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Abstract. The success of modern deep learning hinges on vast
training data, much of which is scraped from the web and may
include copyrighted or private content—raising serious legal and
ethical concerns when used without authorization. Dataset prove-
nance seeks to identify whether a model has been trained on specific
data collections, thus protecting copyright holders while preserving
data utility. Existing techniques either watermark datasets to embed
distinctive behaviors, or directly infer usage from discrepancies in
model outputs between seen and unseen samples. These approaches
exploit the fundamental problem of empirical risk minimization to
overfit to seen features. Hence, provenance signals are considered
inherently hard to erase, while the adversary’s perspective remains
largely overlooked, limiting our ability to assess reliability in real-
world scenarios. In this work, we present a unified framework that in-
terprets both watermarking and inference-based provenance as man-
ifestations of output divergence, modeling the interaction between
auditor and adversary as a min-max game over such divergences.
This perspective motivates DivMin, a simple yet effective learning
strategy that minimizes the relevant divergence to suppress prove-
nance cues. Experiments across diverse image datasets demonstrate
that, starting from a pretrained vision-language model, DivMin re-
tains over 93% of the full fine-tuning performance gain relative to
a zero-shot baseline, while evading all six state-of-the-art auditing
methods. Our findings establish divergence minimization as a direct
and practical path to obfuscating provenance, offering a realistic sim-
ulation of potential adversary strategies to guide the development of
more robust auditing techniques. Code and Appendix will be avail-
able at https://github.com/GradOpt/DivMin.

1 Introduction

Modern deep learning is largely defined by a core paradigm: mas-
sive, overparameterized models first learn general representations
from web-scale data, before adaptation on curated datasets for spe-
cialized downstream tasks [25]. The relentless expansion of data has
consistently fueled paradigm shifts, from early breakthroughs like
the ImageNet visual recognition challenge [7] to recent advances in
cross-modal alignment exemplified by CLIP [40] and GPT-4 [2]. The
central role of data, empirically reinforced by scaling laws [21], un-
derscores its indisputable significance for the future progress of deep
learning and broader scientific discovery [15].

Yet beyond laboratory settings, real-world model development
raises pressing ethical and legal concerns over data transparency. Pro-
prietary datasets and personal information are vulnerable to leakage
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[46, 14], often ending up on illicit markets [49]. Such data fuels unau-
thorized model training, resulting in public scandals from privacy vi-
olations [45] to political manipulation [54].

Despite growing attention, preventing unauthorized training
remains fundamentally challenging. Privacy-Preserving Machine
Learning (PPML) [35] enables training on encrypted data to pre-
vent leakage but falls short when data must remain publicly accessi-
ble—e.g., open-source datasets restricted to academic usage or per-
sonal images shared online. Unlearnable Examples [18, 41] perturb
protected data to obstruct model learning, yet render it unusable for
any training, undermining legitimate use by authorized parties.

Since directly blocking unauthorized training is often infeasible, a
more practical solution lies in dataset provenance—enabling audi-
tors to detect whether a protected dataset was used in training a sus-
pect model via black-box queries and confidence responses. Dataset
watermarks embed subtle triggers into a small subset of protected
samples and detect misuse through behavioral shifts in suspicious
models—e.g., trigger-induced misclassification via backdoor water-
marks. Fingerprint inference, in contrast, preserves dataset integrity
and identifies trained models by analyzing output distributions, ap-
plying hypothesis tests to reveal nontrivial generalization gaps be-
tween protected and hold-out data from the same distribution.

Dataset provenance capitalizes on the fundamental flaw of mod-
els trained via empirical risk minimization (ERM): their propensity
to overfit, manifesting either as shortcut prediction on spurious fea-
tures (e.g., watermarks) or as a discernible generalization gap be-
tween seen and unseen inputs. Such underlying mechanisms have
fostered the belief that provenance is inherently robust, as unautho-
rized training invariably leaves identifiable traces.

Evaluations of this presumed robustness, however, are often su-
perficial. They typically rely on generic countermeasures: regular-
izations to reduce memorization; input perturbations to disrupt wa-
termark patterns; or standard backdoor defenses. Crucially, to our
knowledge, no systematic investigation has been explored from
the perspective of a dedicated adversary. The genuine resilience of
provenance against adaptive threats remains largely speculative, hin-
dering fair comparisons and further progress. This raises critical
questions: Can a sophisticated adversary nonetheless devise strate-
gies to neutralize provenance signals? And if so, what principles
should guide the design of more robust auditing techniques?

To investigate these questions, we establish that provenance sig-
nals, whether from watermarks or fingerprints, ultimately stem from
divergence in the model’s output distributions. Such divergence
arises either from learning watermark patterns—causing discrepan-
cies between clean and triggered inputs—or from overfitting, leading
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Figure 1.
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Top: the auditor—adversary min-max game over output divergence, instantiated with both watermarks and fingerprints. Bottom: our DivMin attack

minimizes this divergence to suppress provenance signals, with anchor-only contrastive learning and a backpropagation-free prototype classifier.

to distinct behaviors on seen versus unseen data. We thus conceptu-
alize the competition between auditor and adversary as a min-max
game over this divergence: the adversary minimizes it to suppress
provenance signals, while the auditor maximizes it to elicit informa-
tive evidence from the suspect model. This perspective furnishes a
principled framework to systematically analyze the auditor and ad-
versary strategies, moving beyond heuristic evaluations.

