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Abstract001

Existing methods for vision-language task plan-002
ning excel in short-horizon tasks but often fall003
short in complex, long-horizon planning within004
dynamic environments. These challenges pri-005
marily arise from the difficulty of effectively006
training models to produce high-quality rea-007
soning processes for long-horizon tasks. To008
address this, we propose Structured Preference009
Optimization (SPO), which aims to enhance010
reasoning and action selection in long-horizon011
task planning through structured preference012
evaluation and optimized training strategies.013
Specifically, SPO introduces: 1) Preference-014
Based Scoring and Optimization, which sys-015
tematically evaluates reasoning chains based016
on task relevance, visual grounding, and his-017
torical consistency; and 2) Curriculum-Guided018
Training, where the model progressively adapts019
from simple to complex tasks, improving its020
generalization ability in long-horizon scenarios021
and enhancing reasoning robustness. To ad-022
vance research in vision-language long-horizon023
task planning, we introduce ExtendaBench,024
a comprehensive benchmark covering 1,509025
tasks across VirtualHome and Habitat 2.0, cat-026
egorized into ultra-short, short, medium, and027
long tasks. Experimental results demonstrate028
that SPO significantly improves reasoning qual-029
ity and final decision accuracy, outperforming030
prior methods on long-horizon tasks and under-031
scoring the effectiveness of preference-driven032
optimization in vision-language task planning.033
Specifically, SPO achieves a +5.98% GCR and034
+4.68% SR improvement in VirtualHome and035
a +3.30% GCR and +2.11% SR improvement036
in Habitat over the best-performing baselines.037

1 Introduction038

In autonomous systems, there is a growing de-039

mand for robots capable of executing complex,040

real-world tasks in domestic environments. Tasks041

such as organizing a room, preparing a meal, and042

cleaning up afterward require not only a diverse043
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Figure 1: Comparison with existing methods. (a) Self-
Rewarding DPO (Yuan et al., 2024) relies on a single
reward criterion to rank sampled responses and selects
both the highest-ranked (preferred) and lowest-ranked
(rejected) responses for DPO training. (b) Structured
Preference Optimization (ours) introduces a structured
scoring framework with multiple criteria and an adap-
tive preference selection strategy, enabling more fine-
grained and informed optimization.

