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Abstract

The majority of modern robot learning methods focus on001

learning a set of pre-defined tasks with limited or no gen-002

eralization to new tasks. Extending the robot skillset to003

novel tasks involves gathering an extensive amount of train-004

ing data for additional tasks. In this paper, we address005

the problem of teaching new tasks to robots using human006

demonstration videos for repetitive tasks (e.g., packing).007

This task requires understanding the human video to iden-008

tify which object is being manipulated (the pick object) and009

where it is being placed (the placement slot). In addition,010

it needs to re-identify the pick object and the placement011

slots during inference along with the relative poses to en-012

able robot execution of the task. To tackle this, we propose013

SLeRP, a modular system that leverages several advanced014

visual foundation models and a novel slot-level placement015

detector Slot-Net, eliminating the need for expensive video016

demonstrations for training. We evaluate our system using017

a new benchmark of real-world videos. The evaluation re-018

sults show that SLeRP outperforms several baselines and019

can be deployed on a real robot.020

1. Introduction021

Humans demonstrate exceptional skill in performing fine-022

grained manipulation tasks with high precision in their daily023

lives. From arranging eggs in an egg carton to sorting uten-024

sils in an organizer, we excel at tasks that require identify-025

ing and reasoning about which objects to pick up and how026

to place them into confined slots. Cognitive and motor de-027

velopment theories suggest that we develop such skills at028

a young age, based on early experiences like playing with029

shape sorter toys [49]. However, current robotic and auto-030

mated systems are not yet as adept as humans at perceiving031

and performing these fine-grained manipulation tasks.032

Slot-level manipulation is crucial in various industrial,033

logistics, and domestic contexts. For example, in industrial034

settings, machine tending [57] requires placing components035

precisely into machine slots for assembly or processing. In036
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Figure 1. We introduce the novel problem of imitating slot-level

robotic placement from a single human video. Given a human

demonstration video showing an object being placed in a slot, and

a new robot-view image captured by the robot wrist camera (may

feature varied camera and object poses, changed scenes), SLeRP

is able to find the corresponding object and similar slots in the

robot view, and provide the 6-DoF transformation matrix for each

detected slot to guide the robot in placing the object accurately.

logistics, sorting and packaging tasks, such as organizing 037

parcels in a warehouse or placing products into shipping 038

containers, demand efficient and precise placement to op- 039

timize space and minimize damage. In domestic environ- 040

ments, future home assistant robots will need to perform 041

slot-level manipulation tasks such as organizing items in 042

cabinets, placing dishes in a dishwasher, and even prepar- 043

ing meals by accurately arranging ingredients in a pan. 044

The task of programming robots to perform slot-level 045

placement remains arduous. Traditional methods [20, 67] 046

often require manual programming with domain expertise 047

and assume that the object models and slot locations are 048

known beforehand. Learning-based approaches [9, 30] 049

show promise in alleviating the burden of programming; 050

however, collecting robot data through tele-operation re- 051

mains tedious and inefficient and can be particularly brittle 052

for high-precision tasks due to embodiment gaps. Learning 053

from human demonstration videos has recently emerged as 054

a promising approach due to its ease, speed of collection, 055

and potential to capture slot-level details. However, previ- 056

ous research [3, 6, 26, 76, 86] has generally been limited to 057

coarser object-level tasks and often requires large amounts 058

of training data to learn how to parse human demonstrations 059

and translate them into robot policies. 060
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Figure 2. Method Overview. The system begins by analyzing the input human video, tracking the object (highlighted in yellow) throughout

the sequence and identifying the placement slot (highlighted in red). Next, we re-identify the object and the slot in the robot’s view by

correlating the human-view and robot-view images. Using depth images, we reconstruct the observations in 3D and compute a single

6-DoF object transformation T in the robot’s view, enabling the robot to transfer the object into the slot. If more than one slot is present,

we detect all applicable slots and compute one 6-DoF object transformation for each slot. Finally, such 6-DoF object transformations are

sent to the downstream robot planning and control pipeline for real robot pick-and-place execution.

In this paper, we study the novel problem of recognizing061

slot-level object placement from a single human video, and062

estimating 6-DoF transformations for robot imitation. As063

shown in Fig. 1, the task takes two visual inputs: (1) a sin-064

gle human RGB-D video in which a person demonstrates065

picking up an object (e.g., a muffin) and precisely placing it066

into a slot within a placement object (e.g., a tray), and (2) a067

single RGB-D image captured from the robot’s wrist cam-068

era, representing the new setup for the robot to operate in069

with possible varying camera and object poses compared to070

the human video. The outputs aim to detect the object and071

all empty slots in the robot’s view similar to the placement072

slot in the human video, as well as compute the 6-DoF ob-073

ject transformations necessary for the robot to transfer the074

object from its initial position to each of the slots.075

We propose a novel modular approach called SLeRP076

(i.e., Slot-Level Robotic Placement), to tackle the problem.077

As shown in Fig. 2, SLeRP starts by analyzing the input hu-078

man demonstration video, tracking the manipulated object079

across the video frames and identifying the placement slot.080

Next, within the robot’s view, SLeRP re-identifies both the081

object and the slot by correlating the human-view images082

with the robot-view images. By lifting the observations in083

3D using the depth sensing and camera parameters, SLeRP084

calculates a 6-DoF transformation matrix for the robot to085

transfer the object from its initial location to the desired slot086

in the robot’s view. If multiple slots are present, SLeRP de-087

tects all slots that are similar to the one in the human video088

and computes the object transformations for all of them. Fi-089

nally, the computed 6-DoF object transformations are sent090

to the downstream robot planning and control pipeline for091

robot pick-and-place execution.092

A key component of SLeRP is the detection of placement093

slots. Currently, no existing method is specifically designed094

for this task, and simple image differencing or change de-095

tection [18] does not effectively solve the problem. There- 096

fore, we propose a new slot-level placement detector, Slot- 097

Net, that takes two image frames from a human demonstra- 098

tion video—one before and one after placement—and out- 099

puts a 2D mask outlining the placement slot on the images. 100

Unlike common vision tasks, collecting a sizable training 101

dataset for slot-level placement detection is challenging. To 102

address this challenge, we introduce a generative AI-based 103

data creation pipeline that expands the training set by boot- 104

strapping from a small set of images. 105

For evaluation, we introduce a new dataset compris- 106

ing 288 real-world videos targeted at studying this novel 107

problem. We compare our method against several base- 108

line approaches, including ORION [86], a state-of-the- 109

art method for object-level pick-and-place from a sin- 110

gle human video; CLIPort [61], an end-to-end imitation- 111

learning-based language-conditioned policy for tabletop 112

tasks; adapted versions of both for the novel slot-level 113

task; and a custom baseline leveraging cutting-edge vision- 114

language models like GPT-4o [25]. Our results demon- 115

strate that SLeRP outperforms baselines in accurately pre- 116

dicting placement slots and computing 6-DoF transforma- 117

tions across diverse real-world tasks. Our ablation studies 118

further validate several key components and design choices 119

in our system. Finally, we conduct real-robot experiments 120

that successfully apply the system in real world scenarios. 121

In summary, the core contributions of this paper are: 122

• Studying the novel task of slot-level object placement by 123

learning from a single human demonstration video; 124

• Designing the modular approach SLeRP and the slot-level 125

placement detector Slot-Net to tackle this problem; 126

• Introducing a new benchmark and several baseline meth- 127

ods to systematically evaluate system performance; 128

• Demonstrating that SLeRP achieves strong performance 129

in real-world and real-robot evaluations. 130
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2. Related Work131