Building on this framework, we introduce the DivMin attack
to instantiate the adversary’s inner minimization strategy. DivMin
decouples the model into a feature encoder and a label mapping.
For the encoder, we design an Anchor-Only Contrastive Learning
(AoCL) objective that pulls together different views of the same
instance while pushing apart samples from different classes. Cru-
cially, AoCL’s meticulous design ensures non-paired, intra-class
samples exert no gradient, allowing the encoder to learn task-relevant
representations while suppressing sensitivity to subtle watermark
transformations. On top of this robust encoder, we construct a
backpropagation-free prototype classifier that performs stable classi-
fication under training sample variations, reducing output divergence
between seen and unseen data.

Starting from a vision-language model (e.g., CLIP) on diverse
downstream datasets, DivMin requires neither auxiliary data nor as-
sumptions about the provenance scheme. It evades a broad suite of
state-of-the-art (SOTA) watermarks and fingerprints while retaining
over 93% of the task performance gain from full fine-tuning over the
zero-shot baseline. DivMin thus provides a critical reference for ana-
lyzing adversary strategies and optimizing data provenance. Further-
more, as a preliminary study in Appendix C shows, solving the au-
ditor’s outer maximization yields an effective adaptive defense, cor-
roborating the practical significance of our min-max framework. Our
auditor-adversary game framework and the DivMin attack are illus-
trated in Figure 1, and main contributions are summarized as follows:

e We present the first systematic analysis of data provenance from
the adversary perspective, yielding key insights and crucial guid-

ance for improving provenance techniques.

We formulate the auditor-adversary competition as a min-max
game over output divergence, providing a principled framework
to understanding adversarial strategies.

We propose the DivMin attack, featuring Anchor-Only Con-
trastive Learning and a backpropagation-free prototype classifier,
to solve the inner adversary problem.

Extensive experiments show that DivMin achieves a remarkable
trade-oft between task performance and provenance signal sup-
pression; our preliminary adaptive defense further validates the
practical value of the min-max formulation.

2 Related Work
2.1 Data Provenance against Unauthorized Training

Inspired by digital watermarking used to protect multimedia content
from duplication, remixing, or exploitation [34], dataset watermarks
embed carefully crafted triggers into protected datasets to elicit iden-
tifiable behaviors in suspicious models, providing evidence of unau-
thorized training. The central challenge is to balance stealth against
data sanitization, performance degradation on authorized models,
and reliable identification of unauthorized ones. Early approaches
leveraged well-studied backdoors [28, 27], measuring induced mis-
classification rates as provenance signals. However, such artificial
shortcuts often impair authorized models, notably undermining ad-
versarial robustness [47, 59]. To mitigate such drawbacks, recent
work has introduced benign watermarks that avoid incorrect predic-
tions. They shift selected samples into hard-to-generalize domains
[12], specific color spaces [62], or apply constrained perturbations
[19, 3]. Provenance is then assessed via hypothesis testing whether
suspect models show elevated confidence on watermarked inputs.
Another line of research seeks to preserve dataset integrity by
avoiding any data modification, instead characterizing the behavioral
fingerprints of models trained on the protected dataset. Inspired by
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membership inference [44], these fingerprints estimate per-sample
membership by exploiting the model’s differential responses to seen
versus unseen data, then aggregate results across multiple queries to
statistically test for unauthorized training [33, 30]. Despite their non-
intrusive nature, fingerprints are often criticized for high false posi-
tive rates [29, 47, 48]. Beyond image classification, recent work has
explored scaling data provenance to domains such as large language
models [43], though these efforts remain preliminary and have yet to
yield reliable results under rigorous evaluation [8, 61].

2.2 Robustness Evaluation in Dataset Provenance

Despite rapid advances in dataset provenance, their robustness under
adversarial settings has received limited attention. These methods ex-
ploit fundamental limitations of ERM—overfitting to spurious corre-
lations [9] and memorizing seen data [SO]—and are often perceived
as inherently difficult to suppress [33, 53]. However, to the best of
our knowledge, no systematic study has been conducted on their ro-
bustness, leaving the reliability in real-world scenarios uncertain. Ex-
isting work has only heuristically adapted known techniques, falling
into three main categories: (1) regularizations such as label smooth-
ing [36] and differential privacy [1] to reduce overfitting [62, 30]; (2)
input perturbations such as Gaussian blur and adversarial training
[32] to obscure watermark features [62, 53]; and (3) classical back-
door defenses [27, 3] including fine-pruning [31] and data sanitiza-
tion [13]. Yet, most of these methods prove ineffective against SOTA
provenance techniques. Following the acceptance of this paper, con-
current work on adaptive attacks against dataset auditing emerged
[60, 42], which we discuss in Appendix D.

