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Figure 1: Comparisons between Transformer and Mamba3D. Whether w/ or w/o pre-training (PT), Mamba3D outperforms

Transformer. (a-b)Mamba3D achieves 92.6% overall accuracy (OA) on ScanObjectNN (SONN) Classification task, setting new

SoTA among models trained from scratch. (c-d) When using PT, ourMamba3D gets 95.1% OA on ModelNet40 (MN40) dataset,

setting new SoTA among single-modal pre-trained models. Mamba3D also shows its strong few-shot learning ability on MN40.

(e) Moreover, Mamba3D’s FLOPs increase linearly with sequence length, whereas Transformer increases quadratically.

ABSTRACT

Existing Transformer-based models for point cloud analysis suffer
from quadratic complexity, leading to compromised point cloud
resolution and information loss. In contrast, the newly proposed
Mamba model, based on state space models (SSM), outperforms
Transformer in multiple areas with only linear complexity. How-
ever, the straightforward adoption of Mamba does not achieve
satisfactory performance on point cloud tasks. In this work, we
present Mamba3D, a state space model tailored for point cloud
learning to enhance local feature extraction, achieving superior
performance, high efficiency, and scalability potential. Specifically,
we propose a simple yet effective Local Norm Pooling (LNP) block
to extract local geometric features. Additionally, to obtain better
global features, we introduce a bidirectional SSM (bi-SSM) with
both a token forward SSM and a novel backward SSM that operates
on the feature channel. Extensive experimental results show that
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Mamba3D surpasses Transformer-based counterparts and concur-
rent works in multiple tasks, with or without pre-training. Notably,
Mamba3D achieves multiple SoTA, including an overall accuracy
of 92.6% (train from scratch) on the ScanObjectNN and 95.1% (with
single-modal pre-training) on the ModelNet40 classification task,
with only linear complexity. We shall release the code and model
upon publication of this work.

CCS CONCEPTS

• Computing methodologies → Shape analysis; Point-based
models; Computer vision.

KEYWORDS

Point Cloud Analysis, State Space Model, Local Feature

1 INTRODUCTION

3D point cloud analysis serves as the foundation of wide-ranging
applications such as autonomous driving [37, 47], VR/AR [19], Ro-
botics [45], etc. With the rich deep learning literature in 2D vision,
a natural inclination is to develop deep learning methods for point
cloud processing. Unlike 2D images, point clouds do not have a
specific order and exhibit a complex geometric nature, which poses
challenges for deep point cloud feature learning.

Starting from PointNet [35]/PointNet++ [36], deep learning on
point clouds has gained popularity. A series of deep neural net-
works trained from scratch, such as DGCNN [52], PointMLP [31],

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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PointNeXt [40] etc., are designed for robust point feature extraction.
Recently, a flux of Transformer-based pre-training models [6, 10, 33,
38, 39, 61, 63] has been proposed to unleash the scalability and gen-
eralization of Transformer [50] for 3D point cloud representation
learning, by leveraging a large amount of unlabelled data. However,
the Transformer suffers from the dreaded quadratic bottleneck due
to the pairwise communication brought by the attention mecha-
nism. In other words, the Transformer-based model gets slower
quadratically as the input size increases. Here, we focus on find-
ing a new backbone for point cloud feature learning that achieves
superior performance, high efficiency, and scalability potential.

The Mamba model [15], a recently proposed alternative to Trans-
former, is gaining attention for its efficiency. Built upon state space
models (SSM), Mamba introduces a novel selection mechanism to
effectively compress context, enabling it to handle long sequences.
Also, the hardware-accelerated scan enables Mamba to achieve
near-linear complexity during training. However, the straightfor-
ward adoption of Mamba does not achieve satisfactory performance
on point cloud tasks due to the following challenges. Firstly, its
recurrent/scan mode leads to sequential dependency that is unsuit-
able for unordered point clouds, causing unstable pseudo-order
reliance. Secondly, Mamba lacks explicit local geometry extraction,
which is crucial in point cloud learning [31, 34].

Driven by the above analysis, we present Mamba3D, a novel
state space model tailored for point cloud learning. Going beyond
existing works, two essential technical contributions are delivered:
(1) Local Norm Pooling (LNP): a local feature extraction block com-
prising K-norm and K-pooling operators for local feature propa-
gation and aggregation, respectively. To ensure the efficiency and
scalability of our Mamba3D, we design our LNP block as simple
yet effective, utilizing only 0.3M parameters. (2) Bidirectional-SSM
(bi-SSM): a token forward SSM and a novel backward SSM that
operates on the feature channel to obtain better global features.
Considering the disorder of the point token sequence, we propose
to treat the feature channel as an ordered sequence, which is more
reliable and stable. Based on the original token forward (L+) SSM,
we further design a feature reverse backward (C-) SSM to alleviate
pseudo-order reliance, thus fully exploiting the global features.

Note that, there are concurrent works PointMamba [26] and
PCM [64] that also apply Mamba to 3D point clouds. However,
PointMamba ignores local feature extraction, while PCM does not
support pre-training and is computationally intensive (2× parame-
ters, 12× FLOPs). In contrast,Mamba3D yields more representative
point features by explicitly incorporating local geometry. Particu-
larly, its linear complexity and large capacity allow for both training
from scratch, and equipping with various pre-training strategies,
facilitating downstream tasks with promising performance.