Object Placement in Robotics. Identifying where and how132

to place an object after picking it up is a crucial step in133

robotic pick-and-place tasks [37]. Early works [5, 22, 23]134

analytically search for flat features on the object and the135

placement surface. Modern learning-based methods es-136

timate placement locations and poses using learned fea-137

tures, focusing mainly on flat surfaces [46], such as table-138

top [13, 43, 82] and furniture shelves [44]. Researchers139

have also explored tabletop object placement under spatial140

and semantic constraints given other objects [35, 42, 52].141

In the more challenging case of placing an object on an-142

other non-flat object, prior work [16, 28, 50, 59, 62, 63, 66,143

73, 86] has explored tasks like putting one spoon in a cup144

or hanging a mug on a rack. Our work extends these studies145

by focusing on placing objects into all empty, fine-grained,146

tight-fitting slots (e.g., all egg slots in a carton), a task that147

demands greater precision in recognition and prediction, as148

well as handling multiple placement locations. Addition-149

ally, unlike previous work [24, 61, 75, 83, 84] that addresses150

a 2D planar setting and requires task-specific training from151

a few robot demonstrations, our approach tackles this prob-152

lem in 3D, learning from a single human demonstration to153

enable one-shot generalization to novel tasks.154

Imitation Learning from Human Videos. Human videos155

serve as a natural, information-rich, and easily accessible156

source of data for learning robotic manipulation. Previ-157

ous work has explored diverse methods to extract, repre-158

sent, and apply knowledge from human videos to support159

robot manipulation learning. These approaches include pre-160

training latent visual representations [15, 39, 45, 58], infer-161

ring action trajectories or plans [3, 32, 47, 71, 79], learning162

value or reward functions [10, 38], reconstructing human163

hand or hand-object interaction [41, 51, 54, 60, 64], parsing164

interaction goals and affordance [4, 29, 36, 78], learning165

point tracks for human-to-robot transfer [7, 74, 76, 77, 81],166

etc. While the primary goals of these works are typi-167

cally learning robot trajectories or manipulation policies,168

our work explores a novel perspective by recognizing fine-169

grained placement slots as visual imitation targets.170

Additionally, we tackle robot imitation learning from a171

single human video. Previous work has investigated one-172

shot [14, 26, 27, 40, 80] and even zero-shot learning from173

human videos [6]; however, these approaches often re-174

quire extensive human video datasets, sometimes paired175

with robot videos, to span multiple tasks during training.176

In contrast, our approach leverages existing visual founda-177

tion models, eliminating the need for large-scale training178

videos. A notably similar work ORION [86] relies on text179

to recognize task-relevant objects and primarily focuses on180

object-level pick-and-place. In contrast, our method exclu-181

sively extracts information from a single human video to182

perform more fine-grained slot-level placement tasks.183

3. Problem Formulation 184

We formulate the novel problem of recognizing slot-level 185

object placement from a single human video, and estimating 186

6-DoF transformations for downstream robot imitation. 187

Inputs. The task takes the following inputs: 188

• a single RGB-D human demonstration video with n 189

frames, denoted as H = {H1,H2, · · · ,Hn}, recording 190

a person picking up an object O from the scene and plac- 191

ing it in a slot S within a placement object; 192

• a single RGB-D robot-view image R that captures the 193

robot’s observation, often taken from the robot wrist cam- 194

era and possibly with different camera and object poses, 195

or scene layouts. 196

Outputs. The task outputs, in the robot’s view, are: 197

• an object mask M
O

R
over the robot image R that segments 198

the object O to pick; 199

• a list of slot masks {MS0

R
,MS1

R
, · · · ,MSk

R
} over the 200

robot image R that marks all empty slots on the place- 201

ment object similar to the demonstrated placement slot in 202

the human video H; 203

• a list of 3D 6-Degree-of-Freedom (DoF) object transfor- 204

mation matrices {T0,T1, · · · ,Tk | Ti ∈ SE(3)} in the 205

robot’s coordinate frame, for the robot to transfer the ob- 206

ject O from its initial position to all the detected slots. 207

Passing the detected object and slot masks, as well as the 208

calculated 6-DoF object transformatrion matrices, down- 209

stream robot pick-and-place pipeline is able to execute slot- 210

level object placement as shown in Fig. 1. 211

4. Method 212

In this section, we present the technical designs of SLeRP. 213

We begin with an overview (Sec. 4.1) and then dive into 214

more details in parsing the input human video (Sec. 4.2) 215

and correlating to the robot’s view image (Sec. 4.3). 216

4.1. System Overview 217

Taking as inputs a human demonstration video H and a 218

robot-view image R, our method SLeRP (Fig. 2) starts with 219

parsing the input human video (Sec. 4.2) by tracking the 220

object O throughout the video frames and identifying the 221

placement slot S. After this process, we obtain an object 222

mask M
O

H1
and a slot mask M

S

H1
over the first frame of 223

the human video H1. Next, by leveraging this informa- 224

tion, SLeRP correlates the human-view and robot-view im- 225

ages (Sec. 4.3), and re-identify the object mask M
O

R
and the 226

slot mask M
S0

R
in the robot-view image R, as observed in 227

the first human frame. If multiple similar slots are present, 228

the system detects other empty slots {MS1

R
, · · · ,MSk

R
} as 229

well. Then, the system lifts the human and robot observa- 230

tions in 3D using the depth sensing and camera intrinsics, 231

and computes a single 6-DoF object transformation matrix 232

Ti ∈ SE(3) for each detected slot MSi

R
. 233
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Figure 3. Parse Human Video. Given the input human video

(bottom), we run state-of-the-art hand-object detector (yellow) and

tracker (blue) to obtain the pick object mask (yellow) and train a

novel network Slot-Net (red) to identify the slot mask (red).

4.2. Parsing the Human Demonstration Video234

The input human video precisely demonstrates what is the235

pick object O and where is the placement slot S. As shown236

in Fig. 3, our method utilizes powerful hand-object detec-237

tion and tracking systems to identify the object mask M
O

H1
238

and proposes a novel network Slot-Net for estimating the239

slot mask M
S

H1
over the first frame of the human video.240

Object detection and tracking. We use a hand-object de-241

tector [11] to detect frame-wise hands and in-contact ob-242

jects, enabling us to locate the pick object O in the hu-243

man video. As the detector operates on a per-frame ba-244

sis, there may be temporally inconsistent predictions. To245

refine the detection results, we apply MASA’s matching al-246

gorithm [34] to generate smooth trajectories for the hand247

and pick object across the hand-object contact frames. We248

then identify a confident key frame, when the hand and ob-249

ject first interacts, and use SAM2 [55] to track through the250

video, producing per-frame object segmentation M
O

Hi
.251

Placement slot detection (Slot-Net). Since no prior work252

has studied the problem of detecting the placement slot253

given a human pick-and-place video, we propose our own254

novel network Slot-Net for this purpose. We leverage the255

SAM architecture [31] as the backbone given its powerful256

capability in segmentation. Slot-Net takes the starting frame257

H1 of the pick-place video as the input, together with the258

absolute image difference in gray-scale between the start-259

ing and end frame |H1 −Hn| as the visual prompt, and is260

tasked to output a slot segment in the starting human frame261

image M
S

H1
. We leverage SAM’s large-scale pretraining262

by preserving most of its designs (e.g., the image encoder,263

the mask decoder) and we use the same image encoder as264

the prompt embedder to process image difference prompt.265

Since we find that the SAM pretraining does not directly266

work on such customized new task, finetuning over such267

slot-level placement data is necessary.268

Slot-Net data generation. Training our SAM-based269

SLeRP requires a lot of data, yet collecting fine-grained270

slot-level placement data in the real world is expensive.271

Outpaint

Remove

GT slot maskEnd imageStart image

Annotate

Transform Transform

Figure 4. Slot-Net Data Generation. Given an object-centric

image (top middle), we inpaint to remove an object and reveal its

slot (top left) and manually annotate the slot mask (top right). We

then outpaint these images with a scene background (bottom) to

create a starting and end image pair with a ground-truth slot mask.

