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ABSTRACT

Training deep object detectors requires large amounts of human-annotated images
with accurate object labels and bounding box coordinates, which are extremely
expensive to acquire. Noisy annotations are much more easily accessible, but they
could be detrimental for learning. We address the challenging problem of train-
ing object detectors with noisy annotations, where the noise contains a mixture
of label noise and bounding box noise. We propose a learning framework which
jointly optimizes object labels, bounding box coordinates, and model parameters
by performing alternating noise correction and model training. To disentangle la-
bel noise and bounding box noise, we propose a two-step noise correction method.
The first step performs class-agnostic bounding box correction, and the second
step performs label correction and class-specific bounding box refinement. We
conduct experiments on PASCAL VOC and MS-COCO dataset with both syn-
thetic noise and machine-generated noise. Our method achieves state-of-the-art
performance by effectively cleaning both label noise and bounding box noise 1.

1 INTRODUCTION

The remarkable success of modern object detectors largely relies on large-scale datasets with exten-
sive bounding box annotations. However, it is extremely expensive and time-consuming to acquire
high-quality human annotations. For example, annotating each bounding box in ILSVRC requires
42s on Mechanical Turk (Su et al., 2012), whereas the recent OpenImagesV4 Kuznetsova et al.
(2018) reports 7.4 seconds with extreme clicking (Papadopoulos et al., 2017b). On the other hand,
there are ways to acquire annotations at lower costs, such as limiting the annotation time, reducing
the number of annotators, or using machine-generated annotations. However, these methods would
yield annotations with both label noise (i.e. wrong classes) and bounding box noise (i.e. inaccurate
locations), which could be detrimental for learning.

Learning with label noise has been an active area of research. Some methods perform label correc-
tion using the predictions from the model and modify the loss accordingly (Reed et al., 2015; Tanaka
et al., 2018). Other methods treat samples with small loss as those with clean labels, and only allow
clean samples to contribute to the loss (Jiang et al., 2018b; Han et al., 2018). However, most of those
methods focus on the image classification task where the existence of an object is guaranteed.

Several recent works have studied object detection with noisy annotations. Zhang et al. (2019)
focus on the weakly-supervised (WS) setting where only image-level labels are available, and find
reliable bounding box instances as those with low classification loss. Gao et al. (2019) study a semi-
supervised (SS) setting where the training data contains a small amount of fully-labeled bounding
boxes and a large amount of image-level labels, and propose to distill knowledge from a detector
pretrained on clean annotations. However, these methods require access to some clean annotations.

In this work, we address a more challenging and practical problem, where the annotation contains
an unknown mixture of label noise and bounding box noise. Furthermore, we do not assume access
to any clean annotations. The entanglement of label noise and bounding box noise increases the
difficulty to perform noise correction. A commonly used noise indicator, namely the classification
loss, is incapable to distinguish label noise from bounding box noise. Furthermore, it is problematic
to correct noise directly using the model predictions, because label correction requires accurate

1Code will be released.
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Figure 1: Our Class-Agnostic Bounding Box Correction (CA-BBC) disentangles bounding box (bbox) noise
from label noise, by directly optimizing the noisy bbox coordinates regardless of its class label. We use two
diverged classifiers to predict the same image region, and update the bbox b to b⇤ by minimizing classifier
discrepancy and maximizing region objectness. Boxes with very low objectness are rejected as false positives.

bounding box coordinates to crop the object, whereas bounding box correction requires accurate
class labels to produce the regression offset.

To overcome these difficulties, we propose a two-step noise correction procedure. In the first step,
we perform class-agnostic bounding box correction (CA-BBC), which seeks to decouple bounding
box noise from label noise, and optimize the noisy ground-truth (GT) bounding box regardless of its
class label. An illustration of CA-BBC is shown in Figure 1. It is based on the following intuition:
if a bounding box tightly covers an object, then two diverged classifiers would agree with each
other and produce the same prediction. Furthermore, both classifiers would have low scores for the
background class, i.e., high objectness scores. Therefore, we directly regress the noisy GT bounding
box to minimize both classifier discrepancy and background scores. CA-BBC also has the option to
reject a bounding box as false positive if the objectness score is too low.