To thoroughly evaluateMamba3D’s capacity and representation
learning ability, we conduct extensive experiments by training our
model from scratch, as well as pre-training using two different pre-
training strategies following Point-BERT [61] and Point-MAE [33],
respectively. Results show thatMamba3D substantially surpasses
both the Transformer-based counterparts and the two concurrent
works on various downstream tasks, while having fewer param-
eters and FLOPs. For example, as shown in Fig. 1(a) and Fig. 1(b),
Mamba3D achieves 92.6% overall accuracy (OA) on the ScanOb-
jectNN [49] classification task, setting new SoTA among models

trained from scratch, and outperforms Transformer on both Mod-
elNet40 [56] object classification task and few-shot classification
task. Similarly, as shown in Fig. 1(c) and Fig. 1(d), when equipped
with the pre-training strategies proposed in Point-BERT and Point-
MAE, Mamba3D still outperforms Transformer on various tasks.
Particularly, Mamba3D achieves 95.1% OA on ModelNet40, setting
new SoTA among single-modal pre-trained models. Meanwhile,
Mamba3D reduces 30.8% in parameters and 23.1% in FLOPs com-
pared to Transformer. Section 4 presents more experimental results.

In summary, this work makes the following contributions:

• We introduce Mamba3D, a state space model with local geo-
metric features tailored for point cloud learning, achieving
superior performance with linear complexity.

• We design a Local Norm Pooling (LNP) block, enhancing
local geometry extraction with only 0.3M parameters.

• Wepropose C-SSM, a feature reverse SSM, alleviating pseudo-
order reliance in unordered points.

• Extensive experiments demonstrate Mamba3D’s superior
performance over Transformer, achieving multiple SoTA
results and robust few-shot learning capabilities.

2 RELATEDWORK

2.1 Deep Point Cloud Learning

As deep neural networks (DNNs) continue to advance, point cloud
feature learning has gained increasing attention, leading to the
development of numerous deep architectures and models in recent
years. Inspired by early models PointNet [35] and PointNet++ [36],
some attempts [2, 8, 24, 25, 43, 52, 65] design various deep architec-
tures to better capture local context information. Later, Transformer-
inspired [50] models such as Point Transformer v1-v3 [54, 55, 66]
and Stratified Transformer [23] have become popular backbones,
integrating local and global information to achieve state-of-the-art
results. However, these dedicated architectures for 3D understand-
ing excel in specific tasks but struggle with transferring across tasks
and modalities.

To fully make use of the massive unlabelled data, self-supervised
pre-training thereby becomes a viable technique. For example,
Point-BERT [61], Point-MAE [33], and MaskPoint [27] propose
to pre-train the Transformer [50] with masked point modeling
approaches [28, 48, 63]. These methods enable models to learn
generalizable features, which are transferable to different tasks ef-
fectively. There are also multi-modal pre-training strategies like
ACT [10], ULIP-2 [58], and ReCon [39] that leverage cross-modal
information from language and images to enhance generalization
and robustness. However, their Transformer-based backbones suf-
fer from quadratic complexity, posing challenges in handling long
sequences, resulting in coarse-grained patching and information
loss. In contrast,Mamba3D leverages Mamba’s linear complexity,
surpassing Transformer in both performance and efficiency.

2.2 State Space Models

State Space Models (SSM) [16, 17, 22], inspired by continuous sys-
tems, have emerged as promising models for sequence modeling.
Notably, S4 [16] demonstrates the ability to capture long-range de-
pendencies with linear complexity, showcasing effectiveness across
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Figure 2: Illustration of Mamba3D. (a) Overview. We first segment input point cloud into 𝐿 patches using FPS & KNN, and then

obtain the initial patch embeddings via a light-PointNet. After adding a [CLS] token, we apply standard positional encoding to

all patch embeddings, which are then fed intoMamba3D Encoder. Finally we use a task header to fit downstream tasks. (b-c)

Mamba3D Encoder details. The illustration of theMamba3D Encoder is inspired by Dosovitskiy et al. [11].

diverse domains like audio [13] and vision [32]. The newly pro-
posed Mamba model [15] further improves upon S4 by introducing
a selection mechanism. By parameterizing SSM based on inputs,
Mamba selectively retains relevant information, facilitating efficient
processing of long-sequence data.

To adapt Mamba from sequence data to unordered point cloud
data, there are concurrent works PointMamba [26] and PCM [64].
PointMamba applies Mamba directly without considering the local
contexts. Based on PointMLP [31], PCM lacks pre-training and
suffers from excessive parameters, limiting Mamba’s efficiency.
In contrast, Mamba3D effectively applies Mamba to point cloud
learning, integrating the unique local geometry of point clouds.
Additionally, we employ various pre-training strategies to validate
Mamba3D’s scalability and large capacity.

3 METHOD

Our aim is to leverage theMambamodel’s capabilities as a backbone
for point cloud feature learning, emphasizing both global receptive
field and local geometric details. Below, we first briefly review
the State Space Models (SSM) and the Mamba model (Section 3.1),
then followed by an overview and detailed explanations of our
key designs (Section 3.2-Section 3.4). Finally, we outline two pre-
training strategies of ourMamba3D (Section 3.5).