set of actions but also sophisticated long-term plan- 044

ning capabilities. However, current approaches 045

struggle with long-horizon tasks due to a lack of 046

learning in long-term planning ability and the fact 047

that most benchmarks (Puig et al., 2018; Liao et al., 048

2019; Shridhar et al., 2020a,b) focus on short-term 049

discrete tasks. This gap hinders progress toward 050

robots capable of handling the complex, multi-step 051

tasks demanded by real-life scenarios. 052

Existing reasoning-based decision-making meth- 053

ods primarily rely on prompting strategies or en- 054

vironmental feedback to determine actions, often 055

without explicitly modeling the quality of reason- 056

ing chains. While recent approaches (Yao et al., 057

2022; Zhao et al., 2024; Zhi-Xuan et al., 2024) 058

leverage textual inputs for reasoning, they lack a 059

structured mechanism to incorporate multimodal 060

information or refine reasoning processes over ex- 061

tended horizons. Furthermore, prior optimization 062

frameworks, such as Self-Rewarding DPO (Yuan 063

et al., 2024), rely on a single reward criterion, 064

1



which may lead to suboptimal preference selection065

as in Figure 1.066

To address these limitations, we propose Struc-067

tured Preference Optimization (SPO), a novel068

framework designed to enhance reasoning quality069

and decision-making in long-horizon task planning070

through structured preference evaluation and pro-071

gressive learning. SPO consists of two core com-072

ponents: 1) Preference-Based Scoring and Op-073

timization: This component systematically eval-074

uates reasoning chains based on three key crite-075

ria: task relevance, visual grounding, and historical076

consistency. Unlike prior approaches that rely on077

heuristic prompt engineering, SPO introduces a078

structured mechanism to construct preference pairs,079

enabling explicit optimization of reasoning qual-080

ity. By prioritizing high-quality thought processes081

and systematically discarding suboptimal reason-082

ing steps, this approach ensures more reliable and083

effective decision-making in long-horizon tasks.084

2) Curriculum-Guided Training: The model un-085

dergoes progressive learning, starting with simple086

tasks and gradually advancing to more complex087

ones. By incrementally increasing task complex-088

ity during training, the model develops robust rea-089

soning strategies that enhance its ability to gen-090

eralize across diverse long-horizon tasks. This091

structured learning paradigm not only improves092

the model’s adaptability but also strengthens its sta-093

bility in multi-step planning, ensuring consistent094

performance in real-world scenarios.095

Finally, to bridge the notable gap in the field re-096

garding the absence of a benchmark tailored for097

long-horizon tasks, we propose ExtendaBench, a098

comprehensive benchmark that categorizes the task099

into four difficulty levels based on the number of100

steps required for completion, namely ultra-short,101

short, medium, and long. Leveraging the gener-102

ative capabilities of GPT-4o (OpenAI, 2024), we103

create a diverse and extensive collection of tasks.104

These tasks undergo minimal human refinement to105

ensure high-quality data while significantly reduc-106

ing the costs and effort associated with manual data107

labeling.108

Our contributions can be summarized as follows:109

• We introduce Structured Preference Optimization110

(SPO), a framework that enhances long-horizon111

reasoning through structured preference-based112

evaluation and curriculum-guided learning, en-113

abling more effective decision-making.114

• We propose ExtendaBench, a benchmark with115

four levels of difficulty and 1,509 tasks across 116

VirtualHome and Habitat 2.0, providing a com- 117

prehensive evaluation suite for sustained reason- 118

ing in long-horizon task planning. 119

• We validate SPO through extensive experiments, 120

demonstrating state-of-the-art performance in 121

long-horizon task planning. 122

2 Related Work 123

2.1 Multimodal Large Language Models 124

The emergence of LLMs (Touvron et al., 2023; 125

Chiang et al., 2023) has driven substantial progress 126

in multimodal large language models (MLLMs), 127

which aim to integrate both visual and textual 128

modalities, advancing toward a more generalized 129

form of intelligence. Early works such as BLIP-2 130

(Jian et al., 2024), MiniGPT-4 (Zhu et al., 2023), 131

LLaVA (Liu et al., 2024), and OpenFlamingo 132

(Awadalla et al., 2023) capitalized on pretrained 133

vision encoders paired with LLMs, demonstrating 134

strong performance in tasks like visual question 135

answering and image captioning. mPLUG-Owl 136

(Ye et al., 2023) introduces a modularized training 137

framework to further refine cross-modal interac- 138

tions. On the closed-source side, models such as 139

GPT-4V (OpenAI, 2023) and Gemini (Team et al., 140

2023) pushes the boundaries of multimodal reason- 141

ing and interaction capabilities. 142

2.2 LLM Self-improvement 143

Self-improvement techniques for LLMs aim to en- 144

hance model capabilities by enabling them to learn 145

from their own outputs. These methods often in- 146

volve supervised fine-tuning (SFT) on high-quality 147

responses generated by the models themselves (Li 148

et al., 2023; Wang et al., 2024b) or preference op- 149

timization (Yuan et al., 2024; Rosset et al., 2024; 150

Pang et al., 2024; Prasad et al., 2024; Zhang et al., 151

2024), where the model is trained to distinguish 152

between better and worse responses. These ap- 153

proaches mostly employ LLM-as-a-Judge prompt- 154

ing (Zheng et al., 2024) or train strong reward mod- 155

els (Xu et al., 2023; Havrilla et al., 2024) to eval- 156

uate and filter generated data, thereby guiding the 157

model toward improved performance. 158

2.3 Embodied Task Planning 159

Traditional robotics planning methods have relied 160

on search algorithms in predefined domains (Fikes 161

and Nilsson, 1971; Garrett et al., 2020; Jiang et al., 162

2018), but face scalability challenges in complex 163
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environments with high branching factors (Puig164

et al., 2018; Shridhar et al., 2020a). Heuristics165

have helped alleviate these limitations, leading166

to advancements (Baier et al., 2009; Hoffmann,167

2001; Helmert, 2006; Bryce and Kambhampati,168

2007). More recently, learning-based methods like169

representation learning and hierarchical strategies170

have emerged, showing effectiveness in complex171

decision-making (Eysenbach et al., 2019; Xu et al.,172

2018, 2019; Srinivas et al., 2018; Kurutach et al.,173

2018; Nair and Finn, 2019; Jiang et al., 2019). The174

advent of LLMs has further revolutionized plan-175

ning by enabling task decomposition and robust176

reasoning (Li et al., 2022; Huang et al., 2022b;177

Ahn et al., 2022; Valmeekam et al., 2022; Silver178

et al., 2022; Song et al., 2023; Rana et al., 2023;179

Driess et al., 2023; Liu et al., 2023b; Wu et al.,180

2023; Wake et al., 2023; Chen et al., 2023; Bhat181

et al., 2024; Zhi-Xuan et al., 2024). Other works fo-182

cus on translating natural language into executable183

code and formal specifications (Vemprala et al.,184

2023; Liang et al., 2023; Silver et al., 2023; Xie185

et al., 2023; Skreta et al., 2023; Liu et al., 2023a;186

Zhang and Soh, 2023; Ding et al., 2023b,a; Zhao187

et al., 2024). Some approaches fine-tune LLMs for188

better performance (Driess et al., 2023; Qiu et al.,189

2023), while others opt for few-shot or zero-shot190

methods (Huang et al., 2022b,a; Singh et al., 2023)191

to avoid the resource demands of model training. In192

contrast, our method introduces multimodal prefer-193

ence optimization, fine-grained preference scoring,194

and curriculum-guided optimization.195

3 Preliminaries196

Direct Preference Optimization (DPO) (Rafailov197

et al., 2024) is a reinforcement learning-free ap-198

proach that optimizes a model’s policy using199

preference-labeled data. Instead of relying on an200

explicit reward model, DPO directly enforces pref-201

erence ordering by encouraging the model to assign202

higher probabilities to preferred outputs over less203

preferred ones.204

Given a dataset D = {(x, y+, y−)}, where y+ is205

the preferred response and y− is the less preferred206

response for input x, DPO optimizes the following207

contrastive ranking loss:208

LDPO(πθ;πref) =− E(x,y+,y−)∼D

[
log σ

(
209

β log

(
πθ(y

+ | x)
πθ(y− | x)

