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Abstract

This work investigates the use of robust optimal transport (OT) for shape matching.
Specifically, we show that recent OT solvers improve both optimization-based
and deep learning methods for point cloud registration, boosting accuracy at an
affordable computational cost. This manuscript starts with a practical overview
of modern OT theory. We then provide solutions to the main difficulties in us-
ing this framework for shape matching. Finally, we showcase the performance
of transport-enhanced registration models on a wide range of challenging tasks:
rigid registration for partial shapes; scene flow estimation on the Kitti dataset; and
nonparametric registration of lung vascular trees between inspiration and expira-
tion. Our OT-based methods achieve state-of-the-art results on Kitti and for the
challenging lung registration task, both in terms of accuracy and scalability.
We also release PVT1010, a new public dataset of 1,010 pairs of lung vascular
trees with densely sampled points. This dataset provides a challenging use case for
point cloud registration algorithms with highly complex shapes and deformations.
Our work demonstrates that robust OT enables fast pre-alignment and fine-tuning
for a wide range of registration models, thereby providing a new key method
for the computer vision toolbox. Our code and dataset are available online at:
https://github.com/uncbiag/robot.

1 Introduction

Shape registration is a fundamental but difficult problem in computer vision. The task is to determine
plausible spatial correspondences between pairs of shapes, with use cases that range from pose
estimation for noisy point clouds [14] to the nonparametric registration of high-resolution medical
images [17]. As illustrated in Fig. 1, most existing approaches to this problem consist of a combination
of three steps, possibly fused together by some deep learning (DL) methods: (1) feature extraction;
(2) feature matching; and (3) regularization using a class of acceptable transformations that is
specified through a parametric or nonparametric model. This work discusses how tools derived from
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optimal transport (OT) theory [87] can improve the second step of this pipeline (feature matching) on
challenging problems. To put these results in context, we first present an overview of related methods.

1. Feature extraction. To establish spatial correspondences, one first computes descriptive local
features. When dealing with (possibly annotated) point clouds, a simple choice is to rely on Cartesian
coordinates (x, y, z) [3, 26]. Going further, stronger descriptors capture local geometric and topo-
logical properties: examples include shape orientation and curvatures [21, 96], shape contexts [6],
spectral eigenvalues [84, 70] and annotations such as color [76] or chemical fingerprints [43, 113].
Recently, expressive feature representations have also been learned using deep neural networks
(DNN): see [16] and subsequent works on geometric deep learning. Generally, feature extractors
are designed to make shape registration as unambiguous as possible. In order to get closer to the
ideal case of landmark matching [11], we associate discriminative features to the salient points of our
shapes: this increases the robustness of the subsequent matching and regularization steps.

2. Feature matching. Once computed on both of the source and target shapes, feature vectors are
put in correspondence with each other. This assignment is often encoded as an explicit mapping
between the two shapes; alternatively, the vector field relating the shapes can be defined implicitly as
the gradient of a geometric loss function that quantifies discrepancies between two distributions of
features [35]:

a) A first major approach is to rely on nearest neighbor projections and the related chamfer
[12] and Hausdorff distances [13], as in the Iterative Closest Point (ICP) algorithm [7].
This method can be softened through the use of a softmax (log-sum-exp) operator as in the
many variants of the Coherent Point Drift (CPD) method [81, 73, 72, 44], or made robust to
outliers in the specific context of rigid and affine registrations [41, 129, 128, 14].

b) Alternatively, a second approach is to rely on convolutional kernel norms such as the
Energy Distance [94], which are also known as Maximum Mean Discrepancies (MMD) in
statistics [48]. These loss functions are common in imaging science [88] and computational
anatomy [115, 21] but are prone to vanishing gradients [40, 39].

c) Finally, a third type of approach is to rely on optimal transport (OT) theory [87] and
solutions of the earth mover’s problem [97]. This method is equivalent to a nearest neighbor
projection under a global constraint of bijectivity that enforces consistency in the matching.
On the one hand, OT has been known to provide reliable correspondences in computer
vision for more than two decades [26, 47, 64]. On the other hand, it has often faced major
issues of scalability and robustness to outliers on noisy data. As detailed below, the main
purpose of this work is to overcome these limitations and enable the widespread use of OT
tools for challenging registration problems.

3. Regularization with a deformation model. The output of the two steps above is a non-smooth
vector field that may not be suitable for downstream tasks due to e.g. tears and compression artifacts.
As a third step, most registration methods thus rely on regularization to obtain plausible deformations.
This process is task-specific, with applications that range from rigid registration [133, 46, 30, 2, 121,
122] to free-form motion estimation [91, 126, 69, 49]. In Sec. 3, we address the interaction of OT
matching layers with a varied collection of regularization strategies – from optimization-based spline
and diffeomorphic models to DNNs.

Recent progresses. Research works on shape registration combine ideas from the three paragraphs
above to best fit the characteristics of computer vision problems [71, 31, 107]. Over the past few years,
significant progress has been made on all fronts. On the one hand, (geometric) deep learning networks
have been used to define data-driven feature maps [92, 92, 123] and multiscale regularization modules
[126, 68, 108], sometimes fused within end-to-end architectures [133, 91, 132, 30]. On the other
hand, nearest neighbor projections, kernel convolutions and transport-based matching strategies
have all been generalized to take advantage of these modern descriptors: they can now be used in
high-dimensional feature spaces [59, 37].