In the second step, we leverage the model’s output for label noise correction and class-specific
bounding box refinement. It has been shown that co-training two models can filter different types of
noise and help each other learn (Blum & Mitchell, 1998; Han et al., 2018; Yu et al., 2019; Chadwick
& Newman, 2019). Therefore, we distil knowledge from the ensemble of dual detection heads for
noise correction, by generating soft labels and bounding box offsets. We show that soft labels with
well-adjusted temperature lead to better performance even for a clean dataset.

To summarize, this paper proposes a noise-resistant learning framework to train object detectors
with noisy annotations. The proposed framework jointly optimizes object labels, bounding box co-
ordinates, and model parameters by performing alternating noise correction and model training. We
conduct experiments on two benchmarks: PASCAL VOC and MS-COCO, which contain different
levels of synthetic noise as well as machine-generated noise. The proposed method outperforms
previous methods by a large margin. We also provide qualitative results to demonstrate the efficacy
of the two-step noise correction, and ablation studies to examine the effect of each component.

2 RELATED WORK

2.1 CROWDSOURCING FOR OBJECT DETECTION

Crowdsourcing platforms such as Amazon Mechanical Turk (AMT) have enabled the collection
of large-scale datasets. Due to the formidable cost of human annotation, many efforts have been
devoted to reduce the annotation cost. However, even an efficient protocol still report 42.4s to
annotate one object in an image (Su et al., 2012). Other methods have been proposed which trade off
annotation quality for lower cost, by using click supervision (Papadopoulos et al., 2017a), human-in-
the-loop labeling (Russakovsky et al., 2015; Papadopoulos et al., 2016; Konyushkova et al., 2018), or
exploiting eye-tracking data (Papadopoulos et al., 2014). These methods focus on reducing human
effort, rather than combating the annotation noise as our method does.
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2.2 LEARNING WITH LABEL NOISE

Deep Neural Networks (DNNs) can easily overfit to noisy labels in the training data, leading to poor
generalization performance (Zhang et al., 2017). Many works have addressed learning with label
noise. Some approaches correct noise by relabeling the noisy samples (Vahdat, 2017; Veit et al.,
2017; Lee et al., 2018), but they rely on a small set of clean samples for noise correction. Iterative
relabeling methods (Tanaka et al., 2018; Yi & Wu, 2019) have been proposed which produce hard
or soft labels using the model predictions. Other approaches filter noise by reweighting or selecting
training samples (Jiang et al., 2018b; Ren et al., 2018; Chen et al., 2019b; Arazo et al., 2019; Li et al.,
2020). Since DNNs learn clean samples faster than noisy ones, samples with smaller classification
loss are usually considered to be clean (Arpit et al., 2017). To avoid error accumulation during the
noise correction process, co-teaching (Han et al., 2018) trains two networks simultaneously, where
each network selects small-loss samples to train the other. Co-teaching+ (Yu et al., 2019) further
keeps the two networks diverged by training on disagreement data.

2.3 WEAKLY-SUPERVISED AND SEMI-SUPERVISED OBJECT DETECTION

Weakly-supervised object detection aims to learn object detectors with only image-level labels. Most
existing works formulate it as a multiple instance learning (MIL) task (Dietterich et al., 1997),
where each label is assigned to a bag of object proposals. A common pipeline is to iteratively
alternate between mining object instances using a detector and training the detector using the mined
instances (Deselaers et al., 2010; Cinbis et al., 2017). To address the localization noise in the object
proposals, Zhang et al. (2019) propose an adaptive sampling method which finds reliable instances
as those with high classification scores, and use the reliable instances to impose a similarity loss
on noisy images. Different from weakly-supervised object detection which assumes that the correct
object label is given, our method deals with label noise and bounding box noise at the same time.

