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Abstract

The estimation of average treatment effects (ATEs), defined as the difference in
expected outcomes between treatment and control groups, is a central topic in
causal inference. This study develops semiparametric efficient estimators for ATE
in a setting where only a treatment group and an unlabeled group—consisting of
units whose treatment status is unknown—are observed. This scenario constitutes
a variant of learning from positive and unlabeled data (PU learning) and can be
viewed as a special case of ATE estimation with missing data. For this setting, we
derive the semiparametric efficiency bounds, which characterize the lowest achiev-
able asymptotic variance for regular estimators. We then construct semiparametric
efficient ATE estimators that attain these bounds. Our results contribute to the lit-
erature on causal inference with missing data and weakly supervised learning.

1 Introduction

The estimation of average treatment effects (ATEs), defined as the difference in expected out-
comes between treatment and control groups, is a fundamental problem in causal inference
(Imbens & Rubin, 2015). Estimating ATEs enables researchers to quantify the causal impact of
a treatment, intervention, or policy on an outcome of interest. This problem is of paramount impor-
tance across various fields, including economics, epidemiology, and machine learning.

Standard ATE estimation typically assumes access to both treatment and control groups, along with
complete information on treatment assignment. However, in many practical situations, this assump-
tion does not hold. In some cases, only a treatment group and an unknown group—comprising
units for which treatment assignment is unobserved—are available. Such scenarios arise in various
applications, including recommendation systems with implicit feedback, electronic health records,
and marketing campaigns, where the absence of explicit treatment information poses significant
challenges for causal inference.

We present the following examples for applications of our proposed method:

• We are interested in how building an online store affects product sales. In a recommen-
dation system, a customer who purchases a product through the website is known to have
visited the site, whereas a customer who buys the product in a physical store may or may
not have visited the website. When the construction of the online store is regarded as the
treatment, customers who purchase in-store belong to the unknown group.

• In a similar vein, consider the effect of distributing coupons on product sales. Because the
logging system is imperfect, we observe two datasets: purchase records for customers who
used coupons, and purchase records that mix customers who did and did not use coupons.
Here, customers who appear only in the mixed dataset constitute the unknown group.
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• A company unintentionally sold defective products, for example, vehicles with faults or
food containing impurities. Consumers who notice the defect report both the defect and
any resulting damage, such as health issues or accidents, to the company. Consumers who
do not notice the defect file no report. In this setting, consumers who report the defect
form the treatment group, while those who do not notice the defect belong to the unknown
group.

Our method is also useful when the treatment can be defined only by contrasting it with a
non-treatment condition. For example, consider examining how excessive work hours affect work-
ers’ mental health. Courts and labor inspectors can identify illegal overtime, but it is difficult to
decide whether other working hours are excessive. Firms found to have engaged in illegal overtime
can therefore serve as the treatment group, whereas all other firms constitute the unknown group.
Similarly, by taking units with easily observable outcomes as the treatment group and all others as
the unknown group, one can define the comparison group simply as not treated. This idea is widely
adopted in anomaly-detection approaches that rely on density-ratio or PU learning.

Content of this study. We address the problem of ATE estimation using only a treatment group
and an unknown group. This setting is closely related to learning from positive and unlabeled data
(PU learning, Sugiyama et al., 2022), where the goal is to train a classifier using only positive and
unlabeled instances. In our context, the challenge lies in efficiently estimating ATEs using the
treatment (positive) and unknown groups. We refer to our setting and methodology as PUATE.

For this problem, we first derive semiparametric efficiency bounds, which are theoretical lower
bounds on the asymptotic variance of regular estimators under the given data-generating processes
(DGPs).1 These bounds serve as benchmarks for evaluating estimator performance. As part of this
derivation, we compute the efficient influence function, which provides insight into the construction
of efficient estimators.

Using the efficient influence function, we develop semiparametric efficient ATE estimators that are√
n-consistent and whose asymptotic variance achieves the efficiency bounds. These estimators are

thus optimal under the semiparametric framework.

In this study, we consider two DGPs relevant to the PU setup: the censoring setting and the case-
control setting (Elkan & Noto, 2008; du Plessis et al., 2015). In the censoring setting, we are given
a single dataset in which some units have missing treatment information while others are confirmed
to have received treatment. In the case-control setting, we are provided with two datasets: one
containing treated units and another comprising units with unknown treatment status.

Specifically, our contributions are as follows:

• We formulate the ATE estimation problem with missing data using the PU learning framework.
• We derive efficiency bounds under both the censoring and case-control settings.
• We propose novel efficient estimators.
• We establish connections between ATE estimation with missing data and PU learning.
• We also propose alternative candidate estimators.

This study is organized as follows. Section 2 formulates our problem. Section 3 introduces simple
ATE estimators, which are later shown to be inefficient. In Section 4, we derive efficiency bounds,
propose an efficient estimator, and establish its asymptotic properties under the censoring setting.
Due to space limitations, we show the ATE estimation in the case-control setting briefly in Section 5
and mainly in Appendix D. Section 6 presents simulation studies. We introduce related work in
Appendix A. The details of PU learning methods are explained in Appendix E

2 Problem setting

2.1 Potential outcomes and parameter of interest

We consider binary treatments, 1 and 0. For each treatment d ∈ {1, 0}, there exists a potential
outcome Y (d) ∈ R. The outcome is observed only when the corresponding treatment is assigned

1For regular estimators, see p.366 in van der Vaart (1998).
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to a unit. Each unit has p-dimensional covariates X ∈ X ⊂ R
p. This setting is called the Neyman-

Rubin causal model (Neyman, 1923; Rubin, 1974).

We denote by P0 ∈ P a distribution of Y (d), X , and other random variables introduced below,
which we call the true distribution, where P is the set of distributions. For simplicity, we assume
that P0 has a density. We denote the conditional density of Y (d) given X by pY (d),0(y(d) | X), and

the marginal density of X by ζ0(x).

We consider n units, each of which receives either treatment or control. Let Yi(d) and Xi be i.i.d.
copies of Y (d) and X . Throughout this study, for a random variable R, let Ri be its i.i.d. copy under
P0. If unit i receives treatment d, we observe Yi(d) but not the counterfactual outcome.

We refer to the group of units who receive treatment 1 as the treatment group and those who receive
treatment 0 as the control group. As formulated in the next subsection, we consider a scenario where
part of the treatment group and a mixture of the treatment and control groups are observable, where
the treatment indicator is unobservable. We refer to this mixed group as the unknown group.

Our objective is to estimate the ATE under P0 using observed data, defined as τ0 :=
E [Y (1)− Y (0)], where E denotes the expectation under P0.

2.2 Observations with two DGPs

In our setting, the observations are non-standard. We can only observe part of the treatment group
and the unknown group, a mixture of the treatment and control groups. This setting is a variant of PU
learning. PU learning encompasses two settings: the censoring setting and the case-control setting.
In the censoring setting, we consider a single dataset with i.i.d. observations, where treatment labels
contain missing values. Specifically, while part of the treatment group is observed, the mixture of the
treated and control groups is also present. In the case-control setting, we observe two independent
datasets: one consisting solely of the treatment group and the other comprising the unknown group.
The censoring and case-control settings are also referred to as one-sample and two-sample settings,
respectively (Niu et al., 2016). The case-control setting can also be regarded as a form of stratified
sampling, studied in Imbens & Lancaster (1996) and Wooldridge (2001).

2.3 Censoring setting

In the censoring setting, we observe a single dataset D, defined as follows:

D :=
{(

Xi, Oi, Yi

)}n
i=1

with
(
Xi, Oi, Yi

)
∼ p0(x, o, y),

where Oi ∈ {1, 0} is an observation indicator with the observation probability π0(O | X), Yi is
defined as

Yi := 1[Oi = 1]Yi(1) + 1[Oi = 0]Ỹ ,

Ỹi is the observation of the unknown groups and defined as

Ỹi := 1[Di = 1]Yi(1) + 1[Di = 0]Yi(0),

Di ∈ {1, 0} is a (unobserved) treatment indicator, and we denote the conditional probability of Di

given X and Oi = 0 as g0(D | X) = P(D | X,O = 0). We refer to g0(d | X) as the censoring
propensity score. Here, the density p0(x, o, y) is given as p0(x, o, y) = ζ0(x)π0(o | X = x)pY,0(y |
O = o,X = x), where pY,0 is the density of Y .

2.4 Case-control setting

In the case-control setting, we observe two stratified datasets, DT and DU:

DT :=
{(

XT,j , Yj(1)
)}m

j=1
with

(
XT,j , Yj(1)

)
∼ pT,0(x, y(1)) and

DU :=
{(

Xk, YU,k

)}l
k=1

with
(
Xk, YU,k

)
∼ pU,0(x, yU),

where m and l are fixed sample sizes of each dataset such that m + l = n, XT,j represents the
covariates of the treatment group, YU,k is the observed outcome defined as

YU,k = 1[Dk = 1]Yk(1) + 1[Dk = 0]Yk(0),

3



and Dk ∈ {1, 0} is a treatment indicator with probability e0(D | X). We refer to e0(d |
X = x) as the case-control propensity score. The densities pT,0(x, y(1)) and pU,0(x, yU) sat-
isfy pT,0(x, y(1)) = ζT,0(x)pY (1),0(y(1) | X = x) and pU,0(x, yU) = ζ0(x)pYU,0(yU | X = x)
respectively, where pYU,0(yU | X = x) denotes the density of YU,k given X = x, and ζT,0(x)
represents the density of the covariates X in the treatment group.

Although the ATE estimation in the case-control setting is also crucially important, due to the space
limitation, we show the main results almost in Appendix D.

2.5 Difference between the two settings

Figure 1: Illustration of the censoring and case-
control settings

We illustrate the concept of the censoring and
case-control settings in Figure 1. A summary
of the differences is provided below:

Censoring setting: A single dataset is ob-
served, containing partial treatment informa-
tion and a mixture of treated and control
groups.

Case-control setting: Two stratified datasets
are observed—one consisting of the treat-
ment group and the other comprising the un-
known group.

The key distinction lies in the randomness of treatment group observations. In the censoring setting,
the observation of the treatment group is a random event, where the observation indicator Oi follows
a probability π0(O | X). In contrast, in the case-control setting, the label observation is determin-
istic, and the treatment and unknown groups are drawn independently. This difference impacts the
estimator design and efficiency bounds.

Note that the definitions and meanings of the propensity scores in the censoring and case-control
settings are also different, and its difference stems from the definition of the observations indicators.

Notation. We summarize the notations above and introduce new notations. Let E, P, and Var be
an expectation operator, a probability law, and a variance operator. For both settings, let us define
µT,0(X) := E[Y (1) | X], µC,0(X) := E[Y (0) | X], and let τ0(X) := µT,0(X) − µC,0(X) be the
conditional ATE. If a function f depends on the true distribution P0, we denote it by f0.

In the censoring setting, we use π0(o | X) := P(O = o | X), g0(d | X) := P(D = d | X,O = 0),

and ν0(X) := E[Ỹ | X,O = 0]. Here, E[1[O = 1]Y | X] = π0(1 | X)µT,0(X) and E[1[O =
0]Y | X] = π0(0 | X)ν0(X) = π0(0 | X)g0(1 | X)µT,0(X) + π0(0 | X)g0(0 | X)µC,0(X) hold
under Assumption 3.2, defined later.

In the case-control setting, we use e0(d | X) := P(D = d | X) and µU,0(X) := E[YU | X].
Here, µU,0(X) = e0(1 | X)µT,0(X) + e0(0 | X)µC,0(X) holds under Assumption C.3. Let

r0(X) := ζ0(X)
ζT,0(X) be the density ratio between the covariate densities.

3 Example of ATE estimators in the censoring setting

In this section, as a preliminary, we suggest a simple ATE estimator in the censoring setting. In
Appendix D, we show the detailed result of the estimator and also propose a simple ATE estimator
in the case-control setting. Note that as discussed in the subsequent subsections, the estimators are
not efficient, i.e., there exist ATE estimators whose asymptotic variance is smaller.

3.1 The Inverse probability weighting estimator

We first consider the censoring setting. We begin by the arguments from the estimation of the propen-
sity score. To estimate the propensity score, we employ the result in PU learning. Elkan & Noto
(2008) addresses PU learning in the censoring setting. In that work, they show that under the Se-
lected Completely At Random (SCAR) assumption defined below (Elkan & Noto, 2008). This as-
sumption is analogy of the Missing Completely At Random assumption (MCAR), which is common
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with the missing data literature (Little & Rubin, 2002; Rubin, 1974; Bekker & Davis, 2020). Sev-
eral works such as Bekker & Davis (2018) attempt to relax the SCAR assumption, but to relax the
assumption, we usually require additional assumptions.

Assumption 3.1 (SCAR). It holds that P(D = 1, O = o | X) = P(D = 1 | X)P(O = o | D = 1).

From the assumption, we have π0(1 | x) = P(D = 1 | X)P(O = 1 | D = 1) since P(D =
0, O = 1 | X) = 0 holds by definition of the DGP. Thus, under this assumption, the propensity
scores g0(d | x) and e0(d | x) can be estimated using PU learning methods under some conditions
(du Plessis et al., 2015; Elkan & Noto, 2008)2. If we know their true values, such assumptions are
unnecessary. Note that the censoring PU learning studies aim to estimate P(D = d | X) not g0(d |
X) = P(D = d | X,O = 0). However, once we obtain an estimate of P(D = 1 | X) and π0(0 | X),
we can obtain g0(1 | X) from g0(1 | X) = P(O = 0 | D = 1)P(D = 1 | X)/π0(0 | X).

We further make the following unconfoundedness and common support assumptions, which are
common in ATE estimation.

Assumption 3.2 (Unconfoundedness in the censoring setting). The potential outcomes (Y (1), Y (0))
are independent of treatment assignment given covariates: (Y (1), Y (0)) |= (O,D) | X .

Assumption 3.3 (Common support in the censoring setting). There exists a constant c independent
of n such that for all x ∈ X , π0(o | x), g0(d | x), ζ0(x) > c hold.

Under these assumptions, the ATE τ0 is estimable by replacing the following two quanti-

ties with sample approximation: E[Y (1)] = E

[
1[O=1]Y
π0(1|X)

]
= E [µT,0(X)] and E[Y (0)] =

E

[
1[O=0]Y

g0(0|X)π0(0|X) −
g0(1|X)1[O=1]Y
g0(0|X)π0(1|X)

]
= E

[
1

g0(0|X)ν0(X)− g0(1|X)
g0(0|X)µT,0(X)

]
, where g0 and π0

can be estimated, and expectations can be approximated by sample averages. Such an estimator is a
variant of the inverse probability weighting (IPW) estimator and shown in Remark 4.4.

3.2 Toward efficient estimators

Thus, we can estimate the ATE in the censoring setting (and in the case-control setting, as shown in
Section 5 and Appendix C.2). However, it is unclear whether it is efficient; that is, the (asymptotic)
variance is sufficiently small. In the subsequent subsections, we investigate efficient estimators and
develop efficiency bounds, which work as a lower bound for the regular estimators. The efficiency
bound also suggest the construction of efficient estimators, and we actually propose an estimator
whose asymptotic variance aligns with the efficiency bound.

4 Semiparametric efficient ATE estimation under the censoring setting

This section presents a method for ATE estimation under the censoring setting. First, we derive
the efficiency bound in Section 4.1. Then, we propose our estimator in Section 4.2 and show the
consistency in Section 4.3 and the asymptotic normality in Section 4.4. Finally, in Section 4.5, we
discuss issues related to the estimation of the propensity score.

4.1 Efficient influence function and efficiency

First, we derive the efficiency bound for regular estimators, which provides a lower bound on
asymptotic variances. The efficiency bound is characterized via the efficient influence function
(van der Vaart, 1998), derived as follows (Proof is provided in Appendix H):

Assumption 4.1 (Regularity conditions). The outcome Y and covariates X have finite variances.
There exists a constant C > 0 independent of n such that ν0(X), µT,0(X) ∈ [−C,C].