Challenges. Nevertheless, state-of-the-art (SOTA) methods in the field still have important limitations.
First, modern deep learning pipelines are often hard to train to “pixel-perfect” accuracy on non-
smooth shapes, with diminishing returns in terms of model size and training data [2]. Second, scaling
up point neural networks to finely sampled shapes (N > 10k points) remains a challenging research
topic [49, 135, 37]. Third, the impact of the choice of a specific feature matching method on the
performance of deep learning models remains only partially understood [58].
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Figure 1: Robust Optimal Transport (RobOT) generalizes sorting to spaces of dimension D > 1.
(a) RobOT is equivalent to a nearest neighbor projection subject to mass distribution constraints that
make it robust to translations and small deformation. We demonstrate that RobOT is now ready to be
part of the standard toolbox in computer vision with extensive numerical experiments for 3D scene
flow estimation (b) and lung registration (c). Rendering done with Paraview [1] and PyVista [112].

Related works. Following major progress on computational OT in the mathematical literature
[79, 27, 66, 103], improved modules for feature matching have attracted interest as a possible solution
to these challenges. Works on sliced partial OT [9] and dustbin-OT [28] have shown that outliers
can be handled effectively by OT methods for rigid registration, beyond the classic Robust Point
Matching method (RPM) [47, 26]. Going further, the Sinkhorn algorithm for entropy-regularized
OT [27, 64, 104, 65] has been studied extensively for shape registration in computational anatomy
[36, 45] and computer graphics [74, 33, 85]. The Gromov–Wasserstein distance has also been
used for shape analysis [110, 118], albeit at a higher computational cost. These applications have
driven interest in the development of a complete theory for Robust Optimal Transport (RobOT),
outlined in Sec. 2, which handles both sampling artifacts and outliers [25, 105, 67, 24, 106, 80]. Most
recently, this framework has started to be used in shape analysis with applications to shape matching
[36], the segmentation of brain tractograms [38] and deep deformation estimation with the FLOT
architecture [91].

Contributions. We build upon the work above to tackle challenging point cloud registration problems
for scene flow estimation and computational anatomy. Our key contributions are:

1. Accurate feature matching with scalable OT solvers. For the first time, we scale up
RobOT for deep feature matching to high-resolution shapes with more than 10k points. To
this end, we leverage the latest generation of OT solvers [39, 35] and overcome significant
issues of memory usage and numerical stability. This allows us to handle fine-grained details
effectively, which is key for e.g. most medical applications.

2. Interaction with task-specific regularization strategies. We show how to interface
RobOT matchings with advanced deformation models. This is in contrast with e.g. the
FLOT architecture, which focuses on the direct prediction of a vector field and cannot be
used for applications that require guarantees on the smoothness of the registration.

3. Challenging new dataset. We release a large dataset of lung vascular trees that should be
registered between inhalation and exhalation. This relevant medical problem involves large
and complex deformations of high-resolution 3D point clouds. As a new benchmark for
the community, we provide two strong baselines that rely respectively on global feature
matching and on deep deformation estimation.

4. Consistent SOTA performance. Our proposed models achieve SOTA results for scene flow
on Kitti [78, 77] and for point-cloud-based lung registration on DirLab-COPDGene [19].
Notably, we show that RobOT is highly suited to fine-tuning tasks: it consistently turns
“good” matchings into nearly perfect registrations at an affordable numerical cost.

Main experimental observations. Is OT relevant in the deep learning era? To answer this question
decisively, we perform extensive numerical experiments and ablation studies. We fully document
“underwhelming” results in the Supplementary Material and distill the key lessons that we learned in
the Deep-RobOT architecture (Section 3.2). This model relies on fast RobOT layers to cover for the
main weaknesses of point neural networks for shape registration. It is remarkably easy to deploy and
generalizes well from synthetic training data to real test samples. We thus believe that it will have a
stimulating impact on both of the computer vision and medical imaging literature.
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2 Robust optimal transport

This section introduces the mathematical foundations of our work. After a brief overview of Robust
Optimal Transport (RobOT) theory, we discuss the main challenges that one encounters when using
this framework for computer vision. To avoid memory overflows and numerical stability issues, we
introduce the weighted “RobOT matching”: a vector field that summarizes the information of a full
transport plan with a linear memory footprint. As detailed in the next sections, this representation lets
us scale up to high-resolution shapes without compromising on accuracy.

2.1 Mathematical background

The assignment problem. If A = (x1, . . . , xN) and B = (y1, . . . , yM) are two point clouds in R3

with N = M, the assignment problem between A and B reads:

Assignment(A,B) = min
s:[[1,N]]→[[1,N]]

1

2N

N∑
i=1

‖xi − ys(i)‖2R3 , where s is a permutation. (1)

This problem generalizes sorting to R3: if the points xi and yj all belong to a line, the optimal
permutation s∗ corresponds to a non-decreasing re-ordering of the point sets A and B [87].