Semi-supervised methods train object detectors using training data with bounding box annotations
for some images and only image-level labels for other images (Hoffman et al., 2014; Tang et al.,
2016; Uijlings et al., 2018; Gao et al., 2019). Gao et al. (2019) propose an iterative training-mining
framework consisting of detector initialization, box mining, and detector retraining. To address
the annotation noise of the mined boxes, they use a detector pretrained on clean annotations for
knowledge distillation. Different from all semi-supervised learning methods, our method does not
need access to any clean annotations.

3 METHOD

3.1 OVERVIEW

Given a training dataset with images X , noisy object labels Y , and noisy bounding boxes B, our
method aims to train an object detector parameterized by ⇥, by jointly optimizing Y , B and ⇥.
We first warm-up ⇥ where we train the detector in a standard manner using the original noisy
annotations. After the warm-up, we perform alternating optimization on the annotations and the
model. Specifically, for each mini-batch of data X = {xi}, Y = {yi}, B = {bi}, we first keep
⇥ fixed and perform noise correction to update Y and B, then we used the corrected annotations to
update ⇥. An overview of the algorithm is shown in Algorithm 1.

We use a popular two-stage object detector (i.e. Faster-RCNN (Ren et al., 2015)), which consists of
a backbone feature extractor parameterized by ✓cnn, a Region Proposal Network (RPN) ✓rpn, a clas-
sification head ✓c, and a bounding box (bbox) regression head ✓b. Note that ✓c and ✓b have shared
layers. Let detection head with parameters ✓d denote the union of the classification head and the
bbox regression head. During training, we simultaneously train two detection heads ✓1d = {✓1c , ✓1b}
and ✓2d = {✓2c , ✓2b}, which are kept diverged from each other by different (random) parameter initial-
izations and different (random) training instance (i.e. RoI) sampling.

Due to the entanglement of an unknown mixture of label noise and bbox noise, it is difficult to correct
both types of noise in a single step. Therefore, we propose a two-step noise correction method. In
the first step, we perform class-agnostic bounding box correction (CA-BBC), which disentangles
bbox noise from label noise. In the second step, we utilize the outputs from dual detection heads
for label noise correction and class-specific bbox refinement. Figure 2 shows an illustration of our
framework. Next we delineate the details.
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Figure 2: The proposed framework alternately performs noise correction (with fixed model parameters) and
model training (with corrected annotations) for each mini-batch. The noise correction procedure consists of
two steps: (1) the class-agnostic bounding box correction (Figure 1) disentangles bbox noise and label noise;
(2) the class-specific correction step uses dual detection heads to generate soft labels for label correction and
refine bounding boxes using class-specific bbox offsets. The two detection heads are kept diverged by different
random parameter initialization and different random RoI sampling during training.

Algorithm 1: alternating two-step noise correction and model training.
1 Input: model ⇥ = {✓cnn, ✓rpn, ✓1d, ✓2d}, noisy training dataset (X ,Y,B).
2 while not MaxIters do
3 Mini-batch X = {xi}, Y = {yi}, B = {bi}.
4 for b in B do
5 Update b ! b⇤ with CA-BBC (Eq. 2 & 3).
6 end
7 for (y, b⇤) in (Y,B⇤) do
8 Update y ! y⇤ with dual-head soft label correction (Eq. 4 & 5).
9 Update b⇤ ! b⇤⇤ with class-specific bbox refinement (Eq. 6).

10 end
11 Update ⇥ by SGD on Lrpn(B⇤⇤), L1+2

cls (Y ⇤), L1+2
loc (B⇤⇤, Y ⇤).

12 end

3.2 CLASS-AGNOSTIC BOUNDING BOX CORRECTION

We first correct bounding box noise by updating B ! B⇤ regardless of the label noise in Y . As
illustrated in Figure 1, CA-BBC uses two diverged classification heads to produce two sets of class
predictions on the same image region, and updates the bounding box to minimize classifier discrep-
ancy and maximize region objectness. The intuition is: if a bounding box tightly covers an object,
then two classifiers would agree with each other and produce the same predictions. Moreover, both
predictions would have low scores on the background class.