3 Preliminary Study
3.1 A Unified Perspective of Dataset Provenance

Consider a protected dataset D C X" and a suspicious model fo :
X — P(Y). The auditor A aims to determine, under black-box ac-
cess, whether fy was trained on D. To this end, A issues a set of
queries Q = {¢;}721 C X and collects the corresponding responses
E; = fo(q;). The aggregated evidence F = (FEn,..., Ey,) is then
used to infer a binary random variable Z € {0,1}, where Z = 1
indicates that fy was trained on D, and Z = 0 otherwise.

In dataset watermarking, the auditor A designs a transformation
function 7(z) (e.g., 7(z) = = + &, where 6 € X is a prede-
fined trigger), and applies it to a small subset of D. During verifica-
tion, A checks whether fo(7(z)) exhibits the intended behavior: for
instance, in backdoor watermarking, the Verification Success Rate
(VSR) serves as a proxy for the confidence in Z = 1. In dataset
fingerprinting, auditor A samples a hold-out set D’, drawn indepen-
dently from the same distribution as D but disjoint from it. A calibra-
tion model fy is trained on D’, and a one-sided t-test is performed to
assess whether fy yields higher confidence on D than fg. A statisti-
cally significant difference supports the hypothesis Z = 1.

Under the above setting, we introduce a unified perspective to
quantify the effectiveness of dataset provenance. Given a sample-
level divergence measure Div(- || -), e.g., the a-order f-divergence,
the informativeness of each query x is subject to:

S(x;7) = Div (fo(x) [l g(z; 7)) (1

where the reference distribution g(z; 7) is given by:

7(x)), for watermarks
gz m) = { F207@) ) @
fo(z), for fingerprints.

Intuitively, larger values of S(x; 7) indicate stronger evidence that
fo was trained on D. In this view, the information about the prove-
nance variable Z from evidence E is governed by S(z;7), with
the mutual information satisfying I(Z; E) « Ey~q [S(z;7)]. The
following proposition (proved in Appendix A.1) provides an upper
bound on this mutual information:

Proposition 1 (Upper Bound on Mutual Information). Let Z €
{0, 1} be a binary random variable with uniform prior. Assume that,
conditioned on Z = z, the responses (E1, . .., Ey,) are independent
with marginal distributions P, ;j, and the joint distribution factorizes
as P, = ®;n:1 P. ;. Then there exists a constant ¢ > 0 such that

(1(Z:E) < ¢8| with §=FEeq[S@n)]. O

To empirically validate the above analysis, Figure 2 illustrates how
increasing divergence correlates with stronger verification signals in
both watermarks and fingerprints. Figure 2(a) shows the divergence
Div(fo(x), fo(r(x))) and the corresponding VSR at epochs 5 and
30, during full fine-tuning on the DTD dataset embedded with Bad-
Nets watermark. As training progresses, the representations of x and
7(x) drift apart, resulting in a clear increase in divergence—and con-
sequently, a higher VSR. In Figure 2(b), fy is fine-tuned on the clean
DTD dataset. The divergence between losses on training and hold-
out samples steadily grows, while the p-value in fingerprint-based
inference decreases accordingly. Once again, the rising divergence
strengthens the evidence in favor of Z = 1.
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Figure 2. Divergence as the source of provenance signals.

3.2 The Min-Max Game over Output Divergence

Building upon the analysis, we formulate the competition between
the auditor and the adversary as a zero-sum game. The adver-
sary aims to suppress provenance signals by minimizing divergence,
while the auditor seeks to recover informative evidence by maximiz-
ing it. This interplay is captured by the following min-max objective:

maxmin Eq~q Div (f§ (@) [|¢°(xi7) @

where 1) denotes the adversary’s strategy for altering the model fo,
and ¢ denotes the auditor’s strategy for eliciting reliable evidence via
query design or reference modeling.

Prior work has focused on optimizing the auditor’s strategy ¢,
leaving the adversary’s side 1 largely underexplored. Analogous to
adversarial training, meaningful robustness against adaptive threats
can only emerge when both players are actively engaged, enabling
the system to approach a potential Nash equilibrium. In this work,
we take a first step toward this goal by introducing the DivMin at-
tack to solve the inner minimization problem, thereby providing a
solid starting point for modeling the adversary’s behavior.



996 H. Zhu et al. / Stealing Knowledge from Auditable Datasets

4 The DivMin Attack
4.1 Overview

Since the divergence S upper-bounds the provenance information
I(Z; E) available to the auditor, minimizing S(z; ) during train-
ing emerges as a natural strategy to suppress verification cues. How-
ever, such divergence reflects the fundamental limitation of empiri-
cal risk minimization (ERM) in statistical learning: models tend to
memorize spurious features [9]—including those injected by water-
marks—that serve as predictive shortcuts, leading to output discrep-
ancies between clean and trigger samples. Likewise, fingerprints ex-
ploit the well-known gap between memorization and generalization
[50, 55], wherein models consistently assign higher confidence to
training data than to unseen samples. Therefore, without deviating
from the ERM paradigm, simultaneously mitigating both watermark
and fingerprint signals has long been considered impractical [33, 53],
rendering data provenance ostensibly secure by design.