Robust optimal transport. Further, OT theory allows us to consider problems where N 6= M.
Non-negative weights α1, . . . , αN, β1, . . . , βM > 0 are attached to the points xi, yj and account
for variations of the sampling densities, while feature vectors p1, . . . , pN and q1, . . . , qM in RD may
advantageously replace raw point coordinates xi and yj in R3. Following [67, 25], the robust OT
problem between the shapes A = (αi, xi, pi) and B = (βj , yj , qj) reads:

OTσ,τ (A,B) = min
(πi,j)∈RN×M

>0

N∑
i=1

M∑
j=1

πi,j · 1
2‖pi − qj‖

2
RD (2)

+ σ2 KL
(
πi,j ||αi ⊗ βj

)︸ ︷︷ ︸
Entropic blur at scale σ.

+ τ2 KL
(∑

j πi,j ||αi
)︸ ︷︷ ︸

π should match A. . .

+ τ2 KL
(∑

i πi,j ||βj
)︸ ︷︷ ︸

. . . onto B.

,

for any choice of the regularization parameters σ > 0 and τ > 0. In the equation above, the
Kullback-Leibler divergence KL (ai||bi) =

∑
ai log (ai/bi) − ai + bi is a relative entropy that

penalizes deviations of a non-negative vector of weights (ai) to a reference measure (bi).

Parameters. The first regularization term is scaled by the square of a blur radius σ. This charac-
teristic length quantifies the fuzziness of the probabilistic assignment (πi,j) between points xi and
yj [35]. The last two regularization terms promote the matching of the full distribution of points A
onto the target shape B: they generalize the constraints of injectivity and surjectivity of Eq. (1) to the
probabilistic setting. They are scaled by the square of a maximum reach distance τ : this parameter
acts as a soft upper bound on the distance between feature vectors pi and qj that should be matched
with each other [38, 105].

For shape registration, we use simple heuristics for the values of these two characteristic scales:
the blur σ should be equal to the average sampling distance in feature space RD while the reach τ
should be equal to the largest plausible displacement for any given feature vector pi. These rules are
easy to follow if point features correspond to Cartesian coordinates xi and yj in R3 but may lead
to unexpected behaviors if features are output by a DNN. In the latter case, we thus normalize our
feature vectors so that ‖pi‖RD = ‖qj‖RD = 1 and pick values for σ and τ between 0 and 2.

Working with a soft, probabilistic transport plan. As detailed in [35], scalable OT solvers for
Eq. (2) return a pair of dual vectors (fi) ∈ RN and (gj) ∈ RM that encode implicitly an optimal
transport plan (πi,j) ∈ RN×M with coefficients:

πi,j = αiβj · exp 1
σ2

[
fi + gj − 1

2‖pi − qj‖
2
RD

]
> 0 . (3)

In the limit case where σ tends to 0 and τ tends to +∞, for generic point clouds (xi) and (yj) with
N = M and equal weights αi = βj = 1/N, πi,j is a permutation matrix [87]. We retrieve the simple
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assignment problem of Eq. (1): πi,j = 1/N if j = s∗(i) and 0 otherwise. However, in general the
transport plan must be understood as a probabilistic map between the point distributions A and B that
assigns a weight πi,j to the coupling “xi ↔ yj”. For shape registration, this implies that the main
difficulties for using robust OT are two-fold: first, the coupling π is not one-to-one, but one-to-many;
second, the lines and columns of the transport plan π do not sum up to one. Notably, this implies that
when τ < +∞, the gradient of the OT cost with respect to the point positions xi is not homogeneous:
we observe vanishing and inflated values across the domain [105].

2.2 RobOT: a convenient representation of the optimal transport plan

The weighted RobOT matching. To work around these issues, we introduce the vector field:

vi =

∑M
j=1 πi,j · (yj − xi)∑M

j=1 πi,j
∈ R3 with confidence weights wi =

M∑
j=1

πi,j > 0 . (4)

This object has the same memory footprint as the input shape A and summarizes the information
that is contained in the N-by-M transport plan (πi,j) – a matrix that is often too large to be stored
and manipulated efficiently. This “weighted RobOT matching” is at the heart of our approach and
generalizes the standard Monge map from classical OT theory [87] to the setting of (deep) shape
registration. In practice, the weighted vector field (w1, v1), . . . , (wN, vN) is both convenient to use
and easy to compute on GPUs. Let us briefly explain why.

Fast implementation. Our differentiable RobOT layer takes as input the two shapes A =
(αi, xi, pi) and B = (βj , yj , qj), with feature vectors pi and qj in RD that have been computed
upstream using e.g. a point neural network. It returns the N vectors vi with weights wi that map the
source points xi onto the targets yj in R3. Starting from the input point features pi, qj and weights αi,
βj , we first compute the optimal dual vectors fi and gj using the fast solvers of the GeomLoss library
[39]. We then combine Eq. (3) with Eq. (4) to compute the RobOT vectors vi and weights wi with
O(N + M) memory footprint using the KeOps library [20, 37] for PyTorch [86] and NumPy [117].
We use a log-sum-exp formulation to ensure numerical stability. Remarkably, our implementation
scales up to N,M = 100k in fractions of a second. Unlike common strategies that are based on
dense or sparse representations of the transport plan π, our approach is perfectly suited to a symbolic
implementation [37] and streams well on GPUs with optimal, contiguous memory accesses.