3.1 Preliminaries: SSM and Mamba

Drawing from continuous systems, state space models (SSM) map
input 𝑥𝑡 to output 𝑦𝑡 via a latent state ℎ𝑡 , with the state evolving
over time 𝑡 continuously. In practice, to accommodate discrete data
like text and images, the SSM must be discretized first:

ℎ𝑡 = Aℎ𝑡−1 + B𝑥𝑡 , 𝑦𝑡 = Cℎ𝑡 , (1)

where A, B, and C are the discrete state, control, and output matrix,
respectively. Because sequential parameters A, B, and C exhibit
Linear Time Invariance (LTI), we can parallelize the recurrent SSM
in Eq. (1) using a convolutional method into Eq. (2):

K = (CB,CAB, . . . ,CA
L−1

B), y = x ∗ K, (2)

where L is the length of the input sequence x, and K ∈ RL denotes
a global convolution kernel, which can be efficiently pre-computed.

S4 [16] enhances SSM’s ability for long sequence modeling and
speed. Mamba [15] acknowledges the efficiency of LTI models like
S4 in compressing extensive contexts into compact states compared
to Transformer [50], which exhibits quadratic complexity during
training due to zero-compression. However, the constant dynam-
ics of LTI models, such as the input-independent parameters A,
B, and C in Eq. (1), limit their ability to selectively remember or
forget relevant information, constraining their contextual aware-
ness. To enhance content-aware reasoning, Mamba introduces a
selection mechanism to control how information propagates or in-
teracts along the sequence dimension. This is achieved by making
the parameters that affect interactions along the sequence input-
dependent, as defined in Eq. (3):

ℎ𝑡 = 𝑠Ā (𝑥𝑡 )ℎ𝑡−1 + 𝑠B̄ (𝑥𝑡 )𝑥𝑡 , 𝑦𝑡 = 𝑠C̄ (𝑥𝑡 )ℎ𝑡 , (3)

where 𝑠Ā (𝑥𝑡 ), 𝑠B̄ (𝑥𝑡 ) and 𝑠C̄ (𝑥𝑡 ) typically denote three linear pro-
jections applied to input 𝑥𝑡 . The selection mechanism addresses
the limitations of LTI models but makes parallelization shown in
Eq. (2) impractical. To tackle this challenge, Mamba introduces a
hardware-aware selective scan to achieve near-linear complexity.
Please refer to the original Mamba paper [15] for further details.
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3.2 Mamba3D Overview

Though Mamba produces astounding results in sequential data,
it is not straightforward to adapt Mamba to the 3D point cloud.
On the one hand, Mamba employs recurrent/scan structure, which
implies constant-time inference and linear-time training due to the
effective context compression, but exhibits a unidirectional reliance.
While this recurrent model works well for text, it poses challenges
when dealing with unordered point clouds. On the other hand,
Mamba’s global receptive field cannot adequately capture local
point geometry, limiting its ability to learn fine-grained features.
To address the above issues, we introduce Mamba3D, featuring an
effective local norm pooling (LNP) block for explicit local geometry
extraction and a specialized bidirectional SSM (bi-SSM) tailored for
unordered points. Fig. 2(a) shows an overview of Mamba3D.

3.2.1 Patch Embeddings. Given an input point cloud P ∈ R𝑁×3

with 𝑁 points, similar to existing works [33, 61], we first employ
Farthest Point Sampling (FPS) to select 𝐿 central points P𝐶 ∈ R𝐿×3.
Then, for each central point P𝑖

𝐶
, we construct a local patch x𝑖𝑝 ∈

R𝐾×3 using 𝐾-Nearest Neighborhood (KNN) in P. Finally, we em-
ploy a light-PointNet [35] to extract features for each local patch,
serving as its initial patch embeddings.

3.2.2 Mamba3D Encoder. After obtaining the patch embeddings,
they are treated as token sequences in the Transformer [50]. Similar
to ViT [11] and BERT [9], we first introduce a learnable [CLS] token
to aggregate information across the entire sequence. Then, we add
standard learnable positional encoding [50] to these 𝐿 + 1 tokens.
The sequence is then fed into the Mamba3D encoder for high-level
feature embedding, which is finally connected to a simple fully
connected layer for various downstream tasks.

The design of our encoder is illustrated in the right-most part of
Fig. 2(a). Specifically, inspired by MetaFormer [60], we employ a
Transformer-like structure consisting of a token mixer (i.e., LNP)
and a channel mixer (i.e., bi-SSM) to extract local and global fea-
tures, respectively. Each block is preceded by a Layernorm [3] and
followed by a residual connection [21].

Overall, the pipeline of point embedding and encoder layer is
represented by the following equations:

z0 = [xcls; x1𝑝E; x2𝑝E; · · · ; x𝐿𝑝E] + E𝑝𝑜𝑠 , (4)

z′ℓ = LNP(𝐿𝑁 (zℓ−1 + E𝑝𝑜𝑠 )) + zℓ−1, ℓ = 1 . . .𝑇 (5)
zℓ = bi-SSM(𝐿𝑁 (z′ℓ )) + z′ℓ , ℓ = 1 . . .𝑇 (6)

where z is the output of each layer, xcls ∈ R1×𝐶 is the learnable
[CLS] token, E is the light-PointNet to project input patches from
x𝑝 ∈ R𝐿×𝐾×3 ↦→ x𝑝E ∈ R𝐿×𝐶 , and 𝐿𝑁 denotes the Layernorm
operation. In practice, we stack 𝑇 encoder layers, and a standard
learnable positional encoding E𝑝𝑜𝑠 ∈ R(𝐿+1)×𝐶 is incorporated into
every encoder layer, as in Point-MAE [33], to enhance the model’s
spatial awareness.

