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Abstract

In the field of underwater image enhancement, existing methods generally rely heavily on
the RGB color space and ignore the potential advantages of the perceptually uniform XYZ
color space in color correction. Additionally, CNN-based methods are prone to losing long-
distance dependency relationships during local feature extraction process, thus affecting
the image restoration quality. To address the above issues, we propose DSCNet, an under-
water image enhancement framework based on dual color spaces. The framework aims to
break through the limitations of traditional methods, by innovatively introducing a parallel
processing mechanism for both RGB and XYZ color spaces. Upon fully taking advantages
of the XYZ space in terms of perceptual linearity, the model can improve the color correc-
tion and brightness enhancement processes. Furthermore, we design a hybrid computing
architecture which combines convolutional operations with a novel lightweight Transformer
module. Through channel splitting and dimensionality reduction strategies, the computa-
tional complexity is reduced significantly while maintaining the ability to effectively model
global contextual information. Experimental results show that DCSNet exhibits excellent
enhancement performance in various underwater scenarios and delivers superior visual ef-
fects. Moreover, with its small number of model parameters, DCSNet can be deployed on
embedded or edge devices for practical underwater visualization applications.

Keywords: Underwater image enhancement, dual color space processing, lightweight
transformer, computational efficiency, color correction, global context modeling.

1. Introduction

Underwater imaging is crucial for marine exploration, ecological monitoring, and infrastruc-
ture inspection. However, images captured underwater suffer from severe quality degrada-
tion due to the absorption and attenuation characteristics of light when it propagates in
water. This results in imagery color cast, presenting typically a blue-green tint, and a
significant decrease in contrast (Yu et al., 2024). This phenomenon affects human eye ob-
servation and the applications of underwater robots, such as navigation, object detection,
and recognition (Wang et al., 2024; Bogue, 2015). Hence, improving underwater image
quality is of great significance in improving the distinguishability of target features. With
the development of fields such as ocean engineering and underwater rescue, underwater im-
age enhancement has become one of the key technologies (Anwar and Li, 2019; Wu et al.,
2024).

Traditional underwater image enhancement methods are mainly divided into physical
model-based and non-physical enhancement (Raveendran et al., 2021). Physical model
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methods estimate optical parameters to reverse the degradation process, but they rely on
accurate depth information and are limited in practical applications. Non-physical methods,
including histogram techniques and the Retinex model, directly operate on pixel values
without the need for physical modeling (Yuan et al., 2022). Fusion-based methods combine
multiple enhancement results to improve the effect. However, these methods face problems
such as color cast and noise amplification under complex underwater conditions, and their
adaptability is limited (Cheng et al., 2025).

Deep learning, especially convolutional neural networks (CNNs), has made remarkable
progress in underwater image enhancement (Yuan et al., 2024; Zhou et al., 2025; Zhang
et al., 2024b). However, limited by the local receptive field, it is difficult to handle the
global scattering effect. The emerging Transformer architecture effectively models global
relationships through the self-attention mechanism, overcoming this limitation (Li et al.,
2025). Some of the latest methods combine Transformer and CNN to take into account
both local features and global context. However, pure Transformer has a relatively high
computational complexity in high-resolution image processing, which affects its real-time
application potential (Zhang et al., 2025c¢).

Current underwater image enhancement methods suffer from three major limitations.
First, although a limited number of studies have attempted to utilize alternative color
spaces, the vast majority of approaches still operate predominantly in the RGB color space,
which often overlooks the benefits of perceptually uniform color spaces that better align
with human vision and can facilitate more effective color correction. Second, existing archi-
tectures struggle to balance local feature extraction and global context modeling—CNNs
excel at local patterns but ignore long-range dependencies, while transformers capture
global context but are inefficient and may overlook fine details. Third, computational
inefficiency remains a significant barrier, especially for transformer-based approaches that
require quadratic computation relative to image size. Too complex network are difficult to
deploy on some lightweight underwater equipment.

