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ABSTRACT

Self-supervised contrastive learning (SSCL) is a rapidly advancing approach for
learning data representations. However, a significant challenge in this paradigm is
the feature suppression effect, where useful features for downstream tasks are sup-
pressed due to dominant or easy-to-learn features overshadowing others crucial for
downstream performance, ultimately degrading the performance of SSCL models.
While prior research has acknowledged the feature suppression effect, solutions
with theoretical guarantees to mitigate this issue are still lacking. In this work,
we address the feature suppression problem by proposing a novel method, Fisher
Contrastive Learning, which unbiasedly and exhaustively estimates the central
sufficient dimension reduction function class in SSCL settings. In addition, the
embedding dimensionality is not preserved in practice. FCL empirically maintains
the embedding dimensionality by maximizing the discriminative power of each
linear classifier learned through Fisher Contrastive Learning. We demonstrate
that using our proposed method, the class-relevant features are not suppressed by
strong or easy-to-learn features on datasets known for strong feature suppression
effects. Furthermore, we show that Fisher Contrastive Learning consistently out-
performs existing benchmark methods on standard image benchmarks, illustrating
its practical advantages.

1 INTRODUCTION

Among various approaches to self-supervised learning, self-supervised contrastive learning (SSCL)
Chen et al. (2020a); Robinson et al. (2020); Kalantidis et al. (2020); Grill et al. (2020); Radford et al.
(2021); Chen et al. (2020b;c); Caron et al. (2020); He et al. (2020); Chen & He (2021); Grill et al.
(2020) has emerged as a particularly promising technique. SSCL offers a new paradigm that exploits
data augmentations to create positive and negative pairs for learning data point representations. For
example, in the context of computer vision, positive and negative pairs are formed based on image
augmentation techniques such as cropping, color jittering, and adding noise. The augmented image
and the original image form a positive pair. Conversely, those images augmented from different
images from distinct sources form the negative pairs. The objective of SSCL is to ensure that
representations of positive pairs are closer in the embedding space than those of negative pairs. SSCL
has achieved remarkable success in various machine learning tasks Chen et al. (2020a); He et al.
(2020); Chuang et al. (2020); Radford et al. (2021).

Feature Suppression Effect Feature suppression effect is a phenomenon in which dominant
features (e.g., content) can overshadow and suppress other important features (e.g., style), causing
SSCL to fail to learn the necessary features for downstream tasks Rusak et al. (2022), limiting
the potential of SSCL. Feature suppression effects happen when the representations lose diversity
and become less informative. For example, easy-to-learn shared features of augmented pairs could
suppress the learning of other features Chen et al. (2021), and color features can suppress other
features like texture and shape Chen et al. (2020a); Robinson et al. (2021), despite the object class
often being determined by features other than just color. Consequently, the presence of "color
distribution" suppresses the competing features of "object class" Chen et al. (2021), leading to
insufficient dimension reduction space for downstream classification tasks. The resulting lack of
discrimination power fails to capture the full complexity and richness of the data, degrading the
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performance of downstream tasks. Severe feature suppression effects in SSCL require effective
strategies with theoretical guarantees to mitigate this critical problem.

Previous theoretical investigations have shown that under the following scenarios, there would
be feature suppression effects: (1) The distribution of the feature is uniformly distributed on the
underlying space Robinson et al. (2021); (2) the augmentation tends to preserve class-irrelevant
features Xue et al. (2023), and (3) the low embedding dimensionality, meaning the embedding space
has a lower rank than its dimension Xue et al. (2023); Li et al. (2023). Based on their understanding
of how feature suppression effects happen, they propose several remedies to overcome the feature
suppression effect, Robinson et al. (2021) propose implicit feature modification to remove well-
represented features in the input samples to encourage the encoder to learn more semantic features.
However, the solution works only given the condition that the encoder before feature modification is
a shortcut solution. There is no guarantee that the learned features are effective for discrimination.
Built on the theoretical understanding, Xue et al. (2023) suggest two pathways to remedy the feature
suppression effect, one is to increase the embedding dimensionality, and the other is to prevent
imperfect augmentations, i.e. adding noise to class-relevant features. However, they do not offer
a robust solution to imperfect augmentations and increase the embedding dimensionality. Besides
increasing the embedding dimensionality, predictive contrastive learning Li et al. (2023) prevents
the features from being suppressed by training a decoder to restore the input. However, the decoder
module also preserves the class-irrelevant features like background information. Although the
aforementioned research has alleviated the feature suppression effects by minimizing the information
loss in embeddings, methods guaranteeing that the learned features are both effective and sufficient
in self-supervised learning are still lacking.

(a) (b) (c)(c)85.30% 58.00%

Figure 1: Results for SimCLR and the proposed method on an 18-dimensional self-supervised learning task.
(a) The true predictors of data for downstream classification tasks. (b) FCL: The learned embedding space is
linear-transformed by discriminant functions of the embedding space. We use the representation learned by FCL
to train a K-Nearest Neighbor (KNN) classifier and the accuracy is 85.30%. (c) SimCLR: The learned embedding
space is linear-transformed by discriminant functions of the embedding space. We use the representation learned
by SimCLR to train a KNN classifier and the accuracy is 58.00%.

Fisher Discriminant Analysis and Sufficient Dimension Reduction Fisher discriminant analysis
(FDA) is a supervised dimension reduction method that projects data onto a lower-dimensional space
while maximizing the separation between different classes Hastie et al. (1994; 1995). FDA as a
classification method can be generalized to regression settings, e.g., sliced inverse regression Li
(1991); Chen & Li (2001), a method of estimating the sufficient dimension reduction (SDR) subspace
Chen & Li (1998); Cook (2007). Based on the theoretical framework of SDR, the discriminant
functions in FDA recover the effective dimension reduction subspace for binary responses in the
classification tasks Chen & Li (2001). In a general setting, sufficient dimension reduction subspace
can be defined as a sub σ-filed G of σ(X) such that Y ⊥⊥ X | G, where ⊥⊥ denotes statistical
independence. This indicates that G preserves all the information about Y contained in X . SDR has
played crucial roles in dimension reduction problems of regression Li (1991); Cook & Li (2002)
and classification tasks Chen & Li (2001); Wu (2008). By embedding the data into the sufficient
dimension reduction subspace, we can obtain a dimension reduction space that is both unbiased and
exhaustive Lee et al. (2013).

Motivating Example We illustrate such a phenomenon through an example of classification,
introduced by Meng et al. (2020). We adapt it to a self-supervised learning task. The example
includes two C-shaped curves with random Gaussian noise in a two-dimensional subspace embedded
in R18. There are two classes:
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• X1 = 20 cos(θ) + Z1 + 5, X2 = 10 sin(θ) + Z2 − 5, where Z1, Z2 and θ are indepen-
dently generated from N (0, 1),N (0, 1), and N (π, (0.25π)2), respectively; X3, ..., X18 are
independently generated from N (0, 5).