3.3 Local Norm Pooling

Local geometric features have been proven to be vital for point
cloud feature learning, but were unfortunately ignored in Point-
Mamba [26]. Typically, local features in point clouds are obtained

by constructing a local graph using KNN, followed by feature fu-
sion [31, 35, 36]. To ensure both effectiveness and efficiency, we
design a novel Local Norm Pooling (LNP) block by simplifying the
local feature extraction into two key steps: feature propagation and
aggregation. Specifically, as illustrated in Fig. 2(b), LNP comprises
two operators K-norm (propagation) and K-pooling (aggregation),
alongside a shared MLP for channel alignment.

3.3.1 K-norm: propagation. After constructing a local graph
with 𝑘 neighbors using KNN around each central point, the feature
propagation involves (1) enabling neighboring points to perceive
relative features concerning the central point and (2) conducting
feature fusion to update their features accordingly. To achieve this,
we first normalize the neighbor features F𝐾 ∈ R𝐿×𝑘×𝐶 to get ˜F𝐾 ∈
R𝐿×𝑘×𝐶 as defined in Eq. (7). Then, we concatenate ˜F𝐾 with the
repeated (by 𝐾 times) central point feature F𝐶 ∈ R𝐿×𝑘×𝐶 and apply
a learnable linear transformation across the local graph to obtain
the propagated features F̂𝐾 ∈ R𝐿×𝐾×2𝐶 :

˜F𝐾 =
F𝐾 − F𝐶√︁

𝑉𝑎𝑟 (F𝐾 − F𝐶 ) + 𝜖
, F̂𝐾 = [ ˜F𝐾 ⊕ F𝐶 ] ∗ 𝛾 + 𝛽, (7)

where 𝛾 and 𝛽 are trainable scale and shift vectors as in Layer-
norm [3], respectively, and ⊕ signifies feature channel concate-
nation. This linear transformation preserves topological features
while capturing the rigid transformation of the local graph features.
As depicted in the lower half of Fig. 2(b), our K-norm facilitates
local feature propagation from the central point to its neighbors.

3.3.2 K-pooling: aggregation. After propagating featureswithin
the local graph, we aggregate the information back to the central
point for feature updating. While max-pooling is commonly used
for feature aggregation in unordered points tomaintain order invari-
ance [35], it would lead to information loss. Inspired by Softmax, we
introduce K-pooling to efficiently perform local feature aggregation
while mitigating this information loss, as defined in Eq. (8):

F̂𝐶 =
∑𝐾
𝑖

exp F̂𝑖
𝐾∑𝐾

𝑗 exp F̂𝑗
𝐾

· F̂𝑖
𝐾
, (8)

where F̂𝐶 is the updated central point features. K-pooling maps
from F̂𝐾 ∈ R𝐿×𝑘×2𝐶 ↦→ F̂𝐶 ∈ R𝐿×2𝐶 , generates updated central
point features, as depicted in the upper half of Fig. 2(b).

Intuitively, the LNP block constructs a local graph with adjacent
patches and facilitates local feature propagation and aggregation,
enabling information exchange within the local field, thus captur-
ing the geometric and semantic features of the local patches. The
receptive field of the LNP is smaller than that of SSM. By adjusting
the size of the receptive field, the LNP integrates local and global
information, enablingMamba3D to more comprehensively capture
the semantic information of 3D objects.

3.4 Bidirectional-SSM

Mamba is originally designed as a unidirectional model suited for
processing 1D sequences like text. However, vision tasks often re-
quire an understanding of global spatial information. Hence, Vision
Mamba [67] proposed using both forward and backward SSM to
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Figure 3: Illustration of feature channel flipping. Instead

of horizontal token flip, we propose a vertical feature flip,

which alleviates the pseudo-order reliance.

incorporate global information by simply horizontally flipping the
token order, as illustrated by the L+ and L- embeddings in Fig. 3.
However, unlike the structured grid of images, point clouds are
unordered and irregular, learning sequence order causes an unre-
liable and unstable pseudo-order dependency. To address this, we
instead propose to prioritize modeling the intrinsic distribution of
feature vectors rather than point tokens. Specifically, we propose
a novel backward SSM, named feature reverse SSM, or C-SSM, as
illustrated in Fig. 3. Combining this with the original forward SSM
in Mamba, termed L+SSM, results in our bidirectional-SSM block,
or bi-SSM for short. Formally, the bi-SSM block is defined as:

bi-SSM(F) = F + [L+SSM(F𝐿+)] + [C-SSM(F𝐶−)] . (9)

With the input forward embedding F, also denoted as F𝐿+, we
perform a channel flip to obtain F𝐶− , which is then fed into L+SSM
and C-SSM block to generate the output embedding, respectively.

As shown in Fig. 3, we employ a vertical flip to obtain F𝐶− , in-
stead of a horizontal flip to get F𝐿− . This approach reduces the
pseudo-order reliance, crucial in unordered point clouds where
token order lacks consistent meaning. For instance, two adjacent to-
kens might represent the tail and head of an airplane, respectively,
which are spatially and semantically distant, posing challenges
for continuous and complete feature learning. Mamba’s feature
selection mechanism may exacerbate this, scattering features in
high-dimensional space. Instead, by reversing the feature channel,
the model prioritizes learning the distribution of feature vectors.
These two directions—forward token embeddings and backward
feature channels—carry distinct and more reliable information, en-
hancing Mamba3D’s ability to acquire more effective knowledge.