However, we propose a simple training framework, DivMin, that
effectively suppresses provenance signals without requiring addi-
tional clean data or prior knowledge of the auditing method. By ex-
plicitly minimizing divergence during training, DivMin reduces the
informativeness of queries and pushes the model into an ambigu-
ous regime for provenance inference. We decouple the model fy into
a feature encoder fenc and a linear projector f,,. To mitigate diver-
gence caused by spurious features (e.g., watermarks), we introduce
an anchor-only contrastive loss that encourages fenc to learn task-
relevant representations while minimizing Div(fs (), fo(7(z))). To
suppress divergence stemming from overfitting to training data, we
forgo gradient-based optimization of f,, and instead construct a pro-
totype classifier that maps features to labels by aggregating class-
wise centroids, thus limiting the influence of individual training sam-
ples and reducing Div(fp(x), fo(z)). We next elaborate on the de-
sign of these two components.

4.2 Anchor-Only Contrastive Learning

The objective of this part is to adapt the feature encoder fen. to
the target task by learning meaningful representations from domain-
specific inputs, while minimizing Div(fo(z), fo(7(z))) to suppress
watermarks. Although the specific auditing scheme is unknown, ef-
fective verification requires the watermark distribution P(7(X),Y)
to be sufficiently distinct or orthogonal to the task distribution
P(X,Y), ensuring trigger specificity and avoiding false positives.
As a result, watermark features are typically uninformative for the
primary task. This motivates a learning objective that discards task-
irrelevant signals while preserving only features essential for down-
stream performance. This principle naturally aligns with Contrastive
Predictive Coding (CPC) [38], which promotes semantic consistency
across different views of the same instance to retain task-relevant in-
formation while filtering out nuisance variation.

However, existing contrastive objectives based on the InfoNCE
framework [38] are not well suited for this purpose. In self-
supervised SimCLR [6], each input is augmented into two views
forming a positive pair, while all other samples in the batch serve as
negatives. This neglects label information, and hard negatives from
the same class hinder the model’s ability to learn discriminative, task-
relevant features. In contrast, the supervised SupCon [22] treats all
same-class pairs as positives and all different-class pairs as negatives.
While it leverages labels effectively, its learning dynamics resem-
ble those of cross-entropy, encouraging same-class representations
to collapse toward the vertices of a regular simplex [10], which can

lead to overfitting and memorization of poisoned labels introduced
by watermarks.

Building on the minimal design of InfoNCE-based contrastive
learning, we propose an Anchor-Only Contrastive Loss (AoCL) that
leverages label information to learn task-relevant representations
while suppressing provenance signals. Given a mini-batch of B sam-
ples, two independent random augmentations ¢ ~ 7T are applied to
each input, yielding 2B augmented views. Let: € Z = {1,...,2B}
index an arbitrary view, and let p(i) denote the index of the palred
view originating from the same input. The corresponding normal-
ized embedding is given by z; = fenc (£(:))/|| fenc (t(2:))|| € RP,
with class label y; € {1,...,C}. For each anchor i, AoCL selects
the paired view p(7) as the sole positive, treats all samples from dif-
ferent classes as negatives, and explicitly neglects other same-class
samples. Formally, we define: the positive set P(i) = {p(¢)}, the
ignored inner-class set Z(:) = {j # ¢ | y; = vi, j ¢ P(4)}, and the
negative set D(7) = Z \ ({¢} UZ(¢)). The Anchor-Only Contrastive
Loss is then defined as:

exp zz Zy(s) /7')

]eD( ) €XP (z ZJ/T)

(&)

LaocL = 5B Zl
where 7 > 0 is a temperature parameter.

Intuitively, minimizing LaocL encourages the encoder fene to be-
come invariant to random transformations ¢ ~ 7, reducing its sensi-
tivity to low-level input perturbations. In fact, optimizing Laocr, im-
plicitly maximizes the expected feature similarity between an input
and its transformed view:

Ee, 7 [foe(2) fen(0(2))] ©®)

which in turn reduces the output discrepancy between a clean sample
and its augmented counterpart. We provide a formal derivation of this
connection in Appendix A.2. This view-consistency objective plays a
critical role in suppressing watermark signals. Since watermark trig-
gers are designed to evade both human scrutiny and automated sani-
tization, the trigger function 7(z) typically introduces imperceptible
modifications to the input. Such subtle patterns are inherently brit-
tle and can be disrupted by standard data transformations [58]. Thus,
maximizing the invariance of fenc under stochastic augmentations ef-
fectively reduces the divergence Div(fy(x), fo(7(x))), without re-
quiring any prior knowledge of the watermark generation process.

In practice, we instantiate the transformation pool 7 via Triv-
ialAugment [37], which applies a diverse set of randomized oper-
ations, including spatial warping, color shifts, geometric distortion,
and additive noise. Empirically, we observe this strategy consistently
reduces the divergence signal available for watermark verification.