However, recent generative models have demonstrated great 272

capabilities in generating realistic images [53], excelling at 273

tasks such as object removal and image outpainting. We 274

therefore propose a semi-automatic synthetic data gener- 275

ation pipeline (Fig. 4). Given a collected object-centric 276

image of a placement object with many slots, we utilize 277

a state-of-the-art object removal model (SDXL [70] and 278

Cleanup.pictures [12]) to remove one pick object from one 279

slot and manually annotate the slot mask for the removed 280

object using TORAS [65]. Then, we employ a powerful im- 281

age outpainting generative model (Hugging Face Outpaint- 282

ing script [1]) to expand the image canvas, generating 100 283

images in diverse backgrounds, prompted with Llama [69] 284

generated text prompts, for each object-centric image. 285

In this manner, we obtain a large number of annotated 286

starting and end image pairs to train SLeRP. We crowd- 287

sourced and collected 2,138 object-centric images of items 288

with slots, spanning 67 object categories, by capturing them 289

in everyday environments. We applied 100 augmentations 290

for each slot on the object-centric image, resulting in 156K 291

images for training, with the rest left for testing and valida- 292

tion. See supplementary for more details. 293

4.3. Correlating to the Robot­view Image 294

After we obtain the pick object mask M
O

H1
and the slot 295

mask M
S

H1
from the human video, the next step is to cor- 296

relate this information to the robot’s view R. As shown in 297

Fig. 5, SLeRP first re-identifies the object mask M
O

R
and a 298

list of empty slot masks {MS0

R
,MS1

R
, · · · ,MSk

R
} similar to 299

the human demonstrated placement slot. Then, 2D keypoint 300

matching and 3D lifting enable the calculation of a single 301

6-DoF object transformation matrix Ti ∈ SE(3) for each 302

detected slot MSi

R
for downstream robotic pick-and-place. 303

Object and slot re-identification. Taking as input a short 304

video with only two frames {H1,R}, SAM2 [55] is em- 305

ployed to output the object mask M
O

R
and one best-matched 306

slot mask M
S0

R
over the robot image R, given the detected 307
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Figure 5. Correlate with robot view. Given the object and slot mask detected in the human video, we first re-identify the corresponding

object and slot in robot view, and also find all similar empty slots. With corresponding object masks and slot masks, we first compute 2D

keypoint matching among the detected object and mask local patches and then lift the observations to 3D to compute 6-DoF transforms.

2D object mask M
O

H1
and the slot mask M

S

H1
on the human308

first frame image H1. If multiple similar slots are present in309

the robot image, we leverage SAM [31] to propose segment310

candidates and use DINOv2 [48] to collect additional slot311

masks {MS1

R
, · · · ,MSk

R
} that share similar DINOv2 fea-312

tures with the detected slot mask M
S0

R
. Empirically, we find313

that SAM2 and DINOv2 provide good enough performance314

on our data.315

2D keypoint matching. With two corresponding masks in316

the human view and robot view, we use MASt3R [33] to de-317

tect 2D keypoint correspondences by expanding the masks318

into local 2D bounding boxes. As illustrated in Fig. 5 (mid-319

dle left), we compute the 2D keypoint matching on two320

pairs of object local patches (between the object mask M
O

R
321

in the robot frame and the object mask M
O

H1
in the initial322

human frame, and between the object mask M
O

H1
in the323

initial human frame and the object mask M
O

Hn
in the last324

human frame) and one pair of slot local patches (between325

the slot MS

H1
in the initial human frame and the slot MSi

R
326

in the robot view for any slot Si to place).327

3D lifting and transformation calculation. Using the328

depth sensing and the camera intrinsic parameters, we can329

lift all human and robot view images into 3D point cloud330

observations. Then, we are able to lift the 2D keypoint cor-331

respondences into 3D correspondences. Equipped with the332

3D correspondences, we use Procrustes analysis [21] with333

RANSAC [19] to calculate three 6-DoF transformation ma-334

trices for the aforementioned three local patch pair match-335

ings. We denote the three computed 6-DoF transformations336

as TO

R→H
, TO

H
, and TSi

H→R
respectively. Fig. 5 (middle337

right) illustrates their geometric meanings: the object trans-338

formation from the robot scene to the human scene at the339

start of the human video, the transformation applied by the340

person to the picked object in the human video, and the slot341

transformation from the human scene to the robot scene.342

Final object placement transformations. As clearly illus-343

trated in Fig. 5 (middle right and rightmost), by chaining up344

the three 6-DoF transformation matrix explained above, we345

can compute the final desired 6-DoF transformation matrix 346

for the robot to execute in order to transform the pick object 347

O from its initial position to any target slot i in the robot 348

coordinate frame as the following 349

Ti = T
Si

H→R
T

O

H
T

O

R→H
. (1) 350

3515. Experiments 352

We propose a new dataset and present an extensive evalua- 353

tion of our system in Sec. 5.1, where our system, SLeRP, 354

outperforms the baselines by a large margin. In Sec. 5.2, 355

we present an in-depth ablation over Slot-Net and additional 356

design choices in SLeRP. In Sec. 5.3, we show that SLeRP 357

is effective with real-world robots. 358

5.1. System Evaluation 359

Given the novelty of the problem we address, existing eval- 360

uation benchmarks are unavailable, and there are no base- 361

line methods with which to make direct comparisons. Con- 362

sequently, we have curated a dataset comprising real-world 363

videos and established a benchmark specific to this problem 364

by developing suitable baselines and metrics. 365

Dataset. We collected 288 real-world RGB-D videos span- 366

ning 9 different object-in-slot task scenarios. For each sce- 367

nario, variations were introduced in the background and the 368

inclusion of distractor objects, camera positions, and slot 369

occupancy conditions. The suite of tasks includes challeng- 370

ing, common daily activities such as putting bread into a 371

toaster, arranging eggs in an egg steamer, and setting mugs 372

on coasters. All the objects are unseen to Slot-Net during 373

training, and 3 out of the 9 tasks encompass previously un- 374

seen task categories. Visualizations of the tasks and their 375

varying settings are provided in the supplementary material. 376

Benchmark setup. Given that our task necessitates paired 377

data comprising a human demonstration video and a novel 378

image for the robot’s view, we construct test pairs by re- 379

pairing the videos in our dataset. Each pair comprises 380

videos depicting the same object being placed into the same 381

slot, albeit with potential variations in background, cam- 382

era angle, and initial slot occupancy. We designate the first 383
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Figure 6. Qualitative Comparison. We compare our method to baselines and present side-by-side results on three examples. For each

example, the first column shows the input human video at the top and robot-view image in the bottom. The top row displays 2D re-

identification results (object in yellow, slot in red), while the bottom row shows 6-DoF relative pose predictions by projecting the object

point cloud onto the slots. Unlike the baselines that can only predict one exact slot, our approach can also identify multiple slots. These

results clearly demonstrate that our system outperforms the baselines, achieving accurate slot and transformation predictions.