3.5 Pre-training Details

Our Mamba3D can not only be trained from scratch, but also be
pre-trained with various pre-training strategies, thus facilitating
downstream tasks with promising performance. In experiments,
we verify the capacity and representation learning capability of
Mamba3D with two commonly used pre-training strategies pro-
posed by Point-BERT [61] and Point-MAE [33].

3.5.1 Point-BERT pre-training stategy. Firstly, we randomly
mask out 55%∼85% input point embeddings, instead of a mask ratio
between [0.25, 0.45] in Point-BERT. Increasing the mask ratio can
not only speed up the training process, but also push Mamba3D’s
feature learning ability, enabling the model to learn from limited
inputs. Then the Mamba3D encoder processes both visible and

masked embeddings to produce a token sequence. Meanwhile, we
employ the pre-trained dVAE [44] weight of Point-BERT directly to
predict token sequence from point embeddings as token guidance.
Lastly, we calculate the L1 loss between the encoder’s output token
sequence and the one from dVAE as the loss function.

3.5.2 Point-MAE pre-training stategy. Following Point-MAE,
we use a masked point modeling approach and directly reconstruct
masked points. We employ an encoder-decoder architecture, where
the encoder processes only visible tokens and generates their encod-
ing. Unlike Point-MAE, our decoder employ a different architecture
from encoder, containing only bi-SSM block but no LNP block,
which can speed up convergence without performance loss. The
encoded visible tokens and masked tokens are fed into the decoder
to predict masked points. Loss is calculated using the Chamfer Dis-
tance [12] between output and ground truth points. In downstream
tasks, we only use the pre-trained encoder to extract features, with
task headers appended for fine-tuning.

4 EVALUATION

In this section, we first introduce the network implementation de-
tails. Then we evaluateMamba3D against various existing methods
in multiple downstream tasks, including object classification, part
segmentation, and few-shot learning. Finally, we show the results
of the ablation study for our model.

4.1 Implementation Details

We employ 𝑇=12 encoder layers with feature dimension 𝐶=384,
and set 𝑘=4 in the LNP block. During pre-training, we utilize the
ShapeNet dataset [4], which contains ∼50K 3D CAD models cover-
ing 55 object categories. Each input point cloud, containing 𝑁=1024
points, is divided into 64 patches with each consisting of 32 points.
Pre-training employs the AdamW optimizer [30] with cosine decay,
an initial learning rate of 0.001, a weight decay of 0.05, a dropout
rate of 0.1, and a batch size of 128 for 300 epochs. During fine-
tuning, the point cloud is divided into 128 patches, and we train
the model with the AdamW optimizer with cosine decay, an initial
learning rate of 0.0005, a weight decay of 0.05, and a batch size of
32 for 300 epochs. Unless specified, we use the same task header
as Point-MAE [33] in all downstream tasks. When training from
scratch, we use the same settings as in fine-tuning. All experiments
are conducted using an NVIDIA RTX 3090 GPU.

4.2 Comparison on Downstream Tasks

We showMamba3D’s results on downstream tasks here. For each
experiment, we report results for models trained from scratch, as
well as those employing two pre-training strategies. Unless speci-
fied, the results forMamba3D do not use a voting strategy.

4.2.1 Object Classification. We conduct classification experi-
ments on both the real-world ScanObjectNN [49] dataset and the
synthetic ModelNet40 [56] dataset.

Settings. ScanObjectNN dataset contains ∼15K objects from 15
classes, scanned from the real world with cluttered backgrounds.
We experiment with its three variants: OBJ_BG, OBJ_ONLY, and
PB_T50_RS. We use rotation as data augmentation [10], with a point
cloud size 𝑁=2048. ModelNet40 dataset includes ∼12K synthetic
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Table 1: Classification results on the ScanObjectNN and ModelNet40 datasets. The inference model parameters #P (M), FLOPs

#F (G), and overall accuracy (%) are reported. We compare with methods using the △hierarchical Transformer architectures

(e.g., Point-M2AE [63]), •plain Transformer architectures, ◦ dedicated architectures for 3D understanding, and ★Mamba-based

architectures.
†
means additional tuning. PT: pre-training strategy.

Method PT #P ↓ #F ↓
ScanObjectNN ModelNet40

OBJ_BG ↑ OBJ_ONLY ↑ PB_T50_RS ↑ 1k P ↑

Supervised Learning Only: Dedicated Architectures

◦ PointNet [35] × 3.5 0.5 73.3 79.2 68.0 89.2
◦ PointNet++ [36] × 1.5 1.7 82.3 84.3 77.9 90.7
◦DGCNN [52] × 1.8 2.4 82.8 86.2 78.1 92.9
◦ PointCNN [25] × 0.6 - 86.1 85.5 78.5 92.2
◦DRNet [41] × - - - - 80.3 93.1
◦ SimpleView [14] × - - - - 80.5±0.3 93.9
◦GBNet [42] × 8.8 - - - 81.0 93.8
◦ PRA-Net [7] × 2.3 - - - 81.0 93.7
◦MVTN [20] × 11.2 43.7 92.6 92.3 82.8 93.8
◦ PointMLP [31] × 12.6 31.4 - - 85.4±0.3 94.5

