always be realistic. Indeed, if a client drops out, the variance of the aggregated noise is smaller than
the expected variance, weakening the DP guarantee. Dropout-resilient strategies (e.g., oversampling, robust
distributed DP) such as (Sabater et al., 2022) could be used. It would also be interesting to analyze a private
and decentralized version of the accelerated version of the randomized power method, which could potentially
converge faster.
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A Proofs of Results

A.1 Proof of Theorem 3.1

Proof. We denote by A′ a matrix adjacent to A using (7):

A′ = A + C, (14)

with C a symmetric matrix representing the update, subject to
√∑

i ∥Ci:∥2
1 ≤ 1.

Then

∆l = ∥AX l − A′X l∥F

= ∥AX l − (A + C)X l∥F

= ∥CX l∥F

=
√∑

i

∥Ci:X l∥2
F .

(15)

and

∥Ci:X
l∥F = ∥

∑
j

Cij · e⊤
j · X l∥F

= ∥
∑

j

Cij · X l
j:∥F

≤
∑

j

∥Cij · X l
j:∥F

≤
∑

j

|Cij | · ∥X l
j:∥F

≤ max
i

∥X l
i:∥F ·

∑
j

|Cij |.

(16)

By injecting (15) into (16), we have:

∆l =
√∑

i

∥Ci:X l∥2
F

≤
√∑

i

(max
i

∥X l
i:∥F ·

∑
j

|Cij |)2

≤ max
i

∥X l
i:∥F

√∑
i

(·
∑

j

|Cij |)2

≤ max
i

∥X l
i:∥F

√∑
i

∥Ci:∥2
1

≤ max
i

∥X l
i:∥F ≜ ∆̂l.

(17)

Although the proposed update model (7) is more general than when A′ is defined using (6), the proposed
bound ∆̂l is also generally tighter than the bound proposed in Hardt and Price (2014); Balcan et al. (2016).
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A.2 Privacy proof

A.2.1 Note on related privacy proofs:

Several Differential Privacy (DP) proofs for the private randomized power method (PPM) have been developed
in prior works, for instance those by Hardt and Roth (2012; 2013); Hardt and Price (2014); Balcan et al.
(2016). These papers mostly rely on the same proofs to establish that the PPM satisfies (ϵ, δ)-DP. Specifically,
Balcan et al. (2016) references the privacy proof from Hardt and Price (2014), which builds upon the privacy
proof from Hardt and Roth (2013). The proof therein is also closely related to the one of Hardt and Roth
(2012).

However, both Hardt and Roth (2013) (Theorem 2.4) and Hardt and Roth (2012) (Theorem 2.4) contain
errors in their proposed composition rules, where a comparison sign is mistakenly flipped. This error could
potentially cause the privacy parameter ϵ in the proposed mechanism to be arbitrarily small, providing
no privacy guarantee at all. The original composition rule is presented in Theorem III.3 of Dwork et al.
(2010). Moreover, Lemma 3.4 of Hardt and Roth (2013) misuses Theorem 2.4. Indeed, they claim that their
algorithm satisfies (ϵ′, δ)-DP at each iteration. By their Theorem 2.4, then the algorithm overall should
satisfy (ϵ′, kδ + δ′)-DP where δ′ > 0, and not (ϵ′, δ)-DP as claimed.

A.2.2 Zero-Concentrated Differential Privacy (zCDP):

A randomized algorithm M is said to satisfy ρ-zero-Concentrated Differential Privacy (zCDP) if for all
neighboring datasets D1 and D2, and for all α ∈ (1, ∞), the following holds:

Dα(M(D1)∥M(D2)) ≤ ρα , (18)

where Dα is the Rényi divergence of order α and ρ is a positive parameter controlling the trade-off between
privacy and accuracy (smaller values of ρ imply stronger privacy guarantees).

