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Abstract

We consider the linear contextual multi-class
multi-period packing problem (LMMP) where the
goal is to pack items such that the total vector of
consumption is below a given budget vector and
the total value is as large as possible. We consider
the setting where the reward and the consump-
tion vector associated with each action is a class-
dependent linear function of the context, and the
decision-maker receives bandit feedback. LMMP
includes linear contextual bandits with knapsacks
and online revenue management as special cases.
We establish a new estimator which guarantees a
faster convergence rate, and consequently, a lower
regret in LMMP. We propose a bandit policy that
is a closed-form function of said estimated param-
eters. When the contexts are non-degenerate, the
regret of the proposed policy is sublinear in the
context dimension, the number of classes, and the
time horizon 7" when the budget grows at least
as v/T. We also resolve an open problem posed
in Agrawal & Devanur (2016), and extend the re-
sult to a multi-class setting. Our numerical exper-
iments clearly demonstrate that the performance
of our policy is superior to other benchmarks in
the literature.

1. Introduction

In the multi-period packing problem (MPP) the decision-
maker “packs” the arrivals so that the total consumption
across a set of resources is below a given budget vector
and the reward is maximized. A variant of the packing
problem, where items consume multiple resources and the
decisions must be made sequentially with bandit feedback
for a fixed time horizon, is known as bandits with knapsacks
(Agrawal & Devanur, 2014a; Badanidiyuru et al., 2018;
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Immorlica et al., 2019). MPPs also arise in online revenue
management (Besbes & Zeevi, 2012; Ferreira et al., 2018).
MPPs in the literature assume that all arrivals belong to a
single class. However, in several application domains (e.g.,
operations, healthcare, and e-commerce), the arrivals are
heterogeneous, and personalizing decisions to each distinct
population or class is of paramount importance. In this
paper, we consider a class of linear multi-class multi-period
packing problems (LMMP). At each round, there is a single
arrival that belongs to one of J classes, and the decision-
maker observes the d-dimensional context and the cost for
K different available actions. The outcome of selecting an
action is a random sample of the reward and a consumption
vector for m resources with an expected value that is a class-
dependent linear function of the d-dimensional contexts.
The goal of the problem is to minimize the cumulative regret
over a time horizon 7" while ensuring that the total resource
consumed is at most B.

The LMMP problem is a generalization of several prob-
lems including linear contextual bandits with knapsacks
(LinCBwK) introduced by Agrawal & Devanur (2016).
They proposed an online mirror descent-based algorithm
that achieves O(OPT/B - dv/T) regret when the budget
B for each of the m resources is Q(v/dT3/*), where OPT
is the reward obtained by the oracle policy. Although the
regret bound is meaningful for B = Q(d+/T), establishing
the regret bound for smaller budget values was left as an
open problem. Chu et al. (2011) established a regret bound
sublinear in d for the linear contextual bandit setting, which
is a special case of LinCBwK with no budget constraints.
Thus, the following question remained open: “Is there an
algorithm for LinCBwK that achieves sublinear dependence
on d with budget B = Q(\/T)?”

We propose a novel algorithm and an improved estimation
strategy that settles this open problem and generalizes the
result to the more general class of LMMP. The proposed
algorithm achieves O(OPT/B+/JdT) regret with budget
B = Q(v/JdT) under non-degenerate contexts. While re-
gret of the existing algorithms grows linearly in the number
of classes J, our estimator is able to pool data from differ-
ent classes and avoids linear dependence on J. To reiterate,
the improved regret bound results from the novel estimator
which has faster convergence rates.
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Our main contributions are summarized as follows:

* We propose a new problem class — linear multi-class
multi-period packing problems (LMMP). This problem
generalizes a variety of problems including LinCBwK
and online revenue management problems to the multi-
class setting.

* We propose a novel estimator that uses contexts for
all actions (including the contexts in skipped rounds)
and yields O(y/Jd/n) convergence rate for J classes,
context dimension d, and n admitted arrivals (Theorem
4.2).

* We propose a novel AMF (Allocate to the Maximum
First) algorithm which achieves O(OPT/B+/JdT)
regret with budget B = Q(v/JdT') where OPT is
the reward obtained by oracle policy (Theorem 5.1).
For the single class setting with J = 1, we improve
the existing bound by v/d and show that the bound
is valid when B = Q(+/dT), thus resolving an open
problem posed in Agrawal & Devanur (2016) regarding
LinCBwK.

* We evaluate our proposed algorithm on a suite of syn-
thetic experiments and demonstrate its superior perfor-
mances.

All proofs omitted from the front matter can be found in the
Appendix.

2. Related Works

There are two streams of work that are relevant for
LMMP. In online revenue management literature, Gallego &
Van Ryzin (1994) introduced the dynamic pricing problem
where the demand is a known function of price (action). Bes-
bes & Zeevi (2009) and Besbes & Zeevi (2012) extended the
problem under unknown demands with multiple resource
constraints. Ferreira et al. (2018) proposed a Thompson
sampling-based algorithm and extended it to contextual ban-
dits with knapsacks. When the expected demand is a linear
function of the price vector, the dynamic pricing problem
is a special case of linear contextual bandits with knap-
sack (LinCBwK) proposed by Agrawal & Devanur (2016).

The LinCBwk is a common generalization of bandits with
knapsacks (Badanidiyuru et al., 2018; Immorlica et al., 2019;
Lietal., 2021) and online stochastic packing problems (Feld-
man et al., 2010; Agrawal & Devanur, 2014b; Devanur et al.,
2011). Recently, Sankararaman & Slivkins (2021) proved a
logarithmic regret bound for LinCBwK when there exists a
problem-dependent gap between the reward of the optimal
action and the other actions. Instead of the gap assump-
tion, we require non-degeneracy of the stochastic contexts

(see Assumption 3 for a precise definition) to obtain a re-
gret bound sublinear in d and extends to the case when the
contexts are generated from J different class.

Amani et al. (2019) proposed a variant of LinCBwK where
the selected action must satisfy a single constraint with high
probability in all rounds, i.e., LinCBwK with anytime con-
straints. Moradipari et al. (2021) and Pacchiano et al. (2021)
proposed a Thompson sampling-based algorithm and an
upper confidence bound-based algorithm, respectively, for
LinCBwK with a single anytime constraint. Liu et al. (2021)
highlighted the difference between global and anytime con-
straints and proposed a pessimistic-optimistic algorithm for
the anytime constraints. We focus on the global constraints;
however, we note that the extension to the anytime con-
straints is straightforward with minor modifications.

2.1. Notation

Let R denote the set of positive real numbers. For two
real numbers a,b € R, we write a A b := min{a, b} and
a Vb := max{a,b}. For a natural number N € N, let
[N]:={1,...,N}.

3. Linear Multi-period Packing Problem

Let [J] denote the set of classes with arrival probabilities
p = {pj}jers)> where pmin := min;cp;p; > 0. For sim-
plicity, we assume that the class arrival probabilities p are
known while the same theoretical results can be obtained
when the probabilities are unknown to the decision-maker
(See Section B.7 for details). In each round ¢ € [T, the
covariates {xff 7)5 €[0,1]¢: k € [K]} are drawn from an un-
known class-specific distribution F; and the decision-maker

observes an arrival of the form (j, {x,(j;) : k€ [K]}),
where j; € [J] is the arrived class. Upon observing the ar-
rival, the decision-maker can either take one of K different
actions or skip the arrival. When the arrival is skipped, the
decision-maker does not obtain any rewards or consume
any resources. When the decision-maker chooses an action
a; € [K], the reward and consumption of the resource are
given by

. . T .

E[ri| 7] = {690} <) e -1,11,
. . T .

E b 1] = {wif ) x0) e 0,1]™,

for some unknown class-specific parameters 99 ) e [0,1)¢
and ij ) ¢ [0, 1]4%™_ The sigma algebra H, is generated
by the class-specific variables {js, x,(f;s') ts € t], k e [K]},
actions {as : s € A}, consumption vectors {bffl 15 €
Ai_1} and rewards {7"51]5:)& : s € A1}, where A, is the
rounds admitted by the decision-maker until round ¢. The
process terminates at the horizon 7" or runs out of budget
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B e R for some resources 7 € [m/]. The problem reduces
to LinCBwK when the number of class is J = 1.

LMMP allows each class to have a different set of contexts
and parameters, which is required in many applications such
as e-commerce, clinical trials, and dynamic pricing. For ex-
ample, consider an e-commerce setting with J classes of
customers with J different preferences. At each decision
point ¢, the decision-maker must make one of K different
d-dimensional offers: the k-th offer will result in a random
consumption of m resources with mean consumption vec-
tor (W(j *))T ,(3 *) and results in random reward with mean

(69)Tx9) Note that the context ng *) can include the
price charged to the class j; customers as one of the compo-
nents. This feature of LMMP is novel to the literature and
allows for a personalized decision for each class.

Let p € R’ denote per-period budget vector for m re-
sources. Without loss of generality, one can assume that
p = (B/T)1,,, by rescaling W, We assume that pis
known to the decision-maker, which is essential to target
the correct optimal policy. Unlike the unconstrained finite
horizon bandit problems, the optimal policy of LMMP de-
pends on p. Without knowledge of p, the bandit policy
cannot converge to the correct optimal policy, which leads
to a cumulative regret linear in 7. As a result, many related
problems, such as LinCBwk (Agrawal & Devanur, 2016)
and online revenue management (Ferreira et al., 2018), com-
monly assume knowledge of both B and T'.

In our work, we assume that B is possibly unknown at first
but known at the end of the round. Specifically, the decision-
maker only observes the initial inventory B;, which will
increase to B before the end of the horizon T'. This sce-
nario is relevant to online inventory management, where
a product’s inventory is supplied at different time points.
This assumption is more practical than in Agrawal & De-
vanur (2016) where B and OPT must be known to the
decision-maker. When O PT is unknown, Agrawal & De-
vanur (2016) proposed to estimate O PT" with VT number
of rounds, which requires the knowledge of 1" and budget
B = Q(v/dT'%). Instead of estimating OPT, we use p to
avoid the required budget B = Q(VdT'?).

We benchmark the performance of the decision-maker’s pol-
icy relative to that of an oracle who knows the distributions

{F; : j € [J]} and the parameters {#Y, W7 : j € [J]},
but does not know the arrivals {(jt,x,(jz) ct € [T)} a-
priori. In this case, the optimal static pohcy for the oracle
{x19) . j € [J]), k € [K]} is the solution to the following

optimization problem:

L~ ) @M1
max 35 B, [ {0} ]

T j—lk—l
ZK ) WL

J
P 2y s, {{ N } X'“}Sp’ )

U <1, vj e ],

i
»

) >0, Vj e [J),Vk € [K],

Note that the oracle policy depends on p and thus both B
and T'. Then the expected reward obtained by the oracle is

J K ) T
OPT =T pm;VEsy s, [{9&”} X;@} .

j=1k=1
Let m := {7r 2 j € [J],k € [K],t € [T]} denote the
adapted (randomlzed) control policy of the decision-maker,
i.e. she chooses action k € [K] when the arrival at time
t € [T) belongs to class j € [J]. Note that 3" p_, 71',(52 <1
in order to allow the decision-maker to skip an arrival and
save the inventory for later use. Our goal is to compute a
policy that minimizes the cumulative regret R7. defined as

T
D B

t=1

== W(J‘ {{9(“)} ,(ftt)} is the ex-
pected reward obtained by policy 7 at time ¢.

T.=OPT—E

where RY

For the LMMP problem, we assume the following regularity
conditions on the stochastic processes.

Assumption 1. (Sub-Gaussian errors) For each t e [T,

the error of the reward n, ; = r,(j;) — 9(]’) (]’ is

conditionally zero-mean o,.-sub-Gaussian for a ﬁxed con-
stant o, > 0. In other words, E [exp (vni¢)| Hi] <

2 2
exp ( for all v € R. For the consumption vectors,

E [VT{b(Jt —( f]t))TXg;)}’th] < exp(” H22 b for
allv e R™.

Assumption 2. (Independently distributed contexts) The set

of contexts {X(J )ik e [K]} are generated independently
overt € [T]. The contexts and cost in the same round and
class can be correlated with each other.