Comparison with nearest neighbor projections. We use our RobOT layer as a plug-in replace-
ment for closest point matching [7]. The blur (σ) and reach (τ ) scales play similar roles to the
standard deviation (σ) and weight of the uniform distribution (w) in the Coherent Point Drift (CPD)
method [81]: they allow us to smooth the matching in order to increase robustness to sampling
artifacts.

The main difference between projection-based matching and RobOT is that the latter enforces a mass
distribution constraint between the source and the target. This prevents our matching vectors from
accumulating on the boundaries of the distributions of point features (p1, . . . , pN) and (q1, . . . , qM)
in RD [40]. This property is most desirable when the shapes to register are fully observed, with a
dense sampling: as detailed in Suppl. A.5, enforcing the global consistency of a matching is then a
worthwhile registration prior.

Partial registration. On the other hand, we must also stress that OT theory has known limitations
[35]. First of all, the RobOT matching cannot guarantee the preservation of remarkable points or
of the shapes’ topologies “on its own”: it should be combined with relevant feature extractors and
regularizers. Going further, partial registration is not a natural fit for standard OT formulations which
assume that all points from both shapes must be put in correspondence with each other.

To mitigate this issue, RobOT leverages the theory of unbalanced optimal transport [25, 105, 67, 24,
106]: we rely on soft Kullback-Leibler penalties to enforce a matching between the shapes A and B
in Eq. (2). In practice, the RobOT confidence weights wi of Eq. (4) act as an attention mechanism:
they vanish when no target feature vector qj can be found in a τ -neighborhood of the source vector pi
in RD, where τ is the reach scale that is associated to Eq. (2). This lets our registration method focus
on reliable matches between similar features, without being fooled by strong constraints of bijectivity.
As detailed in Suppl. A.3, combining standard FPFH features [100] with the rigid projection of
Eq. (5) allows us to register partially observed shapes that have little overlap with each other.

5



3 Regularization and integration with a deep learning model

3.1 Smooth-RobOT: algebraic and optimization-based regularization

Notations. We now detail how to interface the weighted RobOT matching with regularization
models and feature extractors that may be handcrafted [114, 101, 100] or learnt using a deep neural
network [133, 46, 30, 29]. Recall that we intend to register a source point cloud x1, . . . , xN onto a
target y1, . . . , yM in R3. Non-negative weights α1, . . . , αN and β1, . . . βM > 0 let us take into account
variations in the sampling densities and we assume that point features p1, . . . , pN, q1, . . . , qM in RD

have been computed upstream by a relevant feature extractor. For every source point xi, the RobOT
matching layer then provides a desired displacement vi in R3 with influence weight wi > 0.

Smoothing in closed form. Standard computations let us derive closed-form expressions for rigid
and affine registration [57, 81, 3]. These respectively correspond to transformations:

(Rigid RobOT) x ∈ R3 7→ (x− xc)UV > +xc + vc ∈ R3 , (5)

(Affine RobOT) x ∈ R3 7→ (x− xc) (X̂>WX̂)−1(X̂>WŶ ) +xc + vc ∈ R3 , (6)

where W = Diag(wi) ∈ RN×N is the diagonal matrix of influence weights, xc =
∑
i wixi/

∑
i wi ∈

R3 is the barycenter of the source shape, vc =
∑
i wivi/

∑
i wi ∈ R3 is the average desired

displacement, X̂ = (xi − xc) ∈ RN×3 is the centered matrix of source positions, Ŷ = (xi +
vi − xc − vc) ∈ RN×3 is the centered matrix of desired targets and USV > is the singular value
decomposition of X̂>WŶ ∈ R3×3. This corresponds to a weighted Kabsch algorithm [60]. Likewise,
we implement free-form spline registration using the KeOps library [37, 20]. A Nadaraya–Watson
interpolator with kernel k : (x, y) ∈ R3 × R3 7→ k(x, y) > 0 [82, 124] induces a transformation:

(Spline RobOT) x ∈ R3 7→ x +
∑N
i=1 wik(xi, x)vi /

∑N
i=1 wik(xi, x) ∈ R3 . (7)

Black-box deformation models. Going further, we interface RobOT matchings with arbitrary
deformation modules Morph : (θ, xi) 7→ ŷi ∈ R3 parameterized by a vector θ in RP. If Reg(θ)
denotes a regularization penalty on the parameter θ (e.g. a squared Euclidean norm), we use standard
optimizers such as L-BFGS-B [136] and Adam [63] to find the optimal deformation parameter:

θ∗ = arg min
θ∈RP

Reg(θ) +
∑N
i=1 wi‖xi + vi −Morph(θ, xi)‖2R3 . (8)

This optimization-based method is especially relevant in the context of computational anatomy, where
smooth and invertible deformations are commonly defined through the Large Deformation Diffeo-
morphic Metric Mapping (LDDMM) framework [5, 8, 35]. We stress that different transformation
models may result in different registration results and refer to Suppl. A.3 for further details.