))]
, (1)210

where σ is the sigmoid function, and β is a scaling 211

factor controlling preference sharpness. 212

4 Structured Preference Optimization 213

The Structured Preference Optimization (SPO) 214

framework enhances long-horizon task planning by 215

introducing a structured evaluation mechanism for 216

reasoning quality and a progressive training strat- 217

egy to improve model generalization. Unlike stan- 218

dard preference optimization, which lacks explicit 219

reasoning quality assessment and task complexity 220

adaptation, SPO systematically refines the model’s 221

reasoning capabilities through Preference-Based 222

Scoring and Optimization and Curriculum-Guided 223

Training. The overview of our framework is shown 224

in Figure 2. 225

4.1 Preference-Based Scoring and 226

Optimization 227

The structured preference-based optimization 228

mechanism evaluates and ranks reasoning chains 229

based on explicit criteria. Unlike standard pref- 230

erence optimization, which treats reasoning as a 231

single scalar preference, SPO decomposes reason- 232

ing quality into multiple dimensions and optimizes 233

the model’s decision-making accordingly. 234

4.1.1 Structured Preference Evaluation 235

Instead of relying on external annotations, SPO 236

adopts a self-evaluation approach, where the vision- 237

language model (sLVLM) itself serves as the judge 238

to assess reasoning quality. Given a generated rea- 239

soning chain Ri, the model evaluates it based on 240

the task context, which includes: task instruction 241

(I), current image observation (o), and history of 242

executed actions (h). Using this structured input, 243

the model assigns two separate scores to assess 244

different aspects of reasoning quality: 245

• Textual Coherence (Stext): Evaluates the logical 246

consistency of the reasoning chain, ensuring that 247

each step is task-relevant and maintains histori- 248

cal consistency with prior steps. This prevents 249

reasoning errors such as goal misalignment or 250

contradictions in multi-step plans. 251

• Image Awareness (Simage): Measures whether 252

the reasoning chain sufficiently incorporates rel- 253

evant information from the visual observations, 254

ensuring that decisions are grounded in the en- 255

vironment rather than relying solely on textual 256

priors. 257
To obtain these scores, the model is prompted 258

with an evaluation query p, where the model M 259
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Figure 2: Overview of the Structured Preference Optimization.

estimates reasoning quality as follows:260

Stext = M(ptext, Ri, I, h), (2)261

Simage = M(pimage, Ri, I, o, h), (3)262

where ptext and pimage are evaluation prompts de-263

signed to assess textual coherence and image aware-264

ness, respectively. The overall preference score can265

then be computed as either a weighted combina-266

tion:267

S(Ri) = w1Stext + w2Simage, (4)268

where w1 and w2 are weighting factors that con-269

trol the relative contribution of textual coherence270

and image awareness. Alternatively, instead of us-271

ing a predefined weighted sum, the model directly272

provides an overall preference score:273

S(Ri) = M(poverall, Ri, I, o, h), (5)274

where poverall is an evaluation prompt requesting275

a single comprehensive score. Empirically, we276

found that using the model to generate the overall277

preference score yields better optimization results278

compared to manually setting weighting factors.279

4.1.2 Preference Pair Selection Strategy280

To refine the model’s reasoning capabilities, SPO281

constructs structured preference pairs from model-282

generated samples, ensuring that the optimization283

process explicitly accounts for both reasoning qual-284

ity and action selection. Unlike prior methods,285

which simply select the highest-scoring reasoning286

chain as the positive sample and the lowest-scoring287

reasoning chain as the negative sample, SPO intro-288

duces a targeted preference selection strategy that289

prevents the model from over-optimizing reasoning 290

at the cost of decision accuracy. 291

Given a set of generated reasoning chains {Ri} 292

for the same task input (I, o, h), the model self- 293

evaluates each reasoning chain using the scor- 294

ing mechanism described in Structured Preference 295

Evaluation. The positive sample R+ is selected as 296

the highest-scoring reasoning chain, and in cases 297

where multiple chains achieve the same highest 298

score, we choose the one where the final action ap- 299

pears most frequently across all generated samples. 300

This ensures that the model prioritizes common and 301

stable action choices, reducing the risk of selecting 302

an outlier action due to randomness in generation. 303

For the negative sample R−, instead of always se- 304

lecting the lowest-scoring reasoning chain, SPO 305

considers different selection strategies to ensure 306

both reasoning quality and action feasibility are op- 307

timized. The negative sample is chosen from one 308

of the following categories: 309

• High-quality reasoning, different action output: 310

A reasoning chain that is coherent but results in a 311

different final action from R+. This prevents the 312

model from focusing solely on reasoning quality 313

while ignoring the correctness of the final deci- 314

sion. 315

• Low-quality reasoning, different action output: 316

A reasoning chain with poor reasoning that 317

also leads to incorrect final action. This helps 318

the model distinguish between poor reasoning 319

leading to incorrect decisions and high-quality 320

thought processes. 321

• Low-quality reasoning, same action output: A 322

reasoning chain that is less coherent but pro- 323
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duces the same final action as R+. This prevents324

the model from blindly optimizing for reason-325

ing quality without considering whether the final326

decision remains valid.327

4.1.3 Preference Optimization328

Once the structured preference pairs (R+, R−) are329

selected, SPO directly applies DPO to align the330

model’s policy with the preferred reasoning chains.331

The optimization follows the original DPO con-332

trastive ranking loss (referencing Eq. 1, adapted to333

our task setting with inputs (I, o, h):334

Lpref = −E(I,o,h,R+,R−)∼D

[
log σ

(
335

β log

(
πθ(R

+ | I, o, h)
πθ(R− | I, o, h)