Assumption 3. (Positive definiteness of average covari-
ances) For each ¢t € [T] and j € [J], there exists & > 0,

) ]) 2o
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Assumptions 1 and 2 are standard in stochastic contextual
bandits with knapsacks literature(Agrawal & Devanur, 2016;
Sankararaman & Slivkins, 2021; Sivakumar et al., 2022). In
the multi-class scenario, Assumption 2 implies that all the
contexts are drawn independently over time steps, but their
distribution may vary depending on the class. The indepen-
dence of contexts is supported by Bastani & Bayati (2020)
and Kim et al. (2021), as this assumption is practical in
real-world applications such as clinical trials where patient
health covariates are independent of those of other patients.
Assumption 3 implies that the density of the covariate dis-
tribution is non-degenerate. This assumption is necessary
to estimate all entries of the parameters through linear re-
gression in the statistics literature. In our work, we use the
estimator ©,, for ©, in pseudo-rewards as defined in equa-
tion (5). Therefore, the convergence of ||©,, — ©, ||, and
the accuracy of the pseudo-rewards are heavily dependent
on Assumption 3. Recent literature on contextual bandits
(without constraints) has utilized Assumption 3 to improve
the dependency of d on the regret bound (Bastani & Bayati,
2020; Kim et al., 2021; Bastani et al., 2021; Oh et al., 2021).
As noted by Kannan et al. (2018) and Sivakumar et al. (2020;
2022), contexts with measurement errors provide enough
variability to satisfy Assumption 3.

4. Proposed Method

In this section, we present our proposed estimator for the
parameters {09 )owli) e [J]} and the proposed closed
form bandit policy.

4.1. Proposed Estimator

In sequential decision-making problems with contexts, the
decision-maker observes the contexts for all actions, but
the reward for only selected actions, i.e. the rewards for
unselected actions remain missing. A statistical missing data
technique called the doubly robust (DR) method is employed
to handle the missing rewards for linear contextual bandit
problem (Kim & Paik, 2019; Dimakopoulou et al., 2019;
Kim et al., 2021; 2023; 2022). However, extensions to
LinCBwK or LMMP problems have not been explored yet.

To apply the DR method to the LMMP problem, we modify
the randomization technique proposed by Kim et al. (2023).
For each n € N, let 7(n) be the round when the n-th ad-
mission happens (recall that the bandit policy allows for
skipping some arrivals). Clearly, n < 7(n) < 7(n + 1)
holds. Let

oL o o
6* - . ’W* = . 7Xk:’n = (];(n))
o) () o, (n)

* * Od

denote the stacked parameter vectors, and zero padded con-
,(C]:({;L))) is located after the j.(,) — 1 of 04
vectors. Then the score for the ridge estimator for ©* at

round 7(n) is:

texts where x

n

(Jry)
Z (rar(u)ﬂ'(”)

v=1
n K
= Z Z I[(a
v=1 k=1

where © € R7?,
(Gre))
k,7(v)

T ~
-0 Xa‘r(u)yl/) Xa‘r(u):l/

=) (1) - 07 %) K
Dividing the score by the probability

T gives the inverse probability weighted (IPW) score,

K 1(a

>y

v=1k=1

[(aro) =k) ( Groy)
TGy k@)
Tl r (v)

- 07 X1y ) Ko

To obtain the DR score, Bang & Robins (2005); Kim et al.
(2021) proposed to subtract the nuisance tangent space gen-
erated by an imputed estimator O:

from the IPW score. Then the following DR score

. ©)
DR(©
Z {% (v)

v=1k=1

n

- X/,0} %, @)
is obtained where

5 1 (a :k)
DR(©) T(v) (jT(V))
Thw ST Gy e YT
k,m(v)

H{ar)=k) {47 &
(Jr(y) X ©-
k,7(v)

3)

The score (2) has a similar form with the score equation

for the ridge estimator. The difference with the ridge es-

timator is that it uses contexts for all actions k € [K]

R(©)

with the pseudo-reward rk Y which is unbiased, i.e.,

E[rff’(@)] ]E[T,(j;((y)))] for any given © € R”*?. Adding
the /5 regularization norm and solving (2) leads to the DR
estimator:

n K L K _
o o 6

(S5t (S35t

v=1k v=1k=1

The main advantage of the DR estimator is that it uses

contexts from all K actions. However, in our policy, some

lij;((lg)) can be zero, and therefore, the pseudo-reward (3) is

not defined. To handle this problem, we propose to introduce
a random variable. After taking an action at round 7(v)
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and observing the selected action ar (1) the decision-maker
samples h,, from the distribution:

¢k,u::P (hy = k| HT(YL))

16(K —1) log(47)

1- ( A,)mn(py) k= Ar(v) “4)
16 log( 4
N Fu) k#arw)

where F), := Z:’szl kai)z,;':iJrlGd(Kf 1) log (dTJ) Ij.4
is the Gram matrix of contexts from v admitted rounds
and ¢ € (0,1) is the confidence level. We would like to
emphasize that h, is sampled after observing the actions
ar () and does not affect the policies until round 7(v).

Sampling the random variables h, after choosing actions
is motivated by Kim et al. (2023) which uses bootstrap
methods (Efron & Tibshirani, 1994) and resampling meth-
ods (Good, 2006). To obtain the unbiased pseudo-rewards
similar to (3), we resample the action from another dis-
tribution with non-zero probabilities. The probabilities
{¢r., : k € [K]} are designed to control the level of ex-
ploration and exploitation for future rounds based on the
ratio of confidence level to the number of admitted rounds.
When the minimum eigenvalue of F}, is small compared
to log(1/6), the distribution of &, is less concentrated on
ar(y) and tends to explore other actions. As v increases, the
probabilities {¢y,, : k € [K]} concentrates on a,(,), and
the decision-maker tends to exploit.

Since we obtain non-zero probabilities {¢y , : k € [K],v €
[n]}, we define novel unbiased pseudo-rewards:

k) (J w)) { I(h, k)}
1S A ME
¢k,u kT(V) ¢k1/ k, ( )

I(h,=
’Fk,y:: (

where the imputation estimator ©,, is an IPW estimator with
new probabilities:

o { T 310

vev, k=1

Xk T (Fr@y)

k,7(v)
22X

(JT(V))
ar@y v’ ar(yy,T(V)
ui‘l’n

Z Z ¢kl/ XkUXkV

VE‘I’nk 1
+ Z X%(u)aVXCLTT(,/),V +1.d,
V¢‘I’n
v, = {V €n]:h, = aT(y)} .

The set \I'n is introduced because we cannot observe
%rg;(&; in case of h, # a,(,). In other words, we
use the pseudo-rewards in (5) only at the rounds that satisfy

hy, = a;(,). Then our estimator with n admitted samples is

defined as
R PIPILEED SE
vev, k=1 Ve,
K ~ ~ ~ ~
=2 D KXot Y XaroywXd, ot lra:
vevw,, k=1 vgW,

(6)

Analogous to the construction of (6), we can also define the
estimator for the resource consumption parameters {W,EJ )

j €1}

Z Z Xk ubk V+Z Xaﬂ.@) v aj:(( )).2(,/‘|

vev, k=1 vgw,,
@)

where the pseudo-consumption vectors and the imputation
estimator are

. __H(huzk) (Jr@)) [(h, =k)\ & T
bk’”'—wbaww 1—W Wa Xew

i T
[ & 3, )
vev, k=1
> (Jr@)) T
+ Z XaT(V)’V {bar(u),T(V)} ‘|'
vg v,

The two estimators use the novel Gram matrix V;, defined
in (6) consisting of contexts from all K actions. Now, we
present estimation error bounds normalized by the novel
Gram matrix V/,.

Theorem 4.1. (Self-normalized bound for the estimator)
Suppose Assumptions 1 and 2 hold. For each t € [T}, let
ny denote the number of admitted arrivals until round t and
U, ={ven:h =a, D)} where h,, is defined in
(4). Suppose F,,, := Y "', k 1 X5 ,,X,;ry + 16d(K —
1)log %Ij.d satisfies

)\min(Fnt)
o 144 (K — 1) log (44) Jd | ®)
> 4Kd 2~ +35log —
- {; Amin(Fy) TR
for 6 € (0,1). Foreachr € [m], let \/7\\7”“,, and W, .

be the r-th column of W,,, and W, respectively. Denote
Bs(0) := 8V Jd + 9604/ Jdlog %. Then with probability
at least 1 — 4(m + 1)6,

<Bs,(9),

©))

max HV/\\/”M - W*,r S/Bm) (5)

re[m]
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Compared to the self-normalized bound in Abbasi-Yadkori
etal. (2011) uses the Gram matrix consisting of selected con-
texts only, our bounds are normalized by V,,, This change
in the Gram matrix enables us to develop a fast conver-
gence rate. The condition (8) is required for the eigenvalues
of the Gram matrix F},, to be large so that the probability
®a.,, v 1s large and the estimators use the pseudo rewards
and pseudo consumption vectors for most of the rounds. We
show in Lemma 5.3 that the condition (8) requires at most
rounds logarithmic in 7', and does not affect the main order
of the regret bound.

Using the novel estimators, we define the estimates for

7) ={set]:

utility and resource consumption. Denote Ct(
Js =17 } and

. L1—1
a) =]

sECt(j)
) 1 T G) (10)
bkj,t = Z {Wtil} ij,s'

SECE‘”

The estimates (10) use the average of contexts in the same
class to estimate the expected value over the context dis-
tribution. In this way, the decision-maker effectively uses

previous contexts in all rounds including the skipped rounds.

Next, we establish a convergence rate for the estimators u(] )

and b,(fi

Theorem 4.2. (Convergence rate for the estimates) Sup-
pose Assumptions 1-3 hold. Denote the expected utility

*(9) M1 ()

uk] = Ex, ~F, [{9*] } xk} and consumption bk] =
N T

Exr, ({9} xk]. Set 3o () 1= SVTOETRT)

%n(f), where n is the number of admitted arrivals un-

til round t and B, (0) is defined in Theorem 4.1. Suppose
t > 8da~'p_! log JT, & € (0,71) and F,,, satisfies (8).
Then with probability at least 1 — 4(m + 1)6 — 7T~ 1,

D50 P s
ij;g?%\ ~ B0 | < e (0),

(11)

Z max‘bm N ’ < (0)
Jke[K kt+1 Vt,0510)-

The convergence rate of the estimates is O(v/Jdn; 1 2). In
deriving the fast rate, the novel Gram matrix V,,, plays a
significant role. To prove Theorem 4.2, we bound the sum

of squared maximum prediction error as follows:
. NT )2
il Z max {(09) —QZ)}])) X,(jl}
ke (K] ’

:nit Z max (99)—@(”) (X; )SXEJZ) <9£j)_§§j))

seWy,
1 K !

() /\() ( ) () _ ()
< ntsegm (9] J) (Zxk] xj ) (9*j —GtJ)
il

ny

Such a bound is not available if the Gram matrix is con-
structed using only contexts corresponding to selected ac-
tions. In this way, we obtain a faster convergence rate for
the estimates for utility and consumption vectors.

4.2. Proposed Algorithm

Let (K + 1)-th action denote skipping the arrival and

w%l_l , = P (Skip the round | H,) denote the probabil-
ity of skipping the arrival. Since the decision-maker must

. . K+1
choose an action or skip the round, we have > k +1 77,(3 2 =1.

When the decision-maker skips round ¢, we set X&()-s-l . =0

and b%)ﬂi := 0. In round ¢, the randomized bandit policy
is given by the optimal solution of the following optimiza-
tion problem:

K+1 ] (6)

(ke kD).

St pjt
K+1
st Z ,/T(Jt < (]t) ’yt717ab(5) 1m> < p VO,
VP (12)
K+1
> =1
w,(j;) >0, VkelK+1]
where p; = tp— Zt ! b(J*S is the difference between

the used resources and planned budget until round ¢. The
algorithm is optimistic in that it uses upper confidence bound
(UCB) in rewards and lower confidence bound (LCB) in
consumption while it regulates the consumption to be less
than ¢p with p;. In this way, the problem (12) balances
between admitting the arrivals and saving the resources for
later use. Next, we show that the optimal solution (12) is
available in a closed form.

Lemma 4.3. (Optimal policy for bandit) Let d,(j tt) = ﬂ,(j ;) +

;. P10, (DL (K € [K]) and b7 (r) = Y (r) —

p;tl/z'yt,l_,gb((;),forr € [m]. Fori € [K +1], let ”(j{)) .
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Algorithm 1 Allocate to the Maximum First algorithm

(AMF)
INPUT: confidence lengths 7y, 5 > 0, confidence level
0 € (0,1).