Optimization-based approaches provide strong geometric guarantees on the final matching. But
unfortunately, these often come at a high computational price: to register complex shapes, quasi-
Newton optimizers require dozens of evaluations of the deformation model Morph(θ, x) and of
its gradients. In practice, fitting a complex model to a pair of high-resolution shapes may thus
take several minutes or seconds [17]. This precludes real-time processing and hinders research on
advanced deformation models.

3.2 Deep-RobOT: registration via deep deformation prediction

Deformation prediction. In this context, there is growing interest in fast learning methods that
avoid the use of iterative optimizers. The idea is to train a deep neural network Pred : (xi, yj) 7→ θ
that takes as input two point clouds A = (x1, . . . , xN), B = (y1, . . . , yM) and directly predicts
the optimal vector of parameters θ for a transformation model Morph(θ, · ) that should map A
onto B. Assuming that the prediction network Pred has been trained properly, this strategy enables
real-time processing while leveraging the task-specific geometric priors that are encoded within the
deformation model.

Over the last few years, numerous authors have worked in this direction for rigid registration [133, 46,
30, 2, 121, 122] and scene flow estimation [91, 126, 69, 49]. Comparable research on diffeomorphic
models has focused on images that are supported on a dense grid, with successful applications to e.g.
the registration of 3D brain volumes [131, 4, 107]. As of 2021, prediction-based approaches have
thus become standard methods for 3D shape registration.
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1. Affine-RobOT pre-alignment.

2.a. Deep prediction network.

2.b. Smooth deformation model.

3. Spline-RobOT post-processing.

xi
yj

θ

θ

Real source. Synthetic target.

Local deformation. Global deformation.
End-to-end
training on
synthetic 

pairs.

Figure 2: The D-RobOT architecture. Left: We apply three successive registration modules that
bring the moving source shape increasingly close to the fixed target point cloud. On the one hand,
the RobOT-based pre-alignment (1) and fine-tuning (3) steps take the (x, y, z) coordinates as input
features and do not require any training. On the other hand, our deep registration module (2) relies on
a multi-scale point neural network “Pred : (xi, yj) 7→ θ” (2.a) and a task-specific deformation model
“Morph(θ, xi) 7→ ŷi” (2.b). We train it end-to-end on a dataset of synthetic pairs of shapes with known
ground truth correspondences. Right: To generate these pairs, we apply random deformations to real
source shapes. For lung registration, we apply successively a vessel-preserving local perturbation and
a smooth global deformation – as detailed in Suppl. A.2.

The D-RobOT model. In practice though, prediction methods still face three major challenges:

1. Common architectures may not be equivariant to rigid or affine transformations.
2. Dense 3D annotation is expensive, especially in a medical context. As a consequence, most

predictors are trained on synthetic data and have to overcome a sizeable domain gap.
3. Predicted registrations may be less accurate than optimization-based solutions. Training

registration networks to pixel-perfect accuracy is notoriously hard, with diminishing returns
in terms of model size and number of training samples.

We propose to address these issues using RobOT layers for pre-alignment and post-processing. Our
Deep RobOT (D-RobOT) model is an end-to-end deep learning architecture that is made up of three
consecutive steps that we illustrate in Figure 2 and detail in Suppl. A.4:

1. OT-based pre-alignment. We use the rigid or affine S-RobOT models of Eqs. (5-6) to
normalize the pose of the source shape. This is a fast and differentiable pre-processing.

2. Deep registration module. We combine a deep predictor with a task-specific deforma-
tion model to register the pre-aligned source onto the target. For the prediction network
Pred : (xi, yj) 7→ θ, we use a multiscale point neural network that is adapted from the
PointPWC-Net architecture [126]. We refer to Suppl. A.4 for a full description of our
architecture and training loss.

3. OT-based post-processing. In order to reach “pixel-perfect” accuracy, we use the spline
S-RobOT deformation model of Eq. (7) with a task-specific kernel k(x, y).

Complementary strengths and weaknesses. We apply these three steps successively, which brings
the moving source A = (x1, . . . , xN) increasingly close to the fixed target B = (y1, . . . , yM). Re-
markably, each step of our method covers for the weaknesses of the other modules: the RobOT-based
pre-alignment makes our pipeline robust to changes of the 3D acquisition parameters; our multiscale
neural predictor is able to match corresponding key points quickly, even in complex situations; the
domain-specific deformation model acts as a regularizer and improves the generalization properties
of the deep registration module; the RobOT-based fine-tuning improves accuracy and helps our
model to overcome the domain gap between synthetic and real shape data.