video in each pair as the human demonstration and employ384

the initial frame of the second video as the robot’s view, as385

illustrated in Fig. 6. During video data collection, we ensure386

that human hands are absent in the first frame. We generate387

three distinct test splits, introducing variations in viewpoint388

(288 video pairs), background (720 video pairs), and slot389

occupancy (288 video pairs).390

Metrics. We evaluate the accuracy of the predicted 2D391

masks and the 6-DoF transformation matrix using five dis-392

tinct metrics. For the evaluation of 2D masks, we calculate393

(1) the intersection-over-union (IoU) for the object mask394

and (2) the IoU of the exact slot mask in the robot view,395

comparing them to their respective ground-truth masks. We396

assess the accuracy of the 6-DoF transformation by trans-397

forming and projecting the object’s point cloud onto the398

robot view, then measuring (3) the precision of the mask399

against the ground-truth mask. For 3D evaluation, we com-400

pute (4) the Chamfer Distance and (5) Earth Mover’s Dis-401

tance [17] between the transformed object point cloud and402

the ground-truth object point cloud at placement. If no mask403

or transformation output is predicted for any method, we404

use a default empty mask and identity matrix as the fall-405

back predictions. To establish ground truths, we annotate406

the 2D masks of the object and exact slot in the start video407

frame (i.e., robot’s view), alongside the object’s mask post-408

placement in the end frame. 409

Baselines. We design four baselines for comparison. 410

• ORION. Zhu et al. [86] perform vision-based human-to- 411

robot imitation learning focused on object-level place- 412

ment. We adapt ORION to our slot-level setting by pro- 413

viding the required ground-truth object and slot names. In 414

contrast, our method automatically detects in-contact ob- 415

jects and slots without the need of explicit name inputs. 416

• ORION++. We leverage the object and slot detection re- 417

sults from SLeRP to enhance ORION, thereby establish- 418

ing a stronger baseline. 419

• CLIPort++. CLIPort [61] is an end-to-end imitation- 420

learning-based language-conditioned policy for tabletop 421

tasks. However, the original method requires videos with 422

action labels for training, whereas ours does not. To 423

construct a comparison, we randomly split the tasks into 424

training and test sets, ensuring that tasks, objects, and 425

scenes are unseen during testing, and use the training split 426

to train CLIPort (more details in Supplementary). 427

• VideoCap+FMs. We test whether our proposed tasks 428

can be effectively solved using state-of-the-art founda- 429

tion models. We utilize Qwen2VL [72], a video cap- 430

tioning model, to summarize the video, and then employ 431

GPT4o [2] to identify the object and slot names. Sub- 432

sequently, we use grounding-SAM2 [56] to generate a 433
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Method
Different view Different background Different slot occupancy

Obj↑ Slot↑ Prec.↑ CD↓ EMD↓ Obj↑ Slot↑ Prec.↑ CD↓ EMD↓ Obj↑ Slot↑ Prec.↑ CD↓ EMD↓

ORION [86] 0.00 0.11 0.41 0.0949 0.0552 0.45 0.13 0.00 0.0932 0.0540 0.40 0.12 0.82 0.0952 0.0559

ORION++ [86] 10.21 8.89 2.10 0.1058 0.0584 7.53 5.97 0.75 0.1113 0.0597 8.83 7.44 2.95 0.1021 0.0576

CLIPort++ [61] 1.54 0.47 18.75 0.3887 0.1663 1.51 0.35 1.71 0.1152 0.0615 3.06 0.34 12.50 0.1348 0.0681

VideoCap+FMs 2.35 8.61 13.45 0.1918 0.0987 2.12 6.28 13.61 0.1743 0.0917 2.64 9.84 7.25 0.1508 0.0837

Ours 73.85 54.37 36.40 0.0282 0.0182 70.27 44.70 25.39 0.0573 0.0323 68.12 47.04 30.30 0.0334 0.0223

Table 1. Quantitative System Evaluation. We compare SLeRP with baselines and report the 2D detection and the 3D object transforma-

tion accuracy: IoU for the object mask prediction (Obj); IoU for the slot mask prediction (Slot); mask precision of the predicted object after

placement onto the slot projected to the camera plane (Prec.); and Chamfer distance (CD) and Earth-Mover distance (EMD) between the

predicted and ground-truth target object point clouds after placement. We evaluate in three different settings with the robot’s views having

different camera viewpoints, scene backgrounds, and initial states of the placement slot occupancy compared to the input human videos.

We find that SLeRP substantially outperforms the baselines by large margins across all the metrics in all the three evaluation settings.

Method
Synthetic Real (seen tasks) Real (unseen tasks)

F1 ↑ IoU ↑ F1 ↑ IoU ↑ F1 ↑ IoU ↑

Image difference 44.10 31.34 32.69 20.04 32.20 19.53

Change detection [18] 2.27 1.58 0.06 0.03 6.30 4.19

Object mask 60.16 48.73 65.90 52.10 58.67 42.98

Object-box mask - - 43.39 37.74 39.37 34.65

GPT4o+SAM 0.91 0.49 4.82 2.84 4.45 2.68

Slot-Net (end image) 83.44 74.57 48.83 38.68 38.19 28.37

Slot-Net (ours) 82.89 74.62 73.27 61.59 66.50 54.26

Table 2. Slot Segmentation Results. We compare Slot-Net

against various alternative approaches on slot detection. We eval-

uate on test synthetic images and our collected real-world images

(seen and unseen tasks). Dashes note that the method cannot be

evaluated for synthetic data given no video inputs. We can observe

cleary that our Slot-Net performs the best.

bounding box and employ SAM2 [55] to produce the ob-434

ject and slot mask, with the transformation matrix com-435

puted using modules in the same way as in our system.436

Results. Table1 presents a quantitative evaluation com-437

paring SLeRP to four baseline methods. The results indi-438

cate that SLeRP significantly outperforms all baselines by439

considerable margins. Fig.6 offers qualitative comparisons,440

showcasing 2D object and slot mask predictions alongside441

3D object transformation estimations. We observe that442

SLeRP generates more accurate 2D object and slot detec-443

tion results, as baseline methods such as ORION and Video-444

Cap+FMs frequently struggle to describe slot names in nat-445

ural language for subsequent visual recognition (e.g., incor-446

rectly detecting the entire placement object or table). Ad-447

ditionally, SLeRP achieves more precise 3D object trans-448

formations compared to baselines like CLIPort, which are449

primarily designed for top-down 2D predictions.450

Lastly, our method can fill multiple slots, whereas other451

methods generate output for only a single slot. In a sub-452

set of the data with ground-truth annotations for multiple453

slots, SLeRP achieves IoU scores of 67.70 and 42.62 for454

2D object and slot segmentation. Additionally, it attains455

scores of 23.14, 0.0575, and 0.0350 for 3D transformation456

predictions in terms of slot projection precision, Chamfer457

Distance (CD), and Earth Mover’s Distance (EMD), respec-458

tively. These results are comparable to the single-slot place-459

Method (diff. view) SlotNet SAM2 Mast3r Obj ↑ Slot ↑ Prec. ↑ CD ↓ EMD ↓

Base design : : : 28.53 28.23 24.72 0.2289 0.1183

Ours w/o SlotNet : 6 6 73.85 29.63 27.84 0.0486 0.0289

Ours w/o SAM2 6 : 6 31.05 35.98 23.75 0.1219 0.0667

Ours w/o Mast3r 6 6 : 73.85 54.37 32.74 0.0321 0.0205

Ours 6 6 6 73.85 54.37 36.40 0.0282 0.0182

Table 3. Ablation Study. All metrics follow Table 1. Results show

all the key modules help. See supplementary for the full table.