Another nice property of AoCL lies in its treatment of label in-
formation. By exclusively using samples from different classes as
negatives, AoCL avoids pushing apart inner-class representations
when watermarked samples constitute a small portion of the dataset.
Moreover, for each anchor 4, all inner-class views except the paired
positive (i.e., elements in Z(z)) are explicitly neglected and con-
tribute zero gradient to the loss. This conservative contrastive sig-
nal prevents the encoder from over-collapsing inner-class represen-
tations, which could otherwise lead to overfitting or unintended
memorization of watermark artifacts as class-specific features. As
demonstrated in Section 5, AoCL strikes a favorable balance be-
tween learning discriminative, task-relevant features and suppress-
ing provenance signals, consistently outperforming widely used con-
trastive losses such as SimCLR and SupCon.
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4.3 Backpropagation-Free Prototype Classifier

Once the encoder fene has been trained with AoCL to extract task-
relevant representations, a mapping function is required to perform
classification on top of these features. However, training a classi-
fier via ERM with gradient-based optimization is inherently prone
to overfitting [50, 57], often resulting in substantial output discrep-
ancies between seen and unseen samples [44], which can leak prove-
nance information to inference-based auditing methods. To mitigate
this, we introduce a simple yet effective prototype classifier that re-
quires only a single forward pass and avoids any gradient-based pa-
rameter updates. This classifier leverages feature centroids to map
inputs to class labels, limiting the influence of individual training
samples and reducing generalization gaps.

Formally, given an auditing dataset {(x;,y:)}r, with y; €
{1,...,C}, and a feature extractor fen trained via AoCL, the class
prototype pt,. for each class c is computed by averaging the normal-
ized feature vectors of all training samples in that class:

1
2i = foe(2i), e =5 D % (7)

iy, =c

where N, denotes the number of samples in class c.

For any test input z, we compute its cosine similarity to each class
prototype and assign it to the most similar one. This is equivalent to
selecting the prototype with the least cosine distance:

~ . AT A
—ar min d. = ar max 2z , 8
y ch{l ..... C} gce{l ..... cy Be ®)
where d. = 1 — 2 i, and 2, j1_ denote the £2-normalized test

feature and class prototype, respectively.

The prototype classifier is functionally equivalent to a linear map-
ping: the prediction score for class ¢ is computed as f(z). = w. z,
where the weight w. is given by the centroid of training features in
class c, rather than learned via backpropagation. This non-parametric
construction inherently limits the influence of any individual sam-
ples, improving the model’s uniform stability [24, 4]. The following
result formalizes this effect (see Appendix A.3 for proof):

Proposition 2 (Output Stability of Prototype Classifier). Let the
training set consist of normalized features D = {(z:, y:)} 1, where
l|zi|| < landy; € {1,...,C}. Foreach class c, let p_ be the pro-
totype with norm Ac = ||\ || > 0, and let 1, = p./Xc be its
normalized direction. For any normalized test input z, if D’ differs
from D by a single sample in class c*, then the output variation is
bounded by

T~ T - 4
A(z) = |2 froe =2 i | < ©)

This bound reveals that the output sensitivity to any single train-
ing point decays inversely with class size. As a result, the mem-
bership advantage [55] exploited by inference-based auditors van-
ishes as N+ grows, reducing the divergence Div(fo(z), fo(x)) and
weakening the strength of provenance signals.

Note that Proposition 2 implicitly assumes that the normalized
training and test features z are independently and identically dis-
tributed. While this assumption may be violated—since the fenc used
to compute prototypes is trained on the same data—Section 5.3 and
5.4.1 shows that AoCL avoids strong same-class attraction, yield-
ing a well-structured feature space that supports stable classification
without overfitting to spurious patterns.

Despite its simplicity, our vanilla DivMin already strikes a fa-
vorable balance between task performance and provenance suppres-
sion. Building on this foundation, DivMin admits various exten-
sions—e.g., learnable perturbations in AoCL to capture watermark
patterns [23], or noise injection in prototypes to satisfy notions like
differential privacy [52]. We leave these directions to future work.

5 Experiments
5.1 Experimental Settings

Datasets and Models. We evaluate DivMin on four high-
resolution, fine-grained image classification datasets: Caltech-101
(101 natural object classes), DTD (47 texture classes), EuroSAT (10
land cover classes), and FGVCAircraft (100 aircraft classes). While
Caltech-101 represents generic natural image tasks, the latter three
are domain-specific datasets that require dedicated data collection
and annotation, closely reflecting real-world model development sce-
narios. Our primary experiments begin with a lightweight CLIP [51],
with its zero-shot classification performance as the baseline, enabling
a clear evaluation of how DivMin extracts knowledge from protected
datasets while evading detection. In Section 5.4.4, we further evalu-
ate the image-only self-supervised DINOv2 [39].