◦ PointNeXt [40] × 1.4 3.6 - - 87.7±0.4 94.0
◦ P2P-HorNet [53] ✓ - 34.6 - - 89.3 94.0
◦DeLA [5] × 5.3 1.5 - - 90.4 94.0

Supervised Learning Only: Transformer or Mamba-based Models

•Transformer [50] × 22.1 4.8 79.86 80.55 77.24 91.4
△ PCT [18] × 2.9 2.3 - - - 93.2
★PointMamba [26] × 12.3 3.6 88.30 87.78 82.48 -
★PCM [64] × 34.2 45.0 - - 88.10±0.3 93.4±0.2
△ SPoTr [34] × 1.7 10.8 - - 88.60 -
△ PointConT [29] × - - - - 90.30 93.5
★ Mamba3D w/o vot. × 16.9 3.9 92.94 92.08 91.81 93.4
★ Mamba3D w/ vot. × 16.9 3.9 94.49 92.43 92.64 94.1

with Self-supervised Pre-training

•Transformer [50] OcCo [51] 22.1 4.8 84.85 85.54 78.79 92.1
• Point-BERT [61] IDPT [62] 22.1+1.7† 4.8 88.12 88.30 83.69 93.4
•MaskPoint [27] MaskPoint 22.1 4.8 89.30 88.10 84.30 93.8
★PointMamba [26] Point-MAE 12.3 3.6 90.71 88.47 84.87 -
• Point-MAE [33] IDPT [62] 22.1+1.7† 4.8 91.22 90.02 84.94 94.4
△ Point-M2AE [63] Point-M2AE 15.3 3.6 91.22 88.81 86.43 94.0

• Point-BERT [61] Point-BERT 22.1 4.8 87.43 88.12 83.07 93.2
★ Mamba3D w/o vot. Point-BERT 16.9 3.9 92.25 +4.82 91.05 +2.93 87.58 +4.51 94.4 +1.2

• Point-MAE [33] Point-MAE 22.1 4.8 90.02 88.29 85.18 93.8
★ Mamba3D w/o vot. Point-MAE 16.9 3.9 93.12 +3.10 92.08 +3.79 88.20 +3.02 94.7 +0.9

★ Mamba3D w/ vot. Point-MAE 16.9 3.9 95.18 +5.16 92.60 +4.31 88.97 +3.79 95.1 +1.3

3D CAD models across 40 classes. We use 𝑁=1024 points as input,
and apply scale&translate for data augmentation [35].

Results. Table 1 reports the comparison results. When trained
from scratch, Mamba3D achieved 91.81% overall accuracy (OA) on
the most difficult variant PB_T50_RS of ScanObjectNN, and 92.64%
after voting, surpassing SoTA model DeLA’s 90.4% [5], achieving
new SoTA for models trained from scratch. Compared to Trans-
former [50], Mamba3D gains an OA increase of +15.40%, with only

76% parameters and 81% FLOPs. Notably, Mamba3D surpasses two
concurrent works PointMamba [26] and PCM [64] by +10.16% and
+4.54%, respectively. On theModelNet40 dataset,Mamba3D is +2.7%
higher than Transformer. Our model surpasses PCM with less than
half the parameters (16.9M vs. 34.2M), and only 8.7% FLOPs (3.9G
vs. 45.0G).

After pre-training, our proposed Mamba3D consistently out-
performs Transformer-based models. With the Point-BERT [61]
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Table 2: Few-shot classification on ModelNet40 dataset. Over-

all accuracy (%) without voting is reported. P-B and P-M rep-

resent Point-BERT and Point-MAE strategy, respectively.