As detailed below, the D-RobOT model generalizes well outside of its training dataset and outperforms
state-of-the-art methods on several challenging problems. We see it as a pragmatic architecture for
shape registration, which is easy to deploy and tailor to domain-specific requirements. As discussed
in Suppl. A.4, we found that introducing sensible geometric priors through our RobOT layers and
the deformation model Morph : (θ, xi) 7→ ŷi results in a “forgiving” pipeline: our model produces
accurate results, even when trained on synthetic data that is not very realistic. In a context
where generating plausible 3D deformations is easier than developing custom registration models for
every single task (e.g. in computational anatomy), we believe that this is an important observation.
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4 Scene flow estimation

Benchmark. We now evaluate our method on a standard registration task in computer vision: the
estimation of scene flow between two successive views of the same 3D scene. We follow the same
experimental setting as in [126, 49], with full details provided in Suppl. A.4.3:

1. We train on the synthetic Flying3D dataset [75], which is made up of multiple moving
objects that are sampled at random from ShapeNet. We take 19,640 pairs of point clouds for
training, with dense ground truth correspondences.

2. We evaluate on 142 scene pairs from Kitti, a real-world dataset [78, 77]. We conduct
experiments using 8,192 and 30k points per scan, sampled at random from the original data.

Performance metrics. We evaluate all methods as in [126]: EPE3D is the average 3D error,
in centimeters; Acc3DS is the percentage of points with 3D error< 5 cm or relative error< 5%;
Acc3DR is the percentage of points with 3D error< 10 cm or relative error< 10%; Outliers3D is
the percentage of points with 3D error> 30 cm or relative error> 10%; EPE2D is the average 2D
error obtained by projecting the point clouds onto the image plane, measured in pixels; Acc2D is the
percentage of points with 2D error< 3 px or relative error< 5%. As detailed in Suppl. A.6, all run
times were measured on a single GPU (24GB NVIDIA Quadro RTX 6000).

Methods. We study a wide range of methods and report the relevant metrics in Fig. 4:
In the upper third of the table, we report results for unsupervised methods that do not require ground
truth correspondences for training. This includes the “raw” RobOT matching of Eq. (4), computed
on (x, y, z) coordinates in R3 with a blur scale σ = 1 cm and a reach scale τ = +∞. Please
also note that PWC refers to an improved version of PointPWC-Net, released on GitHub (https:
//github.com/DylanWusee/PointPWC) after the publication of [126] with a self-supervised loss.
In the central third of the table, we benchmark a collection of state-of-the-art point neural networks.
In the lower third of the table, we study the influence of our RobOT-based layers. The methods “Pre
+ FLOT/PWC + Post” correspond to the FLOT and PointPWC-Net architectures, with the additional
pre-alignment and post-processing modules of Sec. 3.2. The last two lines correspond to the full
D-RobOT architecture (with a spline deformation model) whose training is detailed in Suppl. A.4.3.

Results. We make three major observations:

1. Without any regularization or training, a simple RobOT matching on high-resolution data
outperforms many deep learning methods in terms of speed, memory footprint and accuracy
(line 6 of the table). This surprising result is strong evidence that geometric methods and
baselines deserve more attention from the computer vision community.

2. In the lower third of the table, RobOT-enhanced methods consistently outperform state-
of-the-art methods by a wide margin.

3. As shown in Fig. 3, these improvements are most significant on high-resolution data.

Overall, as detailed in Suppl. A.4.3 and A.5, we observe that optimal transport theory is especially
well suited to scene flow estimation. Assuming that ground points have been removed from the 3D
frames (as a standard pre-processing), most object displacements can be explained as translations and
small rotations: this is an ideal setting for our robust geometric method.

5 Registration of high-resolution lung vessel trees

PVT1010: a new dataset for lung registration. Going further, we introduce a new dataset of 1,010
pairs of pulmonary vessel trees that must be registered between expiration (source) and inspiration
(target). Due to the intricate geometry of the lung vasculature and the complexity of the breathing
motion, the registration of these shapes is a real challenge.

As detailed in Suppl. A.1, we encode our 1,010× 2 vessel trees as high-resolution 3D point clouds
(N = M = 60k points per tree). For each point, we also provide a local estimate of the vessel radius
that we use as an additional point feature or as a weight αi or βj in Eq. (2). Our first 1,000 pairs of
3D point clouds are provided without ground truth correspondences; for all of our experiments, we
randomly sample 600 training and 100 validation cases from this large collection of unannotated
patients. The last 10 cases correspond to the 10 DirLab COPDGene pairs [19]: they come with 300
expert-annotated 3D landmarks per lung pair, that we use to test our methods.
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Figure 3: Influence of the sampling density on a detail (top car) of the Kitti frames of Fig. 1.b.
First row: On sub-sampled 3D scenes, the regularizing priors of the D-RobOT architecture prevent
over-fitting to the random sampling patterns of the target point cloud (blue). The D-RobOT output
(last column, red) is very close to the ground truth scene flow (green). Second row: Increasing the
number of points per frame reduces the influence of sampling artifacts. The simple RobOT baseline
(fourth column, red) still over-fits to the target (blue) but becomes remarkably competitive.