))]
. (6)336

4.2 Curriculum-Guided Training337

To facilitate structured learning, SPO categorizes338

tasks into four levels: ultra-short, short, medium,339

and long-horizon tasks. Instead of training on340

all task types simultaneously, SPO follows a pro-341

gressive training strategy to gradually expose the342

model to increasing task complexity while prevent-343

ing catastrophic forgetting.344

Training is divided into four stages, where the345

model starts with ultra-short tasks and progres-346

sively incorporates more complex tasks in each347

subsequent stage. At every stage, a certain amount348

of previously learned tasks is retained to reinforce349

fundamental reasoning skills and prevent the model350

from overfitting to newly introduced tasks. This ap-351

proach ensures that earlier-learned reasoning strate-352

gies remain effective as the model learns to handle353

longer task horizons.354

A key challenge in curriculum learning is sta-355

bilizing the transition between different difficulty356

levels without disrupting previously learned deci-357

sion patterns. To address this, SPO maintains a358

dynamic balance between newly introduced tasks359

and previously learned ones. During each train-360

ing phase, the model is exposed to a mixture of361

current-stage tasks and replayed tasks from earlier362

stages, ensuring that it can generalize across task363

difficulties while refining long-horizon reasoning364

capabilities.365

5 ExtendaBench366

The ExtendaBench task corpus is developed using367

two distinct approaches tailored to each simulator.368

For VirtualHome (Puig et al., 2018), we leverage 369

GPT-4o’s advanced generative capabilities to create 370

diverse and complex tasks. In contrast, tasks for 371

Habitat 2.0 (Szot et al., 2021) are systematically 372

collected using pre-defined templates. 373

5.1 VirtualHome 374

The ExtendaBench task corpus is developed using 375

tailored approaches for each simulator, both lever- 376

aging GPT-4o’s advanced generative capabilities. 377

For VirtualHome (Puig et al., 2018), we utilize 378

GPT-4o to directly generate diverse and complex 379

tasks, allowing for a wide range of scenarios. For 380

Habitat 2.0 (Szot et al., 2021), GPT-4o is used to 381

generate pre-defined templates as well as to create 382

specific task instances from these templates, result- 383

ing in systematically varied tasks with extended 384

action sequences that are suitable for long-horizon 385

planning. 386

Task Proposal The initial phase begins within the 387

confines of VirtualHome, a simulated environment, 388

where a varied collection of objects sets the stage 389

for a multitude of task scenarios. By employing 390

GPT-4o as a task generator, we design tasks focus- 391

ing on object manipulation, striving for a wide ar- 392

ray of task varieties and complexities. This method 393

ensures an exhaustive representation of scenarios 394

that closely mimic real-world challenges. To fa- 395

cilitate the generator’s task creation, we provide 396

prompts that are carefully constructed to inspire a 397

broad range of tasks. 398

Review In the subsequent phase, GPT-4o under- 399

takes the generation of detailed action plans for 400

the devised tasks, meticulously outlining the steps 401

required for successful task execution. To ensure 402

the feasibility and coherence of these tasks, we 403

introduce an additional examiner of scrutiny, also 404

powered by GPT-4o. This examiner evaluates each 405

task and its associated action plan for clarity, ne- 406

cessity, and coherence of steps, as well as the rel- 407

evance and practicality of the actions and items 408

involved, ensuring they belong to the simulated 409

environment VirtualHome. It also assesses each 410

step for common sense applicability, providing con- 411

structive feedback for further refinement. 412

Refinement After undergoing expert scrutiny, the 413

generator refines the tasks and their correspond- 414

ing action plans. Subsequent simulation of these 415

revised tasks and plans enables further improve- 416

ments based on simulator feedback. Tasks that 417

are successfully executed within the simulator re- 418

ceive preliminary approval. Nevertheless, to guar- 419
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Given a 'HUMAN ACTION 
LIST' and an 'OBJECT LIST', 
use relevant items from 
both lists to compose a 
new household task.

Scene assets

GPT-4o

Task:
Organize a Small Dinner Party
Plan:
1. [walk] <dining table>
2. [grab] <cloth>
3. [touch] <dining table> 
4. [putback] <cloth> <cabinet>
5. [walk] <cabinet>
6. [open] <cabinet>
7. [grab] <plate>
8. [putback] <plate> <dining table>
...Task Proposal Review

1. Clarify the task 
description.
2. Explain why each step 
is needed.
3. Justify how 
decomposed steps 
achieve the task.
4. Apply common sense.
5. Suggest adjustments 
if needed.

Refinement

Simulation

Environmental feedback

Human check 
(optional)

Task:
Host a cozy evening with friends, 
serving toasted bread and coffee 
on plates, with a well-set 
nightstand and a comfortable, 
inviting atmosphere.
Plan:
1. [walk] <nightstand>
2. [grab] <plate>
3. [putback] <plate> <nightstand>
4. [walk] <cabinet>
5. [open] <cabinet>
6. [grab] <plate>
…

Data Generation Pipeline for VirtualHome

Data Generation Pipeline for Habitat

Template Proposal

Can you help me 
to generate some 
tasks templates?

Scene assets

GPT-4o

Task Template:
Please move `obj1` and `obj2` from 
the `cab` to the fridge, and relocate 
`obj3` and `obj4` from the fridge to 
the `cab`.
Plan Template:
1. nav(frigde_push_point)
2. open(fridge_push_point)
3. nav(`cab`)
4. open(`cab`)
5. pick_`obj1`()
6. nav(fridge_push_point)
7. place(fridge_push_point)
...

Task Generation

Simulation

Sample task

Random Scene
Sample Objects
{
“obj1”：apple,
“obj2”：banana,
“obj3”：pear,
“obj4”：bowl
} success

save

Instruction Augmentation

1. Synonym Replacement
Please transfer `obj1` and `obj2` 
from the cabinet to the fridge, and 
shift `obj3` and `obj4` from the 
fridge to the cabinet.
2. Appearance description
replacement
apple->red round fruit
3. Add Context
……

GPT-4o

GPT-4o

GPT-4o

Figure 3: The process of generating tasks in ExtendaBench.