2Identifiability of the propensity scores differs between the censoring and case-control settings, and in both
cases, it further depends on specific assumptions. Elkan & Noto (2008) shows that, under the censoring setting,
the conditional class probability can be learned without the class prior, provided that the SCAR assumption
holds. In the case-control setting, existing studies often require the class prior in advance of the conditional
probability estimation. Some studies demonstrate that both the propensity score and the class prior can be
identified simultaneously if parametric models are used for the propensity score (Lancaster & Imbens, 1996;
Kato et al., 2018). There are also studies that investigate class prior estimation as an independent problem
(Ramaswamy et al., 2016; du Plessis & Sugiyama, 2014).
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Lemma 4.2. If Assumptions 3.2–3.3, 4.1 hold, then the efficient influence function is given as
Ψcens(X,O, Y ;µT,0, ν0, π0, g0, τ0), where

Ψcens(X,O, Y ;µT, ν0, π0, g0, τ0) := Scens(X,O, Y ;µT,0, ν0, π0, g0)− τ0,

Scens(X,O, Y ;µT,0, ν0, π0, g0) :=
1[O = 1]

(
Y − µT,0(X)

)

π0(1 | X)
− 1[O = 0]

(
Y − ν0(X)

)

g0(0 | X)π0(0 | X)

+
g0(1 | X)1[O = 1]

(
Y − µT,0(X)

)

g0(0 | X)π0(1 | X)
+ µT,0(X)− 1

g0(0 | X)
ν0(X) +

g0(1 | X)

g0(0 | X)
µT,0(X).

Here, note that the efficient influence function depends on unknown µT,0, ν0, π0, g0, which
are referred to as nuisance parameters. Since the efficient influence function satisfies the
equation E [Ψcens(X,O, Y ;µT,0, ν0, π0, g0, τ0)] = 0, if the nuisance parameters are known
and the exact expectation is computed, we can obtain τ0 by solving for τ0 that satisfies
E [Ψcens(X,O, Y ;µT,0, ν0, π0, g0, τ0)] = 0. Thus, the efficient influence function provides sig-
nificant insights for constructing an efficient estimator. Furthermore, the accuracy of the estimation
of the nuisance parameters affects the estimation of τ0, the parameter of interest.

From Theorem 25.20 in van der Vaart (1998), Lemma 4.2 yields the following result about the effi-
ciency bound.

Theorem 4.3 (Efficiency bound in the censoring setting). If Assumptions 3.2–3.3, 4.1 hold, then the
asymptotic variance of any regular estimator is lower bounded by

V cens := E
[
Ψcens(X,O, Y ;µ0, ν0, π0, g0, τ0)

2
]

= E

[(
1− g0(1 | X)

g0(0 | X)

)2
Var(Y (1) | X)

π0(1 | X)
+

Var(Ỹ | X)

g0(0 | X)2π0(0 | X)
+
(
τ0(X)− τ0

)2
]
.

We say that an estimator is efficient if its asymptotic variance aligns with V cens.

4.2 Semiparametric efficient estimator

Based on the efficient influence function, we propose an ATE estimator defined as τ̂ cens-effn :=
1
n

∑n
i=1 S

cens(Xi, Oi, Yi; µ̂T,n,i, ν̂n,i, π̂n,i, ĝn,i), where µ̂T,n,i, ν̂n,i, π̂n,i and ĝn,i are estimators of
µT,0, ν0, π0, and g0. Note that the estimators can depend on i. This estimator is an extension
of the augmented inverse probability weighting estimator, also called a doubly robust estimator
(Bang & Robins, 2005).

Remark (Estimation equation). There exist several intuitive explanations for τ̂ cens-effn . One
of the typical explanations is the one from the viewpoint of the estimation equation. Given
µ̂T,n,i, ν̂n,i, π̂n,i, and ĝn,i, the estimator τ̂ cens-effn is obtained by solving the following equation:
1
n

∑n
i=1 Ψ

cens(Xi, Oi, Yi; µ̂T,n,i, ν̂n,i, π̂n,i, ĝn,i, τ̂
cens-eff
n ) = 0. Such a derivation of the efficient

estimator as the estimation equation approach as explained in (Schuler & van der Laan, 2024).

4.3 Consistency and double robustness

First, we prove the consistency result; that is, τ̂ cens-effn
p−→ τ0 holds as n → ∞. We can obtain this

result relatively easily compared to the asymptotic normality. We make the following assumption
that holds for most estimators of the nuisance parameters.

Assumption 4.4. There exist constants C1, C2 > 0 independent of n such that ĝn,i(d | X), π̂n,i(d |
X) ∈ (C1, 1− C1) and ν̂n,i(X), µ̂T,n,i(X) ∈ [−C2, C2] holds almost surely. As n → ∞,

∥∥ĝn,i −
g0
∥∥
2
= op(1) holds. Additionally, either of the followings holds for all i ∈ {1, 2, . . . , n}:

•
∥∥π̂n,i − π0

∥∥
2
= op(1). •

∥∥ν̂n,i − ν0
∥∥
2
= op(1) and

∥∥µ̂T,n,i − µT,0

∥∥
2
= op(1).

For the estimation of the censoring propensity score, we can employ the existing PU learning meth-
ods in the censoring setting, such as Elkan & Noto (2008). Note that we can also apply methods
for the case-control PU learning, such as du Plessis et al. (2015), since, as the classification prob-
lem, the case-control setting is more general than the censoring setting (Niu et al., 2016). Note that
the case-control PU learning methods typically require the class prior P(D = 1), which can be
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Algorithm 1 Cross-fitting in the censoring setting

Input: Observations D :=
{(

Xi, Oi, Yi

)}n
i=1

, number of folds L, and estimation methods for

µT,0, ν0, π0. Let I = {1, 2, . . . , n} be the index set.

Randomly split I into L roughly equal-sized folds, (I(ℓ))ℓ∈L. Note that
⋃

ℓ∈L I(ℓ) = I.
for ℓ ∈ L do

Set the training data as I(−ℓ) = {1, 2, . . . , n} \ I(ℓ).

Construct estimators of nuisance parameters on I(−ℓ), denoted by µ̂
(ℓ)
T,n, ν̂

(ℓ)
n , π̂

(ℓ)
n .

end for
Output: Obtain an ATE estimate τ̂ cens-effn using µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , and π̂

(ℓ)
n .

estimated under several additional assumptions, even if we do not know it (du Plessis & Sugiyama,
2014; Ramaswamy et al., 2016; Kato et al., 2018).

Then, the following consistency result holds. The proof directly follows from the one for Theo-
rem 4.8.

Theorem 4.5 (Consistency in the censoring setting). If Assumptions 3.2–3.3, and 4.1–4.4 hold, then

τ̂ cens-effn
p−→ τ0 holds as n → ∞.

Double robustness. There exists double-robustness structure such that given
∥∥ĝn,i − g0

∥∥
2
= op(1),

if either
∥∥π̂n,i − π0

∥∥
2
= op(1) or

∥∥ν̂n,i − ν0
∥∥
2
= op(1) and

∥∥µ̂T,n,i − µT,0

∥∥
2
= op(1) holds,

then τ̂ cens-effn
p−→ τ0 holds. Here, note that we need to estimate the propensity score consistently

to estimate the ATE and the double robustness holds between the estimators of the observation
probability π0 and the expected outcomes µT,0 and ν0.3 This is because, in our setting, the treatment
indicator is unobservable. Under this setting, to identify the ATE, we need to use the propensity score
and cannot avoid its estimation. Also see Appendix I.3.

4.4 Asymptotic normality

Next, we prove the asymptotic normality. Unlike consistency, we need to make a stronger assump-
tion on the nuisance estimators, especially for the propensity score.

To establish the asymptotic normality or
√
n-consistency of the estimator, it is necessary to control

the complexity of the estimators of the nuisance parameter. One of the simplest approaches is to
assume the Donsker condition, but it is well known that the Donsker condition does not hold in
several cases, such as high-dimensional regression settings. In such cases, asymptotic normality can
still be established through sample splitting, a technique in this field (Klaassen, 1987), which has
been recently refined by Chernozhukov et al. (2018) as cross-fitting.

Cross-fitting. Cross-fitting is a variant of sample splitting (Chernozhukov et al., 2018). We ran-
domly partition D into L > 0 folds (subsamples), and for each fold ℓ ∈ L := {1, 2, . . . , L}, the
nuisance parameters are estimated using all other folds. We estimate µT,0, ν0, π0, assuming that the

propensity score g0 is known. Let us denote the estimators in fold ℓ ∈ L as µ̂
(ℓ)
T,n, ν̂

(ℓ)
n , π̂

(ℓ)
n . Let I(ℓ)

be the set of the sample index belonging to fold ℓ.

Various estimation methods can be employed, including neural networks and Lasso, provided they
satisfy the convergence rate conditions specified in Assumption 4.7. We later relax the assumption
of a known propensity score. It is important to note that issues related to the propensity score
estimation cannot be fully addressed even with cross-fitting. The pseudocode is in Algorithm 4.4.

Asymptotic normality. We describe the results only for the case with cross-fitting, but similar
results hold for the case when we assume the Donsker condition.

We make the following assumptions.

Assumption 4.6. The propensity score g0 is known (ĝn,i = g0).

Assumption 4.7. For each ℓ ∈ L, as n → ∞, the followings hold:

3In the standard setting, the double robustness holds between the estimators of the propensity score and the
expected outcome.

7



•
∥∥π0(d | X) − π̂

(ℓ)
n (d | X)

∥∥
2
= op(1) for d ∈ {1, 0},

∥∥µT,0(X) − µ̂
(ℓ)
T,n(X)

∥∥
2
= op(1), and∥∥ν0(X)− ν̂

(ℓ)
n (X)

∥∥
2
= op(1).

•
∥∥π0(d | X)− π̂

(ℓ)
n (d | X)

∥∥
2

∥∥µT,0(X)− µ̂
(ℓ)
T,n(X)

∥∥
2
= op(n

−1/2) for d ∈ {1, 0}.

•
∥∥π0(0 | X)− π̂

(ℓ)
n (0 | X)

∥∥
2

∥∥ν0(X)− ν̂
(ℓ)
n (X)

∥∥
2
= op(n

−1/2).

Then, we construct the estimator as τ̂ cens-effn := 1
n

∑
ℓ∈L

∑
i∈I(ℓ) Scens(Xi, Oi, Yi; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂

(ℓ)
n , g0)

and show the asymptotic normality holds as follows:

Theorem 4.8 (Asymptotic normality in the censoring setting). Consider the censoring setting. Sup-

pose that Assumptions 3.2–3.3, 4.1, 4.6–4.7 hold; that is, ĝn,i = g0, and µ̂T,n,i = µ̂
(ℓ)
T,n, ν̂n,i = ν̂

(ℓ)
n ,

and π̂n,i = π̂
(ℓ)
n are constructed via cross-fitting with certain convergence rates. Then, we have

√
n
(
τ̂ cens-effn − τ0

) d−→ N (0, V cens) as n → ∞.

The proof is provided in Appendix I. The asymptotic variance of τ̂ cens-effn matches the efficiency

bound. Therefore, Theorem 4.8 also implies that the estimator τ̂ cens-effn is asymptotically efficient.

We discuss the other candidates of ATE estimators below.

Remark (Inefficiency of the Inverse Probability Weighting (IPW) estimator). We can define the

IPW estimator as τ̂ cens-IPW
n := 1

n

∑n
i=1

(
1[Oi=1]Yi

π̂n,i(1|Xi)
− 1[Oi=0]Yi

ĝn,i(0|Xi)π̂n,i(0|Xi)
+

ĝn,i(1|Xi)1[Oi=1]Yi

ĝn,i(0|Xi)π̂n,i(1|Xi)

)
.

Compared to our proposed efficient estimator, this estimator does not use the conditional outcome
estimators (Horvitz & Thompson, 1952). If g0 and π0 are known, this estimator is unbiased. How-

ever, it incurs a large asymptotic variance, given as V IPW := E

[ (
1− g0(1|X)

g0(0|X)

)2
E[Y (1)2|X]
π0(1|X) +

E[Ỹ 2|X]
g0(0|X)2π0(0|X)

]
. Here, it holds that V IPW ≥ V cens, where the equality holds when µT,0(x) = 0

and ν0 = 0 hold for all x. Thus, the IPW estimator is inefficient compared to τ̂ cens-effn . Addition-
ally, if π0 is unknown, the IPW estimator requires more restrictive conditions for the asymptotic
normality than τ̂ cens-effn .

Remark (Direct Method (DM) estimator). Another candidate is a DM estimator, defined as

τ̂ cens-DM
n := µ̂T,n,i(X) − 1

ĝn,i(0|X) ν̂n,i(X) +
ĝn,i(1|X)
ĝn,i(0|X) µ̂T,n,i(X), which is also referred to as a

naive plug-in estimator. The asymptotic normality significantly depends on the estimators µ̂T,n,i

and ĝn,i. Additionally, the DM estimator is known to be sensitive to model misspecification.

4.5 Unknown propensity score

We have assumed that the propensity score g0 is known. This is because we cannot establish
√
n-

consistency even if we assume the Donsker condition or employ cross-fitting if g0 is estimated.
However, this assumption can be relaxed by utilizing an additional dataset to estimate g0.

Several practical scenarios exist. For instance, consider that the following additional dataset is

available: Daux :=
{(

Xi′ , Oi′
)}naux

i′=1
,
(
Xi′ , Oi′

)
∼ ζ0(x)π0(o | x).

Such a dataset can be less costly since it does not have the outcome data. Let ĝnaux be an estimator
obtained from Daux and consider the following assumption:

Assumption 4.9. It holds that ‖ĝnaux − g0‖2 = op(1) as naux → ∞.

If naux approaches infinity independently of n, under Assumption 3.1, we can establish the asymp-
totic normality without assuming the propensity score is known.

Corollary 4.10 (Asymptotic normality in the censoring setting). Consider the censoring setting.

Suppose that Assumptions 3.2–3.3, 4.1, 4.7, and 4.9 hold. Then, it holds that
√
n
(
τ̂ cens-effn − τ0

) d−→
N (0, V cens) as n → ∞.

We can also use {(Xi, Oi)}ni=1 from D to estimate g0 with Daux. The inclusion of {(Xi, Oi)}ni=1
can improve empirical performance.

Another practical scenario involves an auxiliary dataset with treatment indicators and missing out-

comes, given as Daux′

:=
{(

Xi′ , Di′
)}naux

i′=1
,
(
Xi′ , Di′

)
∼ ζ0(x)g0(o | x).
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Table 1: Experimental results. Left: censoring setting; Right: case-control setting.

Censoring
IPW DM Efficient IPW DM Efficient

(estimated g0) (true g0)

MSE 0.31 0.08 0.06 0.06 0.01 0.01
Bias -0.26 0.16 0.12 -0.06 0.03 0.00
Cov. ratio 0.95 0.07 0.78 1.00 0.09 0.93

Case- IPW DM Efficient IPW DM Efficient
control (estimated e0) (true e0)

MSE 10.85 0.07 0.06 0.03 0.01 0.00
Bias 1.44 0.11 0.07 0.00 0.03 0.00
Cov. ratio 0.57 0.61 0.73 0.98 0.95 0.95

Figure 2: Empirical distributions of ATE estimates.

Remark (Double machine learning). Semiparametric efficient estimators typically rely on two in-
gredients: a doubly robust structure and control of function complexity. In our setting, the doubly
robust structure links the observation probability and the conditional expected outcome, but it does
not involve the propensity score. Specifically, conditional on a consistent estimator of the propen-
sity score, if either the observation probability or the conditional expected outcome is consistently
estimated, the ATE can be estimated consistently. The doubly robust structure contributes not only
to consistency but also to rapid bias reduction through Neyman orthogonality. In the standard ATE
setup, one can remove bias by appropriately estimating the conditional expected outcome and the
propensity score and plugging them into a Neyman-orthogonal estimating equation. In PUATE,
however, although a doubly robust relation holds between the observation probability and the con-
ditional expected outcome, it does not extend to the propensity score and the remaining nuisance
parameters. Consequently, the estimation error of the propensity score may persist. Specifically,√
n(τ̂ − τ) = G + Bias1 + Bias2, where G is asymptotically normal, Bias1 is the product of the

estimation errors for the observation probability and the conditional expected outcome, and Bias2 is
the estimation error of the propensity score. Bias1 can be op(n

−1/2), but Bias2 is not op(n
−1/2) un-

less the propensity score is estimated at a rate faster than the standard parametric rate Op(n
−1/2).