Data Provenance Methods. We benchmark DivMin against SOTA
methods from three major categories of dataset provenance: Back-
door watermarks, including the seminal BadNets [11], and stealth-
ier UBW [27] with dynamic target classes; Benign watermarks, in-
cluding MLAuditor [19] and Data Taggants [3], offering superior
stealth, minimal interference, and robustness; Fingerprint inference,
including Dataset Inference [33] and MeFA [30], which aggregate
per-sample membership estimates for set-level hypothesis testing.
For backdoor watermarks, we report the Verification Success Rate
(VSR)—the misclassification rate on trigger-injected test samples.
A higher VSR indicates stronger evidence of unauthorized training,
with VSR > 20% typically used as the detection threshold. For be-
nign watermarks and fingerprint inference, we use the p-value from
hypothesis testing, with p < 0.01 indicating strong rejection of the
null hypothesis that no unauthorized use has occurred.

Attack Baselines. Since DivMin builds upon a pretrained vision-
language model, we first assess whether standard parameter-efficient
fine-tuning (PEFT) can sufficiently learn task-specific knowledge
without triggering detection. These include classic techniques such
as linear probing, fully-connected (MLP) probing [39], LoRA adap-
tation [17], and the SOTA visual prompting LoR-VP [20]. We then
consider robustness evaluation techniques commonly employed in
provenance literature, categorized into three groups: Regularization,
including /5 regularizers, label smoothing, and a SOTA implementa-
tion of DP-SGD [5]; Input perturbations, such as Gaussian blur and
adversarial training; SOTA Backdoor defenses, including IBD-PSC
[16], which filters trigger samples at inference time, and AIBD [56],
which sanitizes the training data.

5.2 Evading SOTA Provenance Techniques

Table 1 presents evaluations of a pretrained CLIP model under three
settings—zero-shot classification, full finetuning (FF), and our pro-
posed DivMin—across four datasets and against all SOTA prove-
nance methods. Zero-shot classification, which does not adapt to any
protected data, is never flagged by provenance method. However,
it relies solely on pretrained knowledge, leading to suboptimal per-
formance, especially on domain-specific datasets like EuroSAT and
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Table 1. Performance of Zero-Shot, Full Finetuning (FF), and DivMin across datasets. Red indicates detection, while green highlights successful evasion.
Dataset Method ‘ Badnets UBW MLAuditor Data Taggants Dataset Inference MeFA

| Acc ) VSR (}) ACC (1) VSR (}) ACC(1) p-value(t) ACC(1) p-value(t) ACC() p-value(?) ACC(1)  p-value (1)
Zero-Shot 91.30 0.00 91.30 1.07 91.30 4.67E-01 91.30 8.62E-01 91.30 6.14E-01 91.30 1.00E+00
Caltech101 FF 95.97+0.56  97.03+1.22  96.37+0.78  98.03x1.28 95.51£1.02  1.32E-03  95.79+0.58  3.22E-08  94.76x0.53  2.44E-04  94.76%0.53  4.23E-04
DivMin | 9631+038  0.06:0.03 9574035  0.73:0.11 9631056  6.99E-01  96.03:026  6.70E-01  96.37#0.19  3.38E-01  96.37+0.19  1.00E+00
Zero-Shot 54.84 3.42 54.84 3.79 54.84 5.25E-01 54.84 7.02E-01 54.84 4.51E-01 54.84 1.00E+00
DTD FF 66.17+1.45  99.95:0.00  66.60£1.93  71.96x5.44 70.96:0.90  130E-05  71.010.33  425E-08  72.610.78  3.31E-08  72.6120.78  9.0SE-08
DivMin 69.47+0.13 3.97+0.08 71.06+£0.40  2.77+0.53 70.90+0.28 5.23E-01 71.86+0.28 4.83E-01 71.38+0.15 2.32E-01 71.38+0.25 9.72E-01
Zero-Shot 4522 0.10 4522 11.81 4522 1.00E+00 4522 8.23E-01 4522 3.53E-01 4522 1.00E+00
EuroSAT FF 98.85£0.45  100.00£0.00  98.50:0.36  99.98:0.00 98.83:0.78  3.70E-03  98.85:0.45  947E-03  98.76x0.71  L.OIE-03  98.76£0.71  225E-03
DivMin | 95.69+0.48  4.97:0.35  9530£0.22  4.57:0.15 9535049  949E-01  96.96£0.29  324E-01  95.65:045  228E-0l  95.65:045  9.56E-01
Zero-Shot 21.09 1.06 21.09 8.43 21.09 8.47E-01 21.09 9.98E-01 21.09 6.62E-01 21.09 1.00E+00
FGVCAireraft FF 43.80£3.59  100.00£0.00 43.29+5.53  99.03x0.04 46.47+5.83  122E-11  43.92%¢4.67  5.63E-08  46.08+3.89  4.17E08  46.08+3.89  1.76E-03
DivMin | 3636+1.13  597+0.11  3573x129  6.88:0.04 36.27+1.41  7.28E-01 3591146  237B-01  36.87#0.71  446E-01  36.87+0.71  1.00E+00

FGVCAircraft. As such, it serves as an evasion oracle—guaranteed
to evade detection, but offering a lower bound on task performance.
In contrast, full finetuning significantly boosts accuracy by exploit-
ing rich task-specific information from the protected data. Yet, it is
consistently detected by all provenance methods, due to the vanilla
ERM’s tendency to learn shortcut features and memorize training
data. This setting thus serves as a fask oracle—achieving maximal
task performance at the cost of complete visibility to auditing.