Method
5-way 10-way

10-shot ↑ 20-shot ↑ 10-shot ↑ 20-shot ↑
Supervised Learning Only

◦DGCNN [52] 31.6 ± 2.8 40.8 ± 4.6 19.9 ± 2.1 16.9 ± 1.5

•Transformer [50] 87.8 ± 5.2 93.3 ± 4.3 84.6 ± 5.5 89.4 ± 6.3

★Mamba3D 92.6 ± 3.7 96.9 ± 2.4 88.1 ± 5.3 93.1 ± 3.6

with Self-supervised Pre-training

◦DGCNN+OcCo 90.6 ± 2.8 92.5 ± 1.9 82.9 ± 1.3 86.5 ± 2.2

•OcCo [51] 94.0 ± 3.6 95.9 ± 2.7 89.4 ± 5.1 92.4 ±4.6

★PointMamba [26] 95.0 ± 2.3 97.3 ± 1.8 91.4 ± 4.4 92.8 ± 4.0

•MaskPoint [27] 95.0 ± 3.7 97.2 ± 1.7 91.4 ± 4.0 93.4 ± 3.5

• Point-BERT [61] 94.6 ± 3.1 96.3 ± 2.7 91.0 ± 5.4 92.7 ± 5.1

★Mamba3D+P-B 95.8 ± 2.7 97.9 ± 1.4 91.3 ± 4.7 94.5 ± 3.3

• Point-MAE [33] 96.3 ± 2.5 97.8 ± 1.8 92.6 ±4.1 95.0 ± 3.0

★Mamba3D+P-M 96.4 ± 2.2 98.2 ±1.2 92.4 ± 4.1 95.2 ± 2.9

strategy,Mamba3D surpasses Point-BERT by +4.51% on ScanOb-
jectNN and +1.2% on ModelNet40, also outperforming hierarchical
Transformer model Point-M2AE [63] by +1.15% and +0.4% on this
two datasets. When using the Point-MAE [33] strategy, Mamba3D
achieves 95.1% on ModelNet40, setting new SoTA for single-modal
pre-trained models. On the ScanObjectNN dataset,Mamba3D out-
performs Transformerwith OcCo [51] by +10.2%, and Point-MAE by
+3.8%. Besides, we gained an increase of +4.1% compared to Point-
Mamba [26] with the same pre-training strategy. Overall, these
results highlightMamba3D’s superiority over existing dedicated
architectures and Transformer- or Mamba-based models, achieving
multiple SoTA, demonstrating its strength across various settings.
4.2.2 Few-shot Learning. We conduct few-shot classification
experiments following previous work [46], to further validate few-
shot learning ability of Mamba3D.

Settings. We use ModelNet40 dataset [56] with an 𝑛-way, 𝑚-
shot setting, where 𝑛 is the number of classes randomly sampled
from the dataset, and𝑚 denotes the number of samples randomly
drawn from each class. We train the model with only the sampled
𝑛 ×𝑚 samples. During testing, we randomly select 20 novel objects
for each of the 𝑛 classes to serve as test data. We experiment with
𝑛 ∈ {5, 10} and𝑚 ∈ {10, 20}. For each setting, we report the mean
accuracy and standard deviation of 10 independent experiments.

Results. Table 2 reports the comparison results. When trained
from scratch, Both Mamba3D and Transformer significantly sur-
pass DGCNN [52] by a large margin.Mamba3D outperforms Trans-
former [50] with overall accuracy (OA) improvements of +4.8%,
+3.6%, +3.5%, and +3.7% across four settings, respectively, with also
smaller deviations and fewer FLOPs. Under the Point-BERT strategy,
Mamba3D outperformed Point-BERT [61] by +1.2%, +1.6%, +0.3%,
and +1.8%, respectively, and with smaller deviations. Similarly, with
the Point-MAE [33] strategy,Mamba3D outperforms Point-MAE
on three out of four settings, and surpasses PointMamba [26] on

Table 3: Part segmentation on ShapeNetPart dataset. The

class mIoU (mIoU𝐶 ) and the instance mIoU (mIoU𝐼 ) are re-

ported, with model parameters #P (M) and FLOPs #F (G).

Method mIoU𝐶 (%) ↑ mIoU𝐼 (%) ↑ #P ↓ #F ↓
Supervised Learning Only

◦ PointNet [35] 80.4 83.7 3.6 4.9
◦ PointNet++ [36] 81.9 85.1 1.0 4.9

◦DGCNN [52] 82.3 85.2 1.3 12.4
•Transformer [50] 83.4 85.1 27.1 15.5
★ Mamba3D 83.7 85.7 23.0 11.8

with Self-supervised Pre-training

•OcCo [51] 83.4 84.7 27.1 -
◦ PointContrast [57] - 85.1 37.9 -
◦CrossPoint [1] - 85.5 - -

• Point-BERT [61] 84.1 85.6 27.1 10.6
★ Mamba3D+P-B 84.1 85.7 21.9 9.5

• Point-MAE [33] 84.2 86.1 27.1 15.5
★PointMamba [26] 84.4 86.0 17.4 14.3
★ Mamba3D+P-M 83.6 85.6 23.0 11.8

all settings. These few-shot experiments demonstrate Mamba3D’s
adeptness at learning semantic information and its efficient knowl-
edge transfer ability to downstream tasks, even with limited data.

4.2.3 Part Segmentation. We conducted part segmentation on
the ShapeNetPart dataset [59] to predict more fine-grained class
labels for every point.

Settings. ShapeNetPart dataset comprises ∼16K objects across
16 categories.We use a segmentation head similar to Point-BERT [61]-
utilizing PointNet++ [36] in feature propagation, along with a simi-
lar feature extraction strategy—employing features from the 4th,
8th, and 12th encoder layers. We use input point cloud 𝑁=2048
without normal, and employ cross-entropy as the loss function.

Results. Table 3 reports the comparison results in terms of the
average instance IoU (mIoU𝐼 ) and average category IoU (mIoU𝐶 ).
With supervised training alone, Mamba3D surpasses Transformer
by +0.3% in mIoU𝐶 and +0.6% in mIoU𝐼 . With the Point-BERT
strategy, Mamba3D achieves +0.1% higher mIoU𝐼 compared to
Point-BERT. While Mamba3D yields slightly lower results than
Point-MAE, it employs 17.8% fewer parameters and 31.4% fewer
FLOPs. The segmentation experiments further demonstrate the
effectiveness and efficiency of Mamba3D.

4.3 Ablation Study

We conduct ablation studies on model structure and also investigate
the effect of ordering strategies. We report the results of training
from scratch on the ScanObjectNN (OBJ_ONLY) dataset.