ment evaluations reported in Table 1. See the supplemen- 460

tary materials for further details. 461

5.2. Ablation Study 462

We evaluate the effectiveness of Slot-Net for placement slot 463

detection in Sec. 5.2.1 and additional ablations on other 464

components like object and slot re-identification and key- 465

point matching in Sec. 5.2.2. 466

5.2.1. Slot­Net Ablations 467

Baselines. We consider the following alternative and abla- 468

tion approaches to replace Slot-Net. 469

• Image difference. We use the difference image between 470

the gray-scale start and end frame, then apply threshold- 471

ing to the difference image to obtain a mask. 472

• Change detection. We use an off-the-shelf change detec- 473

tion model [18] given two frames for the masks. 474

• Object mask. We directly use the ground-truth pick object 475

mask as the slot mask prediction. 476

• Object-box mask. We take the pick object bounding box 477

detected in the tracking procedure and query SAM for a 478

proxy placement slot mask. 479

• GPT4o+SAM. We query GPT4o with start and end frames 480

for slot bounding boxes and query SAM for masks. 481

• Slot-Net (end image). We use the end frame to replace the 482

difference image as the prompt for Slot-Net. 483

Benchmark and metrics. We use our newly proposed 484

real-world video dataset along with held-out synthetic im- 485

ages for evaluation. For the real images, we evaluate two 486

splits: seen tasks, which involve seen object categories dur- 487

ing training but novel object instances, and unseen tasks, 488

featuring object categories not encountered during training. 489
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Obj-Box-as-SlotImage Diff GTObj GT Mask OursStart image

unseen task

seen task

seen task

unseen task

SlotNet-endimg

Figure 7. Slot Detection Comparisons. We compare Slot-Net to many alternative approaches, and results show that ours performs better.

Robot execution

Figure 8. Real-Robot Experiments. We show real-robot exper-

iments for “block into a container” and “strawberry into an orga-

nizer”. See supplementary for videos and more examples.

For each real-world video, we pair the starting and ending490

frames as input and evaluate predictions against the ground-491

truth slot mask from the starting frame. The slot mask pre-492

diction performance is assessed using IoU and F1 scores.493

Results. Table 2 shows that Slot-Net, when trained on syn-494

thetic data, generalizes effectively to real images, outper-495

forming alternative approaches. Fig. 7 provides side-by-496

side comparisons of different methods, revealing that Slot-497

Net excels in identifying slot boundaries of various shapes.498

This underscores the necessity of training a custom model499

for slot detection and demonstrates that our model is both500

well-designed and effective.501

5.2.2. Other Ablations502

Beyond ablating Slot-Net, we further validate two addi-503

tional key design elements in our system: utilizing SAM2504

for object and slot re-identification and employing MASt3R505

for keypoint matching. In the absence of SAM2, we rely506

on DINOv2 feature similarity between the slot mask and507

all SAM-generated masks in the robot image. To re-508

place MASt3R, we employ DINOv2 features for Hungarian509

matching. Table 9 shows the necessity of these modules.510

5.3. Real­Robot Experiments 511

As shown in Fig. 8, we perform real-robot experiments with 512

a Franka robot and show that SLeRP is effective for real 513

robots. The manipulation system employs a wrist-mounted 514

RGB-D camera (Realsense D415) and an external RGB-D 515

camera (Realsense L515). The camera intrinsics and ex- 516

trinsics relative to the robot are known. The wrist-mounted 517

camera provides observations for SLeRP, while the exter- 518

nal camera observes the entire scene and aids in planning 519

collision-free trajectories. The system utilizes Contact- 520

Graspnet[68] to generate grasps and plans collision-free tra- 521

jectories using methods described in [13, 44]. 522

6. Conclusion 523

In this paper, we address the novel problem of slot-level 524

object placement by learning from a single human demon- 525

stration video. We propose a modular system to tackle this 526

problem, which operates without requiring additional train- 527

ing video data and features a unique slot-level placement 528

detector. To evaluate the system’s performance, we intro- 529

duce a new benchmark consisting of real-world videos and 530

compare our system against key baseline methods. Our re- 531

sults demonstrate that SLeRP outperforms these baselines 532

and functions effectively in real-robot experiments. 533

Limitations and future work. Given the novel problem 534

formulation, there is potential for further research in fine- 535

grained slot-level object placement with minimal or no hu- 536

man demonstrations. Future work could focus on relax- 537

ing current system assumptions, such as the static camera, 538

single-handed interaction, and minimal motion of the place- 539

ment object. Moreover, advancements in visual foundation 540

models could enhance the robustness of our system, as they 541

play a crucial role in this work. 542
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A. Slot-Net Data Generation 955

A.1. Details, Statistics and Examples 956

Object-with-slots image collection. We collect object- 957

centric images of items with slots by photographing them 958

in everyday environments. These images serve as the end 959

object crops, and we generate corresponding start images 960

by removing objects, thus creating (start, end) image pairs 961

for a pick-and-place action. During data collection, partic- 962

ipants were instructed to partially fill the slots. This ap- 963

proach ensures that slots are not entirely empty, facilitating 964

object removal, while avoiding fully filled slots, which can 965

complicate inpainting during object removal. In total, we 966

have collected 2,138 object-centric images spanning 67 cat- 967

egories, as detailed in Tab. 4. 968

Pick-object removal. The captured image serves as an 969

object-centric end image. To create an object-centric start 970

image, where objects are absent from the slot, we employ 971

the SDXL [70] inpainting model to remove the pick-object. 972

For cases where SDXL does not successfully remove the 973

object, we use Cleanup.pictures [12] in a subsequent round 974

to achieve more effective removal results. 975

Slot mask annotation. After obtaining the (start, end) 976

object-centric images, we annotate the slot mask by com- 977

paring each pair using TORAS [65]. We perform mask an- 978

notation prior to augmentation and automatically transform 979

these masks onto the canvas, enabling us to generate labels 980

for a large dataset. 981
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Task Name #(obj centric) #synthetic