1) VirtualHome 2) Habitat

Figure 4: Distribution of action lengths in our bench-
mark.

antee optimal quality and applicability, we subject420

each task to a rigorous manual review, evaluating421

them for practicality and realism. Tasks that do422

not achieve success in the simulation are minimally423

modified by human according to the simulator’s424

feedback, focusing on enhancing their realism and425

feasibility.426

The multi-stage process, with minimal human in-427

tervention, is designed to ensure the reliability and428

quality of the tasks and their associated plans. The429

whole process of generating tasks in benchmark is430

shown in Figure 3.431

5.2 Habitat 2.0432

Inspired by Language Rearrangement (Szot et al.,433

2023), we propose a novel data generation pipeline434

for Habitat 2.0 that leverages GPT-4o to create435

diverse, long-horizon tasks, as illustrated in Figure436

3. Our approach consists of three main stages:437

Template Proposal GPT-4o generates initial task438

templates based on scene assets. These templates439

define general task structures (e.g., moving objects440

between locations) and serve as the basis for gener-441

ating varied instructions.442

Task Generation Using the task templates, we443

sample objects within random scenes to generate444

specific tasks with extended action sequences. This 445

phase results in more complex task plans that eval- 446

uate an agent’s capacity for long-term planning and 447

adaptability. 448

Instruction Augmentation To increase task di- 449

versity, we apply various transformations to the 450

instructions. These include synonym replacement, 451

appearance description alterations (e.g., “apple” to 452

“red round fruit”), and additional contextual details. 453

This augmentation, powered by GPT-4o, allows us 454

to expand the instruction set, testing the agent’s 455

understanding and flexibility in interpreting varied 456

language inputs. 457

5.3 Dataset Statistics 458

The categorization within ExtendaBench is defined 459

by the length of the action sequence required to 460

accomplish a task, distributed as follows: 461

• Ultra-Short Tasks: Tasks that can be completed 462

in fewer than 10 actions. 463

• Short Tasks: Tasks requiring 10 to 20 actions for 464

completion. 465

• Medium Tasks: Tasks necessitating 20 to 30 ac- 466

tions to finish. 467

• Long Tasks: Tasks that demand more than 30 468

actions to complete. 469

Distribution of action lengths is shown in Figure 4. 470

The VirtualHome set includes a total of 605 tasks, 471

with 220 ultra-short tasks, 128 short tasks, 155 472

medium tasks, and 102 long tasks. Similarly, the 473

Habitat 2.0 set comprises 904 tasks, distributed as 474

161 ultra-short tasks, 243 short tasks, 190 medium 475

tasks, and 310 long tasks. 476
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Table 1: Comparison with existing methods using Qwen2.5-VL 7B as the baseline on different sets of our
ExtendaBench in VirtualHome.

Ultra-Short Short Medium Long Average

Method GCR SR GCR SR GCR SR GCR SR GCR SR

Baseline 57.32 35.00 42.72 9.62 30.57 3.33 27.47 0 39.52 11.99
CoT (Wei et al., 2022) 68.66 41.67 35.46 3.85 36.36 1.67 20.45 0 40.23 11.80

Self-Rewarding (Yuan et al., 2024)

Iteration 1 62.13 35.00 42.89 7.69 36.38 3.33 22.55 0 40.99 11.51
Iteration 2 59.15 31.67 44.47 11.54 29.92 3.33 28.80 0 40.58 11.64
Iteration 3 58.93 35.00 48.16 9.62 32.56 3.33 27.46 0 41.78 11.99

Iterative RPO (Pang et al., 2024)

Iteration 1 67.03 38.33 41.59 7.69 26.97 1.67 26.06 0 40.41 11.92
Iteration 2 72.31 43.33 40.06 1.92 31.66 3.33 22.33 0 41.73 12.15
Iteration 3 59.86 31.67 46.42 11.54 34.02 6.67 29.06 0 42.34 12.47

SPO (1 iteration) 71.53 48.33 48.96 13.46 38.92 3.33 31.41 2.17 47.71 16.83

Table 2: Results using Qwen2.5-VL 7B as the baseline on different sets of our ExtendaBench in Habitat.

Ultra-Short Short Medium Long Average

Method GCR SR GCR SR GCR SR GCR SR GCR SR

Baseline 41.67 33.33 14.39 8.57 3.17 0 2.48 0 15.43 10.48
CoT (Wei et al., 2022) 42.36 50.00 9.49 8.57 7.51 0 6.10 0 16.36 14.64

Self-Rewarding (Yuan et al., 2024)

Iteration 1 43.06 36.11 13.33 8.57 3.32 0 2.48 0 15.55 11.17
Iteration 2 43.06 33.33 14.19 8.57 4.34 0 2.48 0 16.01 10.48
Iteration 3 44.44 36.11 13.59 8.57 3.63 0 2.48 0 16.03 11.17

Iterative RPO (Pang et al., 2024)

Iteration 1 45.14 36.11 12.90 8.57 3.43 0 2.86 0 16.08 11.17
Iteration 2 33.33 38.89 12.17 11.43 11.35 0 7.62 0 16.12 12.58
Iteration 3 38.54 44.44 15.06 8.57 10.49 0 6.76 0 17.71 13.25