Remarkably, DivMin achieves a favorable trade-off between util-
ity and stealth, despite also updating all model parameters. Across all
datasets, it substantially outperforms the zero-shot baseline—nearly
doubling accuracy on domain-specific datasets like EuroSAT and
FGVCAircraft—while remaining undetected. On average, DivMin
recovers over 93% of the accuracy gain achieved by full finetun-
ing relative to zero-shot. Its anchor-only contrastive learning and
backpropagation-free prototype classifier effectively suppress the di-
vergence signals exploited by watermarks and fingerprints. As a
result, DivMin consistently evades detection, often yielding verifi-
cation scores close to those of zero-shot and well below decision
thresholds. These results demonstrate that DivMin can successfully
extract downstream knowledge from protected datasets without be-
ing flagged, providing strong empirical evidence for divergence min-
imization as a viable and versatile adversarial strategy.
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Figure 3. Relative performance gains (1) and provenance confidence ({.)

of different design choices in DivMin.

5.3 Comparison with Baseline Attacks

Table 2 compares DivMin with existing attack strategies on DTD,
evaluating both task accuracy and provenance suppression. PEFT
methods are less prone to fingerprint inference due to reduced overfit-
ting. However, they consistently fall into shortcuts introduced by wa-
termark patterns, such as BadNets and Data Taggants. Notably, LoR-
VP introduces learnable visual prompts in the input space, which
partially disrupt watermarks but fails to achieve complete evasion.

Moreover, due to limited parameter updates, PEFT methods also un-
derperform DivMin in task accuracy.

Regularizations such as /> regularizer, label smoothing, and DP-
SGD can weaken provenance signals but never fully suppress any
watermark or fingerprint. Input perturbations like Gaussian blur and
adversarial training occasionally affect invisible watermarks, yet
are ineffective against poison-label backdoors and fingerprints. Ad-
vanced backdoor defenses scale poorly to vision-language models.
They cannot reliably eliminate shortcuts and are entirely ineffective
against methods do not induce misclassification. In contrast, DivMin
yields nontrivial success by explicitly minimizing output divergence,
providing a principled attack strategy.
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Class 8 = Backdoor
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100

-100
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Figure 4. Features from BadNets models. Clean and trigger samples are
connected by dashed lines. Output JS Div: 0.174 (FF), 0.069 (DivMin).

5.4 Ablations and Discussions
5.4.1 Contribution of Components in DivMin

We analyze the individual contributions of anchor-only contrastive
learning (AoCL) and the prototype classifier, focusing on both task
performance and provenance signal suppression. We also compare
AoCL with other contrastive learning objectives, including the self-
supervised SimCLR and the supervised SupCon, as shown in Fig-
ure 3, with detailed results in Appendix B. The prototype classi-
fier alone incurs minimal detection by dataset provenance but of-
fers limited accuracy gains over the zero-shot baseline. AoCL fur-
ther improves task performance—approaching that of full finetun-
ing—while inducing negligible risk of detection.

Compared to AoCL, SimCLR yields significantly lower perfor-
mance gains; for instance, AoCL achieves nearly 10% higher abso-
Iute accuracy on EuroSAT. SupCon, by contrast, overfits to backdoor
shortcuts and is susceptible to fingerprints. These results highlight
the effectiveness of our tailored AoCL and prototype classifier, which
together strike a favorable balance between learning task-relevant
features and reducing divergence. In contrast, standard contrastive
losses fail to replicate AoCL’s role within the DivMin attack.
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Table 2. Comparison of DivMin with baseline attacks on the DTD dataset. Bold marks the best result, and underline indicates the second best.
Method ‘ Badnets UBW MLAuditor Data Taggants Dataset Inference MeFA
| Acco VSR (1) ACC (1) VSR(}) ACC (1) p-value(t) ACC(1) p-value(t) ACC() p-value(t) ACC(1)  p-value ()
Linear Prob | 66.4124.24  41.58+1.83  68.62#3.76  3.85+043  6857+0.25  4.13E-01  68.66£0.40  7.29E-04  68.78%1.81  2.85E-02  68.78+1.81  4.60E-0l
FC Prob 67713271 60.16£1.93  69.73:x1.91 484030  69.2041.28  448E-01  69.31+1.03  1.81E-04  69.15£0.90  1.08E-02  69.15£0.90  2.42E-01
LoRA 68.72+1.76  99.41+0.18  70.05+0.93  50.06+5.87  69.57+1.13  3.03E-04  71.12+140  8.00E-06  69.26x1.78  142E-03  69.26x1.78  1.36E-01
LOR-VP 66.81x4.69  31.70+2.73  71.06%2.23  3.67:0.73  69.41x1.33  1.83E-01  69.36+2.08  7.29E-04  70.37#0.43  2.52E-02  70.37#0.43  3.09E-01
L2 Reg 67.29+1.91 98.56+0.33 66.91+2.83 67.33+3.89 68.72+2.83 2.19E-03 69.41%1.18 2.00E-06 70.27£1.65 1.93E-04 70.27+1.65 2.35E-06
LS 66.70+3.91 96.52+0.93 69.79+0.93 64.48+3.74 69.95+1.93 1.74E-05 70.53+1.50 4.07E-05 72.93+1.91 2.41E-06 72.93+1.91 3.07E-11
Gauss Blur 63.72+5.42 86.68+1.86 62.13+0.23 45.38+8.43 65.80+0.95 9.43E-03 64.31%1.15 4.07E-05 65.42+1.93 9.41E-08 65.41£1.93 6.29E-06
AT 58.19+£6.34  100.00+£0.00  56.44£7.30 59.47+12.41  58.46+6.39 3.09E-01 59.15+7.47 1.81E-04 58.30+4.44 6.76E-06 58.30+4.44 1.05E-02
DP-SGD 65.11£5.84  100.00£0.00  65.85+3.91  72.62+133  68.72+1.86  2.89E-03  69.84%1.91  2.00E-06  68.24+0.88  1.49E-06  6824+0.88  4.37E-04
IBD-PSC 59.10+2.86  16.49+4.31  56.17#238  36.36+2.31  54.68+1.91  2.60E-05  54.14#2.46  629E-08  56.97+1.40  6.95E-06  56.97x1.40  8.34E-07
AIBD 66.06£3.39  31.65+2.78  64.79+1.91  2225+328  64.89+2.86  240E-05  6527#4.39  8.00E-06  6229+2.16  3.66E-04  6229+2.16  1.61E-05
DivMin (Ours) | 69.47+0.13  3.97+0.08  71.0620.40  2.77+0.53  70.90£0.28  5.23E-01  71.86+0.28  4.83E-01  71.38+0.15  232E-01  71.38+0.25  9.72E-01
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Figure 5. Dynamics of confidence (train/test) and divergence during
training of Full Finetuning and DivMin.