• X1 = −20 cos(θ) − Z1 − 5, X2 = 10 sin(θ) + Z2 + 5, where Z1, Z2 and θ are indepen-
dently generated from N (0, 1),N (0, 1), and N (π, (0.25π)2), respectively; X3, ..., X18 are
independently generated from N (0, 5).

For each class, we first generate a sample of 5000 in size. The 10,000 data points in the first two
dimensions are shown in panel (a) of Figure 1. We train the data using a single-layer neural network
using the SSCL framework. The dimension of the embedding space is 10. The augmentation for
the SSCL is adding Gaussian random noise N (0, 1). The class-relevant features are X1 and X2.
However, the easy-to-learn and strong features, X3, ..., X18, suppress the class-relevant features as
shown in the panel (c) of Figure 1. We visualize the 2D embedding space of SimCLR by projecting it
onto Fisher discriminant directions.

Fisher Contrastive Learning To be more robust to the feature suppression effect, we propose a
novel contrastive learning method, Fisher Contrastive Learning (FCL), which estimates the sufficient
dimension reduction subspace through nonlinear transformation. First, we reformulate the SSCL
problem as a dimension reduction task for classification, where the goal is to project data into a
subspace that enhances class separability induced by augmented image views. Second, we maximize
the discrimination power of the Fisher discriminant functions in the embedding space. By doing so,
we preserve the central sufficient dimension reduction functional class of the self-supervised learning
task as shown in panel (b) of Figure 1. Consequently, the embeddings learned by FCL can mitigate
the feature suppression effects and retain informative components with theoretical guarantees. Our
contributions are threefold: (1) We introduce FCL, a nonlinear sufficient dimension reduction method
for SSCL, that offers a robust solution to the feature suppression effects by learning an exhaustive
and unbiased function class; (2) FCL prevents the low embedding dimensionality by maximizing
the discrimination power of the Fisher discriminant functions; (3) we demonstrate the effectiveness
of the proposed method on various datasets that exhibit feature suppression effects and benchmark
image datasets compared with other self-supervised learning methods.

2 PRELIMINARIES

Simple contrastive learning (SimCLR) Chen et al. (2020a) is one of the most powerful methods
in SSCL. Our presentation of SSCL will focus on SimCLR. Suppose that the dataset contains N
data points. In SimCLR, we apply augmentations to each input vector xk, where each input vector
generates augmented pairs, and we finally get 2N data points. The augmented positive pairs of
the original input xk are denoted as x̃2k−1 and x̃2k, randomly sampled from the space ΩX and
X is a random vector of dimension p. We define the non-linear mapping for each data point by:
f : ΩX → Rd, transforming the data point from the input space to the embedding space, zk = f(xk),
where xk ∈ Rp, f(xi) ∈ Rd, and d < p. In other words, the mapping pulls data to the embedding
space of dimension d. The similarity score si,j of two images is defined based on the embeddings,
zi and zj . In SimCLR, the pairwise similarity score is cosine similarity, si,j = z⊤

i zj/ (∥zi∥ ∥zj∥).
The goal of SimCLR is to discriminate augmented samples of one image from the augmentations of
other images. The contrastive loss function is defined by:

ℓ(i, j) = − log
exp (si,j/τ)∑2N

k=1 1[k ̸=i] exp (si,k/τ)
, L = − 1

2N

N∑
k=1

[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)] , (1)

where τ is the temperature controlling the hardness of negative samples. The standard contrastive
loss can be generalized to the composition of two parts, one is uniformity loss, the other is alignment
loss Wang & Isola (2020); Chen et al. (2021).

L = − 1

N

∑
i,j

sim (zi, zj)︸ ︷︷ ︸
Lalignment

+
λ

N

∑
i

log

2N∑
k=1

1[k ̸=i] exp (sim (zi, zk) /τ)︸ ︷︷ ︸
Ldistribution

, (2)

where Lalignment encourages embeddings of augmented pairs to be mapped together, while Ldistribution
encourages the augmentations from different samples to spread as much as possible.
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3 FISHER CONTRASTIVE LEARNING

The occurrence of feature suppression effects in SimCLR deteriorates the performance of downstream
tasks. Such issues occur when some features are too easy or strong to learn other discriminant features
for downstream tasks. To address the problem, we propose FCL, a novel method that projects the data
into the central sufficient dimension reduction function class. In addition, our proposed algorithm
can preserve the dimensionality of embeddings, further guaranteeing the embeddings are robust to
feature suppression effects.

Since the generalized contrastive loss in Eq. 2 aligns with the goal of the FDA, we first convert the
SSCL to a classification task. The classification labels are defined such that the augmentations from
the j-th data point belong to the j-th class. There are n classes for each batch of size n. The primary
objective of the FDA is to find a hyperplane that optimally separates the classes by maximizing the
between-class variance relative to the within-class variance. For high dimensional data, the FDA may
not be effective enough for classification tasks Dorfer et al. (2015); Hastie et al. (1995). This motivates
us to introduce a nonlinear method, FCL. After a nonlinear mapping, we optimize the FDA objective
in the embedding space trained by the neural network. In FCL, the alignment loss corresponds to the
within-class variance, and the uniformity loss corresponds to the negative of between-class variance.
For each batch of size n, we define the within-class variance of the embeddings by:

SW :=
1

2n

n∑
i=1

(f(x̃2i−1)− f(x̃2i)) (f(x̃2i−1)− f(x̃2i))
⊤
, (3)

where SW is a matrix of dimension (d, d). Within-class variance measures the variance within each
class. The goal is to minimize within-class variance over between-class variance, ensuring that the
members of each class are as close as possible to their respective class mean. The between-class
variance of the embeddings measures how much each class mean differs from the overall mean,

SB :=

n∑
i=1

2 (µi − µ) (µi − µ̃)
⊤
, (4)

where µi =
1
2 (f(x̃2i−1) + f(x̃2i)), and µ = 1

2n

∑n
i=1 (f(x̃2i−1) + f(x̃2i)). Same as FDA, the

total variance ST is the sum of the within-class variance and between-class variance ST = SW +SB .
The objective function of FCL is:

max
U

tr

(
U⊤SBU

U⊤SWU

)
, (5)

with respect to the matrix U , and the column space of the matrix U consists of the discriminant
functions for FCL. Maximizing the above function equals to the problem:

max
U

tr
(
U⊤SBU

)
, s. t. U⊤SWU = I. (6)

To optimize the problem, we can use the Lagrange algorithm, that is, to maximize:

L = tr
(
U⊤SBU

)
− tr

(
Λ⊤ (

U⊤SWU − I
))