Initialize Fy := 16d(K
0.4, Wo :=07.4xm
fort =1toT do ‘
Observe arrival (jy, {x,(j);)}ke[m).
if F}_; does not satisfy (8) then
Take action a; = arg maxje[k] p||b( t)HOO .
else ) . ] .
Compute ﬁgj *) and b(] *) with (/9;(1’% and ng‘%

—1)log %154, p1 == p, Qo =

= ( t) A( t) LU .
Compute @,y = Uy + T and by =
b(]t) _ Yo 1
’ NZnrei
Take action a; with the policy 7'('5 f), . 7T§( 421 , de-
fined in (13).

end if
if a; € [K] then
Observe r(j *) and b((ft *). then estimate ©; and W,
as in (6) and (7) respectlvely
Update F; = Fy,_1 + Zk 1 X th t
end if
Update available resource p;+1 = pr +p—b
1fZ b[(f v > Tp then
Exit
end if
end for

(Jt)

ag,t*

be a sequence of ordered variables of ﬂ(J ) in decreasing

order, i.e. ﬂ,(j%"% > ﬁ(j{% > > ~(j<’1)(+1>t. When there
is a tie between u,(j<’> and u,(jgz 1y the index k(i) with the

higher value for

pu(r) VO = T3 T Doy (1)
(5¢)
bkj<h>,t(7°)

goes first. Then the policy defined as,

min
re[m]

~(j . VO
W,(Citl)%t: min 7535;) Al
re[m] b Bl ¢ (7“)
‘ \/0 i 1’\Jt) b(]t) r
Tty = m[m] pUDVO” Lt i) 13
st \ e

b;@é,xr)
i—1 )
A (1 - 7?,85,3)0 Vi€ 2, K +1],
h=i

is the optimal solution to (12).

Since the objective function of (12) is linear, we can obtain
the maximum value by permuting the objective coefficients

in decreasing order and allocating the greatest possible prob-
ability value in decreasing order of the objective coefficients.
Note that 7?,? ;) is automatically set to zero when the utility
is negative. This is because of the probability of skipping
the arrival, %%’H L =1-Y 7 J’) .» When “%flu is the
[-th largest weighted utility functlon and all the remaining
probability is allocated to 77%321 ;- Therefor, the probabili-

ties for actions k£ with uff ’t) < ﬂ%ﬁl ; = 0 are all zero.

Our proposed algorithm, Allocate to the Maximum First
(AMF) is presented in Algorithm 1. The algorithm first ex-
plores with the least consumption action until the eigenvalue
condition for the estimator (8) holds. In each round of explo-
ration, the Gram matrix of all actions is added to F,,,, and
any choice of action increases the eigenvalue of F},,. Once
the condition (8) holds, the algorithm solves the problem
(12) by computing the closed-form policy (13). The compu-
tational complexity of our algorithm is O(d®*m KT + Jd3T)
where the main order occurs from updating the estimators
and computing the eigenvalues of J symmetric positive-
definite matrix F},,. Note that computing estimators does
not depend on J because the algorithm updates only j;-th
variables for each ¢ € [T].

5. Regret Analysis

In this section, we present our regret bound and regret anal-
ysis for the proposed AMF algorithm.

Theorem 5.1. (Regret bound of AMF) Suppose Assump-
tions 1-3 hold. Let My, = 2304a=%p_? logT +

280a " 'p ! and C,(6) = 96 + 11520

1/log %
pose T and p satisfies T" > 8d0f1pmln log JdT, and

p > /Jd/T. Setting v9 = 161/Jlog JKT + 60,,(9)

and ~yp = 16/ Jlog JKT + 655, (9), the regret bound of
AMF is

~ OPT\ | 4dlog JdT
RE<(2
T‘<+ T >{

QPmin

Sup-

Jd
+2dMo¢,p,T IOg ? +15

+(9& /log JET+3Cs v, (5))\ /JdT log T+ 10mT36}.
For § € (0,m™1T=3), the regret bound is

" PT
£ _0 (OTp\/JdTlongKTlogT> . (4

The regret bound (14) holds when the hyperparameter § =
m~T~3, which requires the knowledge of 7. However,
in practice, selecting another value of § does not affect the
performance of the algorithm. We provide the discussion on
the sensitivity to the hyperparameter choice in Section 6.3.

Setting B = T'p, the main term of the regret bound is
O(OPT/B+vJdT) for B = Q(v/JdTI'). The sublinear
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dependence of the regret bound on J, d, and T is a direct
consequence of the improved O(/.Jd/n;) convergence rate
for the parameter estimates. Agrawal & Devanur (2016)
establish a regret bound R% = O(OPT/B - dv/T) for the
LinCBwK when B = Q(+/dT?/4). Our bound for LMMP
(which subsumes LinCBwK as a special case) is improved
by a v/d factor and is valid under budget constraints that
relaxed from Q(v/dT'%) to Q(v/dT'2).

For the proof of the regret bound, we first present the lower
bound of the reward obtained by our algorithm.

Lemma 5.2. Let ﬂ](gj 2 and Bg Z be the estimates defined in
(10). Denote 7 the policy of AMF. Define the good events,
& =D and b9 sati
¢ = Uy, and by satisfies (11). ¢,
M, := {F,, satisfies (8).},

(15)

and Gy = & N My_1. Let T be the stopping time for the
algorithm and § := infyci) {Ms_1 N {p; > 0}} be the
starting time after the exploration for condition (8). Then,
the total reward

T ~
> B
t=1

PT
~2(1+20),| 1
ol

E Z(MTDT]E[T—,E]—@JFO[)];T)ZP( )

t=1

Z Vi—1,0,vo, (0)?1 (ar € [K})] .

t=1

The lower bound consists of three main terms. The first
term 2LLE [r — ¢] relates to the period for which the al-
gorithm uses the optimal policy (13). The second term
(2+<55) SO P(GF) is the sum of the probability of bad
events M¢_, over which the minimum eigenvalue of the
Gram matrix F,,, is not large enough for the fast conver-
gence rate, and the event £ over which the estimator goes
out of the confidence interval. And, the third term con-
sists of the sum of confidence lengths for the reward and
consumption.

The following result bounds 7, £ and the sum of bad events
{MS§ t e [T]}.

Lemma 5.3. Suppose Assumptions 1-3 holds and p >
VJd/T. Let My, 1 and v;,,(5) denote the variables
defined in Theorem 5.1 and Theorem 4.2, respectively.
Then, for any 6 € (0,1/T?), the starting time & =
infyery{Mi—1 N {p: > 0}} and the stopping time T of
the AMF algorithm is bounded as

_ 14dMa 7 log () +T76

El¢] < L +1,
P
B < A DT 47 42900, (0)
P

7.5

7.0 o
. - .
¥ es T M . bl b °

S 60

55
5.0

log d
Figure 1. Logarithm of cumulative regret of the proposed AMF
algorithm on various dimension d when the per-period budget is
p = +/d/T. The gray (resp. black) line is the best fit line on the
points when 7" = 5000 (resp. 17" = 20000).

— oco — oco
8001 — AMF 8001 — AMF

200 200

4000 6000 8000 10000 4000 6000
Decision points Decision points

(a) Regret comparison with budget B = /dT%/4
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(b) Regret comparison with budget B = v/dT'
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Figure 2. Regret of AMF and OCO algorithms for K = 20 and
m = 20. The line and shade represent the average and standard
deviation based on 20 independent experiments. Additional results
on different K and m are in Section A.3.

and for M, defined as in (15),

T
> P (Mfy) < T26 + dMoprlog (J(Sd> :
t=1

The regret bound follows from bounding the probability of
&f with Theorem 4.2 and showing that the sum of square
of v +(0) is O(JdlogT). The bound holds because the
summation of y; , ()% = O(%) over the rounds that a; €

[K] happensis > ", O(Jd/n) = O(JdlogT).

6. Numerical Results

We demonstrate the cumulative regrets with given budgets
(Section 6.1 and 6.2) and the sensitivity of our proposed
AMF to the hyperparameter choice (Section 6.3). For the
computation of the regret, we use a setting where the instan-
taneous regret is computable for each round. (For the details
of the setting, see Appendix A.1.)

6.1. Regret R7. as a function of d

Figure 1 plots log(R7.) vs. log(d) for a single-class (J =
1) LMMP for T = {5000, 20000} and the budget B =
VdT, where our O(%\/ JdT) regret bound implies that
log(R7E.) is constant over d. The regression line on the
plot is nearly flat and the slope of the best-fit line is 0.136
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Figure 3. The reward and inventory of AMF on various hyperparameters 7y, v, and 6. The solid (resp. dashed) line represents the reward
(resp. inventory). The line and shade represent the average and standard deviation based on 10 repeated experiments, respectively.

(resp. 0.008) for 7" = 5000 (resp. T" = 20000). The weak
increase in T = 5000 is captured by the O(dlog JdmT)
term in our bound, which diminishes for large 7T'.

6.2. Comparison of AMF with OCO

In order to compare AMF with OCO (Agrawal & Devanur,
2016), we set J = 1. The hyperparameters for AMF were
settoyg = 1,7, =1 and § = 0.01.

Figure 2(a) (resp. (b)) plots the cumulative regret of the
two algorithms with budget B = VdTi (resp. B = V/dT).
Note that OCO requires a minimum budget B = VdTi
whereas AMF requires a lower minimum budget of B =
V/dT. The regret lines cross because AMF is allowed to
skip arrivals whereas OCO does not skip arrivals. The sud-
den bend points at the end of the round in OCO show that it
runs out of budget and has regret = 1. In all cases, our al-
gorithm performs better and the performance gap increases
as d increases. Note that the regret plot for OCO never flat-
tens out for most cases, where the regret of AMF flattens as ¢
increases. This is because our new estimator which uses con-
texts from all actions with unbiased pseudo-rewards (5) for
unselected actions and has a significantly faster convergence
rate as compared with the estimator used in OCO.

6.3. Sensitivity Analysis

We demonstrate the sensitivity of the proposed AMFE algo-
rithm to its three hyperparameters: 7y, 3, and 6. Figure 3(a)
and 3(b) show the reward and inventory of our algorithm
on various vy € {0.01,0.1,1} and y, € {0.01,0.1,1}. We
present on these sets since the variability of the reward and
the inventory of the algorithm are hardly visible outside
the sets. Figure 3(c) shows the reward and inventory of
AMF on various § € {1071,107%,10~"}. When § > 10~}
(resp. § < 10~7) the reward and inventories are same with
§ = 107! (resp. § = 10~7). The change in the reward
and the consumption of the proposed AMF is visible only
when the hyperparameters change drastically. This shows
that choice of hyperparameters is not sensitive. The effect

of g and ~y, diminishes fast by n, /2 term and our policy
finds the order of the utilities rather than their absolute val-
ues. For §, which controls the sampling probabilities (4) in
estimators and the exploration rounds in (8), it also has a
small effect. This is because the minimum eigenvalue of
F,, increases in Q(n;)-rate and reduces the effect of log +
terms in (4) and (8). Therefore, our algorithm guarantees a
similar performance for other hyperparameters than speci-
fied in Theorem 5.1. For details of the experimental settings
and recommendation of the specific hyperparameter choices,
see Appendix A.2.

7. Conclusion

We introduce a new problem class LMMP that extends upon
LinCBwK and online revenue management to a multi-class
setting. To address this problem, we propose a novel esti-
mator that utilizes unbiased pseudo-rewards and contexts of
all actions to learn class-specific parameters of all classes.
We use this transfer-learning-based estimator to propose an
algorithm in which the policy is available in closed form
and the worst-case regret is O( OFT \/JdT) when the bud-
get B(T) = Q(v/JdT). This result improves both the
regret bound and the minimum budget required, resolv-
ing an open problem in LinCBwK. Numerical experiments
demonstrate superior performances over benchmarks for
the single-class case, and robustness to hyperparameters
changes for multiple-class data.
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A. Supplementary for Experiments
A.1. Settings of Parameters and Contexts for Regret Computation

For numerical experiments, we devise a setting where explicit regret computation is available. We set J = 1 for OCO to be
compatible with the setting. For z € Ry, let [z] be the smallest integer greater than equal to x. For parameters, we set
9* = (_17 ) _17 |—d/2‘|717 Tt ’Vd/2“71) and

pld/2171 - pld/2]7!
Wl | PR el
p o p ’
/ p

where the [d/2]7! and p[d/2] ! terms are in the first [d/2] entries. For contexts, we set the optimal action by
0,---,0,1,---,1), and for other actions, we set (Up 0.05, - , U0,0.05, U~0.05.05 - » U—0.05,0),Where U, is the Uni-
form random variable supported on [a, b]. Then we have the optimal arm with reward 1 and consumption p, while other
arms have reward less than 1 and consumption more than p.