The following lemma, introduced by Bun and Steinke (2016), specifies how the addition of Gaussian noise
can be used to construct a randomized algorithm that satisfies zCDP.
Lemma A.1 (Gaussian Mechanism (Proposition 1.6 (Bun and Steinke, 2016))). Let f : Xn → R be
a sensitivity-∆ function. Consider the mechanism (randomized algorithm) M : Xn → R, defined as
M(x) = f(x) + Zx where for each input x, Zx is independently drawn from N (0, σ2). Then M satisfies(

∆2

2σ2

)
-zCDP.

The next lemma, which is a generalized version of a result presented by Bun and Steinke (2016), explains how
a randomized algorithm, constructed by recursively composing a sequence of zCDP-satisying randomized
algorithms, also satisfies zCDP.
Lemma A.2 (Adaptive composition (Generalization from Lemma 2.3 of (Bun and Steinke, 2016))). Let
M1 : Xn → Y1, M2 : Xn × Y1 → Y2, . . . , ML : Xn × Y1 × · · · × YL−1 → YL be randomized algorithms.
Suppose Mi satisfies ρi-zCDP as a function of its first argument for each i = 1, 2, . . . , L. Let M ′′ : Xn → YL,
constructed recursively by:

M ′′(x) = ML(x, ML−1(x, . . . , M2(x, M1(x)) . . . )). (19)

Then M ′′ satisfies (
∑L

i=1 ρi)-zCDP.

A.2.3 Proof of Theorem 3.2

Proof. We can see lines 4-5 of Algorithm 1 as a sequential composition (M) of L Gaussian Mechanisms. By
Lemma A.1, each mechanism Mi satisfies ( ∆2

i

2σ2
i
)-zCDP where ∆i is the ℓ2-sensitivity of the function associated

to mechanism ∆i and σ2
i is the variance of the noise added with the Gaussian Mechanism. By Lemma A.2,

the composition of mechanisms M = (M1, ..., Mi, ..., ML) satisfies (
∑L

i=1
∆2

i

2σ2
i
)-zCDP. Let ρ ≜

∑L
i=1

∆2
i

2σ2
i
. By

17
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design of our algorithm, we have:

ρ =
L∑

i=1

∆2
i

2σ2
i

(20)

≤
L∑

i=1

(∆̂l)2

2σ2
i

(21)

=
L∑

i=1

1
2σ2 (22)

=
L∑

i=1

ϵ2

8L log(1/δ) (23)

= ϵ2

8 log(1/δ) . (24)

By Proposition 1.3 of Bun and Steinke (2016), if M provides ρ-zCDP, then M is (ρ + 2
√

ρ log(1/δ), δ)-DP,
∀δ > 0. Let ϵ′ ≜ ρ + 2

√
ρ log(1/δ). Then:

ϵ′ = ρ + 2
√

ρ log(1/δ) (25)

≤ ϵ2

8 log(1/δ) + 2

√
ϵ2

8 log(1/δ) . log(1/δ) (26)

≤ ϵ2

8 log(1/δ) + ϵ

2 . (27)

(28)

To satisfy (ϵ, δ)-DP, we need:

ϵ ≥ ϵ′ ⇐= ϵ ≥ ϵ2

8 log(1/δ) + ϵ

2 (29)

⇐⇒ ϵ

2 ≥ ϵ2

8 log(1/δ) (30)

⇐⇒ ϵ ≤ 4 log(1/δ) (31)

⇐⇒ δ ≤ exp (− ϵ

4), (32)

which is a reasonable assumption, as in practice ϵ = O(1) and δ ≪ 1
d , where d is the number of records to

protect. In our case, d = n2 because we run the privacy-preserving power method on A ∈ Rn×n.

A.3 Proof of Theorem 3.3

The following theorem from Balcan et al. (2016) will be useful in our proof:
Theorem A.3 (Bound for the noisy power method (NPM) (Balcan et al., 2016)). Let k ≤ q ≤ p be
positive integers. Let Uq ∈ Rd×q be the top-q eigenvectors of a positive semi-definite matrix A and let

λ1 ≥ · · · ≥ λd ≥ 0 denote its eigenvalues and fix η = O

(
λq

λk
· min

{
1

log
(

λk
λq

) , 1
log(τd)

})
. If at every iteration l

of the NPM Gℓ satisfies Assumption 2.1, then after

L = Θ
(

λk

λk − λq+1
log
(

τd

η

))
.