Method Points Time Memory EPE3D Acc3DS Acc3DR Outliers3D EPE2D Acc2D
ms ↓ Mb ↓ cm ↓ % ↑ % ↑ % ↓ px ↓ % ↑
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d ICP (rigid) [7] 8k 224 2 51.81 6.69 16.67 87.12 27.6752 10.56
FGR (rigid) [134] 8k —- 30 48.35 13.31 28.51 77.61 18.7464 28.76
CPD (non-rigid) [81] 8k 34,880 798 41.44 20.58 40.01 71.46 27.0583 19.80
PWC (self) [126] 8k 237 1,016 25.49 23.79 49.57 68.63 8.9439 32.99
RobOT (raw) 8k 170 3 9.12 60.43 79.39 33.65 4.9920 56.23
RobOT (raw) 30k 166 89 4.67 80.43 91.05 20.21 1.7026 85.71
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ng
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ng
T

hi
ng
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FlowNet3D [69] 8k —- 690 17.67 37.38 66.77 52.71 7.2141 50.92
SPLATFlowNet [111] 8k —- —- 19.88 21.74 53.91 65.75 8.2306 41.89
original BCL [49] 8k —- —- 17.29 25.16 60.11 62.15 7.3476 44.11
HPLFlowNet [49] 8k —- —- 11.69 47.83 77.76 41.03 4.8055 59.38
FLOT [49] 8k 324 2,826 5.51 75.79 90.98 23.95 3.3152 75.10
PWC [126] 8k 237 1,016 5.28 85.83 94.08 18.85 3.0074 81.48
PWC 30k 1,138 10,691 7.63 67.54 92.30 26.09 3.5212 70.74
Pre + FLOT + Post 8k 487 2,826 5.33 76.84 91.65 23.56 3.2786 75.31
Pre + PWC + Post 8k 279 1,034 3.35 90.10 97.32 16.20 1.4301 93.85
Pre + PWC + Post 30k 1,207 10,691 3.50 90.04 96.71 17.28 1.5917 90.37
D-RobOT (spline) 8k 268 396 3.15 90.51 97.42 16.26 1.4532 93.76
D-RobOT (spline) 30k 547 610 2.23 95.88 99.19 12.89 1.0336 96.75
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Figure 4: Evaluation on the Kitti dataset for 3D scene flow. Black numbers and crosses (×)
correspond to results on scene pairs that are sampled with 8,192 points per frame; red numbers and
plus signs (+) correspond to scene pairs that are sampled with 30,000 points per frame.

(a) Source. (b) Target. (c) RobOT. (d) S-RobOT and target. (e) Deep features (source, target).

(f) After pre-alignment, target. (g) After deep registration, target. (h) After fine-tuning, target.

Figure 5: Registration of lung vascular trees. First row: S-RobOT registration with the deep
features of Suppl. A.3.3. We display: (a) the source and (b) target shapes; (c) the “raw” RobOT
registration; (d) a smoother S-RobOT registration with spline regularization, an overlap of this result
with the target shape; (e) a visualization of the deep features on a pair of lung vascular trees, with
colors that correspond to a t-SNE embedding of the point features in color space [116]. Second row:
D-RobOT registration. We display the successive steps of our model: (f) pre-alignment with affine
S-RobOT; (g) deep registration with an LDDMM model; (h) fine-tuning with spline S-RobOT.
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Table 1: 3D registration errors
on the 3,000 expert-annotated
DirLab landmarks. The † sym-
bol denotes methods that are based
on image keypoints [50, 51] and are
evaluated on the original DirLab im-
age dataset; all other approaches are
tested on our point clouds. Due to its
large memory requirements, CPD is
tested on clouds of 20k points (in-
stead of 60k).

Average Percentiles
error 25% 50% 75% Time

Method mm ↓ mm ↓ mm ↓ mm ↓ s ↓

N
o

tr
ai

ni
ng Input data 23.30 13.18 22.22 31.65 —

ICP (affine) [7] 15.05 9.60 14.06 20.01 0.52
CPD (non-rigid) [81] 9.30 5.95 8.60 11.83 332.60
RobOT (affine) 10.45 6.01 9.83 13.97 0.18
RobOT (raw) 9.41 4.89 8.35 13.04 0.15

Su
pe

rv
is

ed

DGCNN-CPD† [50] 4.30 — — — —
DispEmd† [51] 3.42 — — — —
S-RobOT (spline) 5.72 3.19 5.04 7.35 2.77
S-RobOT (LDDMM) 5.48 2.86 4.44 7.14 42.30
D-RobOT (raw) 3.40 1.40 2.58 3.69 1.26
D-RobOT (spline) 2.95 1.30 2.50 3.19 1.87
D-RobOT (LDDMM) 2.86 1.25 2.23 3.11 1.92

Data augmentation. The imbalance between our large training set and the small collection of 10
test cases reveals a fundamental challenge in computational anatomy: annotating pairs of 3D medical
shapes with dense correspondences is prohibitively expensive. To work around this problem, we train
our networks on synthetic deformations of the 600× 2 lung shapes that make up our training set. As
detailed in Suppl. A.2, we use a two-scales random field to generate a wide variety of deformations.
This allows us to create a suitable training set with dense “ground truth” correspondences.