A.2. Experiment Settings for Sensitivity Analysis

The settings of the experiment in Section 6.3 is described as follows. The number of classes is JJ = 3 with a uniform prior
p=1(1/3,1/3,1/3)T and every d = 5 elements of K = 10 contexts are generated from the uniform distribution on [

KJ
1, % 4 1] for k € [K] and j € [J]. The costs are generated from the uniform distribution on [

k(J—j+1)-1 k(ij+1)+1]
VKT KJ J KJ

for k € [K] and j € [J]. Each element of 0% and W is generated from Up ; and fixed throughout the experiment. The
generated rewards and consumption vectors are not truncated to one to impose greater variability, as our algorithm does not
show apparent sensitivity on bounded rewards and consumption vectors. The algorithm consumes the budget faster than in
previous experiments because the consumption vector is not bounded to 1.

Based on the experiments, we recommend using grid search on v5 x 7, € [0, 1] to maximize the reward.

However, we recommend using 6 = 0.1, which is greater than the specified value in Theorem 5.1 for the algorithm to start
using its policy in earlier rounds.

A.3. Additional Results on Regret Comparison.

Figure 4 (a)-(d) show the regret comparison of AMF and OCO on different terms of K = 10,20, m = 10,20, and B = dT3/4.
Similar to the results in Figure 2(a), our algorithm has less regret than OCO in all cases, especially at the end of the rounds.
The crossing line occurs when our algorithm skips in the middle round when p; < 0 while OCO does not skip until the
inventory runs out.

Figure 5 (a)-(d) show the regret of AMF and OCO algorithm on various K = 10,20 and m = 10, 20 with budget B = v/dT.
Even in the smaller budget, our algorithm AMF does not run out the inventory and gains more reward than OCO. The gap of
the performance tends to be larger than B = VAT case.

B. Missing Proofs
B.1. Proof of Theorem 4.1

Proof. Because the construction of @t and V/\\/'t is the same, the bound for the Wt follows immediately from the bound for
(Gr)) (Jrw))
ar )TV ar (), T(V)

©, by replacing {r
for ét.

)iV E [n¢]} with m entries of {b : v € [ny]}. Thus, it is sufficient to prove the bound

12
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Figure 4. Regret comparison of AMF and OCO algorithms under B = dT?/*. The line and shade represent the average and standard
deviation based on 20 repeated experiments.

Step 1. Estimation error decomposition: Let us fix ¢ € [T'] throughout the proof. For each v € [n] and k € [K], denote
X = Xk X, . Then we can write

K
Z Zxk,y+ Z XaT(V),V+IJ-d7

Vo, =
Ve, k=1 Vg,
K I(h
Ap, = Z ¢ Xku+ > Ko+ Ly
VED,, k=1 kv Vg,
Denote the errors 7y, ,, = 7%, — )N(IIVG)* and 1y, ,, == r,(j;((?)) ,;r’l,@*. By the definition of the estimator @nt,
H(?)m ey
‘/nt
K ~ ~
= Vn:1/2 -0 + Z Z ﬁk,uXk,l/ + Z nk,uXaT(,,),u
veV,, k=1 vV, 9
SO i (16)
< s (Vi 210y + (| Vi 28030 D K+ D MKy
VE\I"”t k=1 VQ\I/“t 2

K
S@—i— Vn_tl/Q Z Zﬁk,u)zk:,u'i_ Z nk,VXa-,—(y),V )

vev,, k=1 1/¢‘Ifn,ﬁ 9

where and the last inequality holds because ‘ , < +/d. Plugging in 7, defined in (5),

- Ly =k)\ = o1 o ]
nk,l/Xk,V = (]- - ()> Xk,VX]Iy (626 -0 ) + )nk,uXk,ua
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Figure 5. Regret comparison of AMF and OCO algorithms under B = +/dT'. The line and shade represent the average and standard
deviation based on 20 repeated experiments.

and the term ZVG\I/M Zszl f]ky,,)zk,,, is decomposed as,
K K
o T(h, =k . v = .
SN ik Xnw= >, > { (1 - (¢)> X (0, — 0%) + qs)nk,yxk,y} : (17)
VEW,, k=1 VEW,, k=1 kv kv
By definition of the IPW estimator (;)t,

zz(

vew,

K I (hl/ = k) —1 * . H
=1 > Z(l_s‘bku> Xuw 0 Al {07+ 2 Z ¢ku nk v Xiw + D M v XKaro v

vev,, k=1 1/¢\Ilnt

K
= (Vo —Au) A —07+ Y Zw Xiw+ D X
nt n¢ nt Qbk . TNk, v Nk, 77(1,(1,),1/ Ar(v),V

DE\I/,,,t k=1 V¢‘1’nt
= (Vo, — An,) A, (-0 4+ S,,,),
(18)
where
K I(h,=k) - ~
VED,, k=1 kv VT,

then,

K

H@TH_@* < Vv + V 1/2 Z k,l/Xk7V+ Z nk,l/XaT(,,)7V
eV, k

Vi (16)
t =1 yngnt 9

VId+ Vi 2 {(Va, = An) A7) (=0 + )+ Su.}

(17):,(18)

14
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By triangular inequality,

Hét -0 <v Jd+ Vn_tl/Q {(Vnt - Ant)Ar_Ltl (—(“)* + Snt) + Snt} ‘2
ng
<VId+ [V 2 Vi, = An) A7 (=07 + 80| + 115l
SNar i (V1/2Antlvnlt/2 IM) <_antl/2®*_|_vt—1/2sm) ’ + 1S, Iyt
2 ' (19)
<ViJd+ |viraziviz - L,,dH2 H—VT;W@* V280 + 1Sy
<vJd+ V1/2A 1‘/7111/2 ]J.dH2 (\/Jd+ ||Snt|\vn;1) + ||Sm||vn21
_ —1y1/2 _
—(| Vil = Ly + 1) (VId+ Sullly,1) -
Step 2. Bounding the || - ||> of the matrix in (19) We claim that
VIPAIVZ = é[ (20)

Define F,, := > ", Z}f:l X, + 16K dlog(%42)1 4. Then we have V,,, < F,, and ant/zA Iant/Q = F_l/QAan_tl/Q.
Now we decompose the matrix A4,,, as

Fn_tl/2AntFn_t1/2 1/2 {ZZ ¢ Xku+I]d}F 1/2
k,v

v=1 k=1
—1/2 o H(hu = k) —-1/2
FE Y X = Y X | B,
vEgWo,, k=1 st,u 21
ny K
. I(h, =k Jd _
= nt1/2 {;1 ; ka’y + 16K dlog 6[].d} Fnt1/2
K
_ I(h, =k Jd _
+ Fnt1/2 Z {XaT(V)’V - Z ((bk)Xk V} + (1 a 16Kd log (S) IJ‘d Fnt,l/Q
v, k=1
For each v € [n;], the matrix Zszl H(Z);i:uk)F{tl/ ZXkyl,Fn_tl/ ? symmetric positive definite and
K K
Jd I(h, =k) 4 Jd I(h, =k) _
Amax | 8log —— F 12X Fol/? ) <8log "= ) ——— Ao (B
a( g(s; ¢k,y t g5k1 QS]C’U d(nt)
Jd >\Hlln 14 —
<slog 7 T ()
d 16log (%) (22)
<1 )\min<FV)
2 )\min(Fnt)
1
<-.
2

15
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With the filtration Fy := H; and F,, := Fo U {h, : v € [n]}, we use Lemma C.3 to have with probability at least 1 — 4,

8log 5F‘1/2{ZZ (bk Xky+16KdlogJ5dIJd}F 1/2

v=1k=1

>810g nf”{ZZXku-i—IJd}F 1/2

v=1 k=1

=4log édljd — log L;d

Jd
=3log —1;.4,
1)
which implies

K

I(h Jd, 3

2 Z Xk v+ 16Kdlog —15.q ¢ F; Y% = Sy, (23)
v=1k=1 ¢k”’ 6 8

and the left hand side of (21) is bounded as

K
3 _ I(h, =k) Jd
1 2 1/2 1/2 v /2
/ An,Fn, / g[ Jd+ Fn,, / Z {XGT(V),II - Z (kak,u} + <1 - 16Kd10g (5) IJ~d F /
Vg, k=1 v
(24)
To bound the other term, observe that for v ¢ ¥, ,
X = k)
Z V Xkl/ ] Z Z¢zu Xku* Z Xkl/
k= ’ 2750,7.( )k} 1 k;éa,.<,,>
Because (22) holds for v ¢ ¥,,,, we can use Lemma C.3, to have with probability at least 1 — ¢
Jd K I(h Jd Jd
—1/2 1/2 1/2 1/2 Ja
810g5F Z Z X;“, Fr <1210g5Ft Z Z X +1og51Jd
v, k=1 vg W, k#ar ()
Rearranging the terms,
S I(h 3 1
_1/9 ~1/2 —1/2 —1/2
F"f / Z Z Qbk: Xkl’ Fnt / j §Fnt / Z Z Xk,l/ an, / + gIJ.d.
yg\llm k=1 v 1/¢\I/“t k;éa,.(,,)
Thus the second term in (24) is bounded as,
K I(hy, = k)
—1/2 v = —1/2
IR e |
Vg, k=1 v
3 1
1/2 —1/2
= F Z Xarwyw ~ 2 Z Z X | Fat? = gIJ'd
v, vgW, k#ar () (25)
K 1
—1/2 —1/2 1+
= - 2Fnt S Xew| Fy gL
vgW,, k=1
==

3dK 1
{|\I/ |)\max(Fm1)+8}IJ-da

16
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where the last inequality holds by Amax (X)) < d. Plugging in (24),

1 K
EY2A, F M2 =lra— {3d |5, | Amax (Fp, )}IJ a— (16Kdlog %d - 1) F!

(26)
3dK Jd
4L,d — ( | |+ 16Kdlog5> Amax (Fi') I.a-
By Lemma C.3, with probability at least 1 — 9,
3
- nr|_ Z]Ih #a‘rz/) 52 Z ¢ky+10g6
v=1k#ar(,)
which implies
dK d
(3 |W¢ | + 16K dlog ‘]5> Amax (F),,1)
dK ! 1 Jd
oo v log — 2log —
S DB |72 2 Orwt3logs+32os
' v=1k#ar()
<o 92 Z ¢ku+3510g 5 27
mln v=1 ks, (1)
dK ot 144 (K — 1) log Z¢ Jd
oy o + 35log —
2)\111111( 711) (; Amin(Fu) 5
1
< o0
-8

where the last inequality holds by the assumption (8). Plugging in (26), with probability at least 1 — 24,

K
T(h, = k) 1
—1/2 v —1/2
DY {Xamw - Z%XW} L

vgWa,, k=1

With (24),
124, P 1

ne o, 1.4,

oo

which proves (20) and the claim implies

Step 3. Bounding the self-normalized vector-valued martingale S,,, Let F; be a sigma algebra generated by contexts

a2 — I.J-dH2 <T.