To address these limitations, we propose a novel Dual Color Space Network (DCSNet).
Our approach introduces parallel processing in both RGB and XYZ color spaces, leveraging
the complementary advantages of each representation. The XYZ color space, being device-
independent and perceptually linear, provides a more effective basis for color correction and
luminance enhancement. To overcome the local-global modeling trade-off, we design hybrid
blocks that integrate convolutional operations for local feature extraction with efficient
transformer components for global context modeling. Crucially, we introduce a lightweight
attention mechanism that maintains the benefits of global modeling while dramatically
reducing computational overhead through channel splitting and dimensionality reduction.

Our main contributions are summarized as follow:

1. A Dual Color Space Network (DCSNet) is proposed for underwater image
enhancement. By leveraging the complementarity between color spaces, performing
feature extraction and processing synchronously in RGB and XYZ color spaces. The
network has relatively low requirements for computing resources and can be effectively
deployed on low-computing-power devices.

2. A Generalized Enhancement block (GenE Block) design is proposed opti-
mized for underwater optical properties, balancing performance and effi-
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ciency: In this branch, local and global features of XYZ and RGB color spaces can
be extracted through CNN and lightweight Transformer. This method can effectively
remove image degradation while retaining the overall structural information of the
image and maintaining well consistency.

3. Comprehensive experimental verification demonstrates that our method
can achieve good results in various underwater scenarios. Moreover, the
model parameters and size are much lower than those of current mainstream deep
learning algorithms.

2. Related Works

Early methods for underwater image enhancement were mostly based on physical models
and empirical assumptions. For example, the Underwater Dark Channel Prior (UDCP)
method (Drews Jr et al., 2013) and histogram equalization. The method based on red
channel correction and multi-scale fusion (Zhang et al., 2024a) enhances the image by
physically correcting the red light attenuation and fusing multi-scale information, and can
achieve a more natural visual effect in some scenarios. Other examples are the Bayesian
Retinex method (Zhuang et al., 2021), and the multi-branch aggregation network MBANet
(Yang et al., 2023). These methods focus on the separation and compensation of inherent
degradation factors, and achieve good quality improvement on real underwater data.

In recent years, the advancement of deep learning has led to the widespread application
of numerous data-driven algorithms in underwater image enhancement. For example, Li
et al. constructed a large-scale real underwater image dataset UIEB and proposed a base-
line convolutional neural network model named Water-Net (Li et al., 2020). Subsequently,
various network architectures and learning strategies have been introduced to further im-
prove enhancement performance. Among these developments, dual-branch networks have
emerged as effective solutions for underwater image enhancement. By processing features in
parallel — such as color and structure or global and local information — these models enhance
clarity and detail while mitigating typical underwater distortions. For instance, UIEC?-Net
(Wang et al., 2021) and DBFNet (Sun and Tian, 2023) employ dual pathways to separately
model complementary types of features, which are then fused to significantly improve visual
quality. Such designs not only sharpen fine details but also address common issues includ-
ing color casts, low contrast, and blur. Furthermore, recent approaches like UWMambaNet
(Zhang et al., 2025a) and USLN (Xiao et al., 2022) incorporate lightweight architectures to
enhance computational efficiency, facilitating practical deployment on resource-constrained
devices.

In addition, several other directions have also been explored. Some studies integrate
underwater imaging physical models and incorporate physical priors into network training
(Liet al., 2024), while others employ Generative Adversarial Networks (GANs) (Liang et al.,
2024) or diffusion models to produce more realistic enhancement results. For example,
DCGF utilizes a diffusion probabilistic model to progressively refine image quality (Zhang
et al., 2025b). There are also task-oriented enhancement methods, such as the approach
proposed by Yu et al. (2023), which incorporates object detection branches or losses into the
enhancement network to guide the generation of images that improve machine recognition
performance. Experiments demonstrate that such task-friendly methods can enhance object
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detection accuracy compared to enhancements optimized solely for human visual perception.
Meanwhile, Transformer-based architectures like U-Transformer (Peng et al., 2023) and
WaterFormer (Kang et al., 2023) have been introduced to underwater image enhancement,
leveraging self-attention mechanisms for global information modeling and further improving
color restoration and clarity.