. (7)

The solution to the optimization function is

SBU = SWUΛ, (8)

where U is the eigen-matrix of S−1
W SB . The eigenvectors are nonlinear Fisher discriminant functions,

also referred to as the canonical variates Chen & Li (2001). The optimization goal of FCL is to
maximize the discrimination power defined in Fukunaga (1990), the sum of variances of embeddings
projected to the canonical variates:

max
f

∆ = tr(S−1
W SB). (9)

Since ∆ is the upper bound of the misclassification error, maximizing the discrimination power
inherently minimizes the alignment loss and uniformity loss in contrastive learning Bian & Tao
(2014). When implemented, SW is singular when the data resides in a lower-dimensional space
than the dimension of embeddings, d. To ensure the numeric stability, we add a regularization term
to the within-class variance Zhong et al. (2005), SBU = (SW + λI)UΛ, where λ is a penalty
hyperparameter selected by grid search.
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4 CENTRAL σ-FIELDS FOR NONLINEAR SUFFICIENT DIMENSION REDUCTION

Sufficient dimension reduction (SDR) has been one of the most popular dimension reduction frame-
works in statistics (Li, 1991; Cook & Li, 2002; Li, 2018). In the classical setting, linear SDR equals
FDA, which seeks a low-dimensional linear classifier that captures all the information needed in a
classification task. In the self-supervised contrastive learning framework, we have a random vector
X of dimension p comprising augmented data and random variable, a random variable Y augmented
classification labels. If there is a matrix B ∈ Rp×d(p ≥ d) such that Y ⊥⊥ X | B⊤X , then the
subspace spanned by the column space of B is referred to as a linear SDR subspace. The intersection
of all the SDR subspaces is called the central SDR subspace, which can be estimated by FDA.

Our proposed method FCL generalizes FDA to a nonlinear setting, which generalized SDR subspace
to SDR σ-field, preserving the essential features and variations in the augmented data through
nonlinear SDR. Functions are typically defined on a σ-field. A σ-field ensures that we can perform
key operations without leaving the domain of our measure. Similarly, the central SDR σ-field is
the intersection of SDR σ-field and can be estimated unbiasedly and exhaustively by our proposed
FCL. The unbiasedness ensures that the learned embeddings do not contain redundant information to
distinguish those data augmented from different data points, while exhuastiveness guarantees that
the embeddings capture all the necessary information to distinguish between different data points,
thereby preventing feature suppression.

Other contrastive learning methods would suppress class-relevant features when the augmentation is
imperfect Xue et al. (2023). However, our proposed FCL can preserve the class-relevant features
illustrated by Figure 1. We prove it by showing the unbiasedness and exhaustiveness of the estimated
function class by FCL, which indicates the learned embeddings contain sufficient information from
the input images, including the class-relevant features. This suggests that our method is more robust
against feature suppression effects compared with other contrastive learning methods.

In this section, we first define the SDR σ-field and central SDR σ-field and then prove the proposed
FCL can learn the central sufficient dimension reduction σ-field for the self-supervised learning
task. The set of all central σ-field-measurable, square-integrable functions is named the central SDR
function class, which is spanned by a vector of functions {g1, . . . , gd}. The estimated embedding
function fsol is unbiased and exhaustive of the central sufficient dimension reduction function class.

Definition 4.1. A sub σ-field G of σ(X) is a sufficient dimension reduction(SDR) σ-field if Y is
independent of X conditioned on G, i.e.,

Y ⊥⊥ X | G, (10)

where ⊥⊥ denotes statistical independence.

The special property of the nonlinear sufficient dimension reduction framework is its flexibility, as it
does not impose any specific assumptions about the relationship between Y and X . By leveraging
the general concepts of σ-field, it also does not require a predefined form for the dimension reduction.
To aid those unfamiliar with this concept, we provide the following interpretation in the context of
linear dimension reduction.

In terms of nonlinear SDR, our goal is to recover the smallest σ-field satisfying Eq.(10). To ensure
the existence and uniqueness of the smallest σ-field, we need assumptions on the probability measure
for generating the augmented data. Suppose the augmentation on the data point xi is conducted by
random sampling from the probability measure Pi.

Lemma 4.2 (Existence and uniqueness of the central σ-field). If Pis are dominated by a σ-finite
measure, there exists a unique σ-field denoted by YY |X ⊂ σ(X) such that

1. Y ⊥⊥ X | YY |X ,

2. if G is a SDR σ-field of σ(X), YY |X ⊆ G.

The σ-field YY |X is referred to the central σ-field.

Based on the above lemma, we may define the central SDR function class that corresponds to the
central σ-field.

5
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Definition 4.3. The central sufficient dimension reduction function class, denoted by SY |X , is defined
by

span
{
g ∈ HX : g is measurable YY |X

}
Notice that there are infinities functions in the central SDR function class SY |X . Hence, the
estimability of SY |X relies on the following assumption,

Assumption 4.4. There exists functions g1 . . . , gd ∈ SY |X such that SY |X = span {g1, . . . , gd}.

Under this assumption, we can see that the function in SY |X is the linear combination of the functions
{g1, . . . , gd}. Therefore, with Assumption 4.4 and Lemma 4.2, we can see that

Y ⊥⊥ X | g1(X), . . . , gd(X). (11)

Therefore, the objective is to identify a function f = (g1, . . . , gd) : ΩX → Rd satisfying the above
conditions.
Assumption 4.5. SY |X is complete: For each YY |X -measurable function g ∈ HX we have:

E(g(X) | Y ) = 0 almost surely ⇒ g(X) = 0 almost surely. (12)

When a complete SDR class exists, it is unique and coincides with the central SDR function class.
We now provide the main theorem of this section.
Theorem 4.6. Under the Assumption 4.4, Assumption 4.5 and several additional assumptions which
are listed in the Appendix, the central SDR function class SY |X can be recovered by solving

max
f=(g1,...,gd)

tr
{
Var[f(X)]−1Var[E(f(X)|Y )]

}
, (13)

such that the functions g1, . . . , gd are linear independent. Then, the estimate fsol =
(g1,sol, . . . , gd,sol) is (1) unbiased, i.e., g1,sol, . . . , gd,sol ∈ SY |X ; (2) exhaustive, i.e., SY |X ⊂
span {g1,sol, . . . , gd,sol} . Therefore, the estimate fsol is Fisher consistent.

The theoretical result suggests the approaches to estimating the central SDR function class. In fact,
Eq.(9) is the sample level of Eq.(13).

Remark. The unbiasedness of the estimation of the central SDR function class indicates the
regression function class, fsol = (g1,sol, . . . , gd,sol), is contained in the central SDR function class.
The exhaustiveness of estimation means the regression function class can generate the central SDR
function class. In other words, the proposed FCL can preserve the class-relevant features even when
the class-irrelevant features are strong and easy to learn through estimating the central SDR class
unbiasedly and exhaustively.