X(J* K], s € [t]}, and ¥,. Define filtration as F, := o(Fy U H,(,+1)). Then S, is a R’ *?-valued martingale
(v+1)
because
[ K I(h, = k) i
E [Su - Su—1|]:y—1] =E V S \I/nt gk nk ka: v+ H( ¢ \Ijn,) naT(V),T(V)Xk,V fy—l]
L k=1 v
r K
. o =K :
=E|I(reV,,) b e Kb F TV E V0, ) N, () Xk | Fomt
L k=1 v
[ I(vev, ~
=E {(gbt) +H(l/ ¢ \I/nt)}naT(u),VXk,V Fo_1
L a.,.(,,),l/
(T ew,, ~
=K {qsa():t + H(V §é \I/nt)} ’f]a_rol),ka’l, HT(V)]

17
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where the second equality holds by definition of ¥,,, and the fourth inequality holds because the distribution of {X](j é) ke
[K],s € (1(v),t]} is independent of H(,y by Assumption 2. By Assumption 1, for any X € R,

E

QbaT(,,),u

exp l)\ {I[(VG\IIT“)'HI (v ¢ \Ilnt)} nk,af(u)]

2

2 2 I U

fV—l] SE exp /\20 { (;e nt)+H(V¢\Ilnt)} ‘FI/—l
Ar(v),V

< exp [2/\203} ,

Thus, {H((;ew +I(v¢ \Ilm)} Nk, 18 20,-sub-Gaussian. Because
() v

K 1(h, =k
Z( )

b nkJ/Xk,V'i_ E : /r]ar(u)7VXaT(1/)5V
k=1 v

UQ\IJM

”Snt Hvt—l

N
m

\Iln

— S {H(VE\IITH)
1

QSGT(V),V

o

—1
Vnt

+ ]I (V ¢ \Pnt)} nar(y),uXk,u

—1
Vi,

b

¢GT(V)7V 2

nt
I(vev,, _ =
{() LI ¢ w} Ny Vi V2K
1

by Lemma C.6, with probability at least 1 — 6,

1w ew,,) o~
||S’tHV't_1 S Z{ ¢ +]I(I/ ¢ \IJt) naT(u),VVnt1/2Xk,l/ 1)
v=1 Ar(v)V 2
Nt ~ 2 4
<120, | 3 Vi * K| Tog =
<lZlo ; ” k, ) og 5

/ 4
<120,/ Jdlog 5

where the last inequality holds because

> |

v=1

Vn_tl/2Xk,V

9 ¢ B B ¢ B B
=y X v1X,,=T X VX,
9 ; k,owVn, k, r <Z k,v ¥ ng k,

v=1

=Tr (Z Xk,yX,IVanl> <Tr (Vp, Vb)) = Jd.
v=1

With (19), the proof is completed O

B.2. Proof of Theorem 4.2

Proof. Similar to the proof of Theorem 4.1, the bound for consumption vector immediately follows from the bound for the
utilities. Therefore we provide the proof for the utility bound.

18
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Step 1. Decomposition: For each k € [K] and j € [J],

DI 1 <« O 50
E |:Xk :| 9* - Zt+1 ]I Z]I (.75 - j) {Xk),é} et
s=1

i -l < -
s=1 s s —
@] @) 1 « O\ )
<o) o (e S {2} )
Z?;ll I (]s = ]) agl
t+1
T R — > o1 =) (3 - 00 x)
Zs:l ]I (] = ]) '
t+1
1 L ] @) A1 H0)
e St = (] 0 {2}
|Zt+1]1(]s])z "
t+1
I I > 16, =) (7 - o) ).
Y1 s = 4) &= ’
Taking maximum over k € [K] gives the decomposition,
*(5) “ @O]7 ) O )
grel%’({] Uy, =y t+1‘ <k€[K} Zt+1 ZH (E {Xk } 07 — {Xk,s} 0x )
(28)
t+1
+ max ZH ( 7 _9<j>>TX<j> _
ke[K] Et+1 " %3

Step 2. Bounding the difference between expectation and empirical distribution: The random variables
T
{{xfgi} oY) s e [t]} are IID by Assumption 2. Using Lemma C.1,

t+1

e st (5] o - iy )
s 1

_ g‘il < x (j)rgm _ {X<j>}T9(j))‘
- 22111 ( Xy * k,s *

4
v91og JKT.
L
S IGs = 4)
with probability at least 1 — 3(JK7T)~!. By Lemma C.3, with probability at least 1 — (JT')~!

t+1 1 1
ZH s=3) 2 5pj (t+1) = 2log JT > 2p; (t+1), (29)

where the last inequality holds by the assumption ¢ > 8dof1p;iln log JT. Summing up the probability bounds, with
probability at least 1 — 571,

4
< — _ \/1og JKT
> 1 L(ds = 4)

v/91og JKT.

t+1
m.

s s =y 20— (2] 0 - () o)

1

- Dj (t+1)

19
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Plugging in the decomposition (28), for each j € [J],

*(3) _ ~(9) ’ 16
max |u - U < v1og JKT
ke(i) |k k41| = b D) g
t§+1: ) O\ LG
_nl J
+1?el%<] E:t“ 1 ( s ) Fhos |

Taking square and summing up over j € [J] gives

Ny 2 _16Jlog JKT
Zp] maX‘ - l(¢j1)‘+1‘ <S—

ke[K] - t+1
J t+1 ; T o 5 (30)
- Zp] e (K] t+1 ZH ( - e*j ij,s )
= ke[K] ZS 1 )
Step 3. Bounding the prediction error: By Cauchy-Schwartz inequality and (29),
J 1 t+1 ' 2
Z]?el?KX] pj 1 Z]I Js=1) ( Q(J)) 5371
7=t {Zszl I (]s j)}
t+1 ~) ) T ") 2
= WMaX Pj i1 7. _ H { (otj - e*j ) ijs}
;ke[K] Zf—H .]s —] Z ,
J ap t+1 . " .
< J I s = (9 J 0 j
S AP g>{ ) }
J=1 s=1 (31)
4 ~) NT t+1 o - .
— J) _ U . j j DG
S (t+1) ; Re (K] (et 0 ) {S_l [(js = J) %z (Xk S) (et 0 )
R T (K
< S0 - 09) S G =) ()t (A9 - )
(t+1) = Lo Za :
4 N t+1 K
=y O oK [ (8e-07).
(t+1) ( {; ; k,
where © := (9£1)7 SR gv(t]))T € RJVd and
04
Xk.,s = c RJ-d7
X](gj;)
04

(]s)

where the context x; % is located after j; — 1 of 04 vectors. We claim that

t+1 K K
1 -~
7 2D KX, S 2B X X 1} < | > > XWX, (32)
s=1k=1 U, €T, k=1

with probability at least 1 — 27°~!. The matrix X := Zszl Xy X, is symmetric nonnegative definite which satisfies

1 1
— < -.
A‘“"‘(MXXS) )

20
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By Lemma C.3, with probability at least 1 — 71,

t+1 t+1
s E[X,] + (log JdT) I;.4,
2Kdz *4Kdz (log JdT) L4
which implies
t+1 t+1
1 3 24K
VX, <2 STEX]+ 2B (log JAT) 1.4
(+1 4 _2(t+1)§ X+ 57 (og JdT) Ly.a

By Assumption 3, for s € [t + 1],

plEkaFl [Z?:l X’CXZ} 0 0
)\min (E [XSD :)\min 0 ., 0
0 0 pJExk~FJ[§:f;1XkX2}
pKaly 0 0
ZAmin 0 . 0
0 0 pJKOéId
ZKpmina-
Fort > 8dcf1pmln log JdT
t+1 t+1 Jd
ZE[ >_ ZAHIID IJ d — = (t + 1) KpmlnaIJ d >_ 4dK (log 5 )

Plugging in (33) proves the first inequality of (32),

t+1

2 S B[X,] = 2B (X,

s=1

where the equality holds because EX; = EX for all s € [T]. To prove the second inequality,

[ |\IJnt -t Z E ‘r(u)

veV,,
and by Lemma C.3, with probability at least 1 — 71,
1 1
— X = — E|X — (log JdT') I y.q4.
2Kd VE%: ") = 4Kd ; [Xr0)] = (log JAT) L.a

Rearranging the terms,
> E[Xro)] 22 ) X +4Kd(log JdT) 1.4

veW,, vev,,

By definition of F},,,

Jd
> Xew) =Fu = D Xy — 16d(K —1)log =114

l/G‘Ilnt V¢‘Pnt

, Jd
=Fn, — (Kd | T | +16d(K — 1)log 5) Ij.4.
Because the condition (8) holds, we can use (27),

)

(MK | U | + 16K dlog Jéd) Amax (F),1) <

0| =

21
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to obtain
Jd _2 (3dK Jd\ | 16 Jd
Kd |7, [ +16d(K — 1)log == <3 < | v, |+ 16K dlog 5) < Kdlog =
1 16 Jd
<+ —Kdlog
S 12 (Fr) 3 dlog =5
Amin(Fn,) | 16 Jd
==y + g Kdlog —.
Plugging in (35),

1 16 Jd
> Xow) =Fn, = § SAmin(Fn,) + - Kdlog = 4 1.4
5 12 3 5

11 d
i{)\mm(Fn,) 6KdlogJ }IM

12 o
44 Jd 16 Jd
t{g( —1)dlog 5 —Kdl 0g = }de (36)
Jd 16 Jd
{ 5 Kdlog "= — " Kdlog "> }IJ-d

2K dlog %dIJ,d
=2Kdlog JdT ;.4

where the third inequality holds by F,,, = 16(K — 1)log % and the last inequality holds by § < T—!. Plugging in (34),

Y EXo] 22 Y Xop) +4Kd(log JdT) 1.0 24 )y | X,

vev,, vev,, vev,,

proves the second inequality in claim (32).

From (31),
Ej:maxp- 1 gi]l ( 9(1)) " 2
j:1kE[K] j{zﬁ_lﬂ(]s—j)} yomr 2
4 t+1 K *
S(“‘ )( ) {;;stst}< 6)
< ﬁj‘ (ét —@*)T G%: :1 K X7, (@t _@*) 37)
< (@) (8 -er)
Ul SRd

On bounding the normalizing matrix, the novel Gram matrix V,,, plays a crucial role. To obtain an upper bound for (37), we
need a matrix whose eigenvalue is greater than that of:

K
Z Xr) = Z ZXk,T(V)XIIT(V)’ (38)

veW,, vev,, k=1
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However, with Zyeq, XGT () T(I,)XGT( () o @ Gram matrix consist of only selected contexts, we cannot bound the
matrix (38). Instead, by using a Gram matrix V;, we can bound (38) as,

K
Yo Xew =D D Xrw X

vET,, VeV, k=1
K
v v v v
=) D KX T Y KarwyrXa e
veW,, k=1 vgW,,
=V,

and prove the bound (37) to relate the prediction error to the self-normalized bound. From (37), by Theorem 4.1

- 1 S ( ( )) (3) :
max p; Z]I -6 X,mS <— ‘@t @*
=1 ke[K] {ZH-l I(js 7])} =1 |\Ilm‘ Ving
32
B0, (9),
|\Ilnf ‘
with probability at least 1 — 4(m + 1)8. Because |¥,,, | + |¥¢, | = n; and (8) implies
SKd 3Kd Jd 1
ond |\ll |/\maX(Fn_t1) < ( ’\If ‘ + 16K dlog 5) AmaX(Fn_tl) < o
we obtain N (Fo) M (F) K
min Fn max Fn Ty 11
U, | > U B e A =
(W 2 e = W5, | 20y = =000 2 me = =0T 2 T = 1™
Thus,
1 i+l , NEN 32
Z e pj——— 7 |10 =) (0 = 00) x| <607
{Zt+ ]I(]s—])} —1 n¢
12 32
i 5)?
—11 ne? (%)
ﬁa,\ (6)
t
From (30),
~(5) 2 16v/Jlog JKT 6ﬁ07, (5)
ij 1?618}}((] ’ uk,t+1 S \/{f + \/m
and the proof is completed. ]
B.3. Proof of Lemma 4.3
Proof. Suppose a feasible policy 7r(] ) for the optimization problem (1) satisfies
K+1 K+1
Z (Jf) > Z ﬂ_ka)ugft ’
k=1
which is equivalent to
K+1 G 0 K+1 -
Z ~kj(tw tNkhl) ¢ Z k7(tl> t~kj(tl ¢ (39)
=1
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Without loss of generality we assume u(J<’)> > 0 (Because ZKH ~ (th L= {iﬁl %l(cj(’l; = 1, we can subtract “1(3(11)(“)_75
on both side of (39)). By the constraints on the resources, '
=60 o g ) 1 — 20

Tyt = | L G0 A k(1).t
€l ]bkj<’1>7t(r)
Suppose 77 < 7Y Because ZK+1 7Ot K+1ﬁ(m =1, by Lemma C.2,
PP k(1) k(1,6 Tt 1=1 TRt y
K+1 G K+1 ) o
(1) £ ~(0) ~(r)
D i . < Z D 0
=1
which contradicts with (39). Thus we have ﬁ,(i% = 7r,(f<t1)> , and
K+1 K+
~ (Jt jt) jt) ~( ¢
Z 7T Jz) t kjl) t kj<l t kJ(l (40)
1=2 1=2

Again, by the constraints on the resources 7T](C <2)) , < %&% ,+ Suppose 771(@ <2)> ;< %fj& ,- Because ZK‘H ~,(€J<‘l§ =
lKgl A“{; ;» by Lemma C.2,

S~ ( ) ) Y
> A b < 3 Al
=2

which contradicts with (40). Thus we have 7r,(j<' )> = %I(CJ{ .t Recursively, we have w,(c ( lg %,(j('lg foralll € [K + 1]. Thus

(J)

there exist no feasible solution 77, such that (39) holds and the proof is completed. O

B.4. Proof of Lemma 5.2

Proof. For each t € [T, denote the good events G; := & N M;_;.