3. Method

3.1. Motivation

Traditional image enhancement methods operate predominantly in the RGB color space.
However, it does not always align with human visual perception or the physical properties
of light. The XYZ color space offers a perceptually uniform representation and decouples
luminance from chromaticity, making it more robust for color-related tasks. Motivated
by this, we propose a dual-branch network, DCSNet, that processes both RGB and XYZ
representations in parallel, allowing the model to exploit complementary information from
both color spaces.

Furthermore, while convolutional neural networks (CNNs) excel at capturing local spa-
tial features, they are inherently limited in modeling long-range dependencies. Recent ad-
vances have demonstrated the effectiveness of transformer architectures in capturing global
context via self-attention mechanisms. However, standard transformers are computation-
ally heavy for high-resolution images. To address this problem, we employ a lightweight
transformer within each GenE block, enabling efficient global feature modeling without
significant computational overhead.

3.2. Overview

DCSNet is a dual-branch structured network. The core idea is to break through the limita-
tions of traditional single-color space processing by processing the complementary represen-
tations of the input image in different color spaces in parallel. The overall framework adopts
a three-stage process of “color space transform - parallel processing - adaptive fusion,” as
shown in Figure 1. Firstly, the input RGB image is converted into the CIE-XYZ color
space, then two identical but independent branches are used to process the RGB and XYZ
representations, respectively. Finally, a learnable fusion convolution is used to integrate
the dual-path features to generate the final output. This design enables the network to
simultaneously utilize the original information in the RGB and the XYZ color space and
to align. This framework maintains end-to-end differentiability and achieves collaborative
optimization of multi-space features.

3.3. Dual-Color-Space Architecture

The dual-branch design is motivated by the fact that different color spaces emphasize dis-
tinct image features and degradation patterns. For instance, RGB captures rich color infor-
mation, while XYZ space offers a perceptually uniform luminance and color representation.
By processing both simultaneously, the network can extract and integrate complementary
features, thereby improving restoration accuracy and visual quality. This complementary
learning strategy enhances the model’s ability to handle tasks such as denoising, deblurring,
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Figure 1: The overall structure of DCSNet.

and contrast adjustment. Given an input image Irqp, we construct a parallel representation
in the XYZ color space via:

Ixyz(h,w) = M- Irgp(h,w), (1)

where h and w denote the height and width of the image, and M is the standard RGB-to-
XYZ conversion matrix.

0.4124564 0.3575761 0.1804375
M = [0.2126729 0.7151522 0.0721750] . (2)
0.0193339 0.1191920 0.9503041

This dual-path processing leverages the distinctive properties of each color space. Cer-
tain degradations or visual features are more pronounced and easier to process in one space
than the other. RGB space, based on red, green, and blue primaries, aligns with human
visual perception. In contrast, XYZ space offers a linear, standardized color representation
conforming to optical measurement principles. Processing both spaces in parallel allows
the model to adaptively exploit these advantages, leading to more comprehensive feature
learning and improved enhancement performance.

DCSNet consists of two parallel branches, each built with identical GenE blocks designed
to capture both local details and global semantics. One branch processes the input in RGB,
while the other operates on the XYZ-transformed version. Each branch independently
extracts and enhances features, producing two intermediate outputs: Ogrgp and Oxyz.
These outputs retain enhanced features specific to their respective color spaces.