battery in batter compartment 20 50

bead in bead organizer 41 4,291

block in a toy vehicle 12 102

book in book holder 22 2,207

bottle in box 28 2927

bottle in organizer 87 7,810

bread in toaster 84 3,896

can in box 5 50

can on board 15 557

candle in organizer 5 450

capsule in tray 20 1,966

cards in organizer 5 51

choclate in organier 22 200

coin in organizer 6 451

cup in cardboard tray 101 10,541

cup on board 5 245

cup on coaster 5 199

cylinder in organizer 49 1,705

egg in egg carton 205 36,758

egg in egg steamer 13 649

egg in tray 22 2,116

flower in organier 15 250

food in organizor 123 9,117

food in tray 10 1,250

fruit in box 5 450

fruit in food organizer 35 3,146

fruit in organizer 155 11,303

glass in organizer 5 400

glass on coaster 7 200

glove in organizer 12 400

ice cube in ice tray 31 661

jewerly in organizer 18 960

key in organizer 6 900

lip stick in organizer 14 256

muffin in muffin tray 63 4,150

mug on board 10 310

mug on coaster 66 2,453

notepad in box 15 901

peach in box 12 903

peg in wood base 8 1,413

pen in basket 15 793

pen in cup 20 994

pen in organizer 103 8,690

pen in pen holder 76 3,305

pen on book 30 1,335

pepper in tray 10 492

pill in pill organizer 15 462

plant in vase 12 387

rectangle box in tray 35 366

tangerine in muffin tray 24 1,700

tool in organizer 61 400

toy car in organizer 14 603

tube in tray 15 1,400

utensil in bowl 20 850

utensil in cup 19 2,311

utensil in utensil organizer 146 14,976

wood in organizer 9 1,100

Table 4. Statistics for object-centric images. This table shows

the task names for the object-centric images we collected (col 1),

the amount of object-centric images (col 2), and the amount of

corresponding generated images (col 3).

…
Figure 9. Data augmentation. We show 9 synthetic data augmen-

tation examples for the “egg in egg carton” task. In training data

generation, we use x100 augmentation for each slot in the object-

centric images.

Augmentation with outpainting. For each object-centric 982

slot object, we create a larger scene by first sampling ran- 983

dom locations on a 1024x1024 canvas and then apply- 984

ing outpainting with various generated prompts. Using a 985

short category name, such as “bread in toaster”, we em- 986

ploy Llama [69] to enrich the text prompts with descriptions 987

of the environments. We apply outpainting to the back- 988

ground following the Hugging Face Outpainting script [1] 989

with enriched texts to create the end image. The outpaint- 990

ing script incorporates ControlNet [85], SDXL [70], and 991

ZoeDepth [8]. Subsequently, the start object crop images 992

and slot masks are subjected to the same transformation to 993

create the outpainted (start, end) image pairs and the cor- 994

responding ground-truth slot masks. In total, we apply 100 995

augmentations for each slot on the object-centric image, re- 996

sulting in 156,000 images for training. Examples of “egg in 997

egg carton” augmentation are shown in Fig. 9. 998

A.2. Synthetic Data Generation Process 999

We present examples of our synthetic generation process in 1000

Tab. 5 and Tab. 6. Each row in the table, from left to right, 1001

illustrates the step-by-step process for one example. 1002

Beginning with a task name (col 1) and an object- 1003

centric image (col 3), we first enhance the description us- 1004

ing Llama [69] (col 2). Next, we perform object removal 1005

from the slots through two rounds of image inpainting us- 1006

ing SDXL [70] and Clean.pictures [12] (col 4) to ensure 1007

more effective results. We annotate the slot mask on the 1008

object-centric image utilizing the Toronto Annotation Suite 1009

(TORAS) [65] (col 5). 1010

For generating diverse daily backgrounds, we transform 1011

13
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the object-centric image (col 3) onto a 1024x1024 can-1012

vas and outpaint the background using the Hugging Face1013

Outpainting script [1] with the enriched text generated by1014

Llama [69] (col 2) as a prompt to create the end image. Fi-1015

nally, the start image and ground-truth mask undergo the1016

same transformation onto a 1024x1024 canvas to produce1017

the (start, end, mask) triplet samples for training.1018

A.3. Limitations1019

Our data generation pipeline for creating (start, end) pairs1020

with minimal data collection and annotation is highly effi-1021

cient, enabling us to train SAM with manageable effort.1022

Despite its efficiency, the generated images have cer-1023

tain limitations. First, the diversity of the generated image1024

styles is insufficient. Although we employ Llama to enrich1025

text prompts for backgrounds and request diverse styles, the1026

generated images lack sufficient diversity and realism. Sec-1027

ond, the generated images sometimes defy physical plausi-1028

bility. In the process of outpainting the object-centric im-1029

ages, we sample random locations and rotations on the can-1030

vas. Occasionally, these locations or rotations are challeng-1031

ing to outpaint while adhering to physical principles, result-1032

ing in images that appear unrealistic.1033

The purpose of outpainting data augmentation is to gen-1034

erate more varied backgrounds, thereby aiding Slot-Net in1035

achieving generalization. In this context, the appearance of1036

the background does not adversely affect our use case. We1037

anticipate that advances in generative AI models will miti-1038

gate these limitations.1039

B. Evaluation Videos1040

In this paper, we developed a pick-and-place video dataset1041

containing 288 videos spanning 9 tasks for evaluating1042

both Slot-Net and SLeRP.1043

For Slot-Net evaluation, we utilize the start and end im-1044

ages from each video. Among the 9 tasks, 3 are categorized1045

as unseen for Slot-Net evaluation: “bottle in organizer“,1046

“cup on saucer”, and “egg in egg steamer”.1047

For SLeRP evaluation, we select two videos of the same1048

task, one serving as the human demonstration and the other1049

as the robot-view video. The robot-view video has its final1050

frame depicting what the robot’s view will look like upon1051

completion of the action, providing the ground-truth end1052

frame appearance. The three different settings we use to1053

pair the videos are: (1) different views (captured from dif-1054

ferent camera angles), (2) different backgrounds (captured1055

in different environments with setups on distinct tables),1056

and (3) different slot occlusions (captured with varying slot1057

occlusions, where one video has all other slots empty while1058

the other has some slots filled).1059

In this section, we provide visualizations of the 9 tasks1060

and 3 settings in Tab. 7 and Tab. 8.1061

B.1. Visualization of 9 tasks 1062

We show one video for each of the 9 tasks in Tab. 7. For 1063

each video, we out the (start, pick, place, end) frames to 1064

illustrate the action. 1065

B.2. Visualization of 3 settings 1066

We show two example videos for each of the 3 settings (dif- 1067

ferent views, different backgrounds, and different slot oc- 1068

clusions) in Tab. 8. 1069

C. Additional Implementation Details 1070

C.1. Slot­Net 1071

We follow SAM’s training recipe for finetuning the ViT- 1072

based encoder using a combination of Dice Loss and Cross- 1073

Entropy Loss. We train the model on an A100 GPU for 72K 1074

iterations. We use a learning rate of 1 × 10
−5 with a batch 1075

size of 8. 1076

C.2. CLIPort++ 1077

We start with the released code from the authors. To pre- 1078

pare labels for training from our RGBD videos, we treat 1079

our videos as a one-step action with the corresponding task 1080

name as the language goal. And we treat the center of the 1081

object mask as the pick action location and the center of the 1082

slot mask as the place action location. We use 80 videos for 1083

training and 64 videos for evaluation, ensuring there is no 1084

overlap in tasks, objects, and backgrounds. 1085

D. Additional Results of SLeRP 1086

D.1. Full Ablation Study Table 1087

Tab. 9 presents the full ablation study results evaluated all 1088

all the three different settings. 1089

D.2. Multi­slots analysis. 1090

Tab. 10 further provides 1-to-another slot placement results, 1091

placing into a different slot as human videos, and shows 1092

ours generalizes well. 1093

Diff Slot Placement
Obj↑ Slot↑ Prec.↑ CD↓ EMD↓

Ours 67.70 42.62 23.14 0.0575 0.0350

Table 10. Object placement into a different slot as in the human

video.