Step 1. Bounds for the estimates ﬂfcj ;) and B;cj ;) : Foreacht e [T)and k € [K],

, . . . . (8) . .
a0 = a0 — ) o0 = 1pr( ) + AP — w42
Jt
Vt—1,0. ( ) \/Pj, MaXgec[K) ’uk t t) *(je)
> + w7
Pj,
Under the event G;,
) ~0e) (Je) _ =) 2
Dji ]?el% u Ut | =4/ Pi l?el% ‘“ i
¢ (@) (4)
< ; ma ‘u R T
= ;p] ke[f)fc] kot
<’Yt*1’0r (5),
which implies
) > w0, (41)
Similarly,
byt < by, (42)
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Another useful bound for u,(j ;) is

5|y A

teU k=1
This bound is proved by the tower property of conditional expectation and Cauchy-Schwartz inequality,

Z oY) Z AV1(G ]
(o € [K])H(Q»]

(t *(Jt)
It _ g

H(Qt)] <210, (0)VE[I(a; € [K])]. (43)

(gt)] =FE | max

ke[K]

~(je) *(]t

uk . ‘ (Jt) *(Jt)

=E | max ‘ﬂgfé) - uz(jt)

ke[K]
[
—E | " p; max @) — u;?|L(a € [K])1(G)
= ke[K] ’
| , 2 |
<E |\ [ py s [} i\ [ S pil (00 € [K]IG)
Jj=1 j=1

By definition of Nfﬁj 2 and triangular inequality for ¢5-norm,

2

al) — m’H S0) )y =10 (0) 7
Zy;ga%]! (G) = a;g?g G + 2 16

J 2
< Z py o [ i+ > (Vf )) 1(G))
=1 Pj

ke[K]

SQ’thLU,,-((S) (Gt)
§2’yt71,0r (5)

Then by Jensen’s inequality,

~(7t)
E : T t

~(j¢) *(]t
Uy —

ke[K]

(gt)l <E Z Pj max’ i *(J ’ i (ar € [K])L(G)

<2910, (0)E ijll (ar € [K

<2%-1,0,(0) |E D pil(as € [K])

j=1

=231 1.0, (0)VE [ (@ € (K],

which proves (43). Similarly,
K

H(gt)] < 2v-1,0, (O)VE [[(a; € [K])] (44)
k=1

Bl(cj,;) _ b;(]t) N

Step 2. Reward decomposition: Let 7 be the stopping time of the algorithm and let i/ := {¢ € [r] : p; > 0}. Then for
t ¢ U, the allocated resource is p; V 0 = 0 and the algorithm skips the round. Thus,

T
E|> Rf| =E|> Rf
t=1

teU
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Then, the reward is decomposed as

E|> Rf| =E | RJI(G)| +E ZRf]I(gf)]
teu LteU teu

M K ) ) T

SE NS 7 @) | - S P (g
LteU k=1 t=1

>E (YN w0 ai g E[ Soag) |y — upl) H(gn] (%)
LieU k=1 teUd k=1 t=1
r K ) T K ) ) T

>E Zzﬁéﬁ”iﬂfuga] -S°E [Z 700 [al) — e w»] ~S PG
LtceU k=1 t=1 k=1 t=1

By the bound (43),
K ) ) T
S E [Z 700 lagy) — u H(g»] <2 Y 10, (8)VE L (ar € [K))]
t=1 k=1 t=1
T
<2 (T Yi-1,0,(8)°E[I(a; € [K])]
t=1
T
=2,|TE Z’ytl,gr(d)%(atE[K])]
t=1

where the last ineqaulity holds by Cauchy-Schwartz inequality. Thus, the reward is decomposed as

T
E|Y Rf| =E|> R}
t=1 teu
(45)
K ) T T
>E [ZZ%&%?&%?H(@)] — 2| TE |3 %10, (02 (ar € [K])| — D P(GF)
teU k=1 t=1 t=1

Step 3. A lower bound for p;: Denote u; < uz < ... < uyy the indexes in U. For s ¢ U, we have p; = 0, and
b¥*) = 0,,. Thus for v € [|U| — 1],

Uy41—1 Uy
Puvir =Ug1p = D b =up1p— Y b (46)
s=1 s=1
By the resource constrain at round w,,,
K uy,—1
~(Ju ) (Jur) s
DR b Suwp— ) B,
k=1 s=1

Uy
=uyp+ b, — S b,
s=1

Plugging in (46),
pu,,+1 2 (UU+1 - ul’) p - bl(ljuuyvaV + ;T\]E?{ZZ).E)’&?,ZZ)
k=1
. K . . K . _ .
> (Uyp1 — ) p— BI ) + > %,i{;z)bz(j”") +) %,E{Z;’/) (b}j;;j - b;(J””)) )
k=1 k=1
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]uu+1]

Taking conditional expectation on both sides gives

b(]u,,u Z A(Ju,,)b*(]u,,)

Ay, s
k=1

juu+1‘|

Z 7l Juu (B](SJ;ZVV) _ b;(juy))]

E [pUqul | juu+1] ZE [Uu+1 - uV|juu+1] p+ E

K . ~ .
S st (5 - bi)

k=1

+E

=E [uu-‘rl uVljuu+1:| p—|—E

k=1
>E [UU+1 - uV|]u,j+1j| P + E Zrn— Juw) (b](jf;l; — bZ(Juy)) I (guy)] ) (gqiy) ]-ma
k=1

where the equality holds by Assumption 1 and

(]‘U.u /\(]‘U.y Juu
{ bau sUy E 7Tk Uy

l{ ba]uy)+z77juy)b Juy }]

[{ i kaz)b*(juu ZA(]uu)bZ(juu)}]

k=1

=0.
For the last term, by the bound (44),

K

Z A(Juu

k=1

uy *(Juy )
by — bl

K
E lz A (B = i) 1 @W] -

k=1

\wﬂ(guy)l Ln

>—-E {27%—1,% \/]E auu 6 ])| UV]} 1.
Thus we obtain a lower bound,

E [pu,,+1|jul,+1} >E [Uu+1 - uv|ju,,+1] pP— P (gc ) 1,,

47
~ 9 [0, 1,0, () VE [T, € K] w]] L. @7

Step 4. An upper bound for OPT In the optimization problem (1), all constraints are linear with respect to the variable
and there exist a feasible solution. Thus the problem satisfies the Slater’s condition and strong duality (Boyd et al., 2004).
Then,

OPT ( )

——— = max min min min L 7rk JA, u (]))
T 20) AERT 1()>0,() 50

where L is the Lagrangian function:

J K J K ] ] T
L(ﬂ_](cj)’)\ e (a)) =35yt (D)@ 4 prmei”bz(” A
j=1k=1 j=1k=1
J K ] K
3 (123 ) + 33
j=1 k=1 j=1k=1
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Minimizing over ;) and vy (9) gives

min min L (Wl(f),)\ ut (j))
W 20020

T , ‘
+ s/ K
Z; 1 Zk 1p37r1(c])“km (p j=1 Zk 1057 (J)bzm) A Dk Wi(q]) < 1,77,(57) >0

—00 o.w.

7

which implies
OPT , , ,
——— =max min min min L (W,i]), )\,,u(J), 1/,&”)

T 70 AERT )50, >0

Zi-(: (J)<1 Tr(J) >0 )\E]Rm

J K J K ‘ ‘
< max min ZZ 7rk u,c + p—ZZp W,(Cj)bz(J) A
j=1k=1 j

[€2]
i) <1m? >

i
J K
_ : ) (7)), *( - (J) *(5)
K K T
: () *(J) @ *0)
S Zpa > m +<p > mby ) A

(J) [€)]
<1l,m >0 k=1

.
K K
ngﬂi@zpj max kzz:ﬂ,(f)uk <p Zw(’)b*(’)> A

ZkK=1 W;ﬁ”élﬂj)zo k=1

Let {ﬁ,(cj )ije [J], k € [K]} be the maximizer. If p — 22{21 ﬁ,(cj )bz(j Vis negative for some element and j € [J], then the
optimal value becomes —oo. Thus

OPT SO N () '
TSA@D@ZM . max I;W£JUZ])+<p—I;W£jka>

SR <m0 >0

(), *0) () :
:/\Helﬂi&zpj _ _ max . ;szuk (p Zﬂjbj>

TSR, n < m 7 >0,0- 28 7B >0 =

K
IR SN O S el g
SR <1m ) 20,0- K 7P br >0 (5

For each j € [J] and v € R, let 7?,(3 ‘), be the solution to the optimization problem:

max E W](Cjz,u;(])
@) ’
kv k=1

03 0Bt < v
k=1

(48)

Then,

K
OPT j j
O S o {5 )
2D <1 D 20,0 5K Db 20 |
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For each v € [[U| — 1],

<

K
OPT
E | (uyt1 —uy) T] <E | (i —w) Z Z 1(53)“2

K Guar) *Guyir)
~Gupyr) *Guygy
(Up+1 — wp) E Tkp Uy
k=1

=E

In (48), all constraints are linear with respect to the variable and there exist a feasible solution. Thus the problem satisfies
the Slater’s condition and strong duality (Boyd et al., 2004). The dual problem of (48) is

min VT)\(j )
)\(J) eRnL
49)

N T . .
.. (b;;@) AD > vk e (K.

Let A\ be the solution to (49). By strong duality, for each v € [|U| — 1],

< )
- ]u,, Ju,,
E |(upy1 — uy) E T, ) +
k=1

T3 Guygr
= {(u,,ﬂ—u,, Ap }

aum } (50)

E
E[E [ (1 = w) plju] A
E[(P(05,) + 2B [VE[T(aw, € RN wrlru,-1a()]) 1A+

+E [(B [ = w0) pljus,] —P(G5,) — 2B [VE T (0w, € [KD[w 1, 1.0,(5)] ) lzlx;juuﬁ)} |

For the first term, we observe the dual problem of (1),

min pl A
AER’VTL

stA b9 >t i e [J],VE € [K].

61y

Comparing to the dual problem (49), when v = p1,, and j = j,,,,, (51) has more constraints than (49) with same objective
function. Denote )\, be the solution to (51). Then,

OPT
T )
where the last equality holds by strong duality for the oracle problem (1). Thus the first term in (50) is bounded as

E[(B(05,) + 28 [VEI(ar, € KD w1200 ) 1AL ]

< (IP (Gi,) +2E [\/E[H(au,, € [K})Iuv]%wlﬁ(ab)b %'

(Ju,, )
PL A < p1) A =

For the second term in (50), we observe that AU +1)

Thus
B[ (B [(ws1 = ) plju, ] ~2E [VE [T, €D w v, -1a(00)] -P (65,) )10 A5 |

(U1 = W) pl Juy s ] —2E [\/IE au, €[KJ)| Uy]’)/uy_17)\(0'b):| -P (gf@)) v O}ILAE)JIWH)}

(=
(B [(er =) plu ] 2B | VET o, €D e, —1.2(00)| ~P (65,) ) VO 1L AGH+ ]]
E

] is a feasible solution to (49) when v = pl,, and j = j,, ..

Puy iy |[Tuy g1

{
SE{

v+1

E["“wl ‘Juu+1]

<E { [puu+1|]u,,+1}\/0m} )\juv+1) ]’
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where the last inequality holds by (47). Because u, 11 € U, we have p,,,, > 0 and

[{E [puwrl ’ juuﬂ] v Om} )\(]WH) J =E {E [p“v+1 Vv 0m| jquT ;\(juﬁl) j }

E[ pusy oy |Gy 1 E pusy oy | Fory 1]

=K l:]E I:puu+1 ’ ju,,ﬂ] )\]éj[“qul) :| .