To fully leverage this complementary information, the two feature sets are concatenated
and fused. The fusion is performed via element-wise addition, combining the strengths of
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both representations. The resulting features are then processed through a 3 x 3 convolution
layer to generate the final output. This procedure can be expressed as:

O. = C(FraeB, Fxvz), (3)

Ofinal = COHV2d3X3(00)7 (4)

where Frgp and Fxyyz denote the feature maps from the RGB and XYZ branches, re-
spectively, O, is the concatenated feature tensor, and O ;4 is the enhanced output image.
C(-) is the concat function, Conv2dsxs(-) is the convolution function. The result exhibits
improved color fidelity, contrast, noise suppression, and overall visual naturalness—making
the method particularly suitable for complex underwater imaging conditions.

3.4. Generalized Enhancement Block

The backbone of each branch comprises of an initial convolutional layer, a series of GenE
blocks and a final convolutional layer. These GenE blocks employ a lightweight transformer
module to improve the ability to capture long-range dependencies without significantly
increasing computational complexity.

For an input feature map Fj,, the GenE block performs a series of well-defined transfor-
mations. First, the input is processed by a standard convolutional operation, which helps
to effectively extract local spatial features. Then, the feature map is fed into the lightweight
Transformer unit, where global context information is captured by modeling the interac-
tions between different regions of the feature map. After the Transformer block, additional
convolutional layers are used to further refine the resulting feature representation. These
layers help to integrate rich features while maintaining spatial coherence. The entire process
ensures that both local and global features of the input are fully captured, thus producing
a more powerful feature representation. This hybrid design enhances the network’s repre-
sentational power while maintaining memory and computational efficiency, making it ideal
for resource-constrained environments.

For an input feature map Fj,, the block operates as follows:

Firons = LT(an)a
Freony = ReLU(Dropout(Conv2dsy«3(Fin))),
Ffused = Feonv + Firans,
Four = Conv2dsy3(ReLU(Dropout(Fysed))),

()

where Fiypqns is the output of the lightweight Transformer function LT(+), Feopny is the output
of the convolutional branch, and Dropout(-) is the random dropout function. Fpyseq and
F,.: are the fused features and the final output features, respectively. The output is then
concatenated with the original input I;, to preserve low-level details:

Foaq = Concat(Foue, Lin)- (6)

The lightweight Transformer is adapted for 2D feature maps, making it particularly
effective in modeling long-range dependencies within spatial data. This adaptation enables
the model to better capture and restore details that may be obscured by light absorption
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and scattering in aquatic environments. By establishing interactions between distant spatial
locations, the lightweight Transformer can effectively recover structural information and
color fidelity from degraded underwater images. This approach improves the model’s ability
to understand contextual relationships while maintaining high computational efficiency. For
input z:

QK'
Vi

Among them, Q, K, and V represent the query vector (Query), the key vector (Key)
and the value vector (Value) in the attention mechanism, respectively. Attention(Q, K, V)
represents the attention mechanism function. /dj, is called the scaling factor.

GenkE effectively captures fine-grained local patterns through convolutional operations
and acquires global context information via a self-attention mechanism. In complex image
enhancement tasks, this dual-branch structure enhances overall visual coherence while pre-
serving detailed textures. The model’s ability to process both local and global information
simultaneously makes the enhanced results structurally coherent and visually natural. In
addition, the lightweight Transformer in this module helps overcome the locality constraints
of traditional convolutional neural networks (CNNs). The model can understand the global
structure and relationships within the entire image. This global perception is crucial when
information from distant regions significantly influences local enhancement decisions. For
example, when restoring missing or degraded textures, global information helps improve
overall consistency of the image.

[Q, K, V] = Conv2d; «i(x), Attention(Q, K, V) = Softmax ( )V. (7)

3.5. Loss Function

In the training process, we employ a combined loss function designed to promote both
pixel-level accuracy and perceptual realism. The overall loss is formulated as follows:

Liotal = aLige + BLSemantics + 'YLpixel . (8)

pixel-level matching — semantic features  pixel features

The design of such a loss function aims to optimize the restoration effect of underwater
images. It consists of three parts, which enhance the image quality from different aspects.
The first part is the pixel-level Mean Squared Error (MSE), which is used to measure
the difference in pixel values between the reconstructed image and the original image. This
part helps to preserve the basic structure and detail clarity of the image, making the re-
stored image visually closer to the real scene. The weight of this term is controlled by the
hyperparameter « to balance the need for pixel accuracy in the overall loss.