To evaluate DINOv2+SAM 1-to-N slot re-identification, 1094

we annotated all N slots, and Table 11 shows that our 1095

method does reliably well in finding all equivalent slots. 1096

Diff View Diff Bg Diff Slot Occ.
mIoU AP mIoU AP mIoU AP

Ours 68.3 46.3 66.8 44.2 66.0 43.3

Table 11. Multi-slot mask identification evaluation.
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D.3. More baseline comparison results1097

We show more qualitative comparison results for baselines1098

in Fig. 10.1099

D.4. More ablation comparison results1100

We show more qualitative comparison results for ablations1101

in Fig. 11.1102

D.5. Limitations1103

Our system, SLeRP, demonstrates superior performance1104

compared to baseline methods. However, there are areas1105

that require improvement. Firstly, SLeRP is modular, with1106

each module relying on the output of the preceding one,1107

which may result in compounding errors. If a preceding1108

module fails to provide accurate outputs, subsequent results1109

may be adversely affected. Secondly, while the modules1110

currently employed are not without flaws, they can be eas-1111

ily replaced with more advanced methods.1112

For instance, Slot-Net necessitates that the start and end1113

images have minimal changes aside from the pick object;1114

future methodologies could relax this requirement, enabling1115

slot detection in more general settings. Additionally, SAM21116

is a tracking method repurposed for re-identification, and1117

methods specifically designed for re-identification would1118

likely yield better results. Lastly, while Mast3r is effective1119

for object-level matching, it struggles with slot-level match-1120

ing, indicating that improved slot-level matching algorithms1121

could enhance accuracy.1122

E. Additional Results of Slot-Net1123

E.1. Additional results of Slot­Net1124

We provide more Slot-Net comparison results in Tab. 12 and1125

random results in Tab. 13.1126

E.2. Limitations1127

Slot-Net has limitations in slot segmentation across varying1128

conditions due to its training data constraints: (1) It requires1129

that the input (start, end) images have minimal changes in1130

viewpoint. (2) It necessitates that the pick object is the sole1131

changing element between (start, end) images, and neither1132

humans nor human hands are present. Slot-Net may exhibit1133

the following issues: (1) While it can generalize to unseen1134

tasks, its performance may degrade. (2) The predicted slot1135

may encompass multiple slots or extend beyond the ground1136

truth. (3) It may incorrectly identify pick objects as slots.1137
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Figure 10. Qualitative Comparison for baselines. We compare our method to baselines and present side-by-side results on six examples.

For each example, the top row displays 2D slot prediction results, while the bottom row shows 6-DoF relative pose predictions by projecting

the object point cloud onto the slots.
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Figure 11. Qualitative Comparison for ablations. We compare our method to ablations and present side-by-side results on six examples.

For each example, the top row displays 2D slot prediction results, while the bottom row shows 6-DoF relative pose predictions by projecting

the object point cloud onto the slots. 17
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Task Enrich text Obj-centic img Obj removal Annotation Start End GT mask

egg

in egg

carton

’top’: ’egg’, ’bottom’: ’egg

carton’, ’style’: ’High-

quality and photorealistic,

modern, bright, morning,

45-degree look-down

view, 2020s’, ’objects’:

’A large, brown egg with

a smooth, glossy texture,

positioned in the center

of a compact, rectangular

egg carton with a textured,

ribbed surface, nestled

snugly in its compartment.’,

’background’: ’A realistic,

everyday kitchen scene,

with a plain, white coun-

tertop, a glass jar of jam, a

toaster, a stack of plates, a

warm, golden-brown wood

countertop, and soft, creamy

white walls.’

bottle

in box

’top’: ’box’, ’bottom’: ’bot-

tle is inside the box’, ’style’:

’2020s contemporary style

with bright and luminous

brightness, set in the morn-

ing time with an eye-level

shot’, ’objects’: ’The bot-

tle is a sleek, modern glass

bottle with a smooth tex-

ture and a minimalist de-

sign. It has a simple la-

bel with a subtle texture.

The box is a sturdy, corru-

gated cardboard box with a

textured surface and a clas-

sic design.’, ’background’:

’A realistic, everyday living

room scene with a few daily

supplies around the box and

bottle, including a coffee ta-

ble with a vase, a few books,

and a newspaper in the back-

ground, with neutral-colored

walls and a light-colored rug

on the floor.’

bread

in

toaster

’top’: ’toaster’, ’bottom’:

’bread’, ’style’: ’A 2020s,

modern, bright, and lu-

minous style with a 45-

degree look-down view, cap-

turing the morning scene

with a sense of coziness and

warmth.’, ’objects’: ”The

toaster, a sleek and mod-

ern appliance with a stain-

less steel finish and a com-

pact design, sits proudly

on the countertop. The

bread, a soft and fluffy white

loaf, is nestled inside the

toaster’s slots, awaiting its

turn to be toasted.”, ’back-

ground’: ’The countertop is

a warm and inviting beige

color, with a few subtle

scratches and scuffs to give

it a sense of character. A few

daily supplies are scattered

around the toaster, including

a jar of jam, a carton of eggs,

and a loaf of bread, adding

to the sense of a busy morn-

ing routine.’

egg

in egg

steamer

’top’: ’egg’, ’bottom’: ’egg

steamer’, ’style’: ’high-

quality and photorealistic,

modern, 2020s, bright, noon

afternoon, 45-degree look-

down view’, ’objects’: ’The

egg is a large, brown egg

with a smooth, glossy tex-

ture, placed in the egg

steamer basket. The egg

steamer is a stainless steel,

modern kitchen appliance

with a sleek and shiny sur-

face, and a simple, geomet-

ric design.’, ’background’:

’A modern kitchen with a

white countertop, a stain-

less steel sink, and a few

kitchen utensils and appli-

ances around. A few kitchen

towels and a fruit bowl are

nearby, adding to the daily

living environment.’

fruit in

food

orga-

nizer

’top’: ’fruit’, ’bottom’:

’food organizer’, ’style’:

’A contemporary 2020s

style with a bright and

luminous ambiance, a

45-degree look-down view,

and a medium shot of the

objects to capture both the

fruit and the organizer in

detail.’, ’objects’: ”The

fruit, a vibrant and juicy

apple, is placed neatly in

the organizer’s container,

showcasing its natural

texture and color. The

organizer itself has a

sleek and modern design,

with a matte finish and

a subtle sheen to it. The

material appears to be a

high-quality plastic, with a

slight give when touched.”,

’background’: ”The

background is a realistic

representation of a modern

kitchen, with a plain white

wall behind the fruit and the

organizer. There’s a wooden

kitchen table to the left, with

a few utensils and a water

bottle scattered around it.