iterations, with probability at least 1 − τ−Ω(p+1−q) − e−Ω(d), we have:

∥(I − XLXL⊤)Uk∥2 ≤ η and ∥(I − XL(XL)⊤)A∥2
2 ≤ λ2

k+1 + η2λ2
k. (33)

18
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We now provide the proof of Theorem 3.3:

Proof. According to Hardt and Price (2014), if Gl ∼ N (0, σl)d×p, then with probability 99/100 we have:

Lmax
l=1

∥Gl∥ ≤ σl ·
√

d · log(L) ,

Lmax
l=1

∥U⊤Gl∥ ≤ σl ·
√

p · log(L) .
(34)

We can therefore satisfy the noise conditions of Theorem A.3 with probability 99/100 if we choose η =
σl·

√
d·log(L)

λk−λq+1
, giving us:

∥(I − XLXL⊤) · Uk∥ ≤
σl ·

√
d · log(L)

λk − λq+1
, (35)

which leads us to the statement of the theorem by injecting σl = ∆̂l · ϵ−1
√

4L log(1/δ).

A.4 Proof of Theorem 4.1

We provide here the proof for Theorem 4.1:
Theorem 4.1. Improved PPM with Runtime-Independent Bound. Let A ∈ Rn×n be a symmetric
data matrix. Fix target rank k, intermediate rank q ≥ k and iteration rank p with 2q ≤ p ≤ n. Suppose
the number of iterations L is set as L = Θ( λk

λk−λq+1
log(n)). Let Uq ∈ Rn×q be the top-q eigenvectors of A

and let λ1 ≥ · · · ≥ λn ≥ 0 denote its eigenvalues. Let δ ∈ (0, 1) and ϵ > 0 be privacy parameters such that
δ ≤ exp (− ϵ

4 ) . Then Algorithm 1 is (ϵ,δ)-DP and we have with probability at least 0.9

∥(I − XL(XL)⊤)Uk∥2 ≤ η and ∥(I − XL(XL)⊤)A∥2
2 ≤ λ2

k+1 + η2λ2
k (11)

with η = O

(
ϵ−1 · min(µ0(A)

√
p · log(n), µ1(A)) ·

√
Ln log(1/δ) log(L)

λk − λq+1

)
. (12)

Proof. We showed in Equation that ∆l ≤ maxi ∥X l
i:∥F . This quantity depends on values computed during

the execution of the algorithm. We now show that we can bound maxi ∥X l
i:∥F with a runtime-independent

bound.

Without loss of generality and to simplify notation, we use X to denote any matrix Xl computed during the
execution of the Private Power Method. Let X:c = xc denote a column of X.

As A is an Hermitian matrix, by the spectral theorem, we have A = UDU⊤, where U is unitary (with
orthonormal columns) and D is diagonal.

As the columns of U form a complete basis for Rn, we can write any column xc of X as
∑n

i=1 αi
cui, where ui

denotes the i-th eigenvector of A, and αi
c is a scalar.

We can then write:

⟨xc, xe⟩ = ⟨
n∑

i=1
αi

cui,

n∑
j=1

αj
euj⟩ (36)

=
n∑

i=1

n∑
j=1

αi
cαj

e⟨ui, uj⟩ (37)

=
n∑

i=1
αi

cαi
e. (Orth. columns of U) (38)
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X is the “Q“ matrix constructed from a Gram-Schmidt QR decomposition, it has therefore orthonormal
columns by definition. Therefore, if c = e, then ⟨xc, xe⟩ =

∑n
i=1 (αi

c)2 = 1. Otherwise, we have ⟨xc, xe⟩ =∑n
i=1 αi

cαi
e = 0.

The key is then to notice that we can define a matrix B ∈ Rn×p with orthonormal columns such that
X = UB and Bjc = αj

c.

We recall that any matrices H and J , we have ∥HJ∥F ≤ ∥H∥2∥J∥F .