Specifically, given an image x 2 X , the backbone first extracts a convolutional feature map. For
each noisy GT bounding box b 2 B, we perform a RoI-Pooling operation on the feature map to
extract a fixed-sized feature �(x, b). Then we give the RoI feature to the two classification heads
to produce two sets of softmax predictions over C + 1 classes (including the background class),
p1(�(x, b); ✓1c ) and p2(�(x, b); ✓2c ). For simplicity we denote them as p1 and p2. The discrepancy
between the two predictions is defined as their L2 distance:

D(p1, p2) = kp1 � p2k22 . (1)
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Minimizing the classifier discrepancy w.r.t the bounding box will push it to a region where the two
classifiers agree on its class label. To prevent the bounding box from simply moving to a background
region, we also minimize the classifiers’ scores on the background class, pbg1 and pbg2 . In other words,
we want to maximize the objectness of the region covered by the bounding box.

Therefore, we aim to find the optimal b⇤ that minimizes the following objective function:

L(b) = D(p1, p2) + �(pbg1 + pbg2 ), (2)

where � controls the balance of the two terms and is set to 0.1 in our experiments.

For faster speed, we estimate b⇤ by performing a single step of gradient descent to update b:

b⇤ = b� ↵
@L(b)
@b

, (3)

where ↵ is the step size.

Since RoI-Pooling (Ren et al., 2015) or RoI-Align (He et al., 2017) performs discrete sampling on
the feature map to generate �(x, b), L(b) is not differentiable w.r.t b. Therefore, we adopt the Precise
RoI-Pooling method (Jiang et al., 2018a), which avoids any quantization of coordinates and has a
continuous gradient on b.

In order to handle false positive bboxes that do not cover any object, we add a reject option which
removes b from the ground-truth if both classifiers give a low objectness score (high background
score), pbg1 > 0.9 and pbg2 > 0.9.

3.3 DUAL-HEAD DISTILLATION FOR NOISE CORRECTION

In the second step, we perform class-specific self-distillation for label noise correction and bbox
refinement. We simultaneously train two diverged detection heads which can filter different types of
noise, and distil knowledge from their ensemble to clean the annotation noise. Using the ensemble
of two heads helps alleviate the confirmation bias problem (i.e. a model confirms its own mistakes)
that commonly occurs in self-training.

Soft label correction. Given the RoI feature �(x, b⇤), the two classification heads produce two sets
of softmax predictions over object classes, p⇤1 and p⇤2. Inspired by the bootstrapping method (Reed
et al., 2015), we use the classifiers’ predictions to update the noisy GT label. Let y 2 {0, 1}C
represent the GT label as a one-hot vector over C classes, we create the soft label by first averaging
the classifiers’ predictions and the GT label:

ȳ = (p⇤1 + p⇤2 + y)
�
3. (4)

Then we apply a sharpening function on the soft label to reduce the entropy of the label distribution.
The sharpening operation is defined as:

y⇤ = ȳc 1
T

� CX

c=1

ȳc 1
T , c = 1, 2, ..., C, (5)

where ȳc is the score for class c. The temperature T controls the ‘softness’ of the label and is set
to 0.4 in our experiments. A lower temperature decreases the softness and has the implicit effect
of entropy minimization, which encourages the model to produce high confidence predictions and
allows better decision boundary to be learned (Grandvalet & Bengio, 2005; Berthelot et al., 2019).

Class-specific bounding box refinement. The two bbox regression heads produce two sets of per-
class bounding box regression offsets, t1 and t2. Let c⇤ denote the class with the highest score in
the soft label, i.e. c⇤ = argmaxc y

⇤
c , c = 1, 2, ..., C. We refine the bounding box b⇤ by merging the

class-specific outputs from both bbox regression heads:

t = (tc
⇤

1 + tc
⇤

2 )/2

b⇤⇤ = b⇤ + ⇢t,
(6)

where tc
⇤

1 and tc
⇤

2 are the bounding box offsets for class c⇤, and ⇢ controls the magnitude of the
refinement.
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BBox Noise 20% 40%
Label Noise 0% 20% 40% 0% 20% 40%
vanilla (Ren et al., 2015) 75.5 70.7 66.9 59.3 54.2 50.0
objectness maximization 75.8 71.1 67.4 63.2 59.6 55.7
CA-BBC 76.8 72.4 68.0 67.8 64.7 61.7

Table 1: Evaluation of class-agnostic bounding box correction. Numbers are mAP@.5 on VOC2007 test set
for models trained with different mixtures of label noise and bbox noise.