The second part extracts high-level semantic features based on a pre-trained VGG net-
work. By comparing the differences between deep features, it ensures the semantic consis-
tency of the image. This method is particularly suitable for solving common problems in
underwater images such as color distortion and contrast reduction, and can maintain the
true appearance of objects under complex lighting conditions. The weight of this part is ad-
justed by the hyperparameter 3, enabling the model to pay more attention to the accuracy
of semantic information during the training process.
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The third part is the pixel-level semantic loss. By incorporating additional prior con-
straints, such as color correction and illumination compensation, it further optimizes the
specific attributes of underwater images. The design of this loss function takes into account
the special characteristics of the underwater imaging environment, such as the absorption
and scattering effects of light, thus more effectively restoring the color and details of the
image. The contribution degree of this part is controlled by the hyperparameter ~.

The adjustment of loss function weights («, 3,7) remains a direction for future work.
While currently set as equally important, task-specific adjustments—such as emphasizing
pixel-level features for detail enhancement or prioritizing semantic features for recogni-
tion tasks—could further improve performance. This flexibility would enhance the model’s
adaptability to diverse underwater vision scenarios.

4. Experimental analysis

4.1. Datasets, Evaluation Metrics and Experimental Setup

We evaluated the proposed method on the UIEB (Li et al., 2020) and EUVP (Islam et al.,
2020) datasets. The UIEB dataset comprises 950 underwater images, of which 890 have
corresponding reference images and 60 belong to the challenge set. For training, we em-
ployed 800 pairs of real-world images, and testing was conducted on the remaining 90 UIEB
images. The EUVP dataset contains about 20K underwater images organized into paired
and unpaired subsets. The paired data provide aligned low- and high-quality images for
supervised training, while the unpaired data include independent collections of poor- and
good-quality images for adversarial training. With diverse underwater scenes and varying
conditions, EUVP is widely used for training and evaluating image enhancement models.

In the evaluation of underwater image quality, UCIQE (Yang and Sowmya, 2015), UIQM
(Panetta et al., 2016), CCF (Wang et al., 2018), and FDUM (Yang et al., 2021) are com-
monly used no-reference evaluation metrics, which quantify image quality from multiple
dimensions. UCIQE is calculated through the weighted sum of color, saturation, and con-
trast. A larger value indicates less color distortion, higher contrast, and better overall visual
quality. UIQM comprehensively considers the authenticity of color, image clarity, and con-
trast. A higher value indicates more natural colors and clearer images. CCF is composed
of a linear combination of color richness, contrast, and haze, and is used to measure the
degradation of image quality caused by medium scattering. A higher value means richer
colors, better contrast, and weaker scattering effects. FDUM reflects image quality by esti-
mating the degree of medium scattering in the image. A larger value indicates higher image
transparency.

The DCSNet is implemented in PyTorch 1.13 on a system equipped with a NVIDIA
4090 GPU boasting 24 GB of RAM and an Intel (R) Xeon (R) W-2255 CPU. We use Adam
Optimizer for training. The initial learning rate is set to 0.01, and the learning rate decays
by 30% every 30 epochs. The training uses a batch size of 4 and is carried out for a total
of 100 epochs. The input images are uniformly scaled to a resolution of 512x512. During
the training process, the model checkpoint is saved every 10 epochs.
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Table 1: Quantitative comparison on the UIEB dataset, the red is the highest, the blue
is the second highest, and the black font is the third highest.