Then, we can bound the norm of any row of Xi: as:

∥Xi:∥F = ∥X⊤
i: ∥F , (39)

= ∥B⊤U⊤
i: ∥F , (40)

≤ ∥B⊤∥2∥U⊤
i: ∥F . (41)

B has orthonormal columns by construction, therefore

∥B∥2 =
√

∥B⊤B∥2 (42)

=
√

∥I∥2 (43)
= 1. (44)

We then have:

∥Xi:∥F ≤ ∥B⊤∥2∥U⊤
i: ∥F (45)

≤ ∥U⊤
i: ∥F (46)

≤ ∥Ui:∥F . (47)

Additionally as Xi: ∈ R1×n, maxi ∥Xi:∥2 = maxi ∥Xi:∥F ≤ maxi(∥Ui:∥F ) = µ1(A).

Note: By Section 2.4 from Woodruff (2014), for any row v of a matrix with orthonormal columns Z,
∥v∥2 ≤ 1.

As U has orthonormal columns by construction, maxi ∥Ui:∥2 ≤ 1.

We can therefore bound maxi ∥Xi:∥2 as:

∆l ≤ max
i

∥Xi:∥2 ≤ µ1(A) ≤ 1. (48)

Injecting this bound in Theorem 3.3 leads us to Theorem 4.1, giving us a runtime-independent bound.

A.5 Proof of Theorem 5.2

Proof. It is straightforward to see that if steps 2 and 3 of Algorithm 2 are equivalent to step 1 of Algorithm
1, then the two algorithms are equivalent. Recall that Y

(i)
ℓ = A(i)Xℓ−1 + G

(i)
ℓ and G

(i)
ℓ ∼ N (0, ∆2

l ν2)n×p.
Then steps 2 and 3 of Algorithm 2 correspond to:

Yℓ = SecAgg(Y (i)
ℓ , {i|1 ≤ i ≤ s})

=
s∑

i=1
Y

(i)
ℓ

=
s∑

i=1
(A(i)Xℓ−1 + G

(i)
ℓ )

= AXℓ−1 +
s∑

i=1
G

(i)
ℓ

= AXℓ−1 + Gℓ,

(49)
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where Gℓ ∼ N (0, ∆2
l · (sν2))n×p, and we have sν2 = σ2 by definition, completing the equivalence proof.

B Application to recommender systems:

Let s be the number of users in our system and n the number of items. Let R ∈ Rs×n be the user-item
interaction matrix, such that Rui = 1 only if user u has interacted with item i, and Rui = 0 else. Let
U = Diag(R · 1|I|) be the user degrees matrix, and I = Diag(1⊤

|I| · R) the item degrees matrix. In Shen et al.
(2021); Choi et al. (2023), the normalized interaction matrix is defined as:

R′ = U− 1
2 RI− 1

2 ,

and the item-item normalized adjacency matrix as:

P ′ = R̃⊤R̃

= (U− 1
2 R)⊤(U− 1

2 R)
= (U− 1

2 RI− 1
2 )⊤(U− 1

2 RI− 1
2 ).

(50)

To simplify our analysis, we consider I public and do not use item-wise normalization in the computation of the
ideal low-pass filter, leaving it for future work. We therefore define R̃ = U− 1

2 R and P̃ = (U− 1
2 R)⊤(U− 1

2 R).
Lemma B.1. We can use Algorithm 2 with ∆l =

√
2 maxi ∥X l

i:∥2 to compute the top-p eigenvectors of P̃ in
a decentralized setting with under a (ϵ, δ)-Differential Privacy guarantee.

Proof. Let P̃ij denote the element of P̃ at row i and column j and let duser(u) =
∑n−1

i=0 rui. We can write
P̃ij as:

P̃ij = ((U− 1
2 R)⊤(U− 1

2 R))ij

= (U− 1
2 R)⊤)i,∗(U− 1

2 R)∗,j

= ((U− 1
2 R)∗,i)⊤(U− 1

2 R)∗,j

=
s−1∑
u=0

1√
duser(u)

rui
1√

duser(u)
ruj

=
s−1∑
u=0

1
duser(u) · rui · ruj .