SPO (1 iteration) 52.08 50.00 14.78 11.43 10.51 0 6.67 0 21.01 15.36

6 Experiments477

6.1 Experimental Setup478

For the VirtualHome set, we designate 218 tasks as479

the test set, with the remaining tasks serving as the480

training set. The Habitat 2.0 set also includes 120481

test tasks. As our approach is unsupervised, we do482

not utilize the training set data for model training.483

Evaluation Metrics To assess system efficacy, we484

employ success rate (SR) and goal conditions recall485

(GCR) (Singh et al., 2023) as our primary metrics.486

SR measures the proportion of executions where487

all key goal conditions (changing from the begin-488

ning to the end during a demonstration) are satis-489

fied. GCR calculates the discrepancy between the490

expected and achieved end state conditions, rela-491

tive to the total number of specific goal conditions492

needed for a task. A perfect SR score of 1 corre-493

sponds to achieving a GCR of 1, indicating flawless 494

task execution. Results of SR and GCR are both 495

reported in %. 496

6.2 Comparison with Existing Methods 497

We compare SPO with existing long-horizon 498

reasoning methods, including Chain-of-Thought 499

(CoT) (Wei et al., 2022), as well as the multi- 500

modal VLM-based versions of Self-Rewarding 501

(Yuan et al., 2024) and Iterative RPO (Pang et al., 502

2024), using Qwen2.5-VL 7B as the baseline. The 503

evaluations are conducted on ExtendaBench in Vir- 504

tualHome (Table 1) and Habitat (Table 2), covering 505

tasks of increasing complexity from Ultra-Short to 506

Long. 507

Across both benchmarks, CoT significantly im- 508

proves over the baseline in Habitat, achieving 509

higher SR across all task levels, demonstrating that 510
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Table 3: Ablation studies of different modules in VirtualHome.

Ultra-Short Short Medium Long Average

Textual Image Curriculum GCR SR GCR SR GCR SR GCR SR GCR SR

✗ ✗ ✗ 67.25 36.67 34.50 1.92 34.58 3.33 23.09 0 39.86 10.48
✓ ✗ ✗ 71.70 43.33 45.52 9.62 30.57 1.67 16.71 0 41.13 13.65
✗ ✓ ✗ 69.71 40.00 42.11 1.92 25.98 3.33 26.16 0 40.99 11.31
✓ ✓ ✗ 70.52 43.33 43.89 7.69 33.96 3.33 27.90 0 44.07 13.59
✓ ✓ ✓ 71.53 48.33 48.96 13.46 38.92 3.33 31.41 2.17 47.71 16.83

Table 4: Average performance of preference pair selec-
tion strategy in VirtualHome.

pair selection GCR SR

✗ 40.04 11.73
✓ 41.13 13.65

explicit reasoning helps in shorter-horizon environ-511

ments. However, its effectiveness diminishes on512

longer tasks, where structured multi-step planning513

becomes necessary. In VirtualHome, CoT provides514

a slight improvement over the baseline, but its SR515

drops significantly for more complex tasks.516

Self-Rewarding and Iterative RPO introduce it-517

erative refinement mechanisms, leading to grad-518

ual improvements in GCR and SR, particularly on519

short and medium tasks. However, their impact520

remains limited for long-horizon planning, with521

SR reaching 0% on long tasks in both VirtualHome522

and Habitat, indicating difficulties in maintaining523

coherent reasoning across extended steps.524

In contrast, SPO achieves the best overall per-525

formance across both environments, consistently526

outperforming all baselines. In VirtualHome (Ta-527

ble 1), SPO achieves 47.71% GCR and 16.83% SR,528

surpassing Iterative RPO (42.34% GCR, 12.47%529

SR) and Self-Rewarding (41.78% GCR, 11.99%530

SR). Similarly, in Habitat (Table 2), SPO achieves531

21.01% GCR and 15.36% SR, outperforming all532

other methods, including Iterative RPO (17.71%533

GCR, 13.25% SR) and Self-Rewarding (16.03%534

GCR, 11.17% SR). Notably, SPO surpasses CoT535

in overall performance, achieving superior results536

without requiring iterative refinement.537

6.3 Ablation Study538

To evaluate the contributions of different compo-539

nents in SPO, we conduct an ablation study on Vir-540

tualHome, selectively removing textual coherence541

scoring, image awareness scoring, and curriculum-542

guided training. The results in Table 3 show that re-543

moving textual coherence scoring leads to the most544

significant performance drop, especially on short, 545

medium, and long tasks, indicating its critical role 546

in maintaining reasoning consistency. Removing 547

image awareness scoring also results in a decline, 548

particularly on long tasks, where integrating visual 549

observations becomes more important. Without 550

curriculum learning, performance on medium and 551

long tasks deteriorates, demonstrating that progres- 552

sive training helps the model handle more com- 553

plex task sequences. The full SPO model achieves 554

the highest performance, with 47.71% GCR and 555

16.83% SR, confirming that structured preference 556

learning and curriculum-guided training together 557

enable more effective long-horizon task planning. 558

To evaluate the impact of preference pair selec- 559

tion, we conduct an ablation study on the Textual 560

Coherence model (row 2 in Table 3). WApplying 561

pair selection on the Textual Coherence model im- 562

proves GCR by +1.09% and SR by +1.92%. This 563

demonstrates that structured preference selection 564

enhances decision accuracy. 565

7 Conclusion 566

We introduce Structured Preference Optimization 567

(SPO), a method for improving long-horizon vision- 568

language task planning through structured prefer- 569

ence learning and curriculum-guided training. Un- 570

like existing methods that struggle with multi-step 571

decision-making, SPO systematically evaluates rea- 572

soning chains based on textual coherence and im- 573

age awareness, ensuring high-quality reasoning and 574

action selection. Additionally, curriculum-guided 575

training progressively adapts the model from sim- 576

pler to more complex tasks, enhancing general- 577

ization and robustness in long-horizon scenarios. 578

To support research in this area, ExtendaBench 579

provides a benchmark spanning VirtualHome and 580

Habitat simulators with tasks of increasing diffi- 581

culty. Experimental results show that SPO outper- 582

forms prior methods, particularly in long-horizon 583

task planning, demonstrating improved reasoning 584

consistency and decision-making accuracy. 585
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A More Details for ExtendaBench949

A.1 Statistics950

A.1.1 Overview951

Table 5 provides a summary of key characteristics952

of the VirtualHome and Habitat datasets in our Ex-953

tendaBench, highlighting differences in scene com-954

plexity, task variety, and action requirements. The955

VirtualHome dataset consists of 7 distinct scenes956

with a total of 390 objects, supporting 294 task957

types across 605 instructions. In VirtualHome, the958

simulator provides 16 unique executable actions,959

enabling a broader range of task interactions. In960

contrast, the Habitat dataset features 105 scenes961

with 82 distinct objects, enabling 20 task types962

across 904 instructions. The Habitat simulator sup-963

ports 6 unique executable actions.964

Table 5: Overview of scene and task characteristics in
VirtualHome and Habitat.