Method UCIQE(}) | UIQM(1) | CCF(1) | FDUM(1)
Raw 0.519 1.157 20.514 0.447
Fusion (Ancuti et al., 2018) 0.592 1.345 20.053 0.538
Shallow-UWnet (Naik et al., 2021) 0.508 1.084 18.955 0.382
U-Shape (Peng et al., 2023) 0.569 1.343 23.732 0.495
DMWater (Tang et al., 2023) 0.603 1.361 27.062 0.553
NU?Net (Guo et al., 2023) 0.598 1.258 20.694 0.509
HCLR-Net (Zhou et al., 2024) 0.613 1.350 26.319 0.610
Ours 0.602 1.391 31.738 0.658

Table 2: Quantitative comparison on the EUVP dataset, the red is the highest, the blue
is the second highest, and the black font is the third highest.

Method UCIQE(1) | UIQM(1) | CCF(1) | FDUM(})
Raw 0.549 1.302 | 30.267 0.445
Fusion 0.588 1.404 | 28.310 0.486
Shallow-UWnet | 0.562 1.296 25.972 0.440
U-Shape 0.408 0.845 12.434 0.423
DMWater 0.510 1.129 19.359 0.340
NUZNet 0.606 1.389 29.123 0.523
HCLR-Net 0.618 1.411 | 36.929 | 0.555
Ours 0.607 1.467 | 46.857 | 0.629

4.2. Experiment on Datasets

In the quantitative comparison, our method ranked first in the three key metrics - UIQM,
CCF and FDUM - on both the UIEB and EUVP datasets, exceeding the second-place
method by 0.03, 4.676, and 0.048 respectively on UIEB, and by 0.056, 9.928, and 0.074 on
EUVP. This indicates that our method demonstrates strong performance in color restora-
tion, detail preservation, and structural fidelity. For the UCIQE metric, although our
method ranked second on the EUVP dataset and third on the UIEB dataset, it trailed the
top-performing HCLR-Net by only 0.011 in both cases.

The qualitative visual results highlight the advantages of our method under the UIQM
and FDUM metrics, which assess color naturalness, contrast, and fine detail preservation,
directly reflecting its perceived superiority. Figure 2 and Figure 3 present visual com-

parisons between our method and various underwater image enhancement models across
different scenes from the UTEB and EUVP datasets. As shown in Figure 2, Shallow-UWnet
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Figure 2: Qualitative evaluation of the proposed method compared to other techniques
using the UIEB dataset.

Table 3: Comparison of Different UIE Models in Terms of GFLOPs (G) and Parameters
(M), the red is the lowest, the blue is the second lowest, and the black font is
the third lowest.

Method Param(M)| | GFLOPS(G)/
NU?Net 3.15M 46.33G
Shallow-UWnet 0.22M 43.26 G
PUIE-Net (Fu et al., 2022) 1.40M 423.04G
Semi-UIR (Huang et al., 2023) 1.68M 550.76G
HCLR-Net (Zhou et al., 2024) 4.8™™ 5651.99G
Ours 0.44M 86.54G

demonstrates relatively good performance in restoring fish images but introduces additional
red artifacts when processing turbid images. U-shape improves contrast, yet fails to recover
fine structural details, resulting in blurred edges. Both NU?Net and DMWater achieve a
better balance between contrast and color fidelity, but still exhibit deficiencies such as loss
of details in dark areas or red artifacts in certain regions. The visual results of HCLR-Net
are comparable to those of ours, though some of its outputs suffer from incomplete color
cast removal—for example, the fish or backgrounds in the first and fifth rows still retain a
bluish tint.
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Figure 3: Qualitative evaluation of the proposed method compared to other techniques
using the EUVP dataset.

As observed in Figure 3, Shallow-UWNet tends to exhibit over-saturation or color distor-
tion, especially in challenging regions like the yellow fish and sea turtle. Although U-Shape
and DMWater improve color fidelity to some extent, they still display residual haze and
reduced local contrast. Other methods generally perform well on the EUVP dataset, but
often fail to fully eliminate the blue color cast in the background.