(51)

By noticing that (R⊤R)ij =
∑

u rui · ruj , we can deduce that P̃ =
∑

u
1

duser(u) R⊤
u Ru. Therefore P̃ is

partitioned among s users as described in Section 5.

Sensitivity: We protect the user at the item-level and use the deletion model of differential privacy to compute
the sensitivity of the PPM used with the item-item normalized adjacency matrix (A = P̃ ). Therefore we
have:

Aij =
s−1∑
u=0

1
duser(u) · rui · ruj , (52)

and

A′
ij =

s−1∑
u=0

1
duser(u) − 1 · r′

ui · r′
uj , (53)
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where r′
ui = rui except for one user-item interaction, i.e., rvk = 1 but r′

vk = 0. Let C = A − A′. Let N (v)
be the set of items which user v liked before deletion. We have:∑

i

∥Ci:∥2
1 =

∑
i

(
∑

j

|
s−1∑
u=0

1
duser(u) · rui · ruj −

s−1∑
u=0

1
duser(u) − 1 · r′

ui · r′
uj |)2 (54)

=
∑

i

(
∑

j

| 1
duser(v) · rvi · rvj − 1

duser(v) − 1 · r′
vi · r′

vj |)2 (55)

=
∑

i∈N (v)

(
∑

j∈N (v)

| 1
duser(v) · rvi · rvj − 1

duser(v) − 1 · r′
vi · r′

vj |)2 (56)

=
∑

i∈{N (v)\k}

(
∑

j∈N (v)

| 1
duser(v) · rvi · rvj − 1

duser(v) − 1 · r′
vi · r′

vj |)2 (57)

+ (
∑

j∈N (v)

| 1
duser(v) · rvk · rvj − 1

duser(v) − 1 · r′
vk · r′

vj |)2. (58)

We have: ∑
i∈{N (v)\k}

(
∑

j∈N (v)

| 1
duser(v) · rvi · rvj − 1

duser(v) − 1 · r′
vi · r′

vj |)2 (59)

=
∑

i∈{N (v)\k}

(
∑

j∈{N (v)\k}

| 1
duser(v) · rvi · rvj − 1

duser(v) − 1 · r′
vi · r′

vj | + 1
duser(v) · rvi · rvk)2 (60)

= (duser(v) − 1){(duser(v) − 1)| 1
duser(v) − 1

duser(v) − 1 | + 1
duser(v)}2 (61)

= (duser(v) − 1){| 1
duser(v) | + 1

duser(v)}2 (62)

= 2(duser(v) − 1)
duser(v)2 , (63)

and

(
∑

j∈N (v)

| 1
duser(v) · rvk · rvj − 1

duser(v) − 1 · r′
vk · r′

vj |)2 (64)

= (
∑

j∈N (v)

| 1
duser(v) · rvj |)2 (65)

= (duser(v)| 1
duser(v) |)2 (66)

= 1. (67)

By noticing that 2(duser(v)−1)
duser(v)2 ≤ 1, we can deduce that:∑

i

∥Ci:∥2
1 =

∑
i∈{N (v)\k}

(
∑

j∈N (v)

| 1
duser(v) · rvi · rvj − 1

duser(v) − 1 · r′
vi · r′

vj |)2 (68)

+ (
∑

j∈N (v)

| 1
duser(v) · rvk · rvj − 1

duser(v) − 1 · r′
vk · r′

vj |)2 (69)

= 2(duser(v) − 1)
duser(v)2 + 1 (70)

≤ 2 (71)

=⇒
√∑

i

∥Ci:∥2
1 ≤

√
2. (72)
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By Equation 17,

∆l ≤ max
i

∥X l
i:∥F

√∑
i

∥Ci:∥2
1 (73)

=⇒ ∆l ≤ max
i

∥X l
i:∥F

√
2. (74)

B.1 Approximation errors comparisons:

As explained in Section 6.1, GF-CF and BSPM (with its parameter Tb = 1) use Up to compute the ideal
low-pass filter and filter the interaction matrix R, yielding Rp. Indeed, we have:

Rp = R · I− 1
2 UpU⊤

p I
1
2 . (75)

To study the impact of Differential Privacy on our system, we compute approximations of Up (denoted by
Ũp) using our proposed decentralized PPM, the PPM versions of Balcan et al. (2016) or FedPower from Guo
et al. (2024). We have:

R̃p = R · I− 1
2 ŨpŨ⊤

p I
1
2 . (76)

We then define the relative approximation error caused by the use of differential privacy as ∥R̃p−Rp∥F

∥Rp∥F
.