VirtualHome Habitat

Scene Number 7 105
Scene Objects 390 82

Task Type 294 20
Instructions 605 904

Action Number 16 6

A.1.2 Data Distribution Across Sets 965

VirtualHome For the VirtualHome dataset, tasks 966

are categorized into ultra short, short, medium, and 967

long. Each category includes a portion reserved for 968

testing, with the remaining used for training. The 969

distribution is as follows: 970

• Ultra short: This category contains 220 tasks 971

in total, with 46 allocated for testing and 174 972

for training. 973

• Short: A total of 128 tasks, with 60 reserved 974

for testing and 68 for training. 975

• Medium: Comprising 155 tasks, with 52 for 976

testing and 103 for training. 977

• Long: The most complex category, including 978

102 tasks in total, with 60 allocated for testing 979

and 42 for training. 980

Habitat For Habitat, the dataset is similarly divided 981

into four categories based on task length: ultra 982

short, short, medium, and long. For each category, 983

a portion of the tasks is allocated for testing, and 984

the remaining are used for training. The details are 985

as follows: 986

• Ultra short: This category contains 161 tasks, 987

with 36 reserved for testing and 125 for train- 988

ing. 989

• Short: There are 243 tasks, of which 35 are 990

for testing and 208 for training. 991

• Medium: A total of 190 tasks, including 31 992

for testing and 159 for training. 993

• Long: The largest category, comprising 310 994

tasks, with 30 allocated for testing and 280 for 995

training. 996
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A.1.3 Word Frequency Distribution997

Figure 5 presents the top 50 most frequent words,998

excluding prepositions, in the datasets generated999

for VirtualHome and Habitat environments. Sub-1000

figure (a) shows the word frequencies from Virtual-1001

Home, highlighting terms associated with common1002

objects and actions, such as “table,” “kitchen,” and1003

“place,” reflecting its simulation of domestic scenar-1004

ios. Subfigure (b) illustrates the word frequencies1005

for Habitat, where terms like “from,” “counter,” and1006

“cup” dominate, indicating tasks involving object1007

interaction and spatial relationships.1008

(a) VirtualHome

(b) Habitat

Figure 5: Word frequency analysis for ExtendaBench.

A.2 Visualization1009

To better understand the structure and diversity of1010

the tasks generated for VirtualHome and Habitat,1011

we provide visualizations of selected examples in1012

Figures 6, 7, 8 and 9. These examples illustrate1013

the capability of our benchmark to handle long-1014

horizon tasks, requiring multiple sequential steps1015

to complete a given instruction. In Figure 6, we1016

showcase an example task generated in the Virtual-1017

Home environment, where the agent is tasked with1018

collecting and arranging multiple objects to prepare 1019

a dinner scene. Additionally, Figure 7 provides an- 1020

other example in VirtualHome, demonstrating a 1021

more complex cooking and meal arrangement task 1022

involving multiple appliances and detailed object 1023

placements. Figure 8 illustrates an example in Habi- 1024

tat 2.0, where the agent transfers various objects 1025

across different locations, including countertops, 1026

drawers, and sofas. Furthermore, Figure 9 shows 1027

another Habitat example, featuring a detailed multi- 1028

object transfer task requiring precise placement 1029

across multiple furniture items. The visualizations 1030

emphasize the diversity and complexity of the gen- 1031

erated tasks. 1032

B More Details for Experiments 1033

B.1 Experimental Setup 1034

For data generation, we produce K = 5 responses 1035

per prompt, employing a sampling temperature of 1036

0.7 and a top-p value of 0.95. The generated dataset 1037

is then used to train the model for 3 epochs. Dur- 1038

ing training, the learning rate is set to 2e−5. For 1039

LoRA, we use a rank value of 16, an alpha param- 1040

eter of 32, and a dropout rate of 0.05. Unlike the 1041

Self-Rewarding framework, which involves itera- 1042

tive training where the trained model is used to 1043

re-label data and retrain in a loop, our approach 1044

trains the model only once, simplifying the train- 1045

ing process while maintaining effectiveness. All 1046

experiments are conducted on 1 L40 GPU. 1047

B.2 Comparison of Vision-Language Models 1048

To assess the capabilities of various small-scale 1049

vision-language models (sLVLMs) on long-horizon 1050

task planning, we evaluated six models on our Ex- 1051

tendaBench benchmark in VirtualHome, spanning 1052

ultra-short to long tasks. Table 6 presents the com- 1053

parative performance in terms of GCR and SR 1054

across different task horizons. The results indi- 1055

cate that while all models perform well on ultra- 1056

short tasks, performance drops sharply as task com- 1057

plexity increases, with SR reaching 0% on long 1058

tasks for most models. Among them, Qwen2.5- 1059

VL 7B achieves the highest average GCR and SR, 1060

demonstrating the best overall performance in long- 1061

horizon task planning. 1062
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Prepare a fruitful dinner by collecting the bananas, peach, bell pepper to the kitchen counter and put the dish bowl, chips 
on the table.

Figure 6: Generated task example in VirtualHome.

Table 6: Comparison of various small vision-language models on different sets of our ExtendaBench in VirtualHome.