Overall, as discussed in Suppl. A.4.2, we found that supervised training on synthetic deformations is
both easier and more efficient than unsupervised training on real lung pairs. From the chamfer and
Wasserstein distances [35] to local Laplacian penalties [126], none of the unsupervised loss functions
that we experimented with was able to deal with the complex geometry of our lung vascular trees.

Methods. We benchmark a wide range of methods in Fig. 5 and Tab. 1. In the upper half of the
table, we evaluate geometric approaches that require no training; in the lower half of the table, we
benchmark scalable point neural networks that we trained on our synthetic dataset. We evaluate three
types of RobOT-based approaches: a simple RobOT matching computed using (x, y, z) coordinates
as point features, that may either be “raw” as in Eq. (4) or regularized using Eq. (6); an S-RobOT
matching that we compute using the deep features of Suppl. A.3.3 and regularize with the spline
smoothing of Eq. (7) or the LDDMM optimization of Eq. (10); a D-RobOT architecture that we pair
with three deformation models Morph(θ, xi) 7→ ŷi and describe in depth in Suppl. A.4.2.

Results. We provide additional experiments in Suppl. A.4.2 and make three major observations:

1. Explicit regularization with a spline or LDDMM deformation model is key. Model-free
architectures that predict raw 3D correspondences produce non-smooth results that are not
anatomically plausible, even when they are trained entirely on smooth deformations.

2. The D-RobOT architecture combines a high acccuracy with fast run times.
3. Most remaining errors occur at the boundary of the lungs, where acquisition artifacts

prevent the thinnest vessels from being sampled reliably in our point cloud representation.

6 Conclusion, limitations and future work

Our work builds upon a decade of active research in the field of computational optimal transport.
We leverage major advances on RobOT solvers to define a new matching layer which is a plug-
and-play replacement for nearest neighbor projection. This operation has two major uses in 3D
shape registration: first, it provides a very strong geometric baseline for e.g. scene flow estimation;
second, it increases the accuracy and generalization abilities of point neural networks on finely
sampled 3D shapes. We see D-RobOT as a mature and versatile architecture for shape registration
which is easy to train and adapt to task-specific requirements in e.g. medical imaging.

Going forward, we see three main ways of improving this work. First, we still have to investigate
in depth the important problem of occlusions and partial acquisitions. Second, integrating task-
specific features beyond the (x, y, z) point coordinates is often key to perfect results. In the specific
setting of lung registration, working with image-based features or focusing on branching points could
be a way of improving performance at the cost of portability: recent works such as [52, 53] are
an excellent source of inspiration. Finally, we believe that high-quality software packaging is an
important part of research in our field. We intend to keep working on the topic and distribute our
methods through a user-friendly Python library for widespread use by the scientific community.
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359–372, 1964.

[125] W. Wu, Z. Qi, and L. Fuxin. PointConv: Deep convolutional networks on 3D point clouds. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9621–9630, 2019.

16



[126] W. Wu, Z. Wang, Z. Li, W. Liu, and L. Fuxin. PointPWC-Net: A coarse-to-fine network for supervised
and self-supervised scene flow estimation on 3D point clouds. arXiv preprint arXiv:1911.12408, 2019.

[127] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A deep representation
for volumetric shapes. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1912–1920, 2015.

[128] H. Yang and L. Carlone. A polynomial-time solution for robust registration with extreme outlier rates.
arXiv preprint arXiv:1903.08588, 2019.

[129] H. Yang, J. Shi, and L. Carlone. Teaser: Fast and certifiable point cloud registration. IEEE Transactions
on Robotics, 2020.

[130] J. Yang, H. Li, D. Campbell, and Y. Jia. Go-icp: A globally optimal solution to 3d icp point-set registration.
IEEE transactions on pattern analysis and machine intelligence, 38(11):2241–2254, 2015.

[131] X. Yang, R. Kwitt, M. Styner, and M. Niethammer. QuickSilver: Fast predictive image registration–a
deep learning approach. NeuroImage, 158:378–396, 2017.

[132] Z. J. Yew and G. H. Lee. RPM-Net: Robust point matching using learned features. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 11824–11833, 2020.

[133] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser. 3DMatch: Learning local geometric
descriptors from RGB-d reconstructions. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1802–1811, 2017.

[134] Q.-Y. Zhou, J. Park, and V. Koltun. Fast global registration. In European Conference on Computer Vision,
pages 766–782. Springer, 2016.

[135] Y. Zhou, C. Wu, Z. Li, C. Cao, Y. Ye, J. Saragih, H. Li, and Y. Sheikh. Fully convolutional mesh
autoencoder using efficient spatially varying kernels. arXiv preprint arXiv:2006.04325, 2020.

[136] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization. ACM Transactions on mathematical software (TOMS), 23(4):550–560,
1997.

17


	Introduction
	Robust optimal transport
	Mathematical background
	RobOT: a convenient representation of the optimal transport plan

	Regularization and integration with a deep learning model
	Smooth-RobOT: algebraic and optimization-based regularization
	Deep-RobOT: registration via deep deformation prediction

	Scene flow estimation
	Registration of high-resolution lung vessel trees
	Conclusion, limitations and future work