3.4 MODEL TRAINING

Let Y ⇤ and B⇤⇤ denote a mini-batch of soft labels and refined bounding boxes, respectively. We
use them as the new GT to train the model. Specifically, we update ⇥ = {✓cnn, ✓rpn, ✓1d, ✓2d} to
optimize the following losses: (1) the loss function of RPN defined in (Ren et al., 2015), Lrpn(B

⇤⇤);
(2) the classification loss for the two detection heads, L1

cls(Y
⇤) and L2

cls(Y
⇤), defined as the cross-

entropy loss
P

i �y⇤
i log(pi); (3) the localization loss for the two detection heads, L1

loc(B
⇤⇤, Y ⇤) and

L2
loc(B

⇤⇤, Y ⇤), defined as the smooth L1 loss (Girshick, 2015).

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

Since most available datasets for object detection have been extensively verified by human annota-
tors and contain little noise, we created noisy annotations using two popular benchmark datasets,
PASCAL VOC (Everingham et al., 2010) and MS-COCO (Lin et al., 2014), First, we generated
synthetic noise to simulate human mistakes of different severity, by corrupting the training anno-
tation with a mixture of label noise and bounding box noise. For label noise, we follow previous
works (Jiang et al., 2018b; Arazo et al., 2019) and generate symmetric label noise. Specifically, we
randomly choose Nl% of the training samples and change each of their labels to another random
label. For bounding box noise, we perturb the coordinates of all bounding boxes by a number of
pixels uniformly drawn from [�wNb%,+wNb%] (w is bbox width) for horizontal coordinates or
[�hNb%,+hNb%] (h is bbox height) for vertical coordinates. We experiment with multiple com-
binations of label noise ranging from 0% to 60% and bounding box noise ranging from 0% to 40%.
Under 40% bbox noise, the average IoU between a noisy bbox and its corresponding clean bbox is
only 0.45. For VOC, we use the union set of trainval2007 and trainval2012 as training data, and
test2007 as test data. We report mean average precision (mAP@.5) as the evaluation metric. For
MS-COCO, we use train2017 as training data, and report mAP@.5 and mAP@[.5, .95] on val2017.

We also mined large amounts of free training data with noisy annotations by using machine-
generated annotations on unlabeled images. We first train a Faster R-CNN detector on 10% of
labeled data from COCO train2017, which has a validation mAP@.5 of 40.5. Then we use the
trained detector to annotate unlabeled2017, which contains 123k unlabeled images. We use COCO
unlabeled2017 with machine-generated annotations as our noisy training data.

We use the common Faster-RCNN (Ren et al., 2015) architecture with ResNet-50 (He et al., 2016)
and FPN (Lin et al., 2017) as the feature extractor. We train the model using SGD with a learning rate
of 0.02, a momentum of 0.9, and a weight decay of 1e�4. The hyper-parameters are set as � = 0.1,
T = 0.4, ⇢ = 0.5, and ↵ 2 {0, 100, 200}, which are determined by the validation performance on
10% of training data with clean annotations (only used for validation). We implement our framework
based on the mmdetection toolbox (Chen et al., 2019a). In terms of computation time, our method
increases training time by ⇠24% compared to vanilla training. During inference, we only use the
first detection head unless otherwise specified, which does not increase inference time.

4.2 EVALUATION ON CA-BBC

First, we evaluate the effect of the proposed CA-BBC method by itself. We train a detector fol-
lowing the proposed learning framework, except that we only perform the first step of noise cor-
rection (i.e. CA-BBC). Table 1 shows the results on VOC with different mixtures of label noise
and bounding box noise. Compared to vanilla training without any noise correction (Ren et al.,
2015; Chen et al., 2019a), performing CA-BBC can significantly improve performance, especially
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Figure 3: Examples of class-agnostic bounding box correction on VOC with 40% label noise and 40% bound-
ing box noise. Noisy GT bounding boxes are in red and the corrected bounding boxes are in green.