We use L = 3 to run the Power Method as it is the default hyper-parameter choice from Shen et al. (2021);
Choi et al. (2023). We use p = 32 to have acceptable approximation error for reasonable values of ϵ (5-10).
We use the synchronous version of FedPower (Guo et al., 2024) to simplify the comparison, i.e., we set their
parameter IT = L. We note that FedPower could be improved by also using Secure Aggregation and therefore
reducing the noise necessary for DP. It might also benefit from our sensitivity analysis in the synchronous
setting.

We showed the impact of the Differential Privacy parameter ϵ on the approximation errors for the MovieLens
and EachMovie datasets in Figures 1(a) and 1(b).The trends for the approximation errors on the Jester dataset
are quite similar, as shown in Figure 3. We however note that all methods perform better on this dataset.
We hypothesize that this is because the Jester dataset is much more dense compared to the EachMovie and
MovieLens datasets, hence the ratio of magnitude of the noise added due to DP compared to the magnitude
of the elements of the item-item matrix is smaller on this dataset.

B.2 Experimental Details

Datasets. We benchmark our method on four standard recommendation datasets: MovieLens-10M, Each-
Movie, Jester, and Amazon-book. For Amazon-book, we use the publicly available 80%/20% train/test splits;
for EachMovie, MovieLens-10M and Jester we use the same train/test proportions and therefore apply a
80%/20% split at the user level (each user retains at least one test interaction). Table 3 summarizes the
post-processing statistics.

Table 3: Dataset statistics after preprocessing: number of users, items, interactions.
Dataset Users Items Interactions
MovieLens-10M 71,567 10,677 7,972,582
EachMovie 74,425 1,649 2,216,887
Jester 54,906 151 1,450,010
Amazon-book 52,643 91,599 2,984,108
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Figure 3: Impact of the Differential Privacy parameter ϵ on the relative approximation error ∥R̃p−Rp∥F

∥Rp∥F

associated to multiple PPM versions, computed on 10 runs with 99% confidence intervals (computed via
bootstrap), with p = 32, L = 3 and δ = 10−4 on the Jester dataset.

Hyperparameters. We fix the number of power iterations to L = 3 to correspond to PyTorch’s
svd_lowrank approximate basis subroutine (Algorithm 4.3 in (Halko et al., 2011)). No further hyper-
parameter tuning is performed.

Experimental Protocol and Runs. Each “run” uses a different Pseudo Random Number Generator seed
for the Gaussian initialization G0. We perform 10 runs per setting (for one given ϵ value, all methods are
initialized with the same Gaussian matrix), varying only the PRNG seed across runs.

Confidence Intervals. We report the mean and a 99% confidence interval over the 10 runs, estimated via
nonparametric bootstrap (1 000 resamples).

Computational Resources. All experiments ran on a 16-core CPU. Figure 1 (10 runs × 14 ‘ϵ‘ values × 5
methods) requires ≈ 30 min of wall-clock time.

B.3 Impact of the number of components

Figure 4 and Figure 5 report the relative approximation error as a function of the privacy parameter ϵ for
different numbers of extracted components p on EachMovie and Jester. On the EachMovie dataset, we find
that for small to medium numbers of components (e.g., p = 4 or p = 16), our decentralized private power
method consistently achieves lower approximation error than all competing methods, including the centralized
Analyze Gauss baseline. However, as the number of components increases (e.g., p = 64 or p = 128), only
Analyze Gauss eventually surpasses our decentralized method in terms of approximation accuracy.