5 EXPERIMENT RESULTS

To illustrate the advantage of our proposed FCL method, we conduct experiments on several datasets,
including datasets with various levels of feature suppression effects and benchmark image datasets.
We also compare our method with other self-supervised learning approaches.

5.1 EXPERIMENT DATA

We start by examining two datasets that are designed to show feature suppression effects following
Chen et al. (2021). This allows us to demonstrate how our proposed FCL method effectively handles
such challenging scenarios. Following this, we evaluate FCL’s performance on several benchmark
datasets. These benchmarks highlight FCL’s capability to learn discriminative features across diverse
data distributions and downstream tasks.

5.1.1 RANDOM BITS

Random Bits dataset Chen et al. (2021) dataset concatenates real images with images of random
integers along the channel dimension. The random integers are sampled from the range [1, log2(l)],
where l is a controllable parameter, and replicated across all pixels using l binary channels. Notably,
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unlike RGB channels, these random bit channels remain identical between augmented views of the
same image. The added random bit channels act as easy-to-learn features that can suppress other
features. We vary the number of random bits {0, 2, 4, 6, 8, 10} to control the mutual information
between augmented views. More random bits indicate stronger feature suppression effects.

5.1.2 DIGITS ON FLOWER DATASET

Digits on Flower dataset is adapted from Chen et al. (2021). This dataset involves randomly mapping
different numbers of MNIST digits LeCun (1998) onto flower images from five classes in ImageNet
Deng et al. (2009): dandelions, daisies, tulips, sunflowers, and roses. Figure 2 illustrates examples
with {0, 1, 4, 9, 16} digits mapped onto the flower images. MNIST digits in the dataset are easy-
to-learn features. As more digits overlap the flower images, the feature suppression effects are
stronger.

A B C D

Figure 2: Illustrations of the Digits on Flower dataset. Each group displays different numbers of digits mapped
onto flower images. Group A: 1 digit; Group B: 4 digits; Group C: 9 digits; Group D: 16 digits. In each group,
the left panel shows the original flower images, while the right panel shows the images after mapping.

5.1.3 BENCHMARK DATASET

We use several image classification benchmark datasets to evaluate proposed algorithm, STL-10
Coates et al. (2011), CIFAR-10, CIFAR-100 Krizhevsky et al. (2009), and Tiny ImageNet mnmoustafa
(2017). More details of the description of the datasets can be referred to Section C in Appendix.

5.2 FEATURE SUPPRESSION EFFECTS EXPERIMENT RESULTS

The experiment results first demonstrate that datasets with strong feature suppression effects degrade
the performance of SimCLR and SimSiam for downstream tasks, due to low embedding dimension-
ality and less discriminative power. In contrast, our proposed FCL method outperforms SimCLR
Chen et al. (2020a) and SimSiam Chen & He (2021) on these datasets exhibiting feature suppression
effects, showcasing its robustness to such challenging scenarios. For the Random Bits and Digits on
Flower dataset experiments, we employed a consistent model architecture: an encoder with three
2D convolutional layers, a flatten layer, and a dense layer, using batch normalization and ReLU
activations throughout. The projection network has two dense layers, with a 128-dimensional output.

5.2.1 RESULTS OF RANDOM BITS DATASETS

Figure 3: Accuracy for Digits on Flower and Random Bits dataset.
Left: Top-1 accuracy for Random Bits dataset. Right: Top-1 accu-
racy for Digits on Flower dataset. Red lines: FCL method; Blue
lines: SimCLR method; Green lines: SimSiam method.

We compare the proposed method
with the benchmark algorithm, Sim-
CLR Chen et al. (2020a) and SimSiam
Chen & He (2021), on various levels
of feature suppression effects. The
accuracy of these three methods is dis-
played on the left panel of Figure 3,
where varying numbers of bits have
been added as additional channels in-
variant in two augmented views. Ini-
tially, with a small number of random
bits, both methods achieve high classi-
fication accuracy for the dataset. How-
ever, as the number of random bits in-
creases, the accuracy of the SimCLR and SimSiam drops sharply. When the number of random bits

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

reaches 8 and 10, their performance becomes equivalent to random guessing, with an accuracy of
about 0.1 for the 10-class dataset. In contrast, our FCL method maintains a higher level of accuracy
as the number of random bits increases, staying above 0.5 even when the number of bits reaches 10.
The consistent outperformance of FCL underscores its robustness and to feature suppression effects.

We perform the sensitivity analysis of two sets of channels, RGB channels and random bits channels,
to further investigate if our proposed method learns more information in random bits relative to RGB
channels. First, we perturb the random bits channels by adding different levels of Gaussian random
noise to each channel, then measure the difference between the perturbed and original embeddings.
Second, we do the same perturbation to the RGB channels and measure the change of embeddings.
Third, we use the ratio of change in random bits channels to the change in RGB channels. The results
showing the ratio of changes are presented in Table 1. The ratio is larger, and the learned embeddings
are more sensitive to adding noise to random bits channels compared with adding noise to RGB
channels. More sensitive embeddings indicate more features in RGB channels are suppressed by
random bits. Compared with benchmark SSCL methods, SimCLR and SimSiam, our proposed FCL
undergoes less ratio of change. The differences of embeddings when adding noise to random bits
channels and RGB channels are presented in Table A.3 and A.4, respectively in the Appendix.

In practice, the proposed FCL maximizes the discrimination power and prevents low embedding
dimensionality. The left panel of Figure A.2 also shows the rank of the embedding space learned by
three SSCL methods. The rank of the embedding space for the SimCLR method varies significantly
with different numbers of random bits. In contrast, the rank of the representations learned by the FCL
remains stable regardless of the number of random bits.

Table 1: The table shows the ratio of change in extra bits to the change in RGB channels. Different columns
correspond to different levels of Gaussian random noise with variances of 0.1, 0.2, 0.3, 0.4, 0.5.