Py i1

Collecting the bounds, we have

OPT , T 5 Guyt1)
E v - W) T <]E ]E u u )\ Sak
[(u 11— Uy) T ] = { [P u+1|J V+J E[pus sy |1 ]
. OPT
+ (28 [VETew, €, -1, (0)] + B (G5,)) —
Similar to Step 4, by strong duality,
. T 5 (Jup+1)
I [puu-u | ]uu+1] )\E[Puuﬂ ju,yﬂ]
K 4 K T
_ . max mn}n 7T](g]u,,+1)UZ(]u,,Jrl) +(E [Puu+1|juy+1 Z (juu+1)b*(.7u,,+l) A
Z? 1Trliﬂul,+1)§1,ﬂ.)i7ul,+l)20 AERY — =1
S (4 ), *(J ) S xU ) ) :
< Jup+1), *(Juy+1 E u ‘u ]u,,+1 b ]u,,+1 )\
,\Igul{% S (7uV+I1Il>Ei)i (7uy+1)>0kg17rk Uy, + ( [P 1/+1|=7 u+1 ;
< mlI}nE  max Zwl(g]u,,-u)u;]u,,-u) T Zﬂ_](c]uuﬁ—l)bz(Jupﬁ—l) Y jul,_H
)\GR+ Zé(:1 ﬂl(c]ul/+1>§177rl(c]uu+l)20 —1 =1
K . .
< E ' ' max ‘ v Z W]gju,,Jrl)uZ(Ju,,Jrl) jul,_H
Zka1 ‘fr,(cju”Jrl)SlJr;(ijrl)ZO»P%H _Ei-{:l Tr,iJ””Jrl)b,:(J“”Jrl)ZO P
K
3“u+1 *(]u,,+1)
Tk puuﬂ
Thus we have
OPT K (j ) x( )
~Ju,, * /4u1/
E [(uu+1 o) T] <E ;“wuxl“k a1 1
. OPT
+ (2E [\/]E (@, € K] | uw]vu, -1, O'b(a):| +]P)(gul,)) T
Under the event G,,, . , , the policy 7?,(:;”“) is a feasible solution to the bandit problem (12),
WPy 41
Gopes) #Guin) | g [N 2 O], +Cns0)
Jupyi1)  *(Ju,, ~uy 1) *(Juy, c
E Wk,pu:rl <R ﬂ-k;puj+1 up T (guyﬂ) + P (guuﬂ)
k=1 Lk=1

K
~Guyyr) ~Guyyq) c
< wk,puj;uk,uu:iH(Quw)] F(6;...)

Lk=1
P(gs,.)-

/\ Juu+1 j“u+1
SE k‘ Uy 41 k‘ JUp 41 (guu+1)
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Thus, for each v € [|U| — 1],

K . j
%(]1ly+1 )a(]“”'H )H (guy+1)

kauytr Tkuyg

E |:(u1/+1 - uu) m] g]E

T

+P (gﬁw)

k=1

+ (28 [VET Gur €T 00,10, +2(65,)) 2

Summing up over v,

K
SN w a6 | +

T
(1 i OPT) Z]P) ge)
t=1

[t|-1
+( 2E [VETT ) K])|uym_1ab<a>}) o

U] -1
OPT
E { Z (Uys1 —uy) T

ol

K T
(3~ OPT
SOS w®aUI1(G) | + (1 o ) PRI
t=1

+2 Z]E {VE[H (ate[K])]’YtLab(‘s)}) %

t=1
K
—e) ~ (s OPT .
<z S S A + (1+ 27) yr @
teu k=1 t=1
d OPT
F2|TE |3 301,000 e € [K]) | =
t=1
where the last inequality holds by Cauchy-Schwartz inequality, By (45),
[u|-1 T
OPT () ~ (i OPT .
8|S - 2| <[ a6 + (1+ 22) Yopi)
v=1 T teu k=1 Y

r T
+2J TE Z’}/t—l,o‘b(é)2ﬂ(at € [K])
AN
R (2+ OPJ;T) SR

<E

v
+2J TE 2%71,05(5)2]1(@:& € [K])

2$TE

Z% Lo ( atE[K]]
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Because the last choice of the algorithm happens at round 7, we have p; > 0 and u;;) = 7. And by definition, u; = . Thus

U -1

OPT OPT OPT
5| 32 ) O | =B (g~ ) O | = O R 4
Rearranging the terms
T U|—1
P OPT OPT
E RT ZE Uy, —uy) —— | — 24+ = Pg('
S2A7| 28| 3 (=) O | (24 O ) e @
OPT o
_Q(HPT ) TE Z%_L,mwﬁuate[K])]
t=1
T
OPT OPT
2ET§(2+) P(G;
OPT o
— 2 <1 —+ pT‘) TE Z’Yt—lﬂ'b\/a'r((s)?ﬂ (at S [K])] y
t=1
completes the proof. O

B.5. Proof of Lemma 5.3
Proof. Letus fix § € (0, 7~2) throughout the proof.

Step 1. Bounding the minimum eigenvalue of {F, : v € [n7]}: By Lemma C.3, with probability at least 1 — 76,

1 I - - . K—-1_ Jd
— F,=— Xi Xy 8——log —
9Kd ¥~ 2Kd ; k()R k() T O 1085
1 & . K—1_ Jd Jd
E4Kd ; E [Xk,T(u)Xk;r(u) H-,—(u)71:| + 87},{ IOg T — IOg T
JR— . -
tm ; E |:Xk,T(u)Xk77—(u) H‘r(u)—1:| 5
for all v € [ny]. By Assumption 2 and 3,
plEXkNFl [Zf:l Xle;r} 0 0
o T .
Amin (]E {Xk,f(u)Xk,T(u) ’HT(U)AD =Amin 0 . 0
0 0 pJEXkNIFJ [Z?:l X’CXI:}
K
> min i )\min ]E ~F X -)(T
(3 350

meinKa-
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Thus, with probability at least 1 — 6 /T,

)\min(FV) Z%Amin (;E [Xk,u)zkzu Hu—1:|)

)

1 o S
25 ; )\min (]E [Xk,uX];iu

mein;(ay ’

forall v € [nr].

Step 2. Bounding the probability of M;: Under the event proved in Step 1, the event M, is implied by

Proin K any o~ 288 (K — 1) log (%) Jd
— > 4Kd log — 2
for all ¢ € [T']. The right hand side is bounded as
=, 288 (K — 1) log (42 Jd | _4-288Kdlog (4%)logn Jd
4Kd{S (K1) g(5)+3510g— < g (15") log L 140K dlog 22
v=1 oK pmint g QPmin 1)
4-288Kdlog (£2) log T d
< og () log T, 140K dlog 22
QPmin 6
Plugging in (52) and rearranging the terms,
Jd 8-288logT 280
ez s (F) {5 o)
« pmin QPmin

implies the event M, for all ¢ € [T'] with probability at least 1 — T'§. In other words,

P(M;) <P <Tlf, < dMg p1log <J6d)> + T8,

forall ¢ € [T, where M, , 1 := {8'288 el | 280 }

2 .
a?p? QPmin

Step 3. Bounding ¢:  Let £ = inf te[r]{M happens} be the first round that M, happens. After round t, the algorithm
skips the rounds until p; > 0 holds and then pulls an action according to the policy. Thus, for the round £ — 1,

£—2 t
(€=1p=D bl =(E=-1)p-> bl <0.
s=1 s=1

rearranging the terms, and taking expectation,

t
E[§]<1+p 'E|> b )| <14p'E[f]. (53)
s=1

Now we need an upper bound for t.Fort € lf — 1], the event M, does not happen and the algorithm admits the arrival for
t € [t]. Thus, ny = t forall ¢t € [t]. Fort =t — 1, the event M;_; does not happen and

= 144 (K — 1) log (24) Jd
Z o () + 35log 5
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By the fact proved in Step 1, with probability at least 1 — 6 /7T,

. Jd
PminKamng_, 288 (K — 1) log (%4) Jd
———— <4Kd E log 224
2 = { Z I + 35log 5

Plugging in n;_; =t — 1 and rearranging the terms,

t—1 J
. Ad 288 (K — 1) log (24) Jd
f—1< 351log =
" Pmin® 1;1 Pmin K av + 08 )
4d 288 1
< { og T + 2} log ﬁ
Pmin® Pmin® 0

Then with probability at least 1 — /T,

t <1+dlog (Jd>

8-288logT 140 }
+

« pmin QPmin

Thus,

E[f] -E [E}I (E <14 M, rdlog (‘2))] {E {E]I (5 > 14 M, rdlog <‘]5d)>]

<1+ dMgp,1log < ) + TP < > 1+ M, prdlog <J5d)>
<1+ dMgp,1log <J5d) +T2%5

Plugging in (53),
E[¢] <1+ p7'E [¢]
+ 1 + dMa,p,T log (JT) + T26
; .

Step 4. Proving the lower bound for 7: Let 7 be the stopping time of the algorithm. Because the algorithm admits arrival
at round 7, we have p, > 0. From the resource constraint in the bandit problem (12),

K 7—1
Sap) (b - e, ) o S b e Sl
s=1

k=1 pjr

Because algorithm stops at round 7, there exists an r € [m] such that ) _; bfﬁl (r) > T'p(r). Rearranging the terms,

0> S U+ A

K K
=Tp =002 () + R0 + 3 A (57 )~ 607 ()

k=1 k=1
K . . K . o~ .
>Tp =07 () + D76 () = S 7 b — b
k=1 k=1 e
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Taking expectation on both side,

Efrp] >Tp+E |-b")(r Z Gr) *(J’ 1 -E

-

]I(&,—ﬁMT 1 ] —

N

‘b(Jr b (Jr)

K

JT *(j
D -5
k=1

ZT/) -k A(JT

‘b Jr) _ b;(%)

K

S

k=1

7_

=Tp—E

’bg; b

i

I (STCUMi—l)]

‘b _ k(jT) I

ZTP —2E |:7‘rfl,o*b \/E at E } lz A(jT

(54)
where the last inequality holds by (44). Because ng ;) (r) < T'p almost surely,

K
%JT

‘bg; _ bZ(JT) 1

(Ecu Mil)] <TpP (EEUME_y)
k=1
=TpP (&7)
<Tp(4m+1)5+7T7")
=T7p + 4(m + 1)T9,

where the equality holds because the algorithm takes action according to the policy at round 7 and the last inequality holds
by Theorem 4.2. from (54),

E[rp) 2Tp — Tp-+4(m + 1)Tpd — 28 |17 1,0, () VE[L (ar € [K])| 7]
>Tp—"Tp+4(m+1)Tpd — 2v1,4,(0)
Rearranging the terms,

A(m 4+ 1)T6 + 7+ 29, 1.0, (6)

ET-71]< 5

Step 5. Proving a bound for the sum of probabilities Because the algorithm admits the arrival when M;_; does not
happen,
1 =Mi_ i n{a € [K]}.

Then

P (M§_y) =P (Mi_, N{as € [K]})
P <M§_1 A {ar € [K]} N {nt_l > M, rdlog ({f) })

+P ( ¢ N {a € [K]}N {”t—l < Maprdlog (J5d> }>
e ()

+P ({at € [K]}n {”tl < Maprdlog (J<5d> })
<T§+P ({at € [K]}n {”t—l < Maprdlog <J6d> }) ’
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where the last inequality holds by the fact proved in Step 2. Summing over ¢ € [T7,

;P( ¢ y) <T?5+ éﬂ” <{at € [K]} N {nt_l < M, prdlog (J;i) })

> I(ar € K] (ntl < M, rdlog (‘?))] .

t=1

=T%5+E

Set j1 := My, dlog (%42) and suppose

> I(a; € [K)T(n-1 < p) > p. (55)

Let 7(1) < 7(2) < --- < 7(|A]) be the ordered admitted round in A := {t € [T] : a; € [K]}. By definition, n () = v
for v € [|A|]. By (55), the event{a; € [K]} happens at least & + 1 times over the horizon [T] and |A| > u. For any
v € (p, |Al].the number of admitted round is n(,y > p and

T—1 [ Al
Z I(ni—1 < p)I(a; € [K]) :ZH (nT(,,),l < u) I (aT(,,) IS [K])
t=¢e v=1
[ Al
< ZH (n‘f'(l/)fl < /J') I (nT(V) = Nrw)-1 + 1)
v=1
[ A
= L)1 <) I(r =y +1)
v=1
| Al
< ZH (V -1< /j/) )
v=1
[ Al
=> T(w<p+1)
v=1
=M,

which contradicts with (55). Thus

E

T
Jd Jd
Z]I(at S [K])]I <’I’Lt_1 < Ma7p7Td10g <§)>‘| < o= Ma,p,leog (6) s

t=1

which proves,

> P (Mfy) < T26 + Mo prdlog (‘?) .
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B.6. Proof of Theorem 5.1

Proof. From Lemma 5.2, rearranging the terms,

T
Ry :=OPT —E |> R}
t=1
OPT
<= {T-Elr =&}
PT
<2+O>ZP ¢ UE)
T
+ 2\ TE | Yi-1.0,(0)% (ar € [K])]
t=1
d OPT
2
+2,|TE ;%—1,%(5) (e € [K)) | =7
By Lemma 5.3,
1+dM,, 7 log (24)+T26
Bl < 1+ T 08 (F)HT0
P
E[T ] < Am+1)TO+ 7+ 29 1,6,(9)
p
By definition of -y, (),
E(T 1] _A(m+ 1T +7+ 32y J1og JKT +128,,(9)
_7<
p
_A(m+ 1)TS + 7+ 32/ Tlog JKT + C,(6)V'Jd
p .
This implies
OPT
—{T-E[r-¢]}
PT / K d
< OT (p +4(m+1)T6+ 8+ 324/ Jlog <J§> +Co, ()VId+ dM, prlog (‘;) +T26>
/ K
< Of <p +8+ (5mT + T°) 6 + 324/ J log (‘]5) +Cy, (8)VJd + dMy 1 log (‘?)) .
P
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[Step 3. Bounding the sum of probability] Because 7' > 8dof1p;ﬂln log JdT', by Theorem 4.2 and Lemma 5.3,

> P (Mi UE) Z )P (M NED)}
5 Jd
<T3§ + dM, 1 log +ZIP’ M1 NEY)

. d
<T36 + dM, 1 log (J

5 > + 8da~'p_i log JdT

T
+ Z P (M1 N EY)

t=8da— log JdT

pm]n

Jd
<T36 4+ dM,,, 1 log (5) +8da~'p i log JdT + 4(m + 1)T6 + 7.