On the Jester dataset (considerably smaller), we observe the same patterns except that the centralized
Analyze Gauss baseline performs on par with our decentralized method across the range of tested component
numbers. This behavior suggests that in very small-scale problems, the centralized mechanism may still
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provide a competitive or even superior balance of accuracy and privacy, despite its impractical communication
and memory costs in a decentralized environment.

Finally, we note that it was not possible to run Analyze Gauss on the MovieLens-10m dataset due to
prohibitive memory requirements, which further highlights its practical limitations in large-scale settings. In
contrast, our decentralized method still achieves favorable privacy-utility trade-offs.
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(a) p = 4.
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(c) p = 64.
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(d) p = 128.

Figure 4: Impact of the Differential Privacy parameter ϵ on the relative approximation error ∥R̃p−Rp∥F

∥Rp∥F
, on

the EachMovie dataset for varying p = 4, 16, 64, 128, L = 3, and δ = 10−4. Results are means of 10 runs with
99% bootstrap confidence intervals.
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(a) p = 4.
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(b) p = 16.
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(c) p = 64.

10 2 10 1 100 101 102 103

 (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pr

ox
im

at
io

n 
er

ro
r

PPM version
Balcan et al. (centr.)
Balcan et al. (decentr.)
Ours (centr. and decentr.)
No DP
FedPower (decentr.)
Analyze Gauss (Centr.)

(d) p = 128.

Figure 5: Impact of the Differential Privacy parameter ϵ on the relative approximation error ∥R̃p−Rp∥F

∥Rp∥F
, on

the Jester dataset for varying p = 4, 16, 32, 64, L = 3, and δ = 10−4. Results are means of 10 runs with 99%
bootstrap confidence intervals.

C Matrix-agnostic comparison of the runtime-dependent bounds

We provide here the derivation for Approximation 6.2:

Proof. Let M ∈ Rn×k with i.i.d N (0, 1)-distributed entries. Let M = QR be its QR factorization (by
definition Q is orthogonal and R upper triangular). By the Barlett decomposition theorem (Muirhead, 2009),
we know that Q is a random matrix distributed uniformly in the Stiefel manifold Vk,n. Then by Theorem 2.2.1
of Chikuse (2012), we know that a random matrix Q uniformly distributed on Vk,n can be expressed as
Q = Z(Z⊤Z)− 1

2 with Z another matrix with i.i.d N (0, 1)-distributed entries. We approximate Z⊤Z as a
diagonal matrix and remark that its diagonal elements are distributed as random chi-squared variables with
n degrees of liberty. For a matrix A, we denote by A◦n the elementwise Hadamard exponentiation. Then we
have:

Q2
ij = (Z(Z⊤Z)− 1

2 )2
ij (77)

= (Z◦2((Z⊤Z)− 1
2 )◦2)ij (78)

= (Z◦2(Z⊤Z)−1)ij . (79)

We remark that each element of Z◦2 is distributed as a chi-squared variable with one degree of freedom,
and therefore n · Q2

ij is distributed as an i.i.d F (1, n) random variable by definition. For large n, we can
approximate these F variables as Gaussians with mean µ = n

n−2 and variances σ2 = 2n2(n−1)
(n−2)2(n−4) . Therefore
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Q2
ij ∼ N ( µ

n , σ2

n2 ) and:

kQ2
ij ∼ N (kµ

n
,

k2σ2

n2 ) ,
∑

j

Q2
ij ∼ N (kµ

n
,

kσ2

n2 ). (80)

We can approximate the expectation of the maximum (noted as m) of d Gaussian variables distributed as
N (µ2, σ2

2) by m = σ2
√

2 · log(d) + µ2 by Lemma 2.3 from Massart (2007). We therefore get approximations
of E[maxij kQ2

ij ] and E[maxi ∥Qi:∥2]. We assume that the variances of ∆prior
l and ∆̂l are small (because n

and k are large) and therefore:

E[∆prior
l ]2 ≈ E[(∆prior

l )2] =
√

k2σ2

n2

√
2 · log(kn) + kµ

n
, (81)

E[∆̂l]2 ≈ E[(∆̂l)2] =
√

kσ2

n2

√
2 · log(n) + kµ

n
. (82)
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