4.3.1 Architecture Ablation. Results of ablation on architecture
are shown in Table 4. Removing the LNP block (w/o LNP) and
the bi-SSM block (w/o bi-SSM) separately results in a 1.2% and
2.3% degradation in overall accuracy (OA), respectively. To further
validate the effect of the bi-SSM block, we design four variants.
Firstly, we replace it with a self-attention [50] layer (LNP+Attn),
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Figure 4: Ablation on (a) the parameter 𝑘 in the LNP block, (b) input patch sequence length 𝐿, and (c) ordering strategy. The

overall accuracy (%), training time/epoch (s) and FLOPs (G) are reported.

Table 4: Ablation on model architecture.

Method OBJ_ONLY (%) ↑ Params (M) ↓ FLOPs (G) ↓

★Full 92.1 16.9 3.9
w/o LNP 90.9 -1.2 13.3 3.4
w/o bi-SSM 89.8 -2.3 4.4 2.5

★ tri-SSM 91.0 -1.1 17.9 3.9
★one-SSM 90.9 -1.2 16.0 3.9
• LNP + Attn 90.9 -1.2 25.7 5.4
★Token Flip 90.7 -1.4 16.9 3.9

Table 5: Ablation on K-norm.

Method OBJ_ONLY (%) ↑ Params (M) ↓ FLOPs (G) ↓
K-norm 92.1 16.93 3.86

w/o rela. dist. 91.6 -0.5 16.93 3.86
w/ K linear 90.9 -1.2 16.98 3.86
w/o linear 90.5 -1.6 16.91 3.86
w/o K-norm 89.2 -2.9 21.25 5.98
w/o Fc 88.8 -3.3 15.14 3.63
w/o concat. 88.6 -3.5 15.14 3.63

which leads to a 1.2% reduction in OA. When using only a unidirec-
tional SSM (one-SSM), the OA decreases by 1.2%. Exploring token
flip as an alternative to the channel flip (Token Flip) results in a
1.4% OA degradation, and directly adding a token flip in bi-SSM
block (tri-SSM) leads to a 1.1% drop. These results demonstrate the
effectiveness of the C-SSM block for unordered points.

4.3.2 K-normAblation. Results of ablation on K-norm are shown
in Table 5. Removing K-norm entirely (w/o K-norm) decreases OA
by 2.9%. We extensively verify the effectiveness of the K-norm
operator defined in Eq. (5). Dropping the concatenated 𝐹𝐶 (w/o
concat.) lowered OA to 88.6%, and removing 𝐹𝐶 completely (w/o 𝐹𝐶 )
decreases OA by 3.3%. Without linear transformation (w/o linear),
OA decreases by 1.6%, and using distinct linear transformations
for 𝐾 neighbors (K linear) leads to a 1.2% drop, underscoring K-
norm’s simplicity and efficacy. Even without the centralizing 𝐹𝐶 ,
the model achieved 91.6% OA. These results highlight the K-norm’s
role in effectively transmitting local information and improving
local geometric capture.

4.3.3 K-pooling Ablation. More detailed ablation results for K-
pooling are shown in Table 6. Replacing K-pooling with one MLP

Table 6: Ablation on K-pooling.

Method OBJ_ONLY (%) ↑ Params (M) ↓ FLOPs (G) ↓
K-pooling 92.1 16.93 3.86
w/ Maxpool 91.4 -0.7 16.93 3.86
w/o K-pool 89.8 -2.3 17.72 4.47
w/ Max + Avgpool 89.7 -2.4 16.93 3.86
w/ Avgpool 89.3 -2.8 16.93 3.86

(w/o K-pool) leads to an increase of +0.8M in parameters and +0.61G
in FLOPs, while the OA decreases by 2.3%, highlighting the simplic-
ity and effectiveness of K-pooling. When K-pooling is substituted
with Avgpooling, Maxpooling, or Max+Avgpooling, the OA is re-
duced by 2.8%, 0.7%, and 2.4%, respectively, indicating the efficacy
of the simple K-pooling operator in aggregating local features.

4.3.4 Parameters and Ordering. We also analyze the model’s
performance under variousmodel parameters, as depicted in Fig. 4(a-
b). In Fig. 4(a), we adjust the 𝑘 in LNP to change the size of the local
patch graph. Results show that as the local neighborhood increases,
so does the model training time, with the overall accuracy (OA)
reaching its peak at 𝑘=4. Results in Fig. 4(b) indicate that as the
token length 𝐿 increases, so do the FLOPs, with the OA peaking
at 92.1% when 𝐿=128. Lastly, in Fig. 4(c), we investigate ordering
strategies and find that Mamba3D performs optimally without any
ordering strategy applied. This suggests that Mamba3D effectively
captures the semantic features from unordered points.

5 CONCLUSION

We introduce Mamba3D, a novel SSM-based architecture for point
cloud learning. Mamba3D surpasses Transformer-based models
across various tasks while maintaining linear complexity. Specifi-
cally, our LNP block, comprising K-norm and K-pooling, facilitates
the explicit local feature injection. Also, we propose C-SSM to adapt
the SSM for better handling unordered points. Through extensive
experimentation and validation, Mamba3D achieves multiple SoTA
across multiple tasks with only linear complexity. We aspire for
Mamba3D to advance the field of large point cloud models.

Discussion. There are still limitations to this work. Pre-training
bonus is not as robust as the Transformer, possibly due to unsuitable
masked point modeling for recurrent models like Mamba. We will
explore tailored pre-training strategies and scale up the model to
optimize its linear complexity advantage in future research.
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