0.1 0.2 0.3 0.4 0.5
SimCLR 0 0.41 0.82 0.89 0.92
SimSiam 0 1.14 5.16 7.95 9.90

FCL 0 0.09 0.22 0.26 0.27

5.2.2 RESULTS OF DIGITS ON FLOWER DATASET

The accuracy of predicting the label of flowers by SimCLR and SimSiam decreases when the number
of digits increases as shown by the blue line and green line in the right panel of Figure 3, respectively.
However, the proposed FCL has robust performance even when the feature suppression effects
are stronger. To further validate whether our proposed method can effectively learn features for
downstream tasks without being overshadowed by digit-related features, we utilize a saliency map
for each method to visualize the contribution of each pixel to the prediction, as shown in Figure 4.
Compared to SimCLR and SimSiam, the proposed FCL focuses more on the relevant features of
the flower rather than the digits. As a result, SimCLR misclassifies the sunflower image (panel (a)
in Figure 4) as a dandelion, and SimSiam incorrectly predicts it as a tulip. In another case (from
panel (e)-(h) in Figure 4), SimCLR gives more weight to the overlapping digit "two," overlooking
important flower features, and consequently predicts the image as the rose. SimSiam also emphasizes
the digits and background over the flower’s features, leading to a misclassification as a dandelion.
Comparing panels (c) and (g), the difference of the SimCLR’s salient maps is minor for two different
flower images since the digits overshadow other features. However, the dominant features in panels
(b) and (f) are different, indicating the proposed FCL learns class-relevant (sunflower) features and is
robust to feature suppression effects. More examples are presented in Figure A.1, respectively in the
Appendix.

Additionally, the right panel in Figure A.2 shows the rank of the embedding space for each method.
This confirms that FCL’s embedding dimensionality is more robust to strong feature suppression
effects. As the number of digits increases, all methods experience a slight decrease in embedding
dimensionality, but FCL maintains a more stable performance.
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Figure 4: Illustrations of the salient map of each method. The first column is the four-digits-on-flower image.
From the second to fourth columns, salient maps of the images for each method, FCL, SimCLR, and SimSiam.
The first row shows true and salient maps of one sunflower image, and the second row is another example of
sunflower.

5.3 BENCHMARK DATASETS EXPERIMENT RESULTS

We compared the proposed FCL with five popular self-supervised learning approaches, SimCLR
Chen et al. (2020a), SimSiam Chen & He (2021), MOCO He et al. (2020), BYOL Grill et al.
(2020), and DirectCLR Jing et al. (2022) on the benchmark image datasets. The experimental
results presented in Table 2 provide a comparative analysis of the linear evaluation accuracy across
four benchmark datasets (STL-10, CIFAR-10, CIFAR-100, and Tiny-Imagenet). Notably, FCL
demonstrates competitive results with leading accuracies. The proposed FCL is more advantageous
than other SSCL methods especially when the task of image classification has more classes, i.e. there
are 200 classes in the Tiny ImageNet dataset. The more the number of classes, the more class-relevant
features need to be preserved. However, the low embedding dimensionality issue is more severe,
which means the class-relevant features could be suppressed for the Tiny ImageNet dataset. We
further provide the rank of the covariance of the representations learned by each method in Table A.8.
Our proposed method generally maintains a higher embedding dimensionality.

Table 2: Comparison of the linear evaluation accuracy on benchmark datasets

STL-10 CIFAR-10 CIFAR-100 Tiny ImageNet
SimCLR 87.66 90.60 62.47 45.01
SimSiam 88.91 90.67 62.49 50.16
BYOL 88.05 85.81 60.69 52.04
MOCO 90.36 87.86 60.36 40.98

DirectCLR 86.46 90.08 60.81 48.01
VICReg 89.78 90.55 62.69 51.01

Barlow Twins 88.36 89.18 63.47 49.16
W-MSE 90.68 91.49 63.71 50.20

FCL 92.52 91.91 63.76 55.81

In addition to linear evaluation, we further use transfer learning to evaluate the performance of the
trained model. We use the pre-trained model on one dataset and then evaluate the model on another
dataset. The transfer learning results are shown in Table 3. The advantage of our proposed method
in transfer learning is more significant when the model is pre-trained on Tiny ImageNet compared
with other methods. This further validates that the pre-trained model on the Tiny ImageNet dataset
by FCL can preserve more class-relevant features than other methods. The details about the transfer
learning task are presented in the Appendix.

6 CONCLUSION

In this paper, we propose a novel contrastive learning method, FCL, to address the feature suppression
effects prevalent in SSCL. Feature suppression effects, where easy-to-learn and class-irrelevant
features suppress other class-relevant features, is a common problem in SSCL. Our method offers

9
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Table 3: Comparison of the transfer learning accuracy on benchmark datasets.

CIFAR100 → CIFAR100 → TinyImageNet → TinyImageNet → TinyImageNet →
CIFAR10 CIFAR100 STL-10 CIFAR10 CIFAR100

SimCLR 75.53 45.89 75.53 78.27 54.34
SimSiam 72.10 40.18 67.25 75.04 47.96
BYOL 75.09 41.56 69.43 79.85 56.54
MOCO 75.42 43.59 72.01 66.48 39.54

DirectCLR 75.10 42.28 71.38 76.26 49.89
FCL 75.64 46.50 83.32 81.55 57.98

a robust solution to feature suppression effects with theoretical guarantees, retaining the central
sufficient dimension reduction space. We demonstrate the advantages of our method using image
datasets that exhibit feature suppression effects, as well as benchmark image datasets. Compared
to other self-supervised learning methods, our proposed method is more robust to various levels
of feature suppression effects. When the assumption of completeness of the central dimension
reduction class is not satisfied, the proposed algorithm is still unbiased but no longer exhaustive.
To recover a function class that is larger than the current one, we can use the idea of the sliced
average variance estimator Lee et al. (2013) when the variance of the distribution of various classes
differs in self-supervised learning. Additionally, our proposed framework has broader applications
in multi-modal data fusion. Instead of “CLIP”ing Radford et al. (2021) integrates two modalities
like images and text using contrastive loss, the proposed framework can integrate multiple modalities
using Fisher contrastive loss.
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Appendix for “Fisher Contrastive Learning: A Robust Solution to
the Feature Suppression Effect”

The appendix shows the details of the proof, experiments including the parameter settings for
generating the datasets with features suppression effects, hyper-parameters used for our proposed
method and the benchmark methods, and more experiment results on datasets with feature suppression
effects as well as benchmark image datasets.

A PROOF DETAILS

A.1 PROOF OF LEMMA 4.2

This lemma can be easily proven by Theorem 12.2 in Li (2018).

Notice that the condition of Theorem 12.2 requires that the family of conditional probability measure

{PX|Y (·|y) : y ∈ ΩY } = {Pi : i = 1, . . . , n}
being dominated by a σ-finite measure, which is satisfied by our condition.

A.2 PROOF OF THEOREM 4.6

Let K(·, ·) represent the kernel function induced by the Hilbert space HX . Under the framework of
the reproducing Kernel Hilbert space, we define the covariance operators for functions on X and Y .

Since Y is a categorical variable with n classes, the domain of Y can be represented by ΩY =
{1, . . . , n}. Notice that the function on Y can be represented by a n-dimensional vector, and the
Hilbert space for the functions on Y , denoted by HY , can be defined via the inner product of vectors
in the Euclidean space as shown in Chapter 2.2 Gu (2013).

The variance operator for X is denoted by ΣXX . For a function g : ΩX → R, the operator ΣXX

acts on g returning a function ΣXXg having

⟨g,ΣXXg⟩HX
= Var[g(X)],

where ⟨·, ·⟩HX
represent the inner product in the Hilbert space HX .

The variance operator for Y is denoted by ΣY Y . The operator ΣY Y acts on h returning a function
ΣY Y h having

⟨h,ΣY Y h⟩HY
= Var[h(Y )],

The covariance operator for X and Y , ΣXY can acts on h returning a function on X , ΣXY h having

⟨g,ΣXY h⟩HX
= Cov[g(X), h(Y )],

The covariance operator for X and Y , ΣY X can acts on g returning a function on Y , ΣY Xg having

⟨ΣY Xg, h⟩HY
= Cov[g(X), h(Y )].

The assumptions for deriving this theorem include
Assumption A.1. E[K(X,X)] < ∞
Assumption A.2. The kernel of the operator ΣXX , ker(ΣXX) = {0}, i.e., if Var[f(X)] = 0 for
f ∈ HX , f ≡ 0.
Assumption A.3. ran (ΣXY ) ⊆ ran (ΣXX) , ran (ΣY X) ⊆ ran (ΣY Y ), where ran(·) represent the
range of the operator.
Assumption A.4. The operators Σ−1

Y Y ΣY X and Σ−1
XXΣXY are compact.

Assumption A.5. SY |X is complete.

The result of the theorem can be derived as follows.

Based on the above assumptions and the result of Theorem 13.2 in Li (2018), we have

ran
(
Σ−1

XXΣXY

)
= SY |X .
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From this, we have

ran
(
Σ−1

XXΣXY Σ
−1
Y Y ΣY XΣ−1

XX

)
⊂ SY |X

This suggests that we use ran
(
Σ−1

XXΣXY Σ
−1
Y Y ΣY XΣ−1

XX

)
to estimate the central σ-field SY |X .

This space can be recovered by sequentially solving the following problem:

maximize
gk

〈
gk,ΣXY Σ

−1
Y Y ΣXY gk

〉
HX

subject to ⟨gk,ΣXXgk⟩HX
= 1, gk ⊥ Sk−1.

(14)

where Sk = span (g1, . . . , gk−1) and g1, . . . , gk−1 are the solutions to this constrained maximization
problem in the previous steps.

Since
〈
g,ΣXY Σ

−1
Y Y ΣXY g

〉
HX

= Var[E(g(X))|Y ] and ⟨g,ΣXXg⟩HX
= Var[g(X)].

Therefore, Eq.(14) is equivalent to finding a function f : ΩX → Rd, such that

maximize
f

tr{Var[E(f(X))|Y ]}
subject to Var[f(X)] = Id.

(15)

With further generalization, if Var[f(X)] ̸= Id and positive definite, solving Eq.(15) is equivalent to
the following maximization problem.

maximize
f

tr{Var[E(Var[f(X)]−1/2 · f(X))|Y ]}
= tr{Var[f(X)]−1 ·Var[E(f(X))|Y ]}.

(16)

Therefore, the unbiasedness of the solution fsol = (g1,sol, . . . , gd,sol) of Eq.(16) is proven,i.e.,

Suppose there is a function g ∈ SY |X and g /∈ span {g1,sol, . . . , gd,sol}. Since g1,sol, . . . , gd,sol are
linear independent, we have

dim(SY |X) ≥ dim(span {g, g1,sol, . . . , gd,sol}) = d+ 1 > dim(span {g1,sol, . . . , gd,sol}) = d,

which abuse the conclusion about span {g1,sol, . . . , gd,sol} ⊂ SY |X .

Hence, we have SY |X ⊂ span {g1,sol, . . . , gd,sol} . Therefore, the exhaustiveness of the solution
fsol = (g1,sol, . . . , gd,sol) is proven.

B IMPLEMENTATION DETAILS

B.1 MODIFIED OPTIMIZATION TARGET

In our proposed method, we target to maximize the total discrimination power ∆ = 1
n−1

∑n−1
i=1 v̂i of

the proposed method. However, directly maximizing the objective could lead to trivial solutions, e.g.,
maximizing only the largest eigenvalue to produce the largest discriminative power. For contrastive
objective, this means that it maximizes the distance of classes that are already separated at the expense
of non-separated classes with less discrimination power Dorfer et al. (2015). To tackle the problem,
we can modify the loss function, to maximize the smallest eigenvalues which are smaller than some
threshold. The threshold is set as min {v̂1, . . . , v̂n−1}+m, where m is the margin for the smallest
eigenvalues to be maximized.

max
∑
i∈Θ

v̂i with {Θ} = {v̂j | v̂j < min {v̂1, . . . , v̂n−1}+m} . (17)

The intuition of the optimization goal is to increase the discrimination power as much as possible.
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C EXPERIMENTAL DETAILS

We report more specific details of the experiments, including the description of the datasets, how we
split the datasets for training, data augmentation techniques we have used, hyperparameters for each
method, and how we choose the hyperparameters. In addition, we report more detailed experiment
results. All experiments have been conducted on a machine equipped with NVIDIA Tesla V100
GPUs (each with 32GB of memory) and a 40-core CPU (3.00 GHz).

C.1 DESCRIPTION OF DATASETS

We first give more details about the generation of the datasets.

C.1.1 RANDOM BITS

The generation of the Digits on Flower dataset with strong feature suppression effect is adapted from
Chen et al. (2021). In this dataset, we concatenate a real image with an image of a random integer
along the channel dimension. The random integer is sampled from the range [1, log2(l)], where l is
a controllable parameter. This integer is replicated across all pixel locations and expressed using l
binary channels. To be noted, unlike RGB channels, these additional channels of random bits are
not altered by augmentation, ensuring they remain identical in both augmented views of the same
image. The added channels of random bits are easy-to-learn features that suppress the other features.
We vary the number of random bits, {0, 2, 4, 6, 8, 10}, in the dataset to control the amount of mutual
information between two augmented views. Also, we know that the mutual information between two
views given this construction is at least log2(l). The dataset is divided into 80% training samples and
20% test samples.

C.1.2 DIGITS ON FLOWER DATASET

The generation of the Digits on Flower dataset with strong feature suppression effects is adapted
from the method described in Chen et al. (2021). In this process, for each flower image, we map
a randomly sampled MNIST digit image onto the flower image. To explore the impact of feature
suppression, we vary the number of digit copies mapped onto the flower images with the following
configurations: {0, 1, 4, 9, 16} digits. The flower dataset consists of 3670 color images, each with a
size of 224x224 pixels. The MNIST digit images used for mapping are resized to 72x72 pixels. For
images overlaid with a single digit, the digit is placed at the center of the image. When four digits
are overlaid, their positions are at [0.3, 0.7] of the image dimensions. For nine digits, their positions
are at [0.25, 0.5, 0.75], and for sixteen digits, they are positioned at [0.2, 0.4, 0.6, 0.8]. The dataset is
divided into 80% training samples and 20% test samples.

By varying the number and positions of the overlaid digits, we can systematically study the effect of
feature suppression in the dataset. This setup allows us to control the amount of information from the
digits and observe how it impacts the classification performance on the flower dataset.

The MNIST dataset LeCun (1998) is a large database of handwritten digits commonly used for
training various image processing systems. It contains a total of 70,000 grayscale images, each of size
28x28 pixels. The dataset is divided into 60,000 training samples and 10,000 testing samples. Each
image is labeled with one of 10 classes, corresponding to the digits 0 through 9, with approximately
7,000 samples per class. The simplicity and cleanliness of the dataset make it a standard benchmark
for evaluating algorithms in self-supervised learning.

C.1.3 BENCHMARK DATASETS

We use four benchmark real-world datasets in SSCL to evaluate the performance of our method.

STL-10: The STL-10 dataset Coates et al. (2011) is designed for developing unsupervised feature
learning, deep learning, and self-taught learning algorithms. It contains color images of size 96x96
pixels. The dataset includes 10 classes with 500 labeled training examples and 800 labeled testing
examples per class, totaling 5,000 labeled training samples and 8,000 testing samples. Additionally,
there are 100,000 unlabeled images for unsupervised learning tasks. The classes represent common
objects such as airplanes, birds, and cars, making the dataset suitable for evaluating complex feature
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learning algorithms. Notice that in the pretraining stage, we only use the training examples without
labels.

CIFAR-10: The CIFAR-10 dataset Krizhevsky et al. (2009) is a widely used dataset for object
recognition tasks. It consists of 60,000 color images of size 32x32 pixels, with 6,000 images per
class distributed evenly across 10 classes. The dataset is split into 50,000 training samples and
10,000 testing samples. Each class represents a common object such as airplanes, cars, and birds.
The dataset’s diversity and balanced class distribution make it an excellent benchmark for testing
self-supervised learning methods and other machine learning algorithms.

CIFAR-100: The CIFAR-100 dataset Krizhevsky et al. (2009) is similar to CIFAR-10 but with a
greater number of classes and finer granularity. It contains 60,000 color images of size 32x32 pixels,
divided into 100 classes, each with 600 images. The dataset is split into 50,000 training samples
and 10,000 testing samples. Each class represents a specific object, such as a type of flower or
insect, providing a more challenging task due to the increased number of classes and the fine-grained
nature of the categories. This makes CIFAR-100 a comprehensive benchmark for evaluating the
performance of self-supervised learning algorithms.

TinyImageNet: The TinyImageNet dataset is a subset of ImageNet. It contains 100,000 images of 200
classes downsized to 64×64 colored images. The dataset is split into 80,000 training samples and
20,000 testing samples. Compared with CIFAR-10, CIFAR-100 and STL-10 it has more images and
more classes, which makes it a more challenging task.

C.2 EXPERIMENTAL SETTINGS

C.2.1 DATA AUGMENTATION

For Random Bits and Digits on Flower datasets, we only use random crop with resize Chen et al.
(2020a) as the data augmentation method. For the benchmark datasets, including MNIST, STL-
10, CIFAR-10, and CIFAR-100, we employ a broader range of data augmentations. These include
random crop with resize, random flip, color distortion, and Gaussian blur. All processes and parameter
settings are consistent with those outlined in Chen et al. (2020a) to ensure a fair comparison and
reproducibility of results.

C.2.2 MODEL SETTINGS

Random Bits and Digits on Flower Datasets For Random Bits and Digit on Flower datasets, the
encoder includes three two-dimensional convolutional layers, followed by a Flatten layer and a Dense
layer. Batch normalization and ReLU activation functions are applied throughout the encoder. The
projection network consists of two Dense layers, with a final output dimension of 128. We use a
dense layer for classification. Throughout the pre-training, we utilize the Adam optimizer with a
polynomial decay learning rate schedule. The initial learning rate is set to 0.001, with an end learning
rate of 0. The decay steps are set to 5000 for the Random Bits dataset and 800 for the Digits on
Flower dataset. The number of epochs is 10 for the Random Bits dataset and 35 for the Digits on
Flower dataset. The batch size is 128.

Benchmark Datasets For benchmark datasets, we follow the settings in SimCLR to design the
architecture. The backbone network is ResNet-50 for TinyImageNet and ResNet-18 for other datasets
(CIFAR10, CIFAR100 and STL10) He et al. (2016) and the projector is a two-layer MLP after
ResNet’s global average pooling layer (pool5). Both the input and output dimensions of each layer
in the projector are set to 128, with each layer followed by a ReLU activation function. During
unsupervised pre-training, we use a base learning rate of 0.03 with a cosine decay schedule for 600
epochs. The weight decay is set to 0.0005, and momentum is set to 0.9. We also incorporate a
warm-up phase for the first 10 epochs. The batch size is 128, and we utilize the SGD optimizer for
training.

After pre-training the network, we freeze its parameters and train a supervised linear classifier in
linear evaluation and transfer learning. The features used for training the classifier are extracted
from ResNet’s global average pooling layer (pool5). For training the linear classifier, we use a base
learning rate of 30 with a cosine decay schedule over 30 epochs. We also employs the SGD optimizer
with a momentum of 0.9 and a batch size of 256.
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C.3 EXPERIMENTAL RESULTS

C.3.1 RANDOM BITS

The table A.1 presents the mean and standard deviation (in parentheses) of the accuracy (10 replica-
tions) for three different self-supervised learning methods: SimCLR, SimSiam, and our proposed
FCL. The results are shown for a dataset with varying numbers of random bits introduced into the
input data. Our method is the best across all the numbers of random bits. As the number of random
bits increases, the performance of all three methods decreases, but FCL consistently outperforms
SimCLR and SimSiam across all levels of randomness. Even with 10 random bits, FCL maintains a
mean accuracy of 0.5374, while SimCLR and SimSiam both drop below 0.11.

The superior performance of FCL, especially in the presence of increasing feature suppression effects,
indicates that the proposed method is more robust and can learn better representations even when
feature suppression effects exist.

The left panel of Figure A.2 shows the rank patterns of the two methods. Notice that the rank for the
SimCLR method varies significantly with different numbers of random bits, while the rank for our
FCL method remains stable regardless of the number of random bits. Specifically, with 0, 2, 4, and 6
random bits, our rank is 127; it slightly decreases to 126 for 8 bits and to 123 for 10 bits. This steady
performance by FCL highlights its reliability and efficiency.

C.3.2 DIGITS ON FLOWER DATASET

The table A.5 presents the mean and standard deviation (in parentheses) of the accuracy (10 repli-
cations) for three different self-supervised learning methods: SimCLR, SimSiam, and FCL (the
proposed method) performed on the Digits on Flower Dataset, where varying numbers of digits are
added to the flower images. When there are no digits added (0 digits), FCL achieves the highest mean
accuracy of 0.5071, outperforming both SimCLR (0.4687) and SimSiam (0.3935). This suggests that
FCL is better able to learn meaningful representations from the original flower images compared to
the other two methods. As the number of digits added to the images increases, the performance of all
three methods generally decreases, but FCL consistently outperforms SimCLR and SimSiam across
all levels of digit addition. Even with 16 digits added, FCL maintains a mean accuracy of 0.4533,
while SimSiam and SimCLR’s accuracy drops to 0.3246 and 0.4144 respectively. The superior
performance of FCL, even in the presence of increasing interference from the added digits, indicates
that the proposed method is more robust and can learn better representations of the original flower
images, despite the presence of easy-to-learn features (the digits). More salient maps for visualization
are shown in Figure A.1

Additionally, Figure A.2 right side displays the rank of the embedding space for each method. This
further confirms that our proposed method is more robust to strong feature suppression effects. In the
Digits on Flower dataset, when the number of digits is set as zero, the rank of learning embedding for
SimCLR and SimSim are 84 and 103 respectively, while FCL achieves a significantly higher rank of
110. As the number of digits increases, all of the methods experience a slight decrease in performance,
but FCL maintains a more stable performance with rank ranging from 106 to 110, compared to
SimCLR’s range of 82 to 84 and SimSaim’s range of 82 to 103. This consistent outperformance by
FCL highlights its robustness and effectiveness.

Table A.1: Mean and Standard Deviation of Accuracy for Random Bits Dataset

Number of Random Bits SimCLR SimSiam FCL
0 0.9445 (0.0019) 0.8749 (0.0124) 0.9790 (0.0031)
2 0.9100 (0.0036) 0.1368 (0.0205) 0.9405 (0.0037)
4 0.8130 (0.0087) 0.1088 (0.0036) 0.8977 (0.0073)
6 0.3179 (0.0234) 0.1038 (0.0036) 0.7943 (0.0010)
8 0.1038 (0.0153) 0.1035 (0.0024) 0.6314 (0.0119)

10 0.1027 (0.0034) 0.1017 (0.0039) 0.5374 (0.0010)
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Table A.2: Comparison of Rank for Randbit Dataset

Number of Random Bits SimCLR SimSiam FCL
0 117 54 127
2 120 5 127
4 123 8 127
6 124 11 127
8 122 13 126

10 120 16 123

Table A.3: Sensitivity Analysis of Randbits Dataset. The table shows the difference of embeddings when the
various levels of noise are added to the random bits channels. Different columns correspond to various levels of
Gaussian random noise with variances 0.1, 0.2, 0.3, 0.4, 0.5.

Approach 0.1 0.2 0.3 0.4 0.5
SimCLR 0 1.15 4.13 6.70 8.34
SimSiam 0 0.32 2.32 5.09 7.62

FCL 0 0.20 0.75 1.31 1.72

Table A.4: Sensitivity Analysis of Randbits Dataset. The table shows the difference of embeddings when
the various levels of noise are added to the RGB channels. Different columns correspond to various levels of
Gaussian random noise with variances of 0.1, 0.2, 0.3, 0.4, 0.5.

Approach 0.1 0.2 0.3 0.4 0.5
SimCLR 2.73 2.82 5.04 7.55 9.03
SimSiam 0.22 0.28 0.45 0.64 0.77

FCL 2.08 2.24 3.45 5.10 6.36

Figure A.1: Illustrations of the salient map of each method. The first column is the four-digits-on-flower image.
From the second to fourth columns, salient maps of the images for each method, FCL, SimCLR, and SimSiam.

C.3.3 BENCHMARK DATASETS

We follow the settings in C.2 for benchmark datasets. Given the pre-trained network, a supervised lin-
ear classifier is trained after ResNet-18’s global average pooling layer. We report additional accuracy
on MNIST LeCun (1998), STL-10 Coates et al. (2011), CIFAR-10 and CIFAR-100 Krizhevsky et al.
(2009) after pre-training 200 and 400 epochs in Table A.7.
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Table A.5: Mean and Standard Deviation of Accuracy for Digits on Flower Dataset

Number of Digits SimCLR SimSiam FCL
0 0.4687 (0.0404) 0.3935 (0.0402) 0.5071 (0.0333)
1 0.4670 (0.0439) 0.3920 (0.0415) 0.5015 (0.0397)
4 0.4538 (0.0258) 0.3669 (0.0414) 0.4918 (0.0274)
9 0.4388 (0.0409) 0.3588 (0.0356) 0.4909 (0.0283)

16 0.4144 (0.0216) 0.3246 (0.0214) 0.4533 (0.0354)

Table A.6: Comparison of Rank for Digits on Flower Dataset

Number of Digits SimCLR SimSiam FCL
0 84 103 110
1 83 102 108
4 83 90 107
9 82 88 106

16 82 82 106

Figure A.2: Rank of learning embedding space for Randbit and Flower dataset. Left side: Randbit dataset, with
number of random bits set as 0, 2, 4, 6, 8 and 10. Right side: Flower dataset, with number of digits set as 0, 1, 4,
9 and 16. Red lines: FCL method; Blue lines: SimCLR method. Green lines: SimSiam method.

Table A.7: Comparison of the linear evaluation accuracy on benchmark datasets

Datasets STL-10 CIFAR-10 CIFAR-100 Tiny-ImageNet
Epochs 200 400 200 400 200 400 200 400
SimCLR 66.81 73.09 83.79 87.78 54.52 61.09 43.30 46.46
SimSiam 60.43 68.04 86.58 88.97 59.76 60.10 43.96 48.01
BYOL 64.94 70.35 80.10 83.40 56.01 60.02 37.15 48.05
MOCO 66.46 72.88 80.96 82.52 54.27 58.13 23.08 33.54
DirectCLR 67.26 72.68 86.53 89.21 55.34 59.32 43.52 47.59
FCL 72.30 76.40 86.78 88.67 57.96 61.13 47.04 53.04

Table A.8: Embedding dimensionality, the highest is marked as bold and the second highest rank is underlined.

Dimension SimCLR SimSiam BYOL MOCO DirectCLR FCL
STL10 512 150 205 190 358 232 278

CIFAR10 512 381 279 401 407 229 463
CIFAR100 512 343 278 401 414 253 430

TinyImageNet 2048 561 1095 901 493 1571 1196
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