By definition of ¢ ,(d) and 5, (9),

E Y Yi-10,(6)*(a € [K])] =FE Z (16*/5/@ 4\@5 ;’_*1(5)> I(a; € [K])
. T (16\/JlogJKnT+4fﬁa (6 )) I(a, € [KD]
=1 t=1

: (16y/TTog JET + 4v/26,.(5))

Ng—1

2
< (16y/T1og JKT +4v28,,(6) ) logT,

I (’I’Lt =N¢g—1+ 1)

o~
Il
-

IN
&=
IMH

where the first inequality holds by n; < ¢ almost surely. Thus by definition of 3, (8) := 8v/Jd + 965/ Jd log 3,
2 \l TE
where C, (8) := 8/2 - (8 + 960+ /log g). Similarly,

2\l TE

T

Z’yt_lﬁr((;)QH (a; € [K])] < (32\/Jlog JKT—|—4\/65<7T(5)) VTlogT
t=1
< (32,/Jlog JKT + Cgr(a)\/ﬁ) VTlogT,

T

Z Vi—1,0,(0)%1 (a; € [K])

t=1

OppT (32«/JlogJKT+C,,b F)\/TlogTO];T
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Collecting the bounds,

- _OPT d
RE < OT,;( + 8+ (5mT +T?) 6 + 32/ Jlog JKT+Co, (0)VJd + dM, ,pTlog(J(S >)

PT
(2 + OpT) {T35 + dMg .1 log (J(;l) +4da~p 1 log JdT + 4(m + 1)TS + 7}

) (1 n Op) {32\/J10g JET + Cyyvo (8)v/Td } VTlogT
PT d
< (2 n OpT ) { (96\/Jlog JET +3C,, o, ( )\/Jd) VTlog T + 2dM, 7 log (‘2)
+4da~p L log JdT + 15 + 10mT36}

Plugging in § = m~'T~3 proves (14). O

B.7. Deriving Regret Bound for Unknown Class Arrival Probabilities

In this section, we provide a direct solution to derive the same theoretical results even if the class prior probabilities are

unknown. For each j € [J], let b A(J )= % Zi:l I(js = j) denote the empirical estimate for class prior p;. Then, by
Lemma C.3, we have

1 log(2JT?) <) < 3 . log(2JT?)

obi m T = =gk t
with probability at least 1 — 7! forall j € [J] and t € [T]. When t > 4p_ log(2JT?), the empirical estimate p A(j )
satisfies (1/4)p; < pt7) < (7/4)p;. In addition, replacing p; with p 47) only affects the proof of Step 1 in Lemma 5.2, as

detailed in Section B.4. Therefore, with minor adjustments to the constants in v;_1 +(0), the regret bound remains the same
even when the class prior probabilities are unknown.
C. Technical lemmas

Lemma C.1. (Azuma-Hoeffding’s inequality) Azuma (1967) If a super-martingale (Y;t > 0) corresponding to filtration
Fy, satisfies |Yy — Yi_1| < ¢t for some constant ¢y, forallt = 1,...,T, then for any a > 0,

a2

P(Yr—Yy>a)<e *Simici.

Thus with probability at least 1 — 6,

Lemma C.2. For a sequence uy > uy > - -+ > uy, > 0 and nonnegative real sequences {p; }icn and {qi}ic|n) such that
Do Pi = D iy Qi I D1 > qu then

n n
sz‘ui > Z Qi
i=1 i=1

Proof. Whenn = 1, p1uj > qiui, for any u; > 0. Suppose for any sequence uj > ug > - -+ > u,—1 > 0 and nonnegative
real sequences {p; }ic(n—1) and {gi }iepn—1) such that Y1 p; = S0 s,

n—1 n—1
P> q = mez 2 qui-
i=1 i=1

39



Improved Algorithms for Multi-period Packing Problems with Bandit Feedback

For a sequence u; > uy > -+ > u, > 0 and nonnegative real sequences {p; };c[,] and {¢; };c[n] such that 37" | p; =
>oi 1 ¢, and py > gy, there exist k € [n]\{1} such that p; < gi. In case of k = n, define a sequence

G =¢q, Yieh-2]
(jn—l =Gn-1—Pntqn > 0.

Then Z?;ll G = Z?;ll p; and

n n—1
E pit; = E Dilli + Ppln
i=1 i=1

n—1

Z Z diui + PnlUn

i=1

n—1
= Z qiu; + (7pn + Qn) Up—1 + Pnln
1=1

n—1
i=1

n
= Z qits.
i=1
In case of k # n, denote a sequence

G = qi, Vi€ [n—1\{k}
Gk = Gk — Pk + qn-

Then >0 G = 3 ki and

n

Zpiui = Zpﬂw + Pruk
i=1 i#k
n—1

> Giui + pruk
i=1

n—1

2 Z qiUi — PrUk + gnUk + PrUk
i=1

n—1

= Z qKUk + qnlk
i=1

n
> ZQkuk~
i—1

By induction, the proof is complete.

O

Lemma C.3. Let { X, : 7 € [t]} be a R%*-valued stochastic process adapted to the filtration {F, : T € [t]}, i.e., X,
is F-measurable for T € [t]. Suppose X . is a positive definite symmetric matrices such thatAmax(X ;) < %.Then with
probability at least 1 — 6,

t 1 t d
;XT - 5TZlE[XTpr,l] —log < 1a.
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In addition, with probability at least 1 — 6,

é 3 d
ZXT = izE[XTLFTfl] +log - 1.

=1 =1 5

Proof. This proof is an adapted version of Lemma 12.2 in Lattimore & Szepesvari (2020) for matrix stochastic process
using the argument of Tropp (2012). For the lower bound, It is sufficient to prove that

max< ZX + 5 ZE (X | Fre 1> glogg,

with probability at least 1 — §. By the spectral mapping theorem,

exp< mx( ZX + = ZE X, | Fr- 1)) </\mdx<exp< i i E[X,|F - 1))

w\»—‘

—_

[\D

Taking expectation on both side gives,

Eexp (Amax<—zx‘r+;ZE[XT|FTﬂ>>
§ETr<exp< ZX + = Z]E (X .| Fr_ 1))
( lexp( ZXT+;ZE X .| Fr_1] +logexp (— Xt)>|]-‘t_1]>

T=1 T=1
1 t
S]ETI. (eXP (ZXT+QZE[XT|FT—1}+IOgE[eXp(Xt)]:t—l]>> .

=ETr

=1 T=1
The last inequality holds due to Lieb’s theorem Tropp (2015). Because e® < 1+ %azfor all z € [—1/2,0], and the eigenvalue
of — X, lies in [—1/2, 0], we have

B [exp (< X)| Fiot] <1 - SE[X)| Fioi] < exp (— E[X,| F\_ 11)

by the spectral mapping theorem. Thus we have

Eexp< mx< zx o1 Z]E X, 7, ))

<nm<exp< ZX 1 ZE X,| £l +logesp (5 [thftﬂ>>>
:m<exp< ZX 1 ZE X 7] - SEIX Ao ]))
:m<exp< ZX 1 ZE X/ 7o ))

IAIA

ETr (exp (0)) =d
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Now my Markov’s inequality,

: 1< d
<m< Y X+ ZE[XTm_ﬂ) >log5>
=1 7-:1
E A t X Ly E[X, 0
S exp max Z T+§Z |‘F‘I’ 1 8
=1 =1

For the upper bound, we prove

in a similar way using the fact that e < 1+ (3/2)z on x € [0,1/2]. O

Lemma C4. Suppose a random variable X satisfies E[X] = 0, and let Y be an o-sub-Gaussian random variable. If
| X| < |Y| almost surely, then X is 60-sub-Gaussian.

Proof. Because | X| < |Y,

2o ()] =2 (5]

—1+1EU00011(|Y|>$)3$

o0 x
<1 P(Y|> 602
<+ [ RvIza)

Because

P(Y|>2) =P(Y >z)+P(-Y < z)

_ =2
<2e 257,

X2 * 2 22
E [exp (Wﬂ <1 +/ ée_ﬁdx
0

we have

Now for any A € R,

E [exp (AX)] =E

=1+E

= (AX)"
A2X2 x|
2 ;(n—2)!]

<1+E

)\2
<l+E [X?exp (]AX])] .
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Because 602\% + 1202 > |AX],
E[exp (AX)] <1+ )\—2 exp (60°A*) E | X? exp X
- 2 1202
X2 X2
_ 242 242
=14 60“\"exp (60 A )IEI [1202 exp (1202>}
212 212 X2
<1+ 60“)\*exp (60 A )IE [exp (&‘2)}
<1+ 1202)\2 exp (602)\2)
< (1 + 1202)\2) exp (602>\2)
36
<exp ( 2)\2)
2
Thus X is 60-sub-Gaussian. O

Lemma C.5. (Lee et al., 2016, Lemma 2.3) Let {N;} be a martingale on a Hilbert space (H, ||-||5,). Then there exists a
R?-valued martingale { P;} such that for any time t > 0, || Py||, = || N¢||5, and ||Pis1 — Pil|ly = || N1 — Nil|yy-

Lemma C.6. (A dimension-free bound for vector-valued martingales.) Let {Fs}'_, be a filtration and {ns}._, be a
real-valued stochastic process such that ns is F,-measurable. Let {Xs}i:1 be an R%-valued stochastic process where X,
is Fo-measurable. Assume that {ns}._, are o-sub-Gaussian as in Assumption 1. Then with probability at least 1 — 4,

i ) 412
<1204 D 1 Xs]l5y/log —- (56)

2 s=1

Proof. Fixat > 1. Foreachs =1,...,t, wehave E [n,| Fs_1] = 0 and X is Fp-measurable. Thus the stochastic process,

w t
{Z nsxs} (57)
s=1

u=1

is a (R%,|-||,)-martingale. Since (R?,||-||,) is a Hilbert space, by Lemma C.5, there exists an R>-martingale {M,}_,
such that

= ||Mu||2, ||77uXUH2 = ||Mu - Mu71||2 ) (58)

S

and My = 0. Set M,, = (M;(u), Ma(u)) . Then for eachi = 1,2, and u > 2,

‘Mz(u) - Ml(u - ]-)‘ S ||Mu - Mu71||2
= [17uXully
=[] [ Xully

almost surely. By Lemma C.4, M;(u) — M;(u — 1) is 60-sub-Gaussian. By Lemma C.1, for x > 0,

STTRRIIN

<2exp ( 5 )
2to Z X1
for each ¢ = 1, 2. Thus, with probability 1 — /2,

t
M;(t)? <72 (Z ||XS||§> o2 log%.

s=1

P(|Mi(t)] > =) = <
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In summary, with probability at least 1 — §/2,

= /My (t)2 + My(t)? < 60
2

t
> naX,
T=1

t

/ 4¢2
Z ||X§||§ 2log o
s=1
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