5.4.2 Divergence as the Source of Provenance Signals

Motivated by the min-max game over divergence, we examine
whether DivMin’s evasion capability arises from minimizing diver-
gence. We visualize the feature spaces of models trained with full
finetuning and DivMin on EuroSAT with BadNets watermarks. As
shown in Figure 4, the fully finetuned model exhibits substantial fea-
ture shifts when test samples are modified with triggers, indicating
high sensitivity to the watermark. In contrast, DivMin shows mini-
mal changes between clean and triggered inputs. This suggests that
minimizing Div(fo(z), fo(7(x))) effectively suppresses watermark-
based provenance signals. We further track divergence between seen
and unseen samples during training. For full finetuning, divergence
steadily increases, providing strong fingerprint signals. In contrast,
DivMin maintains low and stable divergence, indicating its ability to
disrupt fingerprint inference by minimizing Div( fo(z), fz()).

5.4.3 Adaptive Defense against DivMin

Given the theoretical link between AoCL and the InfoNCE frame-
work, we investigate whether CTRL (ICCV 2023) [26], a SOTA
backdoor on contrastive learning, can serve as an adaptive defense.
CTRL introduces a frequency trigger intended to be robust to data
augmentation, encouraging contrastive loss to cluster trigger sam-
ples in feature space. However, CTRL proves inconsistent on high-
resolution images and pretrained CLIP models. On the relatively vul-
nerable EuroSAT, CTRL achieves a 58.48% VSR against SimCLR,
but only 4.7% against DivMin. We attribute this to AoCL’s selective
use of negatives, which avoids forcing the model to compress all dis-
criminative features of a single image. While CTRL seeks watermark
features resilient under divergence minimization, this strategy does
not generalize well. In Appendix C, we adopt the auditor’s perspec-
tive and explicitly solve the outer maximization problem, demon-
strating a promising direction to optimize dataset provenance.

fully evading detection, as shown in Table 3.

Table 3. Full Finetuning vs. DivMin on DTD with DINOv2 backbone.

Method Full Finetuning DivMin
Badnets ACC 74.15¢1.86  72.98+0.35
VSR 100.00+0.00 1.20+0.18
ACC 72.87£1.35 73.30+0.40
UBW VSR 58.03+1.88 2.71+0.20
) ACC 76.28+2.31 72.98+0.90
MLAuditor . Coj0e 1.64E-04 9.44E-01
Tagoants ACC 75.27+2.41 73.140.85
88 p-value 5.90E-11 6.95E-01
I ACC 76.60+1.91 73.88+0.43
p-value 2.49E-07 1.46E-01
ACC 76.60+1.91 73.88+0.43
MeFA p-value 1.27E-16 3.82E-01

6 Conclusion

In this work, we present a systematic robustness evaluation of dataset
provenance from the adversary perspective. We show that prove-
nance signals exploited by both watermarks and fingerprints funda-
mentally arise from divergences in model outputs, and establish the
auditor-adversary competition as a min-max game over divergence.
Building upon this framework, we propose DivMin, an attack with
anchor-only contrastive learning and a prototype classifier, which
achieves favorable trade-off between task utility and provenance eva-
sion, providing a principled reference to improve auditing.
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