Figure 4: Examples of failed bbox corrections from CA-BBC. Noisy GT bounding boxes are in red and the
corrected bounding boxes are in green. CA-BBC could be confused when the GT bboxes cover multiple object
instances of the same class. It also sometimes fails to extend the box boundaries to cover the entire object.

BBox Noise 0% 20% 40%
Label Noise 0% 20% 40% 60% 0% 20% 40% 60% 0% 20% 40% 60%
Vanilla (Ren et al., 2015) 78.2 72.9 69.3 62.1 75.5 70.7 66.9 61.2 59.3 54.2 50.0 45.9
Co-teaching (Han et al., 2018) 78.3 76.5 74.1 69.9 75.6 73.2 69.7 65.1 60.6 59.7 55.8 50.4
SD-LocNet (Zhang et al., 2019) 78.0 75.3 73.0 66.2 75.3 72.1 67.5 64.0 59.7 58.7 54.5 49.2
NOTE-RCNN (Gao et al., 2019) 78.6 76.7 74.9 69.9 76.0 73.7 70.1 65.8 63.4 61.5 57.8 53.7
Ours 80.1 79.1 77.7 74.1 77.9 76.7 74.8 71.9 71.9 70.6 69.1 64.5

Table 2: Results on VOC07 test set with different levels of training noise. Numbers indicate mAP@.5.

for higher level of bbox noise. The improvement is consistent despite the increase of label noise,
which demonstrates the ability of CA-BBC to disentangle the two types of noise and effectively
correct bbox noise. We also demonstrate the effect of the proposed discrepancy minimization by
removing D(p1, p2) from the loss in Eq. 2, and only maximize the objectness of the bbox region,
which leads to lower performance. Figure 3 show qualitative examples of CA-BBC. The noisy GT
bboxes are shown in red whereas the corrected bboxes are shown in green. CA-BBC can update the
bounding boxes to more accurately capture the objects of interest.

4.3 COMPARISON WITH THE STATE-OF-THE-ART

We evaluate our full learning framework with two-step noise correction and compare it with multiple
existing methods for learning with noisy annotations. We implement all methods using the same
network architecture. Since previous methods operate in different settings as ours, we adapt them
for our problem to construct strong baselines as described in the following:

• Co-teaching (Han et al., 2018) simultaneously trains two models where each model acts as a
teacher for the other by selecting its small-loss samples as clean data to train the other. It has
been employed by Chadwick & Newman (2019) for training object detectors with noisy data.
We adapt co-teaching into our dual-head network, where each detection head selects box samples
with small classification loss to train the other head. Note that the RPN is trained on all boxes.

• SD-LocNet (Zhang et al., 2019) proposes an adaptive sampling method that assigns a reliable
weight to each box sample. Higher weights are assigned to samples with higher classification
scores and lower prediction variance over consecutive training epochs.
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Method Nb = 20%, Nl = 20% Nb = 40%, Nl = 40% machine-generated
mAP@.5 mAP@[.5, .95] mAP@.5 mAP@[.5, .95] mAP@.5 mAP@[.5, .95]

Vanilla (Ren et al., 2015) 47.9 23.9 29.7 10.3 41.5 21.5
Co-teaching (Han et al., 2018) 49.7 24.6 35.9 14.6 41.4 21.5
SD-LocNet (Zhang et al., 2019) 49.3 24.5 35.1 13.9 42.8 21.9
NOTE-RCNN (Gao et al., 2019) 50.4 25.1 38.5 15.2 43.1 22.0
Ours 53.5 27.7 47.4 21.2 46.5 23.2
Oracle (clean) 54.5 31.4 54.5 31.4 54.5 31.4

Table 3: Results on COCO val2017 with different levels of training noise.