This is why our analysis assumes that the propensity score is known or is estimated more rapidly
using an independent dataset. When using such an independent dataset, in our proof we take the
limit with m → ∞ first, followed by n → ∞. Alternatively, one can consider an asymptotic regime
in which both naux and n diverge (i.e., naux, n → ∞); in that case, m must diverge faster than n.

5 Semiparametric efficient ATE estimation under the case-control setting

Here, we briefly introduce the ATE estimator in the case-control setting. More detailed results are
shown in Appendix D.

We define τ̂ cc-effn := 1
m

∑m
j=1

(
1− ên,j(1|Xj)

ên,j(0|Xj)

)(
Yj(1) − µ̂T,n,j(X)

)
r̂n,j(Xj) +

1
l

∑l
k=1

(
YU,k−µ̂U,n,k(Xk)

ên,k(0|Xk)
+ µ̂T,n,k(Xk)− µ̂U,n,k(Xk)

ên,k(0|Xk)
+

ên,k(1|Xk)µ̂T,n,k(Xk)
ên,k(0|Xk)

)
as an ATE es-

timator in the case-control setting. Here, µ̂T,n,j , µ̂U,n,k, ên,j , and r̂n,j are estimators of µT,0, µU,0,
e0, and r0, where m and l denote the dependence on each dataset.

For the estimator, we show the following theorem, which is an informal version of Theorem D.8

Theorem 5.1 (Asymptotic normality in the case-control setting (Informal)). Fix α ∈ (0, 1). For
n > 0, consider the case-control setting with sample sizes m, l such that m = αn and l = (1−α)n.
If the case-control propensity score e0 and the density ratio are known (ên,i = e0 and r̂n,i = r0), and

µ̂T,n,i = µ̂
(ℓ)
T,m, µ̂U,n,i = µ̂

(ℓ)
U,l are consistent estimators constructed via cross-fitting. Then, under

regularity conditions (see Theorem D.8), we have
√
n
(
τ̂ cc-effn − τ0

) d−→ N (0, V cc) as n → ∞,
where V cc > 0 is the efficiency bound defined in Theorem D.3.
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6 Simulation studies

This section investigates the empirical performance of the proposed estimators. We also show the
experimental results using semi-synthetic data in Appendix M.

6.1 Censoring setting

We generate synthetic data under the censoring setting, where the covariates X are drawn from
a multivariate normal distribution as X ∼ ζ0(x), where ζ0(x) is the density of N (0, Ip), and Ip
denotes the (p×p) identity matrix. We set p = 3. Set P(D | X) = trunc(sigmoid(X⊤β), 0.1, 0.9),
where β is a coefficient sampled from N (0, 0.5Ip), and trunc(t, a, b) truncates t by a and b (a < b).
Treatment D is sampled from the probability. The observation indicator O is generated from a
Bernoulli distribution with probability c if Di = 1 and Oi = 0 if Di = 0. Here, c is generated from
a uniform distribution with support [0, 1]. The outcome is generated as Y = X⊤β+1.1+τ0 ·D+ε,
where ε ∼ N (0, 1), where we set τ0 = 3.

The nuisance parameters are estimated using linear regression and (linear) logistic regression. We
compared our proposed estimator, τ̂ cens-effn , with the other candidates, the IPW estimator τ̂ cens-IPW

n
and the DM estimator τ̂ cens-DM

n , defined in Remarks 4.4 and 4.4, respectively. Note that all of

these estimators are proposed by us, and our goal is not to confirm τ̂ cens-effn outperforms the others,

while our recommendation is τ̂ cens-effn . We consider both cases where the propensity score is either
estimated using the method proposed by Elkan & Noto (2008) or assumed to be known.

We set n = 3000. We conduct 5000 trials and report the empirical mean squared errors (MSEs) and
biases for the true ATE and the coverage ratio (Cov. ratio) computed from the confidence intervals
in Table 1. We also present the empirical distributions of the ATE estimates in Figure 2.

As the theory suggests, τ̂ cens-effn exhibits smaller MSEs compared to other methods. Interestingly,
when the propensity score is estimated, the MSEs decrease, a phenomenon reported in existing
studies. The coverage ratio is also accurate. The empirical distribution of the ATE estimates demon-
strates the asymptotic normality.

6.2 Case-control setting

In the case-control setting, covariates for the treatment and unknown groups are generated from
different p-dimensional normal distributions: XT ∼ ζT,0(x) and X ∼ ζ0(x) = e0(1)ζT,0(x) +
e0(0)ζC(x), where we set p = 3, ζT,0(x) and ζC(x) are the densities of normal distributions

N (µp1p, Ip) and N (µn1p, Ip), µp = 0.5 and µn = 0, 1p = (1 1 · · · 1)⊤, and e0(1) is
the class prior set as e0(1) = 0.3. By definition, the propensity score e0(d | x) is given as
e0(1 | x) = e0(1)ζT,0(x)/ζ0(x). The outcome is generated similarly to the censoring setting

Y = X⊤β + 1.1 + τ0D + ε, where τ0 = 3.

We set m = 1000 and l = 2000 and compute the same evaluation metrics as in the censoring setting.
Although logistic regression is used, the propensity score model is misspecified, while the expected
conditional outcome follows a linear model.

Overall, τ̂ cc-effn demonstrates robust performance in terms of MSE, bias, and coverage ratio. The
poor performance of the IPW estimator is attributed to model misspecification.

We investigate non-linear settings in Appendix L.

7 Conclusion

In this study, we investigated PUATE, the problem of ATE estimation in the presence of missing
treatment indicators. We formulated the problem using the censoring and case-control settings, in-
spired by PU learning. For each setting, we derived the efficiency bound and developed an efficient
estimator. Our analysis revealed that achieving asymptotic normality and efficiency. Future research
directions include extending our approach to the semi-supervised setting, handling additional miss-
ing values, and the relaxation of assumptions regarding the missingness mechanism.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Both the abstract and introduction clearly state our contributions and the im-
portant assumption that we introduce. For the summary of our contributions, see Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: For example, our proposed method requires the convergence rate for the es-
timators of the nuisance parameters. We explain this limitation in Sections 4 and 5, and
other related Sections.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
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dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

16



Answer: [Yes]

Justification: We describe the details of the assumptions. For example, for the censoring
setting, see Sections 3–4.
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• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explain the details of the experimental settings. For example, see Sec-
tion 6 and Appendix L.
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• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will organize and provide the experimental code until the camera-ready.
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• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more de-
tails.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: Our experiment does not use test data since our interest is to estimate the ATE
(point).

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes] Replace by [Yes] , [No] , or [NA] .

Justification: We provide the MSE, bias, coverage ratios, and the empirical distributions of
the ATE estimates.
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• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Our experiment is not computationally hard, and we only use a personal
MacBook Pro PC

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: Our paper may have a societal impact since we consider applications to mar-
keting and medicine. However, the impact is within the standard data science and not so
serious.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our study poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the IHDP dataset with citing Hill (2011).
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• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: Our study does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]

Justification: Our study does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We only use LLM for the grammatical check.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related work

The ATE estimation problem has long been studied in statistics, epidemiology, economics, and ma-
chine learning (Imbens & Rubin, 2015). While randomized controlled trials are considered the gold
standard, it is extremely important to estimate the ATE in observational studies. In ATE estimation
with observational data, one of the basic approaches is to employ the IPW estimator, which allows
us to correct for selection bias (Horvitz & Thompson, 1952).

Although the IPW estimator is a powerful tool, it is known that its asymptotic variance exceeds the
efficiency bound even when the true propensity score is used (Hahn, 1998).4

Another powerful estimator in this context is the doubly robust estimator (Bang & Robins, 2005),
which also plays an important role in the literature on missing data (Yang et al., 2024). The dou-
bly robust estimator not only satisfies the double robustness property but also achieves asymptotic
efficiency; that is, its asymptotic variance reaches the efficiency bound (Hahn, 1998). This prop-
erty is closely related to the efficient influence function in the derivation of the efficiency bound
(van der Vaart, 1998; Tsiatis, 2007). The doubly robust estimator is defined as a sample average of
the efficient influence function with estimated nuisance parameters.

The doubly robust estimator has been refined in several directions. For example, van der Laan
(2006) propose the targeted maximum likelihood framework, which can improve the finite-sample
performance of the efficient ATE estimator. Chernozhukov et al. (2018) propose a debiased ma-
chine learning framework, which is further generalized as automatic debiased machine learning
(Chernozhukov et al., 2022) and Riesz regression (Chernozhukov et al., 2024). Covariate balancing
scores are also important attempts to improve performance (Imai & Ratkovic, 2013; Hainmueller,
2012; Zubizarreta, 2015; Zhao, 2019), and Bruns-Smith et al. (2025) and Kato (2025) show the
equivalence between covariate balancing methods and Riesz regression.

To construct efficient estimators, convergence rate conditions and complexity restrictions for the
nuisance estimators are usually required (Schuler & van der Laan, 2024). In particular, to satisfy
the complexity restrictions, researchers often assume the Donsker condition or apply sample split-
ting (van der Vaart, 2002; Klaassen, 1987; Zheng & van der Laan, 2011). These approaches are
further developed in the double machine learning framework by Chernozhukov et al. (2018), where
convergence rate conditions are relaxed through the use of Neyman orthogonality, and complexity
restrictions are addressed via sample splitting, known as cross-fitting. For discussions of the relation-
ship between double machine learning and other frameworks, such as targeted maximum likelihood
estimation, see Kennedy (2016, 2023).

It is important to note that Neyman orthogonality and cross-fitting play different roles. Cross-fitting
is used to ensure that the nuisance estimators (e.g., propensity score, outcome models) are indepen-
dent of the observations to which they are applied. However, cross-fitting alone is not sufficient to
guarantee asymptotic normality. The issue is that nuisance estimators typically converge at rates
slower than

√
n. In doubly robust estimation, the convergence rate conditions for the nuisance

estimators are relaxed due to the doubly robust structure, which is also referred to as Neyman or-
thogonality.

Our work builds upon these arguments. However, in our setting, we cannot apply the techniques
from Chernozhukov et al. (2018) to mitigate the convergence rate condition for the propensity score.
In other words, our estimator is sensitive to the accuracy of the propensity score estimation. There-
fore, we assume that the propensity score is known in order to derive asymptotic normality, although
consistency can still be achieved when the propensity score is estimated.

CATE estimation is also an important topic related to this study (Heckman et al., 1997). Var-
ious methods have been proposed for estimating CATE including methods using neural net-
works (Johansson et al., 2016; Shalit et al., 2017; Shi et al., 2019; Hassanpour & Greiner, 2020;
Curth & van der Schaar, 2021), gaussian process (Alaa & van der Schaar, 2017), and tree-based ap-
proaches (Wager & Athey, 2018). A critical perspective in recent literature is minimax optimal-
ity. Kennedy et al. (2024) proposes a minimax optimal CATE estimator based on the R-learner
(Nie & Wager, 2020), by deriving a minimax lower bound (Tsybakov, 2008). While several di-

4Under certain conditions, using an estimated propensity score can reduce the asymptotic variance, as shown
by Hirano et al. (2003). This phenomenon is known as the paradox of the propensity score (Henmi & Eguchi,
2004; Kato et al., 2021).
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rections exist for extending our results to CATE estimation, deriving a minimax optimal CATE
estimator would require further theoretical analysis, which is beyond the scope of this study.

This study employs arguments for statistical analysis under stratified sampling (Wooldridge, 2001),
which includes PU learning as a special case (Imbens & Lancaster, 1996). Another example of
stratified sampling is covariate shift; Uehara et al. (2020) study causal inference when the training
data contain (covariates, treatment, outcomes) but the evaluation data contain only covariates.

The Heckman model (Heckman, 1974) and the framework of Robins et al. (1994) are important
contributions to causal inference with missing data. The Heckman model addresses endogeneity
between the outcome and the observation indicator, whereas our analysis does not consider such
endogeneity. Our setting is therefore simpler in that respect, yet more challenging because the
relationship between treatment assignment and observation follows the PU learning mechanism.
Similarly, Kennedy (2020) allow endogeneity between treatment observation and the outcome, but
the observation mechanism itself is simpler than in our work. These approaches are not nested
within one another; rather, they are complementary, and combining them may yield more flexible
statistical modeling.

A.1 ATE estimation with missing data

ATE estimation under missing values has been extensively studied, as the standard ATE estimation
setting is itself closely related to the literature on missing data (Rubin, 1976; Bang & Robins, 2005).

In this context, various assumptions can be made about how data is missing. For example, some stud-
ies consider settings with missing covariates (Zhao & Ding, 2024). This study, however, focuses on
the case in which covariates are fully observed and treatment assignment is missing. In the problem
of missing treatments, Molinari (2010) presents several examples from survey analysis. Ahn et al.
(2011) investigates the effect of physical activity on colorectal cancer using data in which treatment
is missing for about 20% of the units. Zhang et al. (2013) estimates infant weight outcomes where
the treatment—mother’s body mass index (BMI)—is missing for about half of the sample. Kennedy
(2020) develops a general framework for handling settings where both the observation indicator and
the treatment indicator are separately observable. In contrast, in our case, we can observe only
the product of the observation and treatment indicators, implying less available information than in
Kennedy (2020). Kuzmanovic et al. (2023) proposes a method for conditional ATE estimation under
this weaker setting.

Our problem is also related to ATE estimation from misclassified data (Lewbel, 2007). Early econo-
metric studies focused on continuous regressors (Hausman, 2001). With regard to binary variables,
Mahajan (2006) analyzes misclassification in regression models, while Lewbel (2007) develops
methods for identifying and estimating ATEs under potentially misclassified treatment indicators.
Researchers have also explored partial identification approaches when the exact misclassification
process is unknown, providing bounds on parameters rather than point estimates (Manski, 1993,
2010). In applied settings, validation data have been used to refine causal effect estimates under
potential misclassification (Black et al., 2008), demonstrating that even modest errors in treatment
indicators can significantly impact policy conclusions. Yamane et al. (2018) also addresses a related
problem.

Finally, we refer to semi-supervised treatment effect estimation (Chakrabortty & Dai, 2024), which
primarily considers a scenario where two datasets are available: one with complete data and the
other with only treatment indicators D and covariates X but no outcome data. Although the setting
is not directly related, integrating insights from both areas could enhance the applicability.

A.2 Introduction of PU learning algorithms

Another related body of work comes from the literature on PU learning. PU learning is a classi-
fication method primarily designed for binary classifiers (though it can be extended to multi-class
settings) in the presence of missing data. Its origins trace back to case-control studies with con-
taminated controls (Steinberg & Cardell, 1992; Lancaster & Imbens, 1996), which are refined in
du Plessis et al. (2015) under the term case-control PU learning. In parallel, Elkan & Noto (2008)
investigates PU learning in the context of the censoring setting. One of the main applications of PU
learning is learning from implicit feedback, which commonly arises in marketing and recommender
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systems. In such settings, user actions—such as product purchases—are observable, but non-actions
do not necessarily imply disinterest in the products; therefore, we might suffer bias in a classifier for
predicting the users interests if we train it using such data with regarding the action and non-action
as positive and negative data. As discussed in the introduction, we consider a similar application.
However, our goal is to estimate treatment effects, rather than to train a classifier.

B Reformulation of the censoring and the case-control settings

This section provides a reformulation of the case-control and censoring setting to deepen our un-
derstanding. Note that the formulation described in this section is mathematically equivalent to the
ones in Sections 4 and 2.4.

B.1 Reformulation of the censoring setting

We can introduce the censoring setting with the following story:

• For each i, a sample (Xi, Di, Yi) is generated.

• A coin is tossed, and Õi = 1 if it lands heads, or Õi = 0 if it lands tails.

– If Õi = 1 and Di = 1 (that is, ÕiDi = 1), then we observe the treatment indicator

Di = Õi = 1.

– Otherwise, the treatment indicator is not observed, and we only observe (Xi, Yi).

• Finally, we observe (Xi, ÕiDi, Yi).

By denoting ÕiDi by Oi, we can obtain the same formulation in Section 2.3.

Remark (Kennedy (2020)). For example, Kennedy (2020) considers the missing treatment informa-
tion, which is essentially different from ours. Kennedy (2020) considers the following setup:

• For each i, a sample (Xi, Di, Yi) is generated, where Xi denotes covariates, Di the treat-
ment indicator, and Yi the outcome.

• A coin is tossed, and Õi = 1 if it lands heads, or Õi = 0 if it lands tails.

– If Õi = 1, we observe the treatment indicator Di ∈ 1, 0 along with (Xi, Yi).

– If Õi = 0, the treatment indicator is unobserved, and we only observe (Xi, Yi).

• Finally, we observe (Xi, Õi, ÕiDi, Yi).

For each i, a sample (Xi, Di, Yi) is generated, where Xi denotes covariates, Di the treatment
indicator, and Yi the outcome.

Thus, while Kennedy (2020) observes (Xi, Õi, ÕiDi, Yi), we observe only (Xi, ÕiDi, Yi). In our

case, Õi itself is also missing (note again that (Xi, ÕiDi, Yi) is equivalent to (Xi, Oi, Yi), where

Oi = ÕiDi). That is, in our case, we can observe only a subset of treatment labels with Di = 1,
while the remaining labels are missing and consist of a mixture of Di = 1 and Di = 0. In contrast,
Kennedy (2020) can observe both Di = 1 and Di = 0 when the label is observed. Our setting
is designed to be more suitable for applications in marketing and recommendation systems, where
implicit feedback is common5.

Note that in our study, we do not explicitly use Õi but instead denote ÕiDi by another random

variable Oi; that is, Oi = ÕiDi.

In machine learning terminology, we believe that the setup in Kennedy (2020) is close to semi-
supervised learning, where both a fully labeled dataset (Xi, Li) (i = 1, 2, .., n) and an unlabeled

5Regarding the missingness mechanism of Õi, Kennedy (2020) considers a more general setting than ours

by allowing Õi to depend on the outcome Yi. In contrast, while we do not allow such dependence, we use
less information about the treatment indicator than Kennedy (2020), as explained above. Thus, we cannot say
which setting is more general.
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dataset Xj (j = 1, 2, ..,m) are available (Note, however, that in Kennedy (2020), whether a data
point is labeled is itself a random event, whereas typical semi-supervised learning assumes a de-
terministic labeling process). PU learning is generally considered a distinct setting from semi-
supervised learning though they are related. For a discussion of the relationship between these
settings, see Sakai et al. (2017).

B.2 Reformulation of the case-control setting

We can introduce the case-control setting with the following story:

• There are two groups: the treatment group and the unknown group:

– Treatment group:

* For each j, a sample (XT,j , Yj(1)) is generated and observed by us.

– Unknown group:

* For each k, a sample (Xi, Di, Yi) is generated.

* We observe (Xi, Yi).

C Details of the examples of ATE estimators in censoring setting

This section provides the details of the examples shown in Section 3.

C.1 Example ATE estimator in the censoring setting

In the censoring setting, as we explained in Section 3, we can obtain an ATE estimator by replacing
the following two quantities with sample approximation and nuisance estimators:

E[Y (1)] = E

[
1[O = 1]Y

π0(1 | X)

]
,

E[Y (0)] = E

[
1[O = 0]Y

g0(0 | X)π0(0 | X)

]
− E

[
g0(1 | X)1[O = 1]Y

g0(0 | X)π0(1 | X)

]
.

Such an estimator can be defined as follows:

τ̂ cens-IPW
n :=

1

n

n∑

i=1

(
1[Oi = 1]Yi

π̂n(1 | Xi)
− 1[Oi = 0]Yi

ĝn(0 | Xi)π̂n,i(0 | Xi)
+

ĝn,i(1 | Xi)1[Oi = 1]Yi

ĝn,i(0 | Xi)π̂n,i(1 | Xi)

)
,

where π̂n,i and ĝn are estimators of π0 and g0. We refer to this estimator as the inverse probability
weighting (IPW) estimator, which is also shown in Remark 4.4

For this estimator, we can show the following theorem.

Theorem C.1. Suppose that Assumptions 3.2–3.3, and 4.4. If ‖π̂n,i(d | X)− π0(d | X)‖2 = op(1)

and ‖ĝn(d | X)− g0(d | X)‖2 = op(1) hold as n → ∞ for d ∈ {1, 0} then τ̂ cens-IPW
n

p−→ τ0 holds
as n → ∞.

Proof. We have

τ̂ cens-IPW
n =

1

n

n∑

i=1

(
1[Oi = 1]Yi

π̂n(1 | Xi)
− 1[Oi = 0]Yi

ĝn(0 | Xi)π̂n,i(0 | Xi)
+

ĝn,i(1 | Xi)1[Oi = 1]Yi

ĝn,i(0 | Xi)π̂n,i(1 | Xi)

)

=
1

n

n∑

i=1

(
1[Oi = 1]Yi

π0(1 | Xi)
− 1[Oi = 0]Yi

g0(0 | Xi)π0(0 | Xi)
+

g0(1 | Xi)1[Oi = 1]Yi

g0(0 | Xi)π0(1 | Xi)

)

−
(
1

n

n∑

i=1

(
1[Oi = 1]Yi

π0(1 | Xi)
− 1[Oi = 0]Yi

g0(0 | Xi)π0(0 | Xi)
+

g0(1 | Xi)1[Oi = 1]Yi

g0(0 | Xi)π0(1 | Xi)

))

+

(
1

n

n∑

i=1

(
1[Oi = 1]Yi

π̂n(1 | Xi)
− 1[Oi = 0]Yi

ĝn(0 | Xi)π̂n,i(0 | Xi)
+

ĝn,i(1 | Xi)1[Oi = 1]Yi

ĝn,i(0 | Xi)π̂n,i(1 | Xi)

))
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=
1

n

n∑

i=1

(
1[Oi = 1]Yi

π0(1 | Xi)
− 1[Oi = 0]Yi

g0(0 | Xi)π0(0 | Xi)
+

g0(1 | Xi)1[Oi = 1]Yi

g0(0 | Xi)π0(1 | Xi)

)
+ op(1).

Here, from the law of large numbers, we have

1

n

n∑

i=1

1[Oi = 1]Yi

π0(1 | Xi)

p−→ E

[
1[O = 1]Y

π0(1 | X)

]
= E[Y (1)]

1

n

n∑

i=1

(
1[Oi = 0]Yi

g0(0 | Xi)π0(0 | Xi)
− g0(1 | Xi)1[Oi = 1]Yi

g0(0 | Xi)π0(1 | Xi)

)

p−→ E

[
1[O = 0]Y

g0(0 | X)π0(0 | X)

]
− E

[
g0(1 | X)1[O = 1]Y

g0(0 | X)π0(1 | X)

]
= E[Y (0)].

Thus, the proof is complete.

C.2 Example ATE estimator in the case-control setting

In the case-control setting, PU learning methods have been investigated by Imbens & Lancaster
(1996) and du Plessis et al. (2015). In that works, we typically make the following assumption,
which corresponds to the SCAR assumption in the censoring setting.

Assumption C.2. It holds that ζT,0(x) = ζ0(x | D = 1), where ζ0(x | D = d) = e0(d|x)ζ0(x)
e0(d)

.

This assumption is also attempted to be relaxed by existing work, such as Kato et al. (2019) and
Hsieh et al. (2019) introduce their approaches. As well as the censoring setting, various relaxations
exist depending on the application, and there are trade-offs between the strengths of assumptions
and identification (Manski, 1993).

We further make the following assumptions.

Assumption C.3 (Unconfoundedness in the case-control setting). The potential outcomes
(Y (1), Y (0)) are independent of treatment assignment given covariates:

(Y (1), Y (0)) |= D | X.

Assumption C.4 (Common support in the case-control setting). There exists a constant c indepen-
dent of n such that for all x ∈ X , e0(d | x), ζT,0(x), ζ0(x) > c hold.

Under these assumptions, the ATE τ0 is estimable by replacing the following two quantities with
sample approximation:

E[Y (1)] = E [Y r0(X)]

and

E[Y (0)] = E

[
Y

e0(0 | X)

]
− E

[
e0(1 | X)Y

e0(0 | X)

]
,

where recall that r0(X) = ζ0(X)
ζT,0(X) , e0 can be estimated using PU learning methods, and expectations

can be approximated by sample averages.

D Semiparametric efficient ATE estimation under the case-control setting

In this section, we consider efficient ATE estimation under the case-control setting. Similar to the
censoring setting, we first derive the efficiency bound and then propose an efficient estimator, provid-
ing theoretical guarantees for its consistency and asymptotic normality. Throughout the arguments,
we assume m = αn and l = (1− α)n, where α ∈ (0, 1).

D.1 Efficient influence function and efficiency bound

Using efficiency arguments under the stratified sampling scheme (Uehara et al., 2020), we derive
the following efficient influence function (see Appendix J for the proof).

Assumption D.1 (Regularity conditions). The outcome Y and covariates X have finite variances.
There exists a constant C > 0 independent of n such that µT,0(X), µU,0(X) ∈ [−C,C].
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Lemma D.2. If Assumptions C.2–C.4, D.1 hold, then the efficient influence functions are given as
Ψcc (T)(X,Y (1);µT,0, e0, r0) and Ψcc (U)(X,YU;µT,0, µU,0, e0, τ0), where

Ψcc (T)(X,Y (1);µT,0, e0, r0) := Scc (T)(X,Y (1);µT,0, e0, r0),

Ψcc (U)(X,YU;µT,0, µU,0, e0, τ0) := Scc (U)(X,YU;µT,0, µU,0, e)− τ0,

Scc (T)(X,Y (1);µT,0, e0, r0) :=

(
1− e0(1 | X)

e0(0 | X)

)(
Y (1)− µT,0(X)

)
r0(X),

Scc (U)(X,YU;µT,0, µU,0, e0) := −YU − µU,0(X)

e0(0 | X)
+ µT,0(X)− µU,0(X)

e0(0 | X)
+

e0(1 | X)µT,0(X)

e0(0 | X)
,

and recall that r0(X) := ζ0(X)
ζT,0(X) .

Then, we obtain the result on the efficiency bound.

Theorem D.3 (Efficiency bound in the case-control setting). If Assumptions C.2–C.4, D.1 hold, then
the asymptotic variance of any regular estimator is lower bounded by

V cc :=
1

α
E

[
Ψcc (T)(X,O, Y ;µT,0, e0, r0)

2
]
+

1

1− α
E

[
Ψcc (U)(X,O, Y ;µU,0, e0)

2
]

=
1

α
E

[(
1− e0(1 | X)

e0(0 | X)

)2

Var(Y (1) | X)r0(X)2

]
+

1

1− α
E

[
Var(YU | X)

e0(0 | X)2
+
(
τ0(X)− τ0

)2]

where α = m/n.

D.2 Semiparametric efficient estimator

Based on the efficient influence function, we define

τ̂ cc-effn :=
1

m

m∑

j=1

Scc (T)(Xj , Yj ; µ̂T,n,i, ên,i, r̂n,i) +
1

l

l∑

k=1

Scc (U)(Xk, Yk; µ̂U,n,i, ên,i.

Here, µ̂T,n,i, µ̂U,n,i, ên,i, and r̂n,i are estimators of µT,0, µU,0, e0, and r0, where m and l denote the
dependence on each dataset. Unlike the censoring setting, we do not use the observation indicator
O, as it is deterministic whether a unit belongs to the treatment group or the control group. This
distinction leads to differences in the theoretical analysis compared to the censoring setting.

D.3 Consistency

We make the following assumption.

Assumption D.4. As n → ∞, it holds that
∥∥ên,i − e0

∥∥
2
= op(1) and

∥∥r̂n,i − r0
∥∥
2
= op(1).

Then, the following consistency result holds.

Theorem D.5 (Consistency in the case-control setting). If Assumptions C.2–C.4, D.1, and D.4 holds,

then τ̂ cc-effn
p−→ τ0 as n → ∞.

Interestingly, to achieve consistency, it is sufficient to obtain consistent ên,i. Compared to Assump-
tion D.4 in the censoring setting, consistency of the expected outcome estimators µ̂T,m and ν̂ℓ is not
required. This is because, in this setting, the observation probability can be treated as known (1 and
0 for each dataset).

D.4 Asymptotic normality

Next, we establish the asymptotic normality of the estimator. Similar to the censoring setting, we
assume that the propensity score e0 is known and obtain estimators of µT,0 and µU,0 via cross-fitting.

Assumption D.6. The propensity score e0 and the density ratio r0 are known and used in construct-
ing τ̂ cc-effn , i.e., ên,i = e0 and r̂n,i = r0.
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Assumption D.7. For each ℓ ∈ L, the following conditions hold as n → ∞:
∥∥µT,0(X) −

µ̂
(ℓ)
T,m(X)

∥∥
2
= op(1) and

∥∥µU,0(X)− µ̂
(ℓ)
U,l(X)

∥∥
2
= op(1).

We establish the asymptotic normality in the following theorem with the proof in Appendix K. In this
result, we consider the scenario where the sample sizes m and l approach infinity while maintaining
a fixed ratio m : l = α : (1− α).

Theorem D.8 (Asymptotic normality in the case-control setting). Fix α ∈ (0, 1). For n > 0,
consider the case-control setting with sample sizes m, l such that m = αn and l = (1 − α)n.
Suppose that Assumptions C.3–C.4, D.1, D.6, and D.7 hold; that is, ên,i = e0 and r̂n,i = r0, and

µ̂T,n,i = µ̂
(ℓ)
T,m, µ̂U,n,i = µ̂

(ℓ)
U,l are consistent estimators constructed via cross-fitting. Then, we have

√
n
(
τ̂ cc-effn − τ0

) d−→ N (0, V cc) as n → ∞

Thus, the proposed estimator is efficient with respect to the efficiency bound derived in Theorem D.3.

D.5 Comparison with the censoring setting

Unlike the censoring setting, we do not require a specific convergence rate for the nuisance estima-
tors if the propensity score is known. This is because, in the case-control setting, the group mem-
bership—whether a unit belongs to the treatment group or the unknown group—is deterministically
known. This scenario can be interpreted as a case in which the observation probability is known,
meaning that only the consistency of the expected outcome estimators is required (Kato et al., 2020,
2021).

In other words, we can intuitively consider that in the case-control case, the observation probability
is given as one for the treatment group, while it is given as zero for the unknown group. Since we
know the true probabilities, we can ignore the estimation error unlike the censoring setting. Note
that this interpretation may be mathematically confusing since it gives us impression that the case-
control setting is a special case of the censoring setting where the observation probability is given
one or zero. This understanding is not correct because in the case-control setting, the treated and
unknown groups are different datasets; that is, the sampling scheme is completely different. This
sampling scheme has extensively studied as stratified sampling scheme from 1990s to 2000s by
existing studies such as Imbens & Lancaster (1996) and Wooldridge (2001).

E PU learning algorithms

We review representative PU learning methods. For all methods, the goal is not to obtain a condi-
tional class probability (propensity score) but rather to obtain a better classifier. However, under
specific loss functions, including logistic loss, the obtained classifiers can be interpreted as estima-
tors of the probability (Elkan & Noto, 2008; Kato et al., 2019; Kato & Teshima, 2021).

E.1 Censoring PU learning

In Elkan & Noto (2008), it is assumed that only a fraction of the truly positive instances are labeled
as positive.

Let O denote the event “labeled as positive,” and let D = 1 indicate true positivity. In our study, O
is called an observation indicator, and D is called a treatment indicator.

First, we make the following assumption, which plays a central role in the method of Elkan & Noto
(2008):

P(O = 1 | D = 1, x) = c
(
= P(O = 1 | D = 1)

)
∀x ∈ X , (1)

where c ∈ (0, 1] is a constant (Assumption 3.1). Intuitively, c represents the labeling probability or
censoring rate, which denotes the fraction of positive instances that are observed (uncensored) in the
labeled dataset. If we relax this assumption, we may not pointy identify the ATE without different
assumptions. There are various approaches proposed to address the relaxation (Bekker & Davis,
2018).
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The learning procedure proposed by Elkan & Noto (2008) consists of three main steps (for details,
see Elkan & Noto (2008)):

Estimation of π0: First, the observation probability π0 is estimated using standard regression meth-
ods, such as logistic regression.

Estimation of c: Next, c is estimated using an estimator π̂n of π0. Under Assumption 3.1, c can be
estimated by taking the sample average of π̂n over positively labeled samples.

Correction of the observation probability: From Assumption 3.1, we have π0(1 | X) = cP(D =
1 | X). Using this relationship and the estimators of π0 and c, P(D = 1 | X) is estimated
as π̂n(1 | X)/ĉ.

Remark. Violation of the assumptions The impact of violating assumptions depends on how the data
deviates from the assumed conditions. For example, if treatment labels are not missing at random,
the original estimator of Elkan & Noto (2008) may no longer be valid. In such cases, alternative
methods—such as those proposed by Bekker & Davis (2018) and Teisseyre et al. (2025)—may be
applicable, although they rely on different assumptions. In the case-control setting, du Plessis et al.
(2014) provides a sensitivity analysis of the trained classifier when the class prior is misspecified.

Remark (Time complexity). The computational cost of estimating the conditional class probability
via PU learning is comparable to that of standard logistic regression. For example, in the censoring
setting, Elkan & Noto (2008) proposes a method based on logistic regression. In the case-control
setting, du Plessis et al. (2015) presents an unbiased PU learning approach which, under the log-
loss, has the same complexity as logistic regression. Specifically, for linear-in-parameter models,
logistic regression has a time complexity of order O((dn2 + n3) log(1/ǫ)), where d is the feature
dimension and ǫ is the target optimization accuracy. If Newton’s method is used with T iterations,
the total time complexity becomes O((dn2 + n3)T ), which dominates the final averaging step.

E.2 Case-control PU learning

A different perspective is provided by du Plessis et al. (2015) and subsequent studies, often referred
to as case-control PU learning. In this approach, the labeled positive data follow a distribution
ζT,0(x), whereas the unlabeled data are drawn from ζ0(x), a mixture of positive and negative in-
stances.

Let h be a classifier. In conventional supervised learning, the classification risk is defined as:

R(h) = e0(1)R+(h,+1) + (1− e0(1))R−(h,−1),

where e0(1) is the prior probability of being positive, and R+(h,+1) and R−(h,−1) denote the
risks over the positive and negative distributions, respectively. Specifically, R+(h,+1) represents
the expected loss when predicting class −1 while the true label is +1 in the positive distribution,
and R−(h,−1) represents the expected loss when predicting class +1 while the true label is −1 in
the negative distribution.

Since negative examples are unavailable, du Plessis et al. (2015) re-express R−(h,−1) as:

(1− e0(1))R−(h,−1) = RU(h,−1)− e0(1)R+(h,−1),

where RU(h,−1) and R+(h,−1) denote the risks over the unlabeled and positive distributions,
respectively. The term RU(h,−1) corresponds to the expected loss when predicting class +1 while
the true label is −1 in the unlabeled distribution, and R+(h,−1) is the expected loss under the
same prediction and true label in the positive distribution. Note that R+(h,+1) and R+(h,−1)
are distinct: they consider different true labels while expectations are taken over the same positive
distribution.

Substituting the above expression into the original risk gives the following classification risk:

R(h) = e0(1)R+(h,+1) +RU(h,−1)− e0(1)R+(h,−1).

A sample-based approximation of this formulation is referred to as an unbiased risk estimator.

For example, using the logistic loss, the unbiased risk estimator becomes:

R̂(h) = e0(1)
1

m

m∑

j=1

log
(
1 + exp(−h(Xj))

)
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+
1

l

l∑

k=1

log
(
1 + exp(h(Xk))

)
− e0(1)

1

m

m∑

j=1

log
(
1 + exp(h(Xj))

)
.

Then, we can train a classifier as ĥ := argminh∈H R̂(h), where H is a given hypothesis set.

Note that we assume the class prior e0(1) is known. Several methods have been proposed to estimate
it under additional assumptions (du Plessis & Sugiyama, 2014).

E.3 Density-ratio estimation

Since the density ratio can be estimated in the case-control setting, we introduce related meth-
ods. Density-ratio estimation has emerged as a powerful technique in machine learning and statis-
tics, providing a principled approach for estimating the ratio of two probability density functions
(Sugiyama et al., 2012). Let Xi, Zi ∈ X be random variables. Specifically, if {Xi}ni=1 are drawn
from p0(x) and {Zj}mj=1 are drawn from q0(z), the goal is to estimate

r0(x) =
p0(x)

q0(x)

directly, without first estimating p0(x) and q0(z) separately.

Estimating p0(x) and q0(z) individually can be challenging and may introduce unnecessary model-
ing complexities if only the ratio r0(x) is required. By directly estimating the density ratio, more
stable and accurate estimates can often be obtained, avoiding potential compounding errors from
separately learned density models.

Various algorithms have been proposed for direct density-ratio estimation, including the Kull-
back–Leibler Importance Estimation Procedure (KLIEP, Sugiyama et al., 2008) and Least-Squares
Importance Fitting (LSIF, Kanamori et al., 2009). These methods typically optimize a criterion that
ensures the estimated ratio closely approximates the true ratio in a specific divergence sense, such
as the Kullback–Leibler divergence or squared error, which can be generalized as a Bregman diver-
gence minimization problem (Sugiyama et al., 2012).

From the Bregman divergence minimization perspective, PU learning methods can also be seen
as variants of density-ratio estimation, as demonstrated in Kato et al. (2019) and Kato & Teshima
(2021).

F Remark on the nuisance parameter estimation in the censoring setting

In the censoring setting, by applying the method of Elkan & Noto (2008), we can obtain an estimator
of P(D = 1 | X) from an estimator of π0(o | x) = P(O = o | X). However, our objective is to
estimate

g0(1 | X) = P(D = 1 | X,O = 0) =
P(D = 1, O = 0 | X)

P(O = 0 | X)
=

P(O = 0 | D = 1)P(D = 1 | X)

P(O = 0 | X)

rather than P(D = 1 | X).

Let κ̂n(1 | X) be an estimator of P(D = 1 | X). We can then obtain an estimator of g0(1 | X) as
follows:

ĝn(1 | X) =
(1− ĉ)κ̂n(1 | X)

π̂n(0 | X)
,

where ĉ is an estimate of c = P(O = 0 | D = 1). Notably, under Assumption 3.1, c can be estimated
by taking the mean of π̂n(0 | X) over the positively labeled sample (Oi = 1).

G Pseudo-code for ATE estimation in the case-control setting

We explain how we construct the estimators of the nuisance parameters in the case-control setting.

We can estimate µT,0 and µU,0 using standard regression methods, including logistic regression
and nonparametric regression. Specifically, for estimating µT,0, we typically use the dataset{(

XT,j , Yj(1)
)}m

j=1
, while for estimating µU,0, we use

{(
Xk, YU,k

)}l
k=1

.
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Algorithm 2 Cross-fitting in the case-control setting

Input: Observations DT =
{(

XT,j , Yj(1)
)}m

j=1
and DU =

{(
Xk, YU,k

)}l
k=1

, number of folds

L, and estimation methods for µT,0, µU,0, e0, r0.

Randomly partition DT into L roughly equal-sized folds, (J (ℓ))ℓ∈L. Note that
⋃

ℓ∈L J (ℓ) = D.

Randomly partition DU into L roughly equal-sized folds, (K(ℓ))ℓ∈L. Note that
⋃

ℓ∈L K(ℓ) = D.
for ℓ ∈ L do

Set the training data as J (−ℓ) = {1, 2, . . . , n} \ J (ℓ).

Set the training data as K(−ℓ) = {1, 2, . . . , n} \ K(ℓ).

Construct estimators of nuisance parameters on J (−ℓ) and K(−ℓ).

Construct an ATE estimate τ̂
cc-eff(ℓ)
n using J (ℓ), K(ℓ)and the nuisance estimates

µ̂
(ℓ)
T,n, µ̂

(ℓ)
U,n, ê

(ℓ)
n , r̂

(ℓ)
n .

end for
Output: Combine (τ̂

cc-eff(ℓ)
n )ℓ∈L to form τ̂ cc-effn .

To estimate e0, we can apply case-control PU learning methods, such as convex PU learning pro-
posed by du Plessis et al. (2015). For estimating r0, density-ratio estimation methods can be em-
ployed (Sugiyama et al., 2012).

Notably, if ζT,0(x) = ζ0(x | d = 1), then r0 can be estimated from an estimator of e0 using the
relationship r0 = 1/(e0(1 | x)e0(1)).
In cross-fitting, we split DT and DU, respectively, as performed in Uehara et al. (2020). The pseudo-
code is shown in Algorithm G.

H Proof of Lemma 4.2

We prove Lemma 4.2. Our proof procedure is inspired by the one in Hahn (1998).

Proof. Recall that the density function for (X,O, Y ) is given as

p0(x, o, y) = ζ0(x)
(
π0(1 | x)pY (1),0(y | x)

)
1[o=1](

π0(0 | x)pỸ ,0(y | x)
)
1[o=0]

,

where pY (1),0(y | x), pY (0),0(y | x), and pỸ ,0(y | x) are the conditional densities of Y (1), Y (0),

and Ỹ in the censoring seting.

For this density function, we consider the parametric submodels:

Psub := {Pθ ∈ P : θ ∈ R},
where Pθ has the following density:

p0(x, o, y; θ) = ζ0(x; θ)
(
π0(1 | x; θ)pY (1),0(y | x; θ)

)
1[o=1](

π0(0 | x; θ)pỸ (y | x; θ)
)
1[o=0]

,

while there exists θ0 ∈ R such that

p(x, o, y; θ0) = p0(x, o, y).

Then, we define scores as follows:

S(x, o, y; θ) :=
∂

∂θ
log p(x, o, y; θ)

= SX(x; θ) + 1[o = 1]

(
SY (1)(y | x; θ) + π̇(1 | x; θ)

π(1 | x; θ)

)
+ 1[o = 0]

(
SỸ (y | x; θ) + π̇(0 | x; θ)

π(0 | x; θ)

)
,

where

SX(x; θ) :=
d

dθ
log ζ(x; θ),
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SY (1)(y | x; θ) := d

dθ
log pY (1)(y | x; θ),

SỸ (y | x; θ) := d

dθ
log pỸ (y | x; θ),

π̇(0 | x; θ) := d

dθ
π(o | x; θ).

Let T := {S(x, o, y; θ)} be the tangent space.

Here, note that

pỸ (y | x; θ) = g0(1 | x)pY (1)(y | x; θ) + g0(0 | x)pY (0)(y | x; θ).
We have

pC(y | x; θ) = 1

g0(0 | x)
(
pỸ (y | x; θ)− g0(1 | x)pY (1)(y | x; θ)

)

Using this relationship, we write the ATE under the parametric submodels as

τ(θ) :=

∫∫
y(1)pY (1)(y(1) | x; θ)ζ(x; θ)dy(1)dx−

∫∫
y(0)pY (0)(y(0) | x; θ)ζ(x; θ)dy(0)dx

=

∫∫
y(1)pY (1)(y(1) | x; θ)ζ(x; θ)dy(1)dx−

∫∫
y(0)

1

g0(0 | x)pỸ (y(0) | x; θ)ζ(x; θ)dy(0)dx

+

∫∫
y(0)

g0(1 | x)
g0(0 | x)pY (1)(y(0) | x; θ)ζ(x; θ)dy(0)dx.

Them, the derivative is given as

∂τ(θ)

∂θ
= Eθ

[
Y (1)SY (1)(Y (1) | X; θ)

]
− Eθ

[
1

g0(0 | X)
Ỹ SỸ (Ỹ | X; θ)

]

+ Eθ

[
g0(1 | X)

g0(0 | X)
Y (1)SY (1)(Y (1) | X; θ)

]

+ Eθ

[
τ(X; θ)SX(X; θ)

]
,

where

τ(X; θ) := µ(1 | X)− 1

g0(0 | X)
µ(U | X) +

g0(1 | X)

g0(0 | X)
µT(X) = µ(1 | X)− µC(X)

From the Riesz representation theorem, there exists a function Ψ such that

∂τ(θ)

∂θ

∣∣∣
θ=θ0

= E
[
Ψ(X,O, Y )S(X,O, Y ; θ0)

]
. (2)

There exists a unique function Ψcens such that Ψcens ∈ T , called the efficient influence function.
We specify the efficient influence function as

Ψcens(X,O, Y ;µT,0, ν0, π0, g0)

= Scens(X,O, Y ;µT,0, ν0, π0, g0)− τ0,

=
1[O = 1]

(
Y − µT,0(X)

)

π0(1 | X)
−
1[O = 0]

(
Y − ν0(X)

)

g0(0 | X)π0(0 | X)

+
g0(1 | X)1[O = 1]

(
Y − µT,0(X)

)

g0(0 | X)π0(1 | X)

+ µT,0(X)− 1

g0(0 | X)
ν(X) +

g0(1 | X)

g0(0 | X)
µT,0(X)− τ0.

We prove that Ψcens(X,O, Y ;µT,0, ν0, π0, g0) is actually the unique efficient influence function by
verifying that Ψcens satisfies (2) and Ψcens ∈ T .
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Proof of (2): First, we confirm that Ψcens satisfies (2). We have

E [Ψcens(X,O, Y ;µT,0, ν0, π0, g0)S(X,O, Y ; θ0)]

= E

[
Ψcens(X,O, Y ;µT,0, ν0, π0, g0)

·
(
SX(X; θ) + 1[O = 1]

(
SY (1)(Y | X; θ0) +

π̇(1 | X; θ)

π(1 | X; θ0)

)

+ 1[O = 0]

(
SỸ (Y | X; θ) +

π̇(0 | X; θ0)

π(0 | X; θ0)

))]

= E

[(
1[O = 1]

(
Y − µT,0(X)

)

π0(1 | X)
−
1[O = 0]

(
Y − ν0(X)

)

g0(0 | X)π0(0 | X)

+
g0(1 | X)1[O = 1]

(
Y − µT,0(X)

)

g0(0 | X)π0(1 | X)

+ µT,0(X)− 1

g0(0 | X)
ν(X) +

g0(1 | X)

g0(0 | X)
µT,0(X)− τ0

)

·
(
SX(X; θ) + 1[O = 1]

(
SY (1)(Y | X; θ0) +

π̇(1 | X; θ)

π(1 | X; θ0)

)

+ 1[O = 0]

(
SỸ (Y | X; θ) +

π̇(0 | X; θ0)

π(0 | X; θ0)

))]

= E

[(
µT,0(X)− 1

g0(0 | X)
ν(X) +

g0(1 | X)

g0(0 | X)
µT,0(X)− τ0

)
SX(X; θ0)

+

(
1[O = 1]

(
Y − µT,0(X)

)

π0(1 | X)
+

g0(1 | X)1[O = 1]
(
Y − µT,0(X)

)

g0(0 | X)π0(1 | X)

+ µT,0(X)− 1

g0(0 | X)
ν(X) +

g0(1 | X)

g0(0 | X)
µT,0(X)− τ0

)
1[O = 1]

(
SY (1)(Y | X; θ0) +

π̇(1 | X; θ0)

π(1 | X; θ0)

)

+

(
−
1[O = 0]

(
Y − ν0(X)

)

g0(0 | X)π0(0 | X)
+ µT,0(X)− 1

g0(0 | X)
ν(X) +

g0(1 | X)

g0(0 | X)
µT,0(X)− τ0

)

· 1[O = 0]

(
SỸ (Y | X; θ) +

π̇(0 | X; θ0)

π(0 | X; θ0)

)]
,

where we used 1[O = 1]1[O = 0] = 0, and

E

[
1[O = 1]

(
Y − µT,0(X)

)

π0(1 | X)

]
= E

[
1[O = 1]

(
Y (1)− µT,0(X)

)

π0(1 | X)

]

= E

[
π0(1 | X)

(
µT,0(X)− µT,0(X)

)

π0(1 | X)

]
= 0,

E

[
1[O = 0]

(
Y − ν0(X)

)

g0(0 | X)π0(0 | X)

]
= E

[
1[O = 0]

(
Ỹ − ν0(X)

)

g0(0 | X)π0(0 | X)

]
= E

[
π0(0 | X)

(
ν0(X)− ν0(X)

)

g0(0 | X)π0(0 | X)

]
= 0,

E

[
g0(1 | X)1[O = 1]

(
Y − µT,0(X)

)

g0(0 | X)π0(1 | X)

]
= E

[
g0(1 | X)π0(1 | X)

(
µT,0(X)− µT,0(X)

)

g0(0 | X)π0(1 | X)

]
= 0.
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We have

E

[(
µT,0(X)− 1

g0(0 | X)
ν(X) +

g0(1 | X)

g0(0 | X)
µT,0(X)− τ0

)
SX(X; θ)

+

(
1[O = 1]

(
Y − µT,0(X)

)

π0(1 | X)
+

g0(1 | X)1[O = 1]
(
Y − µT,0(X)

)

g0(0 | X)π0(1 | X)

+ µT,0(X)− 1

g0(0 | X)
ν(X) +

g0(1 | X)

g0(0 | X)
µT,0(X)− τ0

)
1[O = 1]

(
SY (1)(Y | X; θ0) +

π̇(1 | X; θ)

π(1 | X; θ0)

)

+

(
−
1[O = 0]

(
Y − ν0(X)

)

g0(0 | X)π0(0 | X)
+ µT,0(X)− 1

g0(0 | X)
ν(X) +

g0(1 | X)

g0(0 | X)
µT,0(X)− τ0

)

· 1[O = 0]

(
SỸ (Y | X; θ) +

π̇(0 | X; θ0)

π(0 | X; θ0)

)]

= E

[(
µT,0(X)− 1

g0(0 | X)
ν(X) +

g0(1 | X)

g0(0 | X)
µT,0(X)

)
SX(X; θ0)

+

(
1[O = 1]

(
Y − µT,0(X)

)

π0(1 | X)
+

g0(1 | X)1[O = 1]
(
Y − µT,0(X)

)

g0(0 | X)π0(1 | X)

)
SY (1)(Y | X; θ0)

−
1[O = 0]

(
Y − ν0(X)

)

g0(0 | X)π0(0 | X)
SỸ (Y | X; θ)

]

= E

[(
µT,0(X)− 1

g0(0 | X)
ν(X) +

g0(1 | X)

g0(0 | X)
µT,0(X)

)
SX(X; θ0)

+

(
1[O = 1]Y (1)

π0(1 | X)
+

g0(1 | X)1[O = 1]Y (1)

g0(0 | X)π0(1 | X)

)
SY (1)(Y (1) | X; θ)− 1[O = 0]Ỹ

g0(0 | X)π0(0 | X)
SỸ (Ỹ | X; θ0)

]
,

where we used

E

[
τ0SX(X; θ)

]
= 0

E

[(
µT,0(X)− 1

g0(0 | X)
ν(X) +

g0(1 | X)

g0(0 | X)
µT,0(X)− τ0

)
1[O = 1]

(
SY (1)(Y | X; θ0) +

π̇(1 | X; θ0)

π(1 | X; θ0)

)]

= 0.

Finally, we have

E

[(
µT,0(X)− 1

g0(0 | X)
ν(X) +

g0(1 | X)

g0(0 | X)
µT,0(X)

)
SX(X; θ0)

+

(
1[O = 1]Y (1)

π0(1 | X)
+

g0(1 | X)1[O = 1]Y (1)

g0(0 | X)π0(1 | X)

)
SY (1)(Y (1) | X; θ0)−

1[O = 0]Ỹ

g0(0 | X)π0(0 | X)
SỸ (Ỹ | X; θ0)

]

= E

[
Y (1)SY (1)(Y (1) | X; θ0)

]
− E

[
1

g0(0 | X)
Ỹ SỸ (Ỹ | X; θ0)

]

+ E

[
g0(1 | X)

g0(0 | X)
Y (1)SY (1)(Y (1) | X; θ0)

]

+ Eθ0

[
τ(X; θ)SX(X; θ0)

]
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=
∂τ(θ)

∂θ

∣∣∣
θ=θ0

Proof of Ψcens ∈ T : Set

SY (1)(y | x) = y − E
[
Y (1) | X = x

]

π0(1 | x) ,

SỸ (y | x) = y − E
[
Ỹ | X = x

]

π0(0 | x) ,

SX(X; θ) = µT,0(X)− 1

g0(0 | X)
ν(X) +

g0(1 | X)

g0(0 | X)
µT,0(X)− τ0.

Then, Ψcens ∈ T holds.

Remark. Some regularity conditions are needed to guarantee that the expectations of the score
functions are zero. In particular, one must justify interchanging integration and differentiation for
the relevant densities. This holds, for example, when the density is integrable and has a bounded
first derivative.

More precisely, it is standard to construct a regular parametric submodel of the true distribution.
Regular parametric submodels are technical tools used to derive the efficiency bound and can be
constructed to satisfy the necessary regularity conditions. For a true density p0(x), a typical con-
struction is pt(x) = (1+ tg(x))p0(x), where g(x) is a bounded score function and t ∈ [0,∞). This

satisfies g(x) = ∂
∂t

∣∣
t=0

log pt(x). If g(x) is unbounded, we can still define a parametric submodel

as pt(x) = c(t)k(tg(x))p0(x), where k is a nonnegative function satisfying k(0) = k′(0) = 1, and
c(t) is a normalizing constant ensuring that

∫
pt(x)dx = 1. For more details, see Section 25.16 of

van der Vaart (1998).

In our study, we verify the regularity requirement by checking that the parametric submodel induced
by the derived score satisfies the necessary properties. In our case, the required regularity holds
under finite first and second moments of the outcomes (Assumptions 4.1), together with the common
support condition (Assumption 3.3).

I Proof of Theorem 4.8: Semiparametric efficient ATE estimator under the

censoring setting

For simplicity, we consider two-fold cross-fitting; that is, L = 2. Without loss of generality, we
assume that the sample size n is even, and let n = n/2. For each ℓ ∈ {1, 2}, we denote the subset
of the dataset in cross-fitting as

D(ℓ) := {(X̃ℓ
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i )}ni=1.

We defined the estimator as

τ̂ cens-effn :=
1

n

n∑

i=1

Scens(Xi, Oi, Yi; µ̂T,n,i, ν̂n,i, π̂n,i, g0),

where recall that

Scens(X,O, Y ; µ̂T,n,i, ν̂n,i, π̂n,i, g0)

=
1[O = 1]

(
Y − µ̂T,n,i(X)

)

π̂n,i(1 | X)
−
1[O = 0]

(
Y − ν̂n,i(X)

)

g0(0 | X)π̂n,i(0 | X)
+

g0(1 | X)1[O = 1]
(
Y − µ̂T,n,i(X)

)

g0(0 | X)π̂n,i(1 | X)

+ µ̂T,n,i(X)− 1

g0(0 | X)
ν(X) +

g0(1 | X)

g0(0 | X)
µ̂T,n,i(X).

We have

τ̂ cens-effn =
1

n

n∑

i=1

Scens(Xi, Oi, Yi; µ̂T,n,i, ν̂n,i, π̂n,i, g0)
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=
1

n

n∑

i=1

Scens(Xi, Oi, Yi;µT,0, ν0, π0, g0)−
1

n

n∑

i=1

Scens(Xi, Oi, Yi;µT,0, ν0, π0, g0)

+
1

n

n∑

i=1

Scens(Xi, Oi, Yi; µ̂T,n,i, ν̂n,i, π̂n,i, g0).

Here, if it holds that

1

n

n∑

i=1

Scens(Xi, Oi, Yi;µT,0, ν0, π0, g0)−
1

n

n∑

i=1

Scens(Xi, Oi, Yi; µ̂T,n,i, ν̂n,i, π̂n,i, g0) = op(1/
√
n)

(3)

then we have

√
n
(
τ̂ cens-effn − τ0

)
=

1√
n

n∑

i=1

Scens(Xi, Oi, Yi;µT,0, ν0, π0, g0) + op(1)

d−→ N (0, V cens),

from the central limit theorem for i.i.d. random variables.

Therefore, we prove Theorem 4.8 by showing (3). We decompose the LHS of (3) as

1

n

n∑

i=1

Scens(Xi, Oi, Yi;µT,0, ν0, π0, g0)−
1

n

n∑

i=1

Scens(Xi, Oi, Yi; µ̂T,n,i, ν̂n,i, π̂n,i, g0)

=
n

n

∑

ℓ∈{1,2}

(
1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0)

− 1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0)

)
.

Let D(ℓ) denote the ℓ-th fold of D. Here, we have

1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0)−

1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0)

=
1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0)−

1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0)

−
(
E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0) | D(ℓ)

]

− E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0) | D(ℓ)
])

+

(
E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0) | D(ℓ)

]

− E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0) | D(ℓ)
])

.

To show (3), we show the following two inequalities separately:

1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0)−

1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0)

−
(
E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0) | D(ℓ)

]
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− E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0) | D(ℓ)
])

= op(1/
√
n), (4)

E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0) | D(ℓ)

]

− E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0) | D(ℓ)
]

= op(1/
√
n). (5)

Here, the LHS of the first inequality is referred to as the empirical process term, while the LHS of
the second inequality is referred to as the second-order remainder term.

I.1 Proof of (4)

Proof. We aim to show that for any ε > 0,

lim
n→∞

P

(
√
n

∣∣∣∣∣
1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0)

− 1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0)

−
(
E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0) | D(ℓ)

]

− E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0) | D(ℓ)
])∣∣∣∣∣ > ε

)

= 0. (6)

We show (6) by showing that for any ε > 0,

lim
n→∞

P

(
√
n

∣∣∣∣∣
1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0)

− 1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0)

−
(
E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0) | D(ℓ)

]

− E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0) | D(ℓ)
])∣∣∣∣∣ ≥ ε | D(ℓ)

)

= 0. (7)

If (7) holds, then (6) also holds from dominated convergence theorem.

We prove (7) using Chebychev’s inequality. From Chebychev’s inequality we have

P

(
√
n

∣∣∣∣∣
1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0)−

1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0)

−
(
E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0) | D(ℓ)

]

− E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0) | D(ℓ)
])∣∣∣∣∣ ≥ ε | D(ℓ)

)
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≤ n

ε
Var

(
1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0)−

1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0)

−
(
E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0) | D(ℓ)

]

− E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0) | D(ℓ)
])

| D(ℓ)

)
.

Since observations are i.i.d. and the conditional mean of the target part is zero, we have

mVar

(
1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0)−

1

n

m∑

i=1

Scens(X̃
(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0)

−
(
E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0) | D(ℓ)

]

− E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0) | D(ℓ)
])

| D(ℓ)

)

= Var

(
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0)− Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0)

−
(
E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0) | D(ℓ)

]

− E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0) | D(ℓ)
])

| D(ℓ)

)

= E

[(
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0)− Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0)

(8)

−
(
E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0) | D(ℓ)

]

− E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0) | D(ℓ)
]))2

| D(ℓ)

]
.

The term (8) converges to zero in probability as n → ∞ if
∥∥µT,0− µ̂

(ℓ)
T,n

∥∥
2
= op(1),

∥∥ν0− ν̂
(ℓ)
n

∥∥
2
=

op(1), and
∥∥π0 − π̂

(ℓ)
n

∥∥
2
= op(1) as n → ∞. Here, we used the boundedness conditions of each

function and the following computation. Them, we complete the proof.

We explain the last step of the above proof below. Let A and B denote the first and second terms in
the expectation of (8), respectively. Then, we have

(8) = E

[(
A−B − E

[
A−B | D(ℓ)

])2
| D(ℓ)

]
.

Here, we have

(8) = E

[
(A−B)2 | D(ℓ)

]
−
(
E

[
A−B | D(ℓ)

])2
≤ E

[
(A−B)2 | D(ℓ)

]
.

By showing that E
[
(A−B)2 | D(ℓ)

]
= op(1), we prove the statement. To show

E
[
(A−B)2 | D(ℓ)

]
= op(1), we use the following concrete form of Scens:

Scens(X,O, Y ;µT , v, π, g)
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=
1[O = 1](Y − µT (X))

π(1 | X)
− 1[O = 0](Y − ν(X))

g(0 | X)π(0 | X)
+

g(1 | X)1[O = 1](Y − µT (X))

g(0 | X)π(1 | X)

+ µT (X)− 1

g(0 | X)
ν(X) +

g(1 | X)

g(0 | X)
µT (X).

Then, we have

A−B

=
1[O = 1](Y − µT,0(X))

π0(1 | X)
− 1[O = 0](Y − ν0(X))

g0(0 | X)π0(0 | X)
+

g0(1 | X)1[O = 1](Y − µT,0(X))

g0(0 | X)π0(1 | X)

+ µT,0(X)− 1

g0(0 | X)
ν0(X) +

g0(1 | X)

g0(0 | X)
µT,0(X)

−
(
1[O = 1](Y − µ̂

(ℓ)
T,n(X))

π̂
(ℓ)
n (1 | X)

− 1[O = 0](Y − ν̂
(ℓ)
n (X))

g0(0 | X)π̂
(ℓ)
n (0 | X)

+
g0(1 | X)1[O = 1](Y − µ̂

(ℓ)
T,n(X))

g0(0 | X)π̂
(ℓ)
n (1 | X)

+ µ̂
(ℓ)
T,n(X)− 1

g0(0 | X)
ν̂(ℓ)n (X) +

g0(1 | X)

g0(0 | X)
µ̂
(ℓ)
T,n(X)

)

Here, we can show that the following term converges to zero in probability, which follows directly
from the convergence in probability of each nuisance-parameter estimator:

(
µT,0(X)− 1

g0(0 | X)
ν0(X) +

g0(1 | X)

g0(0 | X)
µT,0(X)

)

−
(
µ̂T,0(X)− 1

g0(0 | X)
ν̂(ℓ)n (X) +

g0(1 | X)

g0(0 | X)
µ̂
(ℓ)
T,n(X))

)
.

Then, we show that the remaining parts converge to zero in probability. Let us denote the parts as

(⋆) =
1[O = 1](Y − µT,0(X))

π0(1 | X)
− 1[O = 0](Y − ν0(X))

g0(0 | X)π0(0 | X)
+

g0(1 | X)1[O = 1](Y − µT,0(X))

g0(0 | X)π0(1 | X)

−
(
1[O = 1](Y − µ̂

(ℓ)
T,n(X))

π̂
(ℓ)
n (1 | X)

− 1[O = 0](Y − ν̂
(ℓ)
n (X))

g0(0 | X)π̂
(ℓ)
n (0 | X)

+
g0(1 | X)1[O = 1](Y − µ̂

(ℓ)
T,n(X))

g0(0 | X)π̂
(ℓ)
n (1 | X)

)
.

Next, we have

(⋆) =
1[O = 1](Y − µT,0(X))

π0(1 | X)
− 1[O = 0](Y − ν0(X))

g0(0 | X)π0(0 | X)
+

g0(1 | X)1[O = 1](Y − µT,0(X))

g0(0 | X)π0(1 | X)

−
(
1[O = 1](Y − µT,0(X))

π̂
(ℓ)
n (1 | X)

− 1[O = 0](Y − ν0(X))

g0(0 | X)π̂
(ℓ)
n (0 | X)

+
g0(1 | X)1[O = 1](Y − µT,0(X))

g0(0 | X)π̂
(ℓ)
n (1 | X)

)

+

(
1[O = 1](Y − µT,0(X))

π̂
(ℓ)
n (1 | X)

− 1[O = 0](Y − ν0(X))

g0(0 | X)π̂
(ℓ)
n (0 | X)

+
g0(1 | X)1[O = 1](Y − µT,0(X))

g0(0 | X)π̂
(ℓ)
n (1 | X)

)

−
(
1[O = 1](Y − µ̂

(ℓ)
T,n(X))

π̂
(ℓ)
n (1 | X)

− 1[O = 0](Y − ν̂
(ℓ)
n (X))

g0(0 | X)π̂
(ℓ)
n (0 | X)

+
g0(1 | X)1[O = 1](Y − µ̂

(ℓ)
T,n(X))

g0(0 | X)π̂
(ℓ)
n (1 | X)

)
.

Then, from the parallelogram law, we have

(⋆)2 ≤ 2

(
1[O = 1](Y − µT,0(X))

π0(1 | X)
− 1[O = 1](Y − µT,0(X))

π̂
(ℓ)
n (1 | X)

)2

+ 2

(
1[O = 0](Y − ν0(X))

g0(0 | X)π0(0 | X)
− 1[O = 0](Y − ν0(X))

g0(0 | X)π̂
(ℓ)
n (0 | X)

)2

+ · · ·
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+ 2

(
g0(1 | X)1[O = 1](Y − µT,0(X))

g0(0 | X)π̂
(ℓ)
n (1 | X)

−
g0(1 | X)1[O = 1](Y − µ̂

(ℓ)
T,n(X))

g0(0 | X)π̂
(ℓ)
n (1 | X)

)2

.

Here, we can bound

2E



(
g0(1 | X)1[O = 1](Y − µT,0(X))

g0(0 | X)π̂
(ℓ)
n (1 | X)

−
g0(1 | X)1[O = 1](Y − µ̂

(ℓ)
T,n(X))

g0(0 | X)π̂
(ℓ)
n (1 | X)

)2

| D(ℓ)




by

CE(µT,0(X)− µ̂
(ℓ)
T,n(X))2],

where C > 0 is constant independent of n, and we used the boundedness of ĝ and π̂. Similarly, we
can bound each of the remaining terms. Thus, we complete the proof.

I.2 Proof of (5)

Proof. We have

E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ;µT,0, ν0, π0, g0) | D(ℓ)

]
− E

[
Scens(X̃

(ℓ)
i , Õ

(ℓ)
i , Ỹ

(ℓ)
i ; µ̂

(ℓ)
T,n, ν̂

(ℓ)
n , π̂(ℓ)

n , g0) | D(ℓ)
]

= E

[
1[O = 1]

(
Y − µT,0(X)

)

π0(1 | X)
−
1[O = 0]

(
Y − ν0(X)

)

g0(0 | X)π(0 | X)
+

g0(1 | X)1[O = 1]
(
Y − µT,0(X)

)

g0(0 | X)π0(0 | X)

+ µT,0(X)− 1

g0(0 | X)
ν0(X) +

g0(1 | X)

g0(0 | X)
µT,0(X) | D(ℓ)

]

− E

[
1[O = 1]

(
Y − µ̂

(ℓ)
T,n(X)

)

π̂
(ℓ)
n (1 | X)

−
1[O = 0]

(
Y − ν̂

(ℓ)
n (X)

)

g0(0 | X)π̂
(ℓ)
n (0 | X)

+
g0(1 | X)1[O = 1]

(
Y − µ̂

(ℓ)
T,n(X)

)

g0(0 | X)π̂
(ℓ)
n (0 | X)

+ µ̂
(ℓ)
T,n(X)− 1

g0(0 | X)
ν̂(ℓ)n (X) +

g0(1 | X)

g0(0 | X)
µ̂
(ℓ)
T,n(X) | D(ℓ)

]

= E

[
µT,0(X)− 1

g0(0 | X)
ν0(X) +

g0(1 | X)

g0(0 | X)
µT,0(X)

]

− E

[
π0(1 | X)

(
µT,0(X)− µ̂

(ℓ)
T,n(X)

)

π̂
(ℓ)
n (1 | X)

−
π0(0 | X)

(
ν0(X)− ν̂

(ℓ)
n (X)

)

g0(0 | X)π̂
(ℓ)
n (0 | X)

+
g0(1 | X)π0(1 | X)

(
µT,0(X)− µ̂

(ℓ)
T,n(X)

)

g0(0 | X)π̂
(ℓ)
n (0 | X)

+ µ̂
(ℓ)
T,n(X)− 1

g0(0 | X)
ν̂(ℓ)n (X) +

g0(1 | X)

g0(0 | X)
µ̂
(ℓ)
T,n(X)

]

= E

[(
1− π0(1 | X)

π̂
(ℓ)
n (1 | X)

)(
µT,0(X)− µ̂

(ℓ)
T,n(X)

)]

+ E


 1

g0(0 | X)
ν̂(ℓ)n (X)− 1

g0(0 | X)
ν0(X)−

π0(0 | X)
(
ν̂
(ℓ)
n (X)− ν0(X)

)

g0(0 | X)π̂
(ℓ)
n (0 | X)




+ E


g0(1 | X)

g0(0 | X)
µT,0(X)− g0(1 | X)

g0(0 | X)
µ̂
(ℓ)
T,n(X)−

g0(1 | X)π0(1 | X)
(
µT,0(X)− µ̂

(ℓ)
T,n(X)

)

g0(0 | X)π̂
(ℓ)
n (0 | X)



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= E

[(
1− π0(1 | X)

π̂
(ℓ)
n (1 | X)

)(
µT,0(X)− µ̂

(ℓ)
T,n(X)

)]

+ E

[
1

g0(0 | X)

(
1− π0(0 | X)

π̂
(ℓ)
n (0 | X)

)(
ν̂(ℓ)n (X)− ν0(X)

)]

+ E

[
g0(1 | X)

g0(0 | X)

(
1− π0(1 | X)

π̂
(ℓ)
n (0 | X)

)(
µT,0(X)− µ̂

(ℓ)
T,n(X)

)]

≤ C

√√√√
E

[(
π̂
(ℓ)
n (1 | X)− π0(1 | X)

)2
]
E

[(
µT,0(X)− µ̂

(ℓ)
T,n(X)

)2
]

+ C

√
E

[(
π̂
(ℓ)
n (0 | X)− π0(0 | X)

)2]
E

[(
ν̂
(ℓ)
n (X)− ν0(X)

)2]

+ C

√
E

[(
π̂
(ℓ)
n (0 | X)− π0(1 | X)

)2]
E

[(
µT,0(X)− µ̂

(ℓ)
T,n(X)

)2]

= op(1/
√
n),

where we used Hölder’s inequality.

I.3 Remark on the double robustness

Indeed, a key structural feature specific to the PUATE setting is that double robustness holds only
when the propensity score is correctly specified. That is, in the PUATE framework, double robust-
ness can be stated as follows: given a consistent estimator of the propensity score g0(D | X),
if either the observation probability (e.g., π(O | X)) or the conditional expected outcome (e.g.,
µT,0(X) = E[Y (1) | X] and µC,0(X) = E[Y (0) | X]) is consistently estimated, then the ATE
estimator is consistent.

This arises because estimating the conditional expected outcome for the control group, µC,0(X) =
E[Y (0) | X], requires the propensity score g0(D | X). In the standard ATE setting, E[Y (0) | X]
can be estimated directly via regression on outcomes with D = 0. However, in the PUATE setting,
we must rely on the following identity to recover E[Y (0) | X].

In the standard doubly robust estimator, E[Y (0)] can be estimated by taking the sample mean of

1[Di = 0](Yi − µ̂C(Xi))

ĝ(0 | Xi)
+ µ̂C(Xi).

In contrast, for PUATE under the censoring setting, E[Y (0)] can be estimated by taking the sample
mean of

1[Oi = 0](Yi − ν̂(Xi))

ĝ(0 | Xi)π̂(0 | Xi)
−
ĝ(1 | Xi)1[Oi = 1](Yi − µ̂

(ℓ)
T,n(Xi))

ĝ(0 | Xi)π̂(1 | Xi)
+

1

ĝ(0 | Xi)
ν̂(Xi)−

ĝ(1 | Xi)

ĝ(0 | Xi)
µ̂T(Xi).

Put differently, in the standard ATE setting, E[Y (0)] can be estimated either by the sample mean of

1[D = 0]Y

ĝ(0 | X)

or by
µ̂C(X).

One relies solely on the propensity score g(0 | X), and the other solely on the outcome model
µ̂C(X). However, in the PUATE setting, E[Y (0)] can be estimated either by the sample mean of

1[Oi = 0]Yi

ĝ(0 | Xi)π̂(0 | Xi)
− ĝ(1 | Xi)1[Oi = 1]Yi

ĝ(0 | Xi)π̂(1 | Xi)

or
1

ĝ(0 | Xi)
ν̂(Xi)−

ĝ(1 | Xi)

ĝ(0 | Xi)
µ̂T(Xi).

42



Both estimators depend on the estimated propensity score ĝ.

This highlights the intuition behind the lack of double robustness in the PUATE setting: to esti-
mate (or identify) E[Y (0) | X], one must necessarily rely on an estimator of g0. This structural
dependency underlies why double robustness, in the usual sense, does not hold in PUATE. Even
in cases where the treatment indicator contains missing values, if E[Y (0) | X] can be estimated
without relying on ĝ, it is still possible to construct a doubly robust estimator involving the product
of the propensity score error and the outcome model error. However, in the PUATE setting, we
observe only treated units and a mixture of treated and control units. This makes the estimation of
E[Y (0) | X] particularly challenging. Also see Dahabreh et al. (2019).

J Proof of Lemma D.2

Our proof is inspired by those in Uehara et al. (2020) and Kato et al. (2024). Uehara et al. (2020) re-
visits the efficiency bound under the stratified sampling scheme, a generalization of the case-control
setting, studied by Wooldridge (2001) and Imbens & Wooldridge (2009). In the stratified sampling,

we define an efficiency bound by regarding
(
DT,DU

)
as one sample.

Their proof considers a nonparametric model for the distribution of potential outcomes and defines
regular subparametric models. Then, (i) we characterize the tangent set for all regular parametric
submodels, (ii) verify that the parameter of interest is pathwise differentiable, (iii) verify that a
guessed semiparametric efficient influence function lies in the tangent set, and (iv) calculate the
expected square of the influence function.

In the case-control setting, the observations are generated as follows:

DT :=
{(

XT,j , Yj(1)
)}m

j=1
,
(
XT,j , Yj(1)

)
∼ pT,0(x, y(1)) = ζT,0(x)pY (1),0(y(1) | x),

DU :=
{(

Xk, YU,k

)}l
k=1

,
(
Xk, YU,k

)
∼ pU,0(x, yU) = ζ0(x)pYU,0(yU | x).

We derive the efficiency bound by regarding

E =
(
DT,DU

)

as one observation.

We define regular parametric submodels

Psub := {PT,θ, PU,θ : θ ∈ R},
where PT,θ is a parametric submodel for the distribution of XT,j , Yj(1) and PU,θ is a parametric
submodel for the distribution of Xk, YU,k.

We denote the probability densities under PT,θ and PU,θ by

pT(x, y; θ) = ζT(x; θ)pY (1),0(y(1) | x; θ),
pU(x, y; θ) = ζ(x; θ)pYU

(yU | x; θ).

We consider the joint log-likelihood of DT and DS , which is defined as

m∑

j=1

log (pT(XT,j , Yj(1); θ)) +
l∑

k=1

log (pU(Xk, YU,k; θ)) .

By taking the derivative of
∑m

j=1 log (pT(XT,j , Yj(1); θ)) +
∑l

k=1 log (pU(Xk, YU,k; θ)) with re-

spect to β, we can obtain the corresponding score as

S(E ; θ) := d

dθ




m∑

j=1

log (pT(XT,j , Yj(1); θ)) +

l∑

k=1

log (pU(Xk, YU,k; θ))




=

m∑

j=1

SXT
(XT,j ; θ) +

m∑

j=1

SY (1)(Yj(1) | XT,j ; θ) +

l∑

k=1

SX(Xk; θ) +

l∑

k=1

SYU
(YU,k | Xk; θ).
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where

SXT
(x; θ) :=

d

dθ
log ζT(x; θ),

SY (1)(y | x; θ) := d

dθ
log pY (1)(y | x; θ),

SX(x; θ) :=
d

dθ
log ζ(x; θ),

SYU
(y | x; θ) := d

dθ
log pYU

(y | x; θ),

Let us also define

Scc (T)(x, y;µT, e, r) = SXT
(x; θ) + SY (1)(y | x; θ),

Scc (U)(X,YU;µT, µU, e) = SX(x; θ) + SYU
(y | x; θ).

Here, note that

pYU
(y | x; θ) = e0(1 | x)pY (1)(y | x; θ) + e0(0 | x)pY (0)(y | x; θ).

We have

pY (0)(y | x; θ) = 1

e0(0 | x)
(
pYU

(y | x; θ)− e0(1 | x)pY (1)(y | x; θ)
)

Using this relationship, we write the ATE under the parametric submodels as

τ(θ) :=

∫∫
y(1)pY (1)(y(1) | x; θ)ζ(x; θ)dy(1)dx−

∫∫
y(0)pY (0)(y(0) | x; θ)ζ(x; θ)dy(0)dx

=

∫∫
y(1)pY (1)(y(1) | x; θ)ζ(x; θ)dy(1)dx−

∫∫
y(0)

1

e0(0 | x)pYU
(y(0) | x; θ)ζ(x; θ)dy(0)dx

+

∫∫
y(0)

e0(1 | x)
e0(0 | x)pY (1)(y(0) | x; θ)ζ(x; θ)dy(0)dx.

The tangent space for this parametric submodel at θ = θ0 is given as

T :=



m∑

j=1

SXT
(XT,j ; θ0) +

m∑

j=1

SY (1)(Yj(1) | XT,j ; θ0) +

l∑

k=1

SX(Xk; θ0) +

l∑

k=1

SYU
(YU,k | Xk; θ0) ∈ L2(E)



 .

From the Riesz representation theorem, there exists a function Ψ̃ such that

∂τ(θ)

∂θ

∣∣∣
θ=θ0

= E
[
Ψ̃(E)S(E ; θ0)

]
. (9)

Here, we use the assumption that each random variable has finite variance, which guarantees the
existence of the function.

There exists a unique function Ψcc such that Ψcc ∈ T , called the efficient influence function. We
specify the efficient influence function as

Ψ̃cc(E ;µT,0, µU,0, e0, r0),

=
1

m

m∑

j=1

((
1− e0(1 | XT,j)

e0(0 | XT,j)

)(
Yj(1)− µT,0(X)

))
r0(XT,j),

+
1

l

l∑

k=1


−

(
YU,k − µU,0(Xk)

)

e0(0 | Xk)
+ µT,0(Xk)−

1

e0(0 | Xk)
µU,0(X) +

e0(1 | Xk)

e0(0 | Xk)
µT,0(Xk)


− τ0.

We prove that Ψ̃cc(X,O, Y ;µT,0, ν0, π0, g0) is actually the unique efficient influence function by

verifying that Ψ̃cc satisfies (9) and Ψ̃cc ∈ T .
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Proof of (9): First, we confirm that Ψ̃cc satisfies (9). We have

E

[
Ψ̃cc(E ;µT,0, ν0, π0, g0)S(E ; θ0)

]

= E

[
Ψcc(E ;µT,0, ν0, π0, g0)

·




m∑

j=1

SXT
(XT,j ; θ0) +

m∑

j=1

SY (1)(Yj(1) | XT,j ; θ0) +
l∑

k=1

SX(Xk; θ0) +
l∑

k=1

SYU
(YU,k | Xk; θ0)



]

= E

[(
1

m

m∑

j=1

((
1− e0(1 | XT,j)

e0(0 | XT,j)

)(
Yj(1)− µT(XT,j)

))
r0(XT,j)

+
1

l

l∑

k=1


−

(
YU,k − µU,0(Xk)

)

e0(0 | Xk)
+ µT,0(Xk)−

1

e0(0 | Xk)
µU(Xk) +

e0(1 | Xk)

e0(0 | Xk)
µT,0(Xk)


− τ0

)

·




m∑

j=1

SXT
(XT,j ; θ0) +

m∑

j=1

SY (1)(Yj(1) | XT,j ; θ0) +

l∑

k=1

SX(Xk; θ0) +

l∑

k=1

SYU
(YU,k | Xk; θ0)



]
.

Since DT and DU are independent and observations are i.i.d., we have

E

[(
1

m

m∑

j=1

((
1− e0(1 | XT,j)

e0(0 | XT,j)

)(
Yj(1)− µT(XT,j)

))
r0(XT,j)

+
1

l

l∑

k=1


−

(
YU,k − µU,0(Xk)

)

e0(0 | Xk)
+ µT,0(Xk)−

1

e0(0 | Xk)
µU(Xk) +

e0(1 | Xk)

e0(0 | Xk)
µT,0(Xk)− τ0



)

·




m∑

j=1

SXT
(XT,j ; θ0) +

m∑

j=1

SY (1)(Yj(1) | XT,j ; θ0) +

l∑

k=1

SX(Xk; θ0) +

l∑

k=1

SYU
(YU,k | Xk; θ0)



]

= E

[(
1− e0(1 | XT,j)

e0(0 | XT,j)

)(
Yj(1)− µT,0(XT,j)

)
r0(XT,j)

(
SXT

(XT,j ; θ0) + SY (1)(Yj(1) | XT,j ; θ0)
)
]

+ E

[
−

(
YU,k − µU,0(Xk)

)

e0(0 | Xk)
+ µT,0(Xk)−

1

e0(0 | Xk)
µU,0(Xk) +

e0(1 | Xk)

e0(0 | Xk)
µT,0(Xk)− τ0




· (SX(Xk; θ0) + SYU
(YU,k | Xk; θ0))

]
.

Because the density ratio allows us to change the measure, we have

E

[(
1− e0(1 | XT,j)

e0(0 | XT,j)

)(
Yj(1)− µT,0(XT,j)

)
r0(XT,j)

(
SXT

(XT,j ; θ0) + SY (1)(Yj(1) | X; θ0)
)
]

= E

[(
1− e0(1 | X)

e0(0 | X)

)(
Y (1)− µT,0(X)

) (
SX(XT,j ; θ0) + SY (1)(Y (1) | X; θ0)

)
]

Finally, we have

E

[(
1− e0(1 | X)

e0(0 | X)

)(
Y (1)− µT(X)

) (
SX(X; θ0) + SY (1)(Y (1) | X; θ0)

)
]

+ E

[
−

(
YU − µU,0(X)

)

e0(0 | X)
+ µT,0(X)− 1

e0(0 | X)
µU(X) +

e0(1 | X)

e0(0 | X)
µT,0(X)− τ0



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· (SX(X; θ0) + SYU
(YU | X; θ0))

]

= Eθ

[
Y (1)SY (1)(Y (1) | X; θ0)

]
− Eθ

[
1

e0(0 | X)
YUSYU

(YU | X; θ0)

]

+ Eθ

[
e0(1 | X)

e0(0 | X)
Y (1)SY (1)(Y (1) | X; θ0)

]

+ Eθ

[
τ(X; θ0)SX(X; θ0)

]

=
∂τ(θ)

∂θ

∣∣∣
θ=θ0

,

where we defined µT,0(X) − 1
e0(0|X)µU(X) + e0(1|X)

e0(0|X)µT,0(X) = τ(X; θ0), and from the first to

the second equality, we used the followings:

E

[(
1− e0(1 | X)

e0(0 | X)

)(
Y (1)− µT(X)

)
SX(X; θ0) | X

]

=

(
1− e0(1 | X)

e0(0 | X)

)
SX(X; θ0)E [Y (1)− µT(X) | X] = 0,

E




(
YU − µU,0(X)

)

e0(0 | X)
SX(X; θ0)


 = 0,

E [τ0 (SX(X; θ0) + SYU
(YU | X; θ0))] = 0.

Proof of Ψ̃cc ∈ T : Set

Scc (T)(X,Y (1);µT,0, e0, r0) =

((
1− e0(1 | X)

e0(0 | X)

)(
Y (1)− µT,0(X)

))
r(X),

Scc (U)(X,YU;µT,0, µU,0, e0) =

(
YU − µU,0(X)

)

e0(0 | X)
+ µT,0(X)− 1

e0(0 | X)
µU,0(X) +

e0(1 | X)

e0(0 | X)
µT,0(X),

Then, Ψ̃cc ∈ T holds.

K Proof of Theorem D.8: : Semiparametric efficient ATE estimator under

the case-control setting

Recall that we have defined the ATE estimators as

τ̂ cc-effn =
1

m

m∑

j=1

Scc (T)(Xj , Yj ; µ̂
(ℓ)
T,n, ê

(ℓ)
n , r̂(ℓ)n ) +

1

l

l∑

k=1

Scc (U)(Xk, Yk; µ̂
(ℓ)
T,n, µ̂

(ℓ)
U,n, ê

(ℓ)
n ).

We aim to show
√
n
(
τ̂ cc-effn − τ0

) d−→ N (0, V cc) as n → ∞.

Recall that

Scc (T)(X,Y (1); µ̂
(ℓ)
T,n, ê

(ℓ)
n , r̂(ℓ)n )

=

(
1− ê

(ℓ)
n (1 | X)

ê
(ℓ)
n (0 | X)

)(
Y (1)− µ̂

(ℓ)
T,n(X)

)
r̂(ℓ)n (X),

Scc (U)(X,YU; µ̂
(ℓ)
T,n, µ̂

(ℓ)
U,n, ê

(ℓ)
n )

=

(
YU − µ̂

(ℓ)
U,n(X)

)

ê
(ℓ)
n (0 | X)

+ µ̂
(ℓ)
T,n(X)− 1

ê
(ℓ)
n (0 | X)

µ̂
(ℓ)
U,n(X) +

ê
(ℓ)
n (1 | X)

ê
(ℓ)
n (0 | X)

µ̂
(ℓ)
T,n(X).
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We have

τ̂ cc-effn =
1

m

m∑

j=1

Scc (T)(Xj , Yj ; µ̂
(ℓ)
T,n, ê

(ℓ)
n , r̂(ℓ)n ) +

1

l

l∑

k=1

Scc (U)(Xk, Yk; µ̂
(ℓ)
U,n, ê

(ℓ)
n )

=
1

m

m∑

j=1

Scc (T)(Xj , Yj ;µT,0, e0, r0) +
1

l

l∑

k=1

Scc (U)(Xk, Yk;µU,0, e0)

− 1

m

m∑

j=1

Scc (T)(Xj , Yj ;µT,0, e0, r0)−
1

l

l∑

k=1

Scc (U)(Xk, Yk;µU,0, e0)

+
1

m

m∑

j=1

Scc (T)(Xj , Yj ; µ̂
(ℓ)
T,n, ê

(ℓ)
n , r̂(ℓ)n ) +

1

l

l∑

k=1

Scc (U)(Xk, Yk; µ̂
(ℓ)
U,n, ê

(ℓ)
n ).

Here, if it holds that

1

m

m∑

j=1

Scc (T)(Xj , Yj ; µ̂
(ℓ)
T,n, ê

(ℓ)
n , r̂(ℓ)n )− 1

m

m∑

j=1

Scc (T)(Xj , Yj ;µT,0, e0, r0) = op(1/
√
m), (10)

1

l

l∑

k=1

Scc (U)(Xk, Yk; µ̂
(ℓ)
U,n, ê

(ℓ)
n )− 1

l

l∑

k=1

Scc (U)(Xk, Yk;µU,0, e0) = op(1/
√
l). (11)

then we have

√
n
(
τ̂ cc-effn − τ0

)

=
√
n
1

m

m∑

j=1

Scc (T)(Xj , Yj ;µT,0, e0, r0) +
√
n
1

l

l∑

k=1

Scc (U)(Xk, Yk;µU,0, e0) + op(1)

=
1√
αm

m∑

j=1

Scc (T)(Xj , Yj ;µT,0, e0, r0) +
1√

(1− α)l

l∑

k=1

Scc (U)(Xk, Yk;µU,0, e0) + op(1)

d−→ N (0, V cc),

from the central limit theorem for i.i.d. random variables.

Therefore, we prove Theorem D.8 by establishing (10) and (11). These inequalities can be proved
in the same manner as the proof of Theorem 4.8 and the analysis of double machine learning under
the stratified scheme presented in Uehara et al. (2020). Since the procedure is nearly identical, we
omit further details.

L Additional results of the simulation studies

This section investigates the case in which the expected outcomes and propensity scores follow
non-linear models.

All experiments were conducted on a Mac computer equipped with an Apple M2 processor and 24
GB of RAM.

L.1 Censoring setting

We generate synthetic data under the censoring setting, where the covariates X are drawn from a
multivariate normal distribution as X ∼ ζ0(x), where ζ0(x) is the density of N (0, Ip), p denotes the
number of covariates, and Ip is the (p× p) identity matrix. We set p = 10. The propensity score is

given by g0(1 | X) = sigmoid(X⊤β1 +X2⊤β2), where X2 is the element-wise square of X , and
β1 and β2 are coefficient vectors sampled from N (0, 0.5I2p). The treatment indicator D is sampled
according to the propensity score.
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Table 2: Experimental results. The upper and lower tables are results in the censoring and case-
control settings, respectively.

Censoring
IPW DM Efficient IPW DM Efficient

(estimated g0) (true g0)

MSE 6.86 0.51 0.28 2.30 0.17 0.21
Bias -1.60 0.40 0.22 0.33 0.10 0.04
Cov. ratio 0.81 0.18 0.76 0.96 0.29 0.94

Case- IPW DM Efficient IPW DM Efficient
control (estimated e0) (true e0)

MSE 1.06 0.09 0.10 0.35 0.03 0.03
Bias -0.03 0.19 0.18 -0.00 -0.01 -0.01
Cov. ratio 0.93 0.40 0.61 0.97 0.77 0.91

Table 3: Experimental results. The upper and lower tables are results in the censoring and case-
control settings, respectively.

Censoring
IPW DM Efficient IPW DM Efficient

(estimated g0) (true g0)

MSE 5.03 0.23 0.13 1.25 0.07 0.09
Bias -1.32 0.24 0.18 0.17 0.07 0.04
Cov. ratio 0.91 0.22 0.82 0.99 0.34 0.98

Case- IPW DM Efficient IPW DM Efficient
control (estimated e0) (true e0)

MSE 0.40 0.03 0.03 0.23 0.01 0.01
Bias -0.09 0.10 0.11 0.00 -0.02 -0.00
Cov. ratio 0.99 0.69 0.82 0.99 0.92 0.98

Censoring IPW DM Efficient

MSE 297.34 6.38 5.19
Bias -16.36 -0.58 0.56
Cov. ratio 0.00 0.10 0.22

Case-control IPW DM Efficient

MSE 26.58 1.18 1.49
Bias 2.36 0.52 0.77
Cov. ratio 0.42 0.29 0.40

Table 4: Response surface A. Left: censoring setting; Right: case-control setting.

The observation indicator O is generated such that Oi = 1 with probability c if Di = 1, and Oi = 0
if Di = 0, where c is drawn from a uniform distribution over [0, 1] before the experiment begins.

The outcome is generated as Y = (X⊤β)2+1.1+ τ0 ·D+ε, where ε ∼ N (0, 1) and we set τ0 = 3.

The nuisance parameters are estimated using three-layer perceptrons with hidden layers of 100 nodes.
The convergence rates satisfy Assumption 4.7 under standard conditions (Schmidt-Hieber, 2020).
We compare our proposed estimator, τ̂ cens-effn , with two alternative estimators: the IPW estimator
τ̂ cens-IPW
n and the DM estimator τ̂ cens-DM

n , as defined in Remarks 4.4 and 4.4, respectively. Note

that all of these estimators are proposed by us, and our objective is not to demonstrate that τ̂ cens-effn
outperforms the others, although we recommend it in practice. We consider both cases in which the
propensity score is either estimated using the method proposed by Elkan & Noto (2008) or assumed
to be known.

We set n = 3000. We conduct 5000 trials and report the empirical mean squared errors (MSEs)
and biases for the true ATE, as well as the coverage ratio computed from the confidence intervals in
Table 2 for n = 3000 and Table 3 for n = 500. We also present the empirical distributions of the
ATE estimates in Figure 3 for n = 3000 and Figure 4 for n = 5000.

L.2 Case-control setting

In the case-control setting, covariates for the treatment and unknown groups are generated from p =
3-dimensional normal distributions: XT ∼ ζT,0(x) and X ∼ ζ0(x) = e0(1)ζT,0(x) + e0(0)ζC(x),
where ζT,0(x) and ζC(x) are the densities of the normal distributions N (µp1p, Ip) and N (µn1p, Ip),
respectively. We set µp = 0.5, µn = 0, and 1p = (1 1 · · · 1)⊤. The class prior is set as e0(1) = 0.3.
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Figure 3: Empirical distributions of ATE estimates.

Figure 4: Empirical distributions of ATE estimates.

Censoring IPW DM Efficient

MSE 327.49 4.15 1.14
Bias -17.52 -1.58 -0.28
Cov. ratio 0.00 0.00 0.01

Case-control IPW DM Efficient

MSE 46.15 3.34 3.77
Bias 2.66 0.41 0.93
Cov. ratio 0.42 0.21 0.43

Table 5: Response surface B. Left: censoring setting; Right: case-control setting.

By definition, the propensity score e0(d | x) is given by e0(1 | x) = e0(1)ζT,0(x)/ζ0(x). The

outcome is generated in the same manner as in the censoring setting: Y = (X⊤β)2+1.1+τ0D+ε,
where τ0 = 3.

Since we use neural networks, we estimate the propensity score g0 using the non-negative PU learn-
ing method proposed by Kiryo et al. (2017), which is designed to mitigate overfitting when neural
networks are applied. For simplicity, we assume that the class prior e0(1) is known.
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Figure 5: Response surface A. Left: censoring setting; Right: case-control setting.

Figure 6: Response surface B. Left: censoring setting; Right: case-control setting.

We consider two cases: (m, l) = (1000, 2000) and (2000, 3000). We conduct 5000 trials and report
the empirical mean squared errors (MSEs) and biases for the true ATE, along with the coverage
ratio computed from the confidence intervals in Table 2 for (m, l) = (1000, 2000) and Table 3 for
(m, l) = (2000, 3000). We also present the empirical distributions of the ATE estimates in Figure 3
for (m, l) = (1000, 2000) and Figure 4 for (m, l) = (2000, 3000).

M Empirical analysis using semi-synthetic data

In this section, we investigate the empirical performance of our estimators using the Infant Health
and Development Program (IHDP) dataset. The dataset contains simulated outcomes paired with
covariates observed in the real world (Hill, 2011).

M.1 Dataset.

The sample size is 747, and the covariates consist of 6 continuous variables and 19 binary variables.

Hill (2011) considers two scenarios for the outcome models: response surface A and response sur-
face B. Response surface A generates the potential outcomes Yt(1) and Yt(0) according to the fol-
lowing model:

Yt(0) ∼ N (X⊤
t γA, 1),

Yt(1) ∼ N (X⊤
t γA + 4, 1),

where each element of γA ∈ R
25 is randomly drawn from {0, 1, 2, 3, 4} with probabilities

(0.5, 0.2, 0.15, 0.1, 0.05).

In contrast, response surface B generates the potential outcomes Yt(1) and Yt(0) as follows:

Yt(0) ∼ N
(
exp

(
(Xt +W )⊤γB

)
, 1
)
,

Yt(1) ∼ N (X⊤
t γB − q, 1),

where W is an offset matrix of the same dimension as Xt with all elements equal to 0.5, q
is a constant chosen to normalize the average treatment effect conditional on d = 1 to be 4,
and each element of γB ∈ R

25 is randomly drawn from {0, 0.1, 0.2, 0.3, 0.4} with probabilities
(0.6, 0.1, 0.1, 0.1, 0.1).

M.2 Censoring setting

We first investigate the censoring setting. The other experimental setups are identical to those in
Section 6. Given {(Xi, Di, Yi)} from the IHDP dataset, we generate the observation indicator O
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from a Bernoulli distribution with probability 0.1 if Di = 1, and set Oi = 0 if Di = 0. The nuisance
parameters are estimated using linear regression and (linear) logistic regression.

We compare our proposed estimator, τ̂ cens-effn , with two other candidates: the IPW estimator
τ̂ cens-IPW
n and the DM estimator τ̂ cens-DM

n , as defined in Remarks 4.4 and 4.4, respectively. All

of these estimators are proposed by us. Our aim is not to demonstrate that τ̂ cens-effn strictly outper-
forms the others, although we recommend it in practice. Unlike in Section 6, we only consider the
case in which the propensity score is estimated using the method proposed by Elkan & Noto (2008).

For each outcome model (response surface A and B), we conduct 1000 trials and report the empirical
mean squared errors (MSEs), biases for the true ATE, and the coverage ratio (Cov. ratio) computed
from the confidence intervals in Tables 4 and 5. We also present the empirical distributions of the
ATE estimates in Figures 5 and 6.

M.3 Case-control setting

In the case-control setting, we randomly split the dataset D into two subsets. One is used as an
unlabeled dataset, and the other is used as a positive dataset by selecting only the treated units from
it. The class prior is set as e0(1) = 0.1.

For each outcome model (response surface A and B), we conduct 1000 trials and report the empirical
mean squared errors (MSEs), biases for the true ATE, and the coverage ratio (Cov. ratio) computed
from the confidence intervals in Tables 4 and 5. We also present the empirical distributions of the
ATE estimates in Figures 5 and 6.
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