Ultra-Short Short Medium Long Average

GCR SR GCR SR GCR SR GCR SR GCR SR

InternVL2 8B (Chen et al., 2024b) 39.56 11.67 20.31 0 13.88 0 16.56 0 22.58 2.92
Pixtral 12B (Agrawal et al., 2024) 53.62 28.33 28.25 0 19.34 0 19.00 0 30.05 7.08

Qwen2-VL 7B (Wang et al., 2024a) 57.54 28.33 39.27 5.77 28.26 0 26.50 0 37.89 8.53
Llama-3.2 11B (Dubey et al., 2024) 51.69 25.00 29.70 3.85 28.77 0 18.48 0 32.16 7.21
InternVL2.5 8B (Chen et al., 2024a) 55.71 28.33 30.03 0 16.61 0 21.55 0 30.98 7.08

Qwen2.5-VL 7B (Team, 2025) 57.32 35.00 42.72 9.62 30.57 3.33 27.47 0 39.52 11.99

C Prompts1063

C.1 Prompts for Generating Data1064

C.1.1 VirtualHome1065

1066

Task Proposal

Follow these steps to generate your answer:
1. Think about the task generation:
- Design a task with more than 30 sequential
steps.
- Use only actions from the “HUMAN AC-
TION LIST” and objects from the “OB-
JECT LIST.”
- Ensure the task involves at least 12 distinct
objects from the “OBJECT LIST.”
2. Provide a detailed task description:
- Output a comprehensive description of the
task.

1067

- Include all subtasks and the required ob-
jects.
3. Decompose the task step by step:
- Break the task into individual steps.
- After completing each step, analyze and
output what needs to be done next.
- Include reasoning for each subsequent step
before outputting it.
Important rules:
- You have only two hands. Each time you
grab an object, one hand becomes unavail-
able until you put the object back.
- Track the number of free hands after each
action. Ensure you have at least one free
hand before interacting with any object.
- Use only actions from the “HUMAN AC-
TION LIST” and objects from the “OB-
JECT LIST.”

1068
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Prepare salmon by baking in the stove, heat creamy buns in the microwave, then set bananas and a peach on the kitchen 
table; retrieve both dishes, set with cutlery, completing the meal arrangement on the kitchen table. 

Figure 7: Generated task example in VirtualHome.

- The task must maintain a strong sequential
relationship between its decomposed steps,
ensuring logical and coherent progression.

1069

Review

Follow these steps to verify the given task
and decomposed steps step by step.

- Think about whether the task description is
detailed enough to make it clear to a house-
hold agent what needs to be done, including
every objects in decomposed steps. Give
your reasons for this as well as your answer,

1070

if the answer is no, give a more detailed
description of the task.
- Think and output the reasons why each step
is necessary to complete the task.
- Think and output that each step is coherent
with a necessary back-and-forth relationship
between them.
- Think and output the reasons why the de-
composed steps accomplish the task.
- verify the actions in decomposed steps only
come from “HUMAN ACTION LIST.”
- verify the objects in decomposed steps
only come from “OBJECT LIST.” The inclu-
sion of any additional objects or locations is
strictly prohibited.

1071
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Please help me to transfer cup, book, bowl, strawberry, lego, banana from black table, black table and brown table to left 
counter and box , lemon from right drawer to sofa.

Figure 8: Generated task example in Habitat.

- Think and output the reasons why each step
make common sense.
- verify that each step is compliant with the
rule of [walk] object before interacting with
it.

If the verification passes, return true, other-
wise return false and then give your adjust-
ment.

1072

Refinement

This is the feedback and observation based
on your steps that have been executed:
[feedback]
<image>

Please perform the following steps based on
the feedback:

1073

1. Please think about and output the reason
why the steps failed to execute.
2. Based on the reasons why the steps failed,
think about and output the reasons why this
task is feasible given the rules, and output
yes or no.
3. if the task is feasible, output your modifi-
cations to the failed step.

1074

C.1.2 Habitat 1075

Template Proposal

You are a robot task generator that can
generate robot task templates of different
lengths based on given robot actions and
examples.

The actions you can use include:
1076
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Please help me to transfer cup, bowl, lego, book, cube, apple from right counter, brown table and black table to sofa 
and strawberry from right drawer to left counter.

Figure 9: Generated task example in Habitat.

1.nav(obj or receptacle) is used by the robot
to navigate to the corresponding object or
receptacle
2.pick(obj) is used by the robot to grab an
object
. . .

Rules:
1. You need to output five parts, including
instructions, task planning, replaceable ob-
jects and target states.
2. If the object or receptacle in the instruc-
tions and task planning can be replaced, use
p̀lus pronouns to replace it.

1077

Instruction Augmentation

You are a task instruction rewriter, and you
can rewrite and expand the robot’s task
instructions according to the given rewriting
rules.

Rules:
1. You can use the verbs of the task instruc-
tions Use synonyms to replace, for example,
change move to reposition.
2. You can replace the objects used in the
task instructions, replace the objects with
corresponding colors or appearance descrip-
tions, such as changing apple to a red round
Fruit.
3. Add some context descriptions, for
example, in “Please put an apple on the
table for me,” change it to “I want to eat an

1078
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apple, please put an apple on the table for
me” to make the instruction longer.

Now Please help me rewrite the following
instructions:

1079

D Limitation1080

While the our SPO demonstrates significant im-1081

provements in long-horizon task planning, our1082

work currently focuses on smaller versions of large1083

vision-language models. Although this enables1084

more efficient experimentation, it may limit the1085

generalizability of our findings to larger models.1086

Future research could extend SPO to larger-scale1087

models to explore its full potential.1088

E License1089

The dataset is published under CC BY-NCSA 4.01090

license, which means everyone can use this dataset1091

for non-commercial research purposes.1092
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