A window is visible in the

background, with a glimpse

of a cityscape outside.”

muffin

in

muffin

tray

’top’: ’muffin’, ’bottom’:

’muffin tray’, ’style’: ’A

high-quality, photorealistic

style with a 2020s modern

aesthetic, featuring a bright

and cozy atmosphere, a 45-

degree look-down view, and

a medium shot distance.’,

’objects’: ’The muffin in

the muffin tray is a de-

licious, golden-brown treat

with a soft, fluffy texture and

a crispy edge. The muf-

fin tray, made of durable,

stainless steel, has a sleek,

modern design with a slight

sheen to it, giving it a pre-

mium look.’, ’background’:

’The background is a realis-

tic, everyday kitchen scene,

complete with a stainless

steel refrigerator, a mod-

ern kitchen island, and a

few kitchen utensils scat-

tered about.’

Table 5. Data generation process (Part 1/2). Start from a task name (col 1) and an object-centric image (col 3), we first get an enriched

detailed description using [69] (col 2), then remove one object from the slots (col 4) and annotate the slot mask on the object-centric image

(col 5). To put the object-centric image into various daily backgrounds, we transform the object-centric image (col 3) onto a 1024x1024

canvas and outpaint the background with the enriched text (col 2) to create End. Finally, Start and GT mask follow the same transformation

onto the canvas.
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# #

Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Task Enrich text Obj-centic img Obj removal Annotation Start End GT mask

mug on

coaster

’top’: ’mug’, ’bottom’:

’coaster’, ’style’: ’High-

quality and photorealistic,

2020s, modern, bright,

morning time, 45-degree

look-down view’, ’objects’:

’A ceramic mug with a

textured, matte finish,

having a simple yet elegant

design with a subtle sheen

to it, and a wooden coaster

with a natural, rustic texture,

having a subtle wood grain

pattern’, ’background’: ’A

realistic, real-world scene

of a kitchen table with a

few daily supplies around,

such as a jar of coffee

beans, a sugar bowl, and

a few coffee cups, with a

wooden table finish and

light, neutral-colored walls’

peach

in box

’top’: ’peach’, ’bottom’:

’box’, ’style’: ’mid-century

modern, high-quality and

photorealistic, bright and

cozy, morning, 45-degree

look-down view’, ’objects’:

’The peach has a smooth,

juicy texture, and a vibrant

orange color. The box has a

wooden texture, with a nat-

ural wood grain pattern, and

a soft brown color.’, ’back-

ground’: ’A realistic kitchen

scene, with a wooden table

and chairs, and a few daily

supplies such as a toaster,

a coffee maker, and a vase

with fresh flowers.’

pen in

orga-

nizer

’top’: ’pen’, ’bottom’:

’organizer’, ’style’: ’high-

quality and photorealistic,

modern European-style,

bright and cozy, morning,

45-degree look-down view’,

’objects’: ’The pen is a

sleek and modern writing

instrument with a silver

finish and a rubberized

grip. The organizer is a

compact and functional desk

accessory with a wooden

base and a mesh pocket.’,

’background’: ’The

background is a realistic

depiction of a modern home

office, with a wooden desk

and a comfortable office

chair. There are several

daily supplies around the

organizer, including a

notebook, a stapler, and a

cup of coffee.’

pepper

in tray

’top’: ’pepper’, ’bottom’:

’tray’, ’style’: ’high-quality

and photorealistic, 2020s,

contemporary, bright, lumi-

nous, morning, 45-degree

look-down view’, ’objects’:

’a medium-sized, green bell

pepper with a glossy tex-

ture, placed in the center

of a rectangular, stainless

steel tray with a smooth,

matte finish’, ’background’:

’a wooden kitchen table with

a few daily supplies, a warm,

beige-colored kitchen wall,

cabinets, and a window that

lets in natural light’

pill in ’top’: ’pill’, ’bottom’:
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# #

Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

No. Task #Total Start Frame Pick Frame Place Frame End Frame

1 bread in

toaster

32

2 bottle in or-

ganizer

32

3 fruit in tray 32

4 cup in

saucer

32

5 mug in

coaster

32

6 egg in egg

steamer

32

7 fruit in or-

ganizer

32

8 utensil

in utensil

organizer

32

9 muffin in

muffin tray

32

Table 7. Evaluation videos for 9 tasks. We show one example video for each of the 9 tasks from our evaluation video dataset. The 4 frames

showing for each video are the start frame, pick frame, place frame, and end frame in the video. We get the pick and place frame indexes

from the in-contact object trajectory, where the pick frame index is when the in-contact object is first detected, and the place frame index

is when the in-contact object is last detected in the video.
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# #

Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Settings Video 1 - Start Frame Video 1 - End Frame Video 2 - Start Frame Video 2 - End Frame

Different

view

Different

Background

Different Slot

Occlustion

Settings Video 1 - Start Frame Video 1 - End Frame Video 2 - Start Frame Video 2 - End Frame

Different

view

Different

Background

Different Slot

Occlustion

Table 8. Evaluation videos in 3 settings. We show two example videos (“bread in toaster”, “muffin in muffin tray”) in 3 different setting.

For each task of our evaluation videos, we captured videos for 3 different settings to evaluate system performance when the human

demonstration video and its paired robot-view video were in different conditions. The 3 different settings we captured are (1) different views

(two videos are captured from different camera views), (2) different backgrounds (two videos are captured from different backgrounds

where we set up the two scenes on two different tables), and (3) different slot occlusions (two videos are captured from different slot

occlusions, where one video with all other slots empty while the other video with some slots full).

Method SlotNet SAM2 Mast3r
Diff. View Diff. Background Diff. Slot Occu.

Obj ↑ Slot ↑ Prec. ↑ CD ↓ EMD ↓ Obj ↑ Slot ↑ Prec. ↑ CD ↓ EMD ↓ Obj ↑ Slot ↑ Prec. ↑ CD ↓ EMD ↓

Base design : : : 28.53 28.23 24.72 0.2289 0.1183 33.27 23.40 22.22 0.1217 0.0643 27.71 27.05 26.47 0.1499 0.0809

Ours w/o SlotNet : 6 6 73.85 29.63 27.84 0.0486 0.0289 70.27 23.91 18.80 0.0630 0.0367 68.12 26.33 25.06 0.0520 0.0315

Ours w/o SAM2 6 : 6 31.05 35.98 23.75 0.1219 0.0667 33.98 30.87 16.99 0.0870 0.0505 28.62 37.48 22.97 0.1012 0.0575

Ours w/o Mast3r 6 6 : 73.85 54.37 32.74 0.0321 0.0205 70.27 44.70 28.93 0.0540 0.0318 68.12 47.04 27.38 0.0675 0.0374

Ours 6 6 6 73.85 54.37 36.40 0.0282 0.0182 70.27 44.70 25.39 0.0573 0.0323 68.12 47.04 30.30 0.0334 0.0223

Table 9. System Ablation Studies. We conduct ablation studies on the key modules in SLeRP. All metrics and test splits follow Table 1.

Results show all the key modules help, and our full system performs the best on average across different settings.
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# #

Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Start image Image Diff Obj-Box-as-Slot Obj GT mask SlotNet-endimg Ours GT

Table 12. More comparison results for Slot-Net on seen tasks. We show more examples for comparison results between Slot-Net and other

baselines or heuristics.

Start image Ours(Slot-Net) GT Start Ours(Slot-Net) GT

Table 13. Random results for Slot-Net on seen tasks. We show randomly sampled results from Slot-Net on seen tasks.
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