Forward
Corr.

Dual
Heads

CA
BBC

Dual
Infer.

0% 20% 40% (Nb)
20% 40% 60% 20% 40% 60% 20% 40% 60% (Nl)

X 78.9 77.4 73.4 75.9 73.6 68.8 67.2 65.3 59.1
X X 79.1 77.7 74.1 76.2 74.1 69.8 67.9 66.0 60.3
X X X 79.1 77.7 74.1 76.7 74.8 71.9 70.6 69.1 64.5
X X X X 79.6 78.3 74.8 77.3 75.2 72.5 71.3 69.8 65.4

Table 4: Ablation study to examine the effect of each component in the proposed framework. Numbers indicate
mAP@.5 on VOC 2007 test set. The results validate the efficacy of the proposed CA-BBC and dual-head noise
correction method. Ensemble of the two detection heads during inference can further boost performance.

• NOTE-RCNN (Gao et al., 2019) uses clean seed box annotations to train the bbox regression
head. It also pretrains a teacher detector on the clean annotations for knowledge distillation.
Because we do not have clean annotations, we follow previous works (Han et al., 2018; Arazo
et al., 2019) and consider box samples with smaller classification loss as clean ones. We first
train a detector in a standard manner to mine clean samples. Then we utilize the clean samples
following NOTE-RCNN (Gao et al., 2019).

Table 2 shows the comparison results on VOC, where the training data contains different mixtures
of label noise and bbox noise. Our method significantly outperforms all other methods across all
noise settings. For high levels of noise (Nb = 40%, Nl 2 {40%, 60%}), our method achieves
⇠20% improvement in mAP compared to vanilla training, and >10% improvement compared to the
state-of-the-art NOTE-RCNN (Gao et al., 2019)

On clean training data with 0% annotation noise, our method can still improve upon vanilla training
by +1.9%, mostly due to the proposed soft labels. Compared to the one-hot GT labels, soft labels
contain more information about an image region in cases where multiple objects co-exists in the
same bounding box. Moreover, using soft labels has the effect of label smoothing, which could
prevent overfitting and improve a model’s generalization performance (Müller et al., 2019).

Table 3 shows the results on COCO. Our method outperforms all baselines by a large margin. Under
40% of label and bbox noise, vanilla training results in a catastrophic degradation of �24.8% in
mAP@.5 compared to training on clean data (oracle), whereas our method can reduce the perfor-
mance drop to �7.1%. The proposed method also achieves improvement under machine-generated
noise, which validates its practical usage to train detectors by utilizing free unlabeled data.

4.4 ABLATION STUDY

In Table 4, we add or drop different components in our framework to examine their effects. Below we
explain the results in detail. More ablation study and qualitative results are shown in the appendix.

• In the first row, we perform noise correction with only one detection head, by using its output to
create soft labels and regress bounding boxes. Compared with the proposed dual-head network
where knowledge is distilled from the ensemble, using a single head suffers from confirmation
bias where the model’s prediction error would accumulate and thus degrade the performance.

• In the second row, we remove CA-BBC from the proposed framework and only perform the
dual-head noise correction (Section 3.3). Compared with the results using the proposed two-step
noise correction (the third row), the performance decreases considerably for higher level (40%)
of bounding box noise, which validates the importance of the proposed CA-BBC.

• The third row shows the results using the proposed method.
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• In the last row, we use the ensemble of both detection heads during inference by averaging their
outputs, which leads to further performance improvement.

5 CONCLUSION

To conclude, this paper addresses a new challenging research problem, which aims to train object
detectors from noisy annotations that contain entangled label noise and bounding box noise. We
propose a noise-resistant learning framework which jointly optimizes noisy annotations and model
parameters. A two-step noise correction method is proposed, where the first step performs class-
agnostic bbox correction to disentangle bbox noise and label noise, and the second step performs
dual-head noise correction by self-distillation. Experiments on both synthetic noise and machine-
generated noise validate the efficacy of the proposed framework. We believe that our work is one
step forward towards alleviating human from the tedious annotation effort.
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