In contrast, our method restores natural colors and preserves textural details across
all examples, while maintaining overall visual coherence without over-saturation. The en-
hanced results align more closely with actual scenes. These outcomes confirm that our
method excels not only in quantitative metrics but also in delivering consistent and high-
quality visual enhancements. The effectiveness of the dual-color space design is thereby
underscored, demonstrating robust performance across complex underwater scenarios.

Furthermore, to comprehensively evaluate the real-time processing capability and de-
ployment efficiency of underwater vision models, we systematically analyzed the model
parameter counts and computational complexities of various architectures. The quantita-
tive results (Table 3) indicate that the proposed method demonstrates excellent efficiency
among deep learning-based solutions. Specifically, in terms of the key parameter scale
(Param), our model remains highly compact. Although slightly higher than that of the
lightest Shallow-UWNet, it achieves an 86% reduction compared to NU2Net. In terms of
computational load (GFLOPS), our method reduces it by 79.5% compared to PUIE-Net. It
is noteworthy that although Shallow-UWNet has the lowest computational cost, its restora-
tion accuracy is significantly inferior to our method. Thus, the proposed method achieves
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Table 4: Ablation study of various modules and loss functions on the UTEB dataset.

Evaluation Metric
UCIQE | UIQM | CCF | FDUM
-w/o RGB branch | 0.497 1.033 | 16.025 | 0.346
-w/o XYZ branch | 0.517 1.080 | 16.338 | 0.411
-w/o GenE block | 0.509 1.140 | 16.930 | 0.394
Full Model 0.602 | 1.391 | 31.738 | 0.658

Method

an optimal balance between performance and efficiency, offering a practical solution for
real-time deployment on resource-constrained platforms such as autonomous underwater
vehicles and unmanned aerial vehicles.

4.3. Ablation Study

Ablation studies were conducted on the UIEB dataset to assess the contributions of in-
dividual components to model performance. Quantitative and visual comparisons under
different architectural configurations are summarized in Table 4 and Figure 4.

The full model consistently outperformed all ablated variants: -w/o RGB branch, -w/o
XYZ branch, and -w/o GenE block. Specifically, the UCIQE score increased from 0.497,
0.517, and 0.509 to 0.602; UIQM rose from 1.033, 1.080, and 1.140 to 1.391; CCF improved
markedly from approximately 16 to 32; and FDUM increased from 0.346, 0.411, and 0.394
to 0.658. These results confirm that both color-space branches and the GenE block are
critical to model performance, and their joint operation yields the best outcomes. The
varying degree of performance degradation upon the removal of each component suggests
their distinct contributions across different metrics.

Visual results further demonstrate the component-specific contributions: the -w/o XYZ
output shows a bluish-white tint with detail loss, highlighting its role in color correction
and detail retention. The -w/o RGB variant exhibits reduced color richness and clarity,
confirming its importance for chromatic accuracy. Removing the GenE module introduces
a yellowish cast and impairs color consistency, underscoring its global consistency effect.
In contrast, the complete model produces the most natural colors and sharpest details,
validating the complementary advantages of the dual-branch design and the GenE module.

These ablation studies confirm that the RGB and XYZ branches offer complementary
feature representations, while the GenE module ensures global color consistency. Their
integration enables optimal performance across metrics, providing an effective solution for
underwater image enhancement.

5. Conclusion

In underwater imaging tasks, due to the absorption and scattering effects of light, the im-
age quality deteriorates significantly, which affects the effective execution of subsequent
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Figure 4: The visualization results of the ablation experiments conducted on the introduced
framework.

tasks. To address this issue, this paper proposed an underwater image enhancement net-
work based on a dual color space. The network consists of an RGB branch and an XYZ
branch. In each branch, through the GenE block that integrates the CNN and Transformer
structures, the network realizes the mixed extraction of global and local information of the
image, and further fuses multi-scale features for image restoration. In this process, the
network can maintain excellent color restoration ability in complex underwater environ-
ments. Experimental results show that this method outperforms existing algorithms on
multiple underwater image enhancement datasets, demonstrating better visual effects and
performance.
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