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Abstract

Event cameras are bio-inspired sensors that capture intensity changes asyn-
chronously with distinct advantages, such as high temporal resolution. Existing
methods for event-based object/action recognition predominantly sample and con-
vert event representation at every fixed temporal interval (or frequency). However,
they are constrained to processing a limited number of event lengths and show poor
frequency generalization, thus not fully leveraging the event’s high temporal resolu-
tion. In this paper, we present our PASS framework, exhibiting superior capacity for
spatiotemporal event modeling towards a larger number of event lengths and gener-
alization across varying inference temporal frequencies. Our key insight is to learn
adaptively encoded event features via the state space models (SSMs), whose linear
complexity and generalization on input frequency make them ideal for processing
high temporal resolution events. Specifically, we propose a Path-selective Event
Aggregation and Scan (PEAS) module to encode events into features with fixed
dimensions by adaptively scanning and selecting aggregated event presentations.
On top of it, we introduce a novel Multi-faceted Selection Guiding (MSG) loss to
minimize the randomness and redundancy of the encoded features during the PEAS
selection process. Our method outperforms prior methods on five public datasets
and shows strong generalization across varying inference frequencies with less
accuracy drop (ours -8.62% v.s. -20.69% for the baseline). Overall, PASS exhibits
strong long spatiotemporal modeling for a broader distribution of event length
(1-109), precise temporal perception, and generalization for real-world scenarios.

1 Introduction

Event cameras are bio-inspired sensors that trigger signals when the relative intensity change exceeds
a threshold, adapting to scene brightness, motion, and texture. Compared with standard cameras,
event cameras output asynchronous event streams, instead of fixed frame rates. They offer distinct
advantages, such as high dynamic range, microsecond temporal resolution, and low latency [20, 15,
73, 6]. Due to these merits, event cameras have been applied to address various vision tasks, such as
object/action recognition [9, 4, 31, 74, 76, 77, 54, 7, 17, 16, 35, 56, 55, 48, 1].

∗Project page: https://github.com/jiazhou-garland/PASS_Homepage.
†Corresponding Author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/jiazhou-garland/PASS_Homepage


Distribution of event lengthDistribution of event length Train & Val sampling frequenciesTrain & Val sampling frequencies

Train 20 Hz
Val 80Hz

Train 20 Hz
Val 40Hz

Train 20 Hz
Val 80Hz

[𝟏, 𝟏𝟎𝟕]

[𝟏, 𝟏𝟎𝟖]

[𝟏, 𝟏𝟎𝟗]

ComparisonComparison

Previous 
methods
Previous 
methods

PASS 
our methods

PASS 
our methods

Figure 1: Compared to previous event-based recognition methods limited to a narrow distribution
of event length and poor temporal frequency generalization, our method, PASS, advances spatial-
temporal event modeling across a broader distribution of event length ranging from 1 to 109 and
demonstrates superior temporal frequency generalization.

The spatiotemporal richness of events introduces complexities in data processing and necessitates
models that can efficiently process and interpret them. To address this problem, existing methods
predominantly sample and aggregate them at every fixed temporal interval, i.e., frequency. In this
way, the raw stream can be converted into different event representations [75, 80, 2, 54, 66, 44, 32, 58].
In general, existing methods mainly follow two representative model structures: (a) step-by-step
structure models [66, 69, 77, 75, 74, 30, 16] and (b) recurrent structure models [54, 79]. The former
processes all time-step event frames in parallel, employing local-range and long-range temporal
modeling sequentially, as shown in Fig. 2 (a). By contrast, the latter process event frames sequentially
at each time step, updating a memory feature that affects the next input, as illustrated in Fig. 2 (b).

However, current models face two pivotal challenges, as shown in Fig. 1. 1) Limited distribution
of event length. Event cameras offer high temporal resolution, naturally generating dense event
sequences. This necessitates models effectively processing events across a broad distribution of
event length, especially for high-speed scenarios or long-duration event streams [80]. However,
current event-based recognition datasets [8, 21, 47] are restricted to a limited number of event
lengths (106 − 107) (see appendix for existing dataset summary) and face computational bottlenecks
for large event lengths due to quadratic attention complexity, thereby constraining exploration of
spatiotemporal relationships across a broad distribution of event lengths. 2) Limited inference
frequency generalization. While event-based cameras offer high temporal resolution beneficial for
recognizing objects and actions in high-speed, dynamic visual scenarios [80], current recognition
models significantly degrade when inference frequencies differ from the training one, thereby limiting
the full potential of these high-resolution event streams. For example, as shown in Fig. 5 (b), the
model trained at 60 Hz with existing event sampling strategies demonstrates poor generalization, with
performance dropping up to 20.69% when evaluated at 20 Hz and 100 Hz sampling frequencies.

Recently, the selective state space model (SSM) has rivaled the previous backbone like vision
transformer in performance while significantly reducing memory usage due to linear-scale complexity,
showing robust generalization across 1D audio [24] and 2D image signals [42] when evaluated at
varied frequencies. Given the inherent spatiotemporal richness due to events’ high temporal resolution,
a natural motivation arises for harnessing the exceptional power of SSM for event spatiotemporal
modeling. To this end, we propose PASS, a novel framework for recognizing event streams capable
of processing a broad distribution of event length ranging from 106 to 109 and generalizing across
varying inference frequencies, as depicted in Fig. 1 . By harnessing the linear complexity and strong
input frequency generalization of SSM, PASS delivers exceptional recognition performance and
frequency generalization. It brings two key technical breakthroughs.

Firstly, since the large number of event length could cause difficulties for SSM in effectively learning
the spatiotemporal properties from events, as SSM’s hidden state updates rely heavily on the sequence
length and feature order. To this end, we propose a novel Path-selective Event Aggregation and
Scan (PEAS) module to aggregate and convert events into sequence features with fixed dimensions
Concretely, as shown in Fig. 3, a selection mask is first learned from the original event frame
representation to facilitate the frame selection. Then, the bidirectional event scan is conducted on
the selected perimeters to convert them into sequence features. This adaptive process ensures the
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event scan path is end-to-end learnable and responsive to every event input, thus enabling our PASS
to effectively process event streams across a broad distribution of event length (Tab. 4).

Secondly, the varying sampling frequencies hinder the generalization of SSM during inference, as
empirically verified in Tab. 5. This suggests that alterations in the input sequence length and order
due to sampling frequency shifts greatly affect model performance. For this reason, we propose
a novel Multi-faceted Selection Guiding (MSG) loss. It minimizes the randomness of the PEAS
module event frame selection process caused by the random initialization of the selection mask’s
weight. Our MSG loss better facilitates alleviating the redundancy of the selected event frames, thus
strengthening model generalization across varying inference frequencies (Tab. 5).

Extensive experiments across five public and three proposed datasets demonstrate PASS’s superior
performance. It outperforms previous methods by +3.45%, +0.38%, +8.31% +2.25% and +3.43% on
the public PAF, SeAct, HARDVS, N-Caltech101, and N-Imagenet datasets, respectively. Additionally,
PASS shows superior generalization across varying inference frequencies, with a maximum accuracy
drop of -8.62% compared to -20.69% for previous methods. Given the absence of event-based recog-
nition datasets with a large number of event length, we created two synthetic datasets and recorded
one real-world dataset with around 109 event length: ArDVS100 covers 100 action transitions with
different meta-actions, TemArDVS100 features the same meta-actions yet in different combinations to
evaluate the model’s fine-grained temporal recognition ability, and Real-ArDVS10 dataset contains 10
recorded action transitions to assess the model’s real-world generalization. Our PASS exhibits strong
long spatiotemporal modeling across a broad distribution of event length (1-109), precise temporal
perception, and effective generalization for real-world scenarios, achieving 97.35%, 89.00%, and
100% Top-1 accuracy on ArDVS100, TemArDVS, and Real-DVS10 datasets. Our main contribution
can be summarized as follows:

• We propose PASS, a novel framework for recognizing events across a broad count distribu-
tion (event length range from 106 to 109) and generalizing to various inference frequencies.

• We introduce the PEAS module to convert asynchronous events into ordered sequence
features, alongside MSG loss to promote effective event spatiotemporal modeling.

• Extensive experiments prove PASS’s superior performance and strong inference frequency
generalization. The proposed ArDVS100, TemArDVS100, and Real-ArDVS10 datasets
prove the model’s long spatiotemporal modeling, fine-grained temporal perception, and
real-world effectiveness, respectively.

2 Related Works

Event groups
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Figure 2: Comparison of two model structures for previous event-based recognition methods.

Event-based Object / Action Recognition. Existing event-based recognition works cover two main
tasks: object recognition [75, 74, 15, 29, 73, 18, 25, 10, 35, 38] and action recognition [77, 66, 54,
65, 17, 48, 64, 39]. Specifically, object recognition captures stationary objects around 106 events,
whereas action recognition records dynamic human actions with approximate e7 events. These
methods tackle high temporal resolution event spatiotemporal complexity via two key approaches,
as shown in Fig. 2: 1) step-by-step structure models and 2) recurrent structure models. Initially, the
events are sampled into slices at fixed time intervals. The step-by-step structure models then use off-
the-shelf backbones to extract local-range spatiotemporal features from event slices and then perform
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Figure 3: Overview of our proposed PASS framework.

long-range temporal modeling using various methods, such as simple average operation [77, 75],
proposed modules [66, 69], and loss guidance [74, 30]. Recurrent structure models [54, 79], on the
other hand, process the event slices sequentially, updating their hidden state based on the input at
each time step. Both structures ensure adaptability to varying event lengths. However, step-by-step
structure models struggle with high computational complexity, especially for handling more events
in high-speed and long-duration scenarios. Recurrent structure models tend to forget the initial
information due to their simplistic recurrent design and require longer training time due to their
inability to process data in parallel. Additionally, as evidenced in Tab. 5, existing methods struggle to
generalize across different inference frequencies, which is essential for applications in high-speed,
dynamic visual scenarios [80]. In this work, we aim to improve event-based recognition across a
broad distribution of event length with improved generalization across varying inference frequencies.

State Space Model (SSM). It has recently demonstrated considerable effectiveness in capturing
the dynamics and dependencies of long sequences. Unlike transformers [3, 40] with quadratic
complexity, SSMs [23, 59, 60, 14] offer superior performance through linear complexity and show
robust generalization across 1D audio [24] and 2D image signals [42] when evaluated at varied
frequencies. Mamba [22] distinguishes itself by introducing a data-dependent SSM layer, a selection
mechanism, and hardware-level performance optimization. It motivates subsequent works in the
vision [78, 67, 46], video [34, 45], and point cloud [72, 36] domains. Nikola et al. [80] first integrates
SSMs with a recurrent ViT framework for event-based object detection to enhance the adaptability
for varying sampling frequencies by low-pass band-limiting loss. Subsequent research explored
applying SSMs, particularly Mamba [22], to event-based tasks, including action recognition [52, 5],
tracking [26, 52, 62], detection [68], Unlike prior work, our work seeks to recognize event streams of
broader distribution of event length and generalize across varying inference frequencies.

3 Preliminaries

Event Stream. Event cameras capture object movement by recording the pixel-level log intensity
changes, rather than capturing full-frame at fixed intervals for conventional cameras. The asyn-
chronous events, denoted as E = {ei(xi, yi, ti, pi)}, i = 1, 2, ..., N , reflects the brightness change ei
for a pixel at the timestamp ti, with coordinates (xi, yi), and polarity pi ∈ {1,−1} [15, 73]. Here, 1
and -1 represent the positive and negative brightness changes.

SSM for Vision. SSMs [23, 59, 14, 60] originate from the principles of continuous systems that
map an input 1D sequence x(t) ∈ RL into the output sequence y(t) ∈ RL through an underlying
hidden state h(t) ∈ RN . Specifically, it is formalized by dh(t)/dt = Ah(t) + Bx(t) and y(t) =
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Figure 4: Illustration of event frame aggregation.

Ch(t) +Dx(t), where A ∈ RN×N , B ∈ RN×1, C ∈ RN×1, D ∈ RN×1 are the state matrix, the
input projection matrix, the output projection matrix, and the feed-forward matrix.

4 Proposed Method

Overview. The PASS framework, as depicted in Fig. 3, processes events across a wide distribution
of event length using our PEAS module and MSG loss, followed by the spatiotemporal modeling
module for prediction. It comprises three components: (1) the PEAS module (Sec.4.1) for event
sampling, event frame aggregation, and path-selective event selection. Then bidirectional event scan
to encode events into sequence features with fixed dimensions. (2) On top of PEAS, the MSG loss
LMSG (Sec.4.2) is proposed for minimizing the randomness and redundancy of encoded features; (3)
the event spatiotemporal modeling module (Sec.4.3) to predict the final recognition results.

4.1 Path-selective Event Aggregation and Scan (PEAS) Module

We aim to recognize event streams across a wide distribution of event length. The events are first
converted into event presentations, where we select the event frame presentation with a fixed event
length based on experiment results (see Sec. 5.3). The number of resulting aggregated event frames P
can vary greatly due to the high temporal resolution of events. This variability introduces complexity
for spatiotemporal event modeling. Furthermore, due to SSM’s recurrent nature, its hidden state
update is greatly affected by the input sequence length and feature order, especially when modeling
the long-range temporal dependencies. To reduce this variability, we propose our PEAS module,
which consists of the following four components to encode events across a wider distribution of event
length into sequence features with fixed dimensions in an end-to-end learning manner.

Event Sampling and Frame Aggregation. Unlike sequential language with compact semantics,
events E = {ei(xi, yi, ti, pi)} ∈ RN×4, i = 1, 2, ..., N denotes the asynchronous intensity change at
the pixel (xi, yi) at time ti with polarity pi ∈ {1,−1}. The complexity of spatiotemporal event data
requires efficient processing of this high-dimensional data. Following previous methods [75, 80, 2, 54],
we sample events with duration T at every fixed temporal windows 1/f , where f denotes the sampling
frequency, e.g. 50 ms time windows 1/f corresponding to sampling frequency f = 20Hz. We group
a number of events G at each sampling time, as shown in Fig. 4 (b). This sampling method is more
effective and robust than grouping events within fixed time windows as illustrated in Fig. 4 (a), as
evidenced in the following Sec 5.3. Therefore, we obtain P = Tf event groups E ′ ∈ RP×G×4.
Then, we utilize the event frame representation [75] to transform the event groups E ′

into a series of
event frames F ∈ RP×H×W×3. This transformation enables the use of traditional computer vision
methods designed for frame-based data.

Path-selective Event Scan. With the aggregated event frame input F , we then conduct our path-
selective event scan to reduce the variability of events. Concretely, as shown in Fig. 3, with the
aggregated event frames F ∈RP×H×W×3 as input, we utilize a lightweight score predictor composed
of two 3D convolutional layers, followed by an activation function to generate a selection mask
M ∈ RK×P , where K represents the number of selected frames and P represents the number of
original frames. The elements of M are either 0 or 1, with each marking the position of the selected
event frame. Due to the non-differentiable nature of the max operation applied after the standard
Softmax function to produce class probabilities, we employ the differentiable Gumbel Softmax [28]
for backpropagation during training. The standard Softmax is used for inference to facilitate the
training process. Next, we utilize the Einsum matrix-matrix multiplication between the selection mask
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M and the original event frames F to obtain the final selected event frames F
′ ∈ RK×H×W×3. The

above process ensures that F
′

can be derived from the original event frame input F in an end-to-end
learning manner. Next, with the obtained selected event frames F

′ ∈ RK×H×W×3, we convert F
′

into a 1D sequence using the bidirectional event scan, following the spatiotemporal scan proposed in
[34]. As illustrated in Fig. 3, this scan elegantly follows the temporal and spatial order, sweeping
from left to right and cascading from top to bottom. In this way, unlike scanning the original P event
frames, our PEAS module can adaptively skip multiple event slices and encode the events across a
wide event distribution (106 to 109) into encoded features with fixed dimensions.

4.2 Multi-faceted Selection Guiding (MSG) Loss

While the proposed PEAS module is differentiable and capable of learning through back-propagation,
the basic multi-class cross-entropy loss, LCLS , is inadequate for effectively guiding model optimiza-
tion. This is because the selection of event frames is stochastic at the onset of training due to the
random weight initialization of the PEAS module. Consequently, during training, the model can
only optimize performance based on the distribution of these randomly selected frames, rather than
improving the PEAS module for adaptive selection of input events. To facilitate effective optimization,
we propose the MSG loss that addresses two crucial challenges: 1) reducing the randomness of the
selection process to ensure the selected sequence features can encapsulate the entirety of the sequence;
and 2) guaranteeing that each selected event feature stands out from the others, thus eliminating
redundancy. To be specific, the MSG loss comprises two components, which will be detailed in the
subsequent subsections.

Within-Frame Event Information Entropy (WEIE) Loss: We introduce within-frame event
information entropy loss LWEIE to reduce the randomness of frame selection, which arises from
the random initialization of the PEAS module (Sec. 4.1). LWEIE quantifies the image information
entropy of each event frame. As shown in Fig. 3, the WEIE loss for the padding frame Fig. 3 (b) is
zero. In contrast, the WEIE loss for the non-padding frame Fig. 3 (a) is greater than zero. Intuitively,
a higher WEIE loss indicates that the selected event frame contains more information and richer
details. Thus, maximizing LWEIE helps enhance model optimization to minimize randomness in
the selection process. Specifically, we first calculate the frequency histogram P k = hist(gray(F

′

k))

for each selected event frame F
′

k, where K indicates the number of selected event frames, gray(.)
converts RGB event frames to grayscale and hist(.) indicates histogram statistics frequency. Then the
LWEIE is calculated as follows:

LWEIE = −
K∑

k=1

N∑
i=1

P k
i logP k

i /K (1)

where N is the number of histogram bins; K indicates the number of selected event frames.

Inter-frame Event Mutual Information (IEMI) Loss: On top of the WEIE loss to quantify the
information entropy for each event frame, we additionally propose the inter-frame event mutual
information loss LIEMI to reduce the redundancy among selected event frames. LIEMI quantifies
the mutual information [53] between every two consecutive event frames. As shown in Fig. 3,
the LWEIE for Fig. 3 (c) and Fig. 3 (d) are greater than the LWEIE for Fig. 3 (d) and Fig. 3 (e).
Intuitively, a lower IEMI loss indicates greater differences between the frames. Thus, minimizing
IEMI loss guides the model in maximizing the difference between selected event frames. Specifically,
LWEIE is composed of the joint event length histogram hist(.) between every two consecutive
event frames F

′

k and F
′

k+1, along with their spatial coordinates Cx and Cy to indicates the position
information. We compute LWEIE within every consecutive event frame F

′ ∈ RK×H×W×3 to lower
computational cost. The IEMI loss LIEMI is formulated as follows:

P k
joint = hist(gray(F

′

k) + gray(F
′

k+1) + Cx + Cy)), (2)

LIEMI = − 1

K − 1

K−1∑
k=1

(

N∑
i=1

N∑
j=1

P k
joint(i, j)× log(P (i)P (j)/P k

joint(i, j))), (3)

where N indicates the number of histogram bins and K is the number of selected event frames.
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Total Objective: Given the final prediction class y and the ground-truth class Y , the total objective
is composed by the MSG loss LMSG with three components and the commonly used multiclass
cross-entropy loss LCLS :

Ltotal = LIEMI − LWEIE+︸ ︷︷ ︸
LMSG

+LCLS(y, Y ). (4)

4.3 Event Spatiotemporal Modeling Module

After the PEAS module followed by the MSG loss, event inputs are transformed into the event
frame sequence F

′ ∈ RK×H×W×3. Given the inherently longer sequences because of the event
stream’s high temporal resolution, we leverage the SSM for event spatiotemporal modeling with linear
complexity. As shown in Fig. 3, we first employ the 3D convolution with kernel size 1× 16× 16
for patch embedding to transform the event frames into L non-overlapping spatiotemporal tokens
xe ∈ RL×C , where L = Ts ×H ×W/16× 16 and C refer to feature dimensions. The SSM model,
designed for sequential data, is sensitive to token positions, making preserving spatiotemporal position
information crucial. Thus, we concatenate a learnable classification token Xcls ∈ R1×C at the start
of the sequence and then add a learnable spatial position embedding Ps ∈ R(1+L)×C and temporal
embedding Pt ∈ RTs×C to obtain the final input sequence x = [xcls, xe] + Ps + Pt. Next, the input
sequence x passes into L layers of stacked B-Mamba blocks. [22]. Note that the bidirectional event
scan is actually conducted in the B-Mamba blocks for code implementation. Finally, the [CLS] token
is extracted from the final layer’s output and forwarded to the classification head, which consists of
the normalization layer and the linear classification layer for the final prediction y.

5 Experiments and Evaluation

5.1 Experiments settings

Public Datasets: Five publicly available event datasets are evaluated in this paper, including PAF [41],
SeAct [77], HARDVS [63], N-ImageNet [29] and N-Caltech101 [43].

Our ArDVS100, Real-ArDVS10 and TemArDVS100 Dataset. Existing datasets only provide
events within a limited distribution of event length (106 for objects and 107 for actions). We introduce
the ArDVS100 and TemArDVS across a broad distribution of event length (106 to 109), synthesized
by concatenating event streams with varying meta actions, thus capturing action transitions over
time. Specifically, ArDVS100 and TemArDVS datasets contain 100 action classes, with event
durations of 1s to 256s and 14s to 214s respectively. TemArDVS offers fine-grained temporal labels
for more accurate action temporal recognition, distinguishing actions like ‘sit down then get up’ from
‘get up then sit down,’ while the ArDVS100 dataset treats them as the same. We allocated 80% for
training and 20% for testing (evaluating). Additionally, to assess the model’s real-world applicability,
we created a real-world dataset, named Real-ArDVS10, comprising event-based actions lasting from
2s to 75s, encompassing 10 distinct classes selected from the ArDVS100 datasets. The train and
validation (test) split ratio is 7:3.

Table 1: Model structure settings.

Model Layer Dim D Param. FLOPS(G) Inference Time(ms) FPS
Tiny (T) 24 192 7M 1.1 4.1 243.9
Small (S) 24 384 25M 4.3 15.7 63.7
Middle (M) 32 576 74M 12.7 40.4 24.7

Model Architecture & Experimental Settings: In alignment with ViT [13], we modify the depth
and embedding dimensions to match models of comparable sizes, including Tiny (T), Small (S), and
Middle (M). We adopt the pre-trained VideoMamba [34] model checkpoints for initialization. All
ablation studies, unless specifically stated, use the Tiny version on the PAF dataset at a sampling
frequency of 0.8 Hz with 16 selected event frames. We reproduced [80] from their official GitHub
repository and evaluated it on our proposed and event-based recognition datasets for comparative
analysis. The detailed model structure settings, parameter estimation, and computational complexity
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Table 2: Comparison with previous methods for
event-based object recognition.

Object Recognition (Around 106 events)
Top-1 Accuracy(%)Model Param. N-Caltech101 N-Imagenet

EST[19] 81.70 48.93
EDGCN [9] 0.77M 83.50 -

Matrix-LSTM [4] - 84.31 32.21
E2VID [50] 10M 86.60 -
DiST[29] - 86.81 48.43
MEM [31] - 90.10 57.89

S5-ViT-B-K(1) [80] 17.5M 88.32 -
S5-ViT-B-K(2) [80] 17.5M 88.44 -

EventDance [74] 26M 92.35 -
PASS-T-K(1) 88.29 48.74
PASS-T-K(2) 7M 89.72 48.60
PASS-S-K(1) 90.92 53.74
PASS-S-K(2) 25M 91.96 56.10
PASS-M-K(1) 94.20 61.12
PASS-M-K(2) 74M 94.60+2.25 61.32+3.43

Table 3: Comparison with previous methods for
event-based action recognition.

Action Recognition (Around 107 events)
Top-1 Accuracy(%)Model Param. PAF SeAct HARDVS

EV-ACT [17] 21.3M 92.60 - -
EventTransAct [7] - - 57.81 -

EvT [54] 0.48M 61.30 -
TTPIONT [51] 0.33M 92.70 - -

Speck [71] - - - 46.70
ASA [70] - - - 47.10
ESTF [63] - - - 51.22

S5-ViT-B-K(8) [80] 17.5M 92.93 58.21 74.85
S5-ViT-B-K(16) [80] 17.5M 92.12 57.37 95.98

ExACT [77] 471M 94.83 66.07 90.10
PASS-T-K(8) 91.38 51.72 98.40

PASS-T-K(16) 7M 94.83 49.14 98.37
PASS-S-K(8) 93.33 60.34 98.20

PASS-S-K(16) 25M 96.55 62.07 98.41+8.31
PASS-M-K(8) 98.28+3.45 65.52 98.05

PASS-M-K(16) 74M 96.55 66.38+0.38 98.20

Table 4: Results of event-based action recognition with around 106 events).

Arbitrary-duration Event Recognition (Around 109 events)
Top-1 Accuracy(%)Model Param. ArDVS100 Real-ArDVS10 TemArDVS100

S5-ViT-B-K(16) [80] 91.58 90.00 60.26
S5-ViT-B-K(32) [80] 17.5M 93.39 93.33 79.62

PASS-T-K(16) 90.20 80.00 59.20
PASS-T-K(32) 7M 93.85 93.33 89.00
PASS-S-K(16) 94.90 90.00 62.90
PASS-S-K(32) 25M 96.00 100.00 73.41
PASS-M-K(16) 96.00 93.33 71.06
PASS-M-K(32) 74M 97.35 100.00 82.50

are outlined in Tab. 1. Note that model parameters are estimates, changing with category count and
selected event frames K.

5.2 Experiments Results

5.2.1 Event-based Recognition Results

Results for recognizing event streams around 106 events. We evaluate PASS on N-Caltech101 and
N-Imagenet. ’K’ indicates the number of selected event frames. As shown in Tab. 2, our PASS-M-
K(2) secures a notable advantage, outperforming EventDance [74] by +2.25% for the N-Caltech101
dataset and MEM [31] by +3.43% for the N-Imagenet dataset. It achieves superior accuracy (+1.28%)
with 2.5× fewer parameters (7M vs 17.5M) than S5-ViT-B-K(2) on the N-Caltech101 datasets,
proving the superiority of PASS in effectively recognizing second-level event streams.

Results for recognizing event streams around 107 events. Tab. 3 presents recognition results on
three datasets with 1s to 10s event streams. Our PASS-M-K(2) outperforms previous methods, exceed-
ing ExAct [77] by +3.45% and +0.38% on the PAF and SeAct datasets, respectively. Additionally,
the PASS-S-K(16) achieves a remarkable 98.41% Top-1 accuracy on HARDVS dataset, surpassing
ExAct [77] by +8.31% while using 25M parameters with reduced computational demands.

Results for recognizing event streams around 109 events. In Tab. 4, we evaluate PASS on our
ArDVS100, TemArDVS100, and Real-ArDVS10 datasets. On the ArDVS100 dataset, our PASS-
M-K(32) attains 97.35% accuracy, outperforming [80] by 3.96% and highlighting its potential
for arbitrary-duration event stream recognition. On the challenging TemArDVS100 dataset, our
PASS-T-K(32) achieves 89.00% accuracy, surpassing [80] by 9.38% and demonstrating superior
spatiotemporal action transition recognition. PASS-S-K(32) achieved 100% accuracy on the Real-
ArDVS10 dataset, showcasing its effectiveness for real-world event-based action recognition.
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Figure 5: Model generalization results across varying inference frequencies f training on PAF dataset
with sampling frequencies at (a) 20Hz, (b) 60Hz, and (c) 100Hz.

Table 5: Ablation study on PEAS module & LMSG.

Settings PAF (K(16)) ArDVS100 (K(16))
Top1(%) Top1(%)

No Sampling 92.90% 92.31%
Random Sampling 92.98% 92.23%

PEAS 93.33% 92.84%
PEAS + LMSG 94.83% 93.85%

Table 6: Ablation study on LMSG.

LMSG PAF(K(16))
LCLS LIEMI LWEIE Top1(%)
! % % 92.98%
! ! % 93.75%+0.77

! ! ! 94.83%+1.85

5.2.2 Inference frequencies Generalization results.

Datasets & Experimental settings We trained PASS-S on the PAF dataset at 20 Hz, 60 Hz, and 100
Hz frequencies and evaluated across 20 Hz to 100 Hz to evaluate its inference frequency generalization.
Two frame aggregation methods were considered as the baseline, namely fixed ‘Time Windows’ and
fixed ‘Event count’. (Refer to Sec. 5.3 for more explanation and discussion.)

Results & Discussion As shown in Fig. 5, regardless of whether the model is trained at low, medium,
or high frequencies, our models demonstrate consistently strong performance across various inference
frequencies, with a maximum performance drop of only 8.62% when our PASS model trained at 60 Hz
and evaluated at 100 Hz. This finding underscores their robustness and generalizability compared to
the baseline methods (‘Time Windows’ and ‘Event count’), which experience significant performance
declines, such as -18.96%, -20.69%, -29.32% for ‘Time Windows’ trained at 20 Hz, 60 Hz, and 100
Hz and evaluated at 60 Hz, 100 Hz, and 20 Hz, respectively.

5.3 Ablation Study

We perform ablation studies on our PASS framework to evaluate the effectiveness of the PEAS
module (Sec. 4.1), LMSG loss (Sec. 4.2).

Impact of PEAS module & LMSG loss. As shown in Tab. 5, the baseline ‘Random Sampling’
randomly selects K event frames and achieves 92.98% and 92.23% accuracy on the PAF and
ArDVS100 datasets, respectively. By introducing PEAS, we improve accuracy to 93.33% and
92.84%, representing a performance gain of +0.35% and +0.61%, demonstrating its ability to
preserve critical information. PEAS improves accuracy over baseline ’No Sampling’ (+0.43% on
PAF, +0.53% on ArDVS100), suggesting that the selected frames retain task-relevant information
despite compression. When combining the PEAS module (Sec. 4.1) with LMSG loss, the full model
reaches 94.83% and 93.85% accuracy with a performance increase of +1.85% and +1.62% on PAF
and ArDVS100 datasets, thus showing the effectiveness of LMSG loss to reduce the randomness and
redundancy of the encoded features.

Effectiveness of Multi-faceted Selection Guiding Loss LMSG. As presented in Tab. 6, we ablate
the three components of LMSG (Eq. 4). As the baseline, the LCLS stands for the standard cross-
entropy loss, which achieves a Top-1 accuracy of 92.98%. By employing the LIEMI (Eq. 2), we
attain 93.75% accuracy with 0.77% performance gain. The integration of LWEIE (Eq. 1) yields an
additional 1.85% increase in accuracy. In summary, all proposed components positively impact the
final classification, thereby demonstrating their effectiveness.
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Table 7: Ablation study on event representation.

Representation N-Caltech101 (K(1)) PAF (K(16))
Top1(%) Top5(%) Top1(%) Top5(%)

Frame(Gray) [75] 90.48% 97.53% 93.33% 100.00%
Frame(RGB) [75] 90.94% 97.82% 94.83% 100.00%

Voxel [11] 90.19% 97.02% 92.47% 100.00%
TBR [27] 90.24% 97.13% 91.72% 100.00%
EST [19] 90.54% 97.66% 93.04% 100.00%

Figure 6: Visualization of PEAS module with MSG loss.

Event representation. Tab. 7 displays the impact of five commonly used event representations. The
RGB frame [75] representation attains Top-1 accuracy rates of 90.94% on the N-Caltech101 dataset
and 94.83% on the PAF dataset, surpassing the performance of the other three frame-based event
representations, including gray frame [75], Voxel [11] and TBR [27] and one classical learnable event
representation EST [19], validating the use of the RGB frame representation in the SSM model, as its
pre-training image data has a smaller distribution gap with the RGB event frames.

The visualization demonstration for the PEAS module. Fig. 6 presents the original event frames
and the K selected ones at the start and end of the training process. The black parts indicate the padded
zero-value frames among a batch. To accommodate varying event lengths and maintain consistent
input sizes for batch training, frame padding is essential. In Fig. 6, the black parts represent the padded
zero-valued frames within a mini-batch. At epoch 0, the PEAS module randomly selects event frames,
resulting in unnecessarily padded frames and redundant event frames with repetitive information.
After 100 epochs, the eight chosen frames exclude redundant frames and non-informative padding,
demonstrating the effectiveness of the PEAS module and the MSG loss.

6 Conclusion

In this paper, we present our novel PASS framework for recognizing events. Extensive experiments
prove that our PASS outperforms existing state-of-the-art approaches across five publicly available
datasets. Our framework exhibits remarkable performance capabilities, successfully recognizing
events across a wide event distribution (106 to 109) as validated through our custom-developed
ArDVS100, Real-ArDVS10, and TemArDVS datasets. Moreover, PASS also shows strong general-
ization across varying inference frequencies. We hope this method can pave the way for future model
design for recognizing events for high-seed dynamic visual scenarios.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. The claims are supported by our experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper examines the limitations of the authors’ research in sec. 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .
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Justification: Our paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: The paper provides complete details to replicate its key experimental findings
in sec. 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We don’t provide open access to data and code in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper comprehensively details training and testing parameters, including
data splits, hyperparameters, optimizer selection in sec. 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No] .

Justification: Error bars are not reported because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: The paper details the computational resources in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes] .

Justification: The research fully complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: The paper critically examines the potential positive and negative societal
implications of the research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: Our research poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We explicitly mention and respect the creators and original owners.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: The paper introduces no new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not research human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not research human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: The LLM serves solely as a writing, editing, or formatting tool without
affecting the core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

In this appendix, we provide more details about model implementation, experimental settings, and
datasets to complement the main paper. Additional analysis and discussions are also incorporated.
Below is the table of contents:

• Model A

– Technical Details of SSMs A.1
– PyTorch-style Pseudocode for PEAS Module A.2

• Experiments B

– Experiment Settings B.1
– Event Frame Sampling Settings B.2
– Reproduction Settings for [80] B.3
– More Experiment Results B.4

• Dataset Details C

– ArDVS100 Dataset C.1
– Real-ArDVS10 Dataset C.2
– TemArDVS100 Dataset C.3
– Dataset Comparision C.4
– Publicly Available Dataset C.5

• Discussion D

A Model

A.1 Technical Details of SSMs

State Space Models (SSMs) [23, 59, 14, 60] originate from the principles of continuous systems that
map an input 1D sequence x(t) ∈ RL into the output sequence y(t) ∈ RL through an underlying
hidden state h(t) ∈ RN . Specifically, it is formalized by dh(t)/dt = Ah(t) + Bx(t) and y(t) =
Ch(t) +Dx(t), where A ∈ RN×N , B ∈ RN×1, C ∈ RN×1, D ∈ RN×1 are the state matrix, the
input projection matrix, the output projection matrix, and the feed-forward matrix.

dh(t)/dt = Ah(t) +Bx(t), (5)

y(t) = Ch(t) +Dx(t), (6)

where A ∈ RN×N , B ∈ RN×1, C ∈ RN×1, D ∈ RN×1 are the state (or system) matrix, the input
projection matrix, the output projection matrix and the feed-forward matrix.

The discretization process of SSMs is essential for integrating continuous-time models into deep-
learning algorithms. [60]. We adopt Mamba [22] strategy, treating D as fixed network parameters
while introducing timescale parameter ∆ to transform the continuous parameters A, B into their
discrete counterparts Â, B̂, formulated as follows:

Â = exp(∆A) (7)

B̂ = (∆A)−1(exp(∆A)− I) ·∆B (8)

ht = Âht−1 + B̂xt, (9)

yt = Cht. (10)

Compared to previous linear time-invariant SSMs, Mamba proposed a selective scan mechanism that
directly derived the parameters B, C, and ∆ from the input during the training process, thus enabling
better contextual sensitivity and adaptive weight modulation.
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Algorithm 1 PyTorch-style Pseudocode for the Proposed PEAS Module
# B, C, H, W: Batch size, Channel, Width, Height
# P, K: Amount of input and output event frames
# x: Input event frames with shape (B, P, C, H, W)
# y: Output selected frames with shape (B, K, C, H, W)

s = ScorePredictor(x) # Two-layer CNN network
# Predict scores for each event frame (B, K, P)
if self.training # Differentiable selection during training

selection_mask = F.gumbel_softmax(pred_score, dim=2, hard=True)
else: # Hard selection during evaluation

idx_argmax = s.max(dim=2, keepdim=True)[1]
selection_mask = torch.zeros_like(s).scatter_(dim=2, index=idx_argmax, value=1.0)

B, K, P = selection_mask.shape
indices = torch.where(selection_mask.eq(1))
# Sort from largest to smallest corresponding to the time sequence
indices_sorted = torch.argsort(indices[2].reshape(B, K), dim=1)
# Rearrange mask based on temporal sequence
For i in range(B):

selection_mask[i, :, :] = selection_mask[i, indices_sorted[i], :]

# Perform frame selection using the mask
y = torch.einsum(‘bkp, bcthw’ → ‘bcpkhw’, selection_mask, x)
# Sum over time dimension
y = y.sum(dim=3) # (B,C,K,H,W)

A.2 PyTorch-style Pseudocode for PEAS Module

In Algorithm 1, we present the PyTorch-style pseudocode of the proposed PEAS module to facilitate
readers’ understanding.

Mask Selection (MS) Loss: Due to the arbitrary length of event streams with different numbers of
input event frames, frame padding is necessary to maintain consistent input sizes to ensure

Frame 1 Frame 2
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ℒ𝐼𝐸𝑀𝐼 (Eq.8)
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Figure 7: Illustration of components for the proposed MS loss.

training among a mini-batch. Therefore, we propose an MS loss LMS to filter out the padded
frames during selection. Specifically, as shown in Fig. 7, given the original event frame input F ∈
RP×H×W×3 and the selection mask M ∈ RK×P , the LMS loss sums the mask value Mj , j = Ori+
1, ..., Ori+Pad at the corresponding position of the padding frame in Fj , j = Ori+1, ..., Ori+Pad,
which is formulated as follows:

LMS =

K∑
i=1

Pad∑
j=Ori+1

Mi,j/(K × Pad), (11)

K, Ori = P , and Pad indicate the number of selected event frames, original event frames, and
padding frames, respectively.
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B Experiments

B.1 Experiment Settings

We utilize the default hyperparameters for the B-Mamba layer [78], setting the state dimension to
16 and the expansion ratio to 2. Additionally, we adjust the stochastic depth ratio to 0, 0.15, and
0.5 for the Tiny, Small, and Middle versions, respectively. We utilize the AdamW optimizer with a
cosine learning rate schedule with the initial 5 epochs for linear warm-up. Unless a special statement
is made, the default settings for the learning rate and weight decay are 1e-3 and 0.05, respectively.
The model is trained with 100 epochs for PAF, SeAct, and N-Caltech101 datasets and 50 epochs
for HARDVS, N-Imagenet, ArDVS100, TemArDVS100, and Real-ArDVS10 datasets. We employ
BFloat16 precision during training to improve stability. For data augmentation, we implement random
scaling, random cropping, random flipping, and data mixup of the event frames during the training
phase.

B.2 Event Frame Sampling Settings

The additional experiment settings of sampling frequency and aggregated event count per frame for
different datasets are presented in Tab. 8.

Table 8: The sampling frequency and aggregated event count per frame for different datasets

Dataset Sampling Frequency Aggregated Event Count / Frame
N-Caltech101 200 Hz 50,000
N-Imagenet 50 Hz 2,000,000
PAF 80 Hz 100,000
SeAct 80 Hz 80,000
HARDVS 100 Hz 80,000
ArDVS100 50 Hz 80,000
Real-ArDVS10 50 Hz 80,000
TemArDVS100 50 Hz 80,000

B.3 Reproduction Settings for [80]

We reproduced [80] from their official GitHub repository and evaluated it on our proposed and
event-based recognition datasets for comparative analysis. The direct comparison is not feasible due
to fundamental differences: 1) task (object detection vs. object recognition), 2) network structure
(detection vs. classification head), 3) SSM backbone (S4D, S5 vs. Mamba), 4) evaluation datasets
(detection vs. recognition), and 5) evaluation metrics (mAP vs. accuracy).

For the above reasons, to ensure a fair comparison, we replaced our Mamba backbone with [80]’s
S5-ViT-B model and substituted its YOLOX detection head with our classification head based
on its GitHub repository PyTorch implementation. We did not use the S4D backbone due to its
lower performance compared to the S5 model, as reported by [80]. We adopted [80]’s event voxel
representation, creating event voxels based on 50 ms time windows corresponding to 20 Hz sampling
frequency, divided into T = 10 discrete bins. Following [80], we applied data augmentation techniques
such as random horizontal flips and zooming. The training was performed on the PAF and SeAct
datasets for 100 epochs and on HARDVS ArDVS100, TemArDVS100, and Real-ArDVS10 datasets
for 50 epochs. We also integrated the PEAS module, with K indicating the number of selected event
frames.

B.4 More Experiment Results

Frame Aggregation Method: Time Windows vs. Event count. We illustrate two event aggregation
methods in Fig. 4, where ‘Event count’ aggregation leads to varying aggregation temporal ranges
and ‘Time Windows’ keeps them consistent. As shown in Fig. 5 (b), ‘Event count’ performs better
compared to ‘Time Windows’. For example, ‘Event count’ achieves 96.55% accuracy compared to
94.83% for ‘Time Windows’ when both trained and evaluated at 60 Hz. However, ‘Event count’ and
‘Time Windows’ experience -16.66% and -18.97% performance drops respectively, when evaluating
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Table 9: Comparison of existing datasets with our ArDVS100 dataset.

Dataset Year Sensors Object Scale Class Real
Temporal

Fine-grained
Labels

Duration(s)

MNISTDVS [43] 2013 DAVIS128 Image 30,000 10 % % -
N-Caltech101 [43] 2015 ATIS Image 8,709 101 % % 0.3s
N-MNIST [57] 2015 ATIS Image 70,000 10 % % 0.3s
CIFAR10-DVS [33] 2017 DAVIS128 Image 10,000 10 % % 1.2s
N-ImageNet [29] 2021 Samsung-Gen3 Image 1,781,167 1,000 % % 0.1s
ES-lmageNet [37] 2021 - Image 1,306,916 1,000 % % -
DvsGesture [1] 2017 DAVIS128 Action 1,342 11 ! % 6s
N-CARS [58] 2018 ATIS Car 24,029 2 ! % 0.1s
ASLAN-DVS [2] 2019 DAVIS240 Hand 100,800 24 ! % 0.1s
PAF [41] 2019 DAVIS346 Action 450 10 ! % 5s
HMDB-DVS [2] 2019 DAVIS240c Action 6,766 51 % % 19s
UCF-DVS [2] 2019 DAVIS240c Action 13,320 101 % % 25s
DailyAction [39] 2021 DAVIS346 Action 1,440 12 ! % 5s
HARDVS [63] 2022 DAVIS346 Action 107,646 300 ! % 5s
THUEACT50 [17] 2023 CeleX-V Action 10,500 50 ! % 2s-5s
THUEAC50CHL [17] 2023 DAVIS346 Action 2,330 50 ! % 2s-6s
Bullying10K [12] 2023 DAVIS346 Action 10,000 10 ! % 1s-20s
SeAct [77] 2024 DAVIS346 Action 580 58 ! % 2s-10s
DailyDVS-200 [61] 2024 DVXplorer Lite Action 22,046 200 ! % 2s-20s
ArDVS100 2024 DAVIS346 Action 8,000 100 % % 1s-263s
Real-ArDVS10 2024 DAVIS346 Action 100 10 ! % 2s-75s
TemArDVS100 2024 DAVIS346 Action 8,000 100 % ! 14s-214s

Table 10: Model generalization results across different inference frequencies f on PAF dataset.

Top-1 Accuracy & Performance Drop (%)
Val fTrain f Settings

20 Hz 40 Hz 60 Hz 80 Hz 100 Hz
Time Windows 93.10 89.65-3.45 74.14-18.96 72.41-20.69 68.97-24.13

Event Counts 94.83 87.93-6.90 75.86-18.97 75.86-18.97 70.69-24.1420 Hz
Event Counts + PAST-SSM-S 93.10 89.65-3.45 89.65-3.45 86.21-6.89 84.48-8.62

Time Windows 79.31-15.52 87.93-6.90 94.83 89.65-5.18 75.86-18.97

Event Counts 81.03-15.52 89.65-6.90 96.55 87.93-8.62 79.89-16.6660 Hz
Event Counts + PAST-SSM-S 89.66-6.89 93.1-3.45 96.55 91.38-5.17 87.93-8.62

Time Windows 65.51-25.86 87.93-3.44 91.37-0 91.37-0 91.37
Event Counts 67.24-27.59 86.21-8.62 89.65-5.18 93.1-1.73 94.83100 Hz

Event Counts + PAST-SSM-S 89.66-5.17 94,83-0 93.1-1.73 93.1-1.73 94.83

at 100 Hz. This result leads us to propose the PEAS module to improve model generalization across
inference frequencies.

The statistics result for model generalization across varying inference frequencies. In Tab. 10,
we present the specific statistics result for Fig.7 in the main paper for future comparison.

C Dataset Details

C.1 ArDVS100 Dataset

ArDVS100 contains 100 different action series with varying durations synthesized by concatenating
the randomly selected event streams from the HARDVS [63] dataset. The ArDVS100 contains 8000
event stream, which durations range from 1.46s to 263.26s, with a mean of 45.62s. To maintain
brevity, Tab. 11 details only the selected 10 action series. We can observe that different classes feature
distinct action series with varying meta-action counts, thus resulting in differing durations.
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C.2 Real-ArDVS10 Dataset

The Real-ArDVS10 dataset was recorded using the DVS346 event camera, which has a resolution
of 346 × 240 pixels. The Real-ArDVS10 dataset includes ten action series randomly selected from
the ArDVS100 dataset. During recording, participants stood before an event camera and performed
meta-actions sequentially as instructed. Ten individuals (8 male, 2 female) contributed to the dataset,
with detailed meta-action descriptions provided in Tab. 12.

C.3 TemArDVS100 Dataset

ArDVS100 contains 100 different action series with varying durations synthesized by concatenating
the randomly selected event streams from both HARDVS [63] and DailyDVS-200 [61] datasets. The
ArDVS100 is made up of 8000 event streams, whose durations range from 14.53s to 213.54s, with a
mean of 93.87s. For presentation simplicity, we just illustrate the selected 8 action series with detailed
action descriptions in Tab. 13. Classes 1 to 4 and 97 to 100 share the same four meta-actions but form
distinct action series through varying meta-action combinations, allowing the TemArDVS100 dataset
to provide fine-grained temporal labels for more precise action recognition.

C.4 Dataset Comparision

We compare our proposed ArDVS100, Real-ArDVS10, and TemArDVS100 datasets with existing
event-based recognition datasets. As shown in Tab. 9, previous datasets contain second-level event
streams lasting from 0.1s to 20s, while our proposed Real-ArDVS10 and TemArDVS100 datasets
provide minute-level duration event streams lasting from 1s to 265s, 2s to 75s and 14s to 215s,
respectively. We believe these proposed benchmarks will provide enhanced evaluation platforms for
recognizing event streams of arbitrary durations and inspire further research in this field.

C.5 Publicly Available Dataset

Five publicly available event-based datasets are evaluated in this paper as follows: 1) PAF [41], also
known as DVS Action, is an indoor dataset featuring 450 recordings across ten action categories
lasting around 5s. 2) SeAct [77] is a newly released dataset for event-based action recognition,
covering 58 actions within four themes lasting around 2s-10s. This work uses only class-level labels
despite available caption-level labels. 3) HARDVS [63] is currently the largest dataset for event-based
action recognition, comprising 107,646 recordings of 300 action categories. It also has an average
duration of 5s and a resolution of 346 × 260. 4) N-ImageNet [29] is derived from the ImageNet-1K
dataset, where the RGB images are displayed on a monitor and captured by a moving event camera.
It includes 1,781,167 event streams with 480 × 640 resolution across 1,000 unique object classes.
5) N-Caltech101 [43] contains event streams captured by an event camera in front of a mobile 180
× 240 ATIS system [49] with the LCD monitor presenting the original RGB images in Caltech101.
There are 8,246 samples comprising 300 ms in length, covering 101 different types of items.

D Discussion

Model Limitation. We observe that larger VideoMamba tends to overfit during our experiments,
resulting in suboptimal performance. This issue is not limited to our models but is also observed
in VMamba [22] and VideoMamba [34]. Future research could explore training strategies such as
self-distillation and advanced data augmentation to mitigate this overfitting.

Broader Impact. Recognition is a critical vision task with widespread applications like robot naviga-
tion. Traditional RGB-based methods can degrade due to motion blur and lighting variations. Event
cameras exclusively capture moving objects, providing resilience to rapid motion and illumination
changes while consuming minimal power. This method may be useful for high-level recognition tasks.
As a data-driven approach, the method’s performance is sensitive to data biases. Careful attention to
the data collection process is essential to ensure reliable and accurate results.
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Table 11: Meta-action descriptions for 10 selected action series classes in the ArDVS100 dataset.
ArDVS100 includes 100 action series of varying durations, created by randomly concatenating event
streams from HARDVS [63] to capture temporal action transitions.

Class Index Description Class Index Description
Class 1 Action050- Step in Place ture Class 10 Action028- Bow Straight Arm Rowing true

Class 20
Action177- Pinch waist

Class 30
Action181- Shoulder Lift

Action006- Upper and Lower Swing Arms Action273- Shoulder Wrap
Action014- Alternate Front Kick Action215- Skew Head Biye

Class 40

Action185- clench your fist and start running

Class 80

Action111- Left iliopsoas muscle stretching
Action195- Touch the back of the head Action185- clench your fist and start running
Action039- Forward and backward sliding steps Action043- Single Leg Jump
Action240- Standing Long Jump Action197- Touch the neck and tilt the head
Action206- Hip Up Kick Jump Action199- Touch the forehead
Action199- Touch the forehead Action120- Bare Hand Hard Pull Boat Action

Class 50

Action174- Chest Beating Action026- Bow Side Flat Lift
Action021- Body flexion and rotation Action032- Eavesdropping action
Action013- 9th set of broadcast gymnastics kicking exercises Action046- Press stapler
Action024- Side Lift Swivel Arm Action186- Rubbing Hands for Heating
Action097- Left Back Stretch Action237- Hard Pull Swing
Action248- Standing Twist Action243- Standing Right Rear Leg Lift

Class 60

Action072- Right hand raised Action121- Wandering and Pacing
Action274- Chest Stretch Action236- Eye Care Exercise
Action265- Arrow Squat Knee Lift Action093- Leg bending side sitting
Action257- Simplified Tai Chi Tower Knee Depression Step Action023- Side Lift
Action208- Knock Calculator Action082- Shout
Action264- Arrow Squat Kick Action132- Strike Ten Step Fist
Action170- Fist

Class 100

Action083- Biting Lips true
Action119- Bare Hand Squat Action025- Side Lunge Squat true
Action069- Right Lunge Twist Stretch Action061- Right swag true
Action024- Side Lift Swivel Arm Action244- Standing Left Leg Lift true
Action182- Knee Lift Action115- Opening and closing steps true
Action052- Cross waist punch Action046- Press stapler true

Class 70

Action022- Body Rotation Movement Action169- Wave true
Action133- Snap Fingers Action099- Left Front Thigh Stretch true
Action050- Step in Place Action247- Standing Jump Transformation true
Action018- Alternating Knee Strike Action119- Bare Hand Squat true
Action056- Holding cheeks with both hands Action237- Hard Pull Swing true
Action207- Salute Action111- Left iliopsoas muscle stretching true
Action244- Standing Left Leg Lift Action144- Arm Press Down true
Action208- Knock Calculator Action253- Simplified Tai Chi Twin Peaks Through Ears true
Action198- Touch waist and clip back Action147- Scratch your ears and cheeks true
Action212- Comb Hair Action103- Left Bend true
Action067- Right thigh front stretch Action289- Cover the Eyes and Lift the Legs true
Action008- 9th set of broadcast gymnastics side movements Action106- Left hand circle true

Table 12: Meta-action descriptions for action series classes in the Real-ArDVS10 dataset. This
dataset, captured by an event camera, features real human action transitions for ten randomly selected
action series from the ArDVS100 dataset classes.

Class Index Description Class Index Description
Class 4 Action038- Front and rear foot pads

Class 72

Action049- Jumping Rope in Place
Class 11 Action169- Wave Action250- Standing Touch Toe
Class 15 Action149- Surrender Action127- Touch Shoulder

Class 27
Action143- Twist waist Action086- hiss action
Action154- Wipe the Neck Action116 - jumping jack
Action292- Air Kiss Action171- Cover Ears

Class 30
Action181- Shoulder Lift Action277- selfie
Action273- Shoulder Wrap Action023- Side Lift
Action215- Skew Head Biye Action168- Block the Sun

Class 36
Action250- Standing Touch Toe Action211- Mummy Jump
Action066- Right single swing arm Action296- Applause
Action195- Touch the back of the head Action279- Take a step forward

Class 40

Action185- clench your fist and start running

Class 90

Action106- Left hand circle
Action195- Touch the back of the head Action174- Chest Beating
Action039- Forward and backward sliding steps Action131- Tie Hair
Action240- Standing Long Jump Action082- Shout
Action206- Hip Up Kick Jump Action240- Standing Long Jump
Action199- Touch the forehead Action273- Shoulder Wrap

Class 56

Action106- Left hand circle Action111- Left iliopsoas muscle stretching
Action199- Touch the forehead Action212- Comb Hair
Action013-9th set of broadcast gymnastics kicking exercises Action067- Right thigh front stretch
Action250- Standing Touch Toe Action255- Simplified Tai Chi as if sealed off
Action105- Left hand raised Action047- In Place Wide Distance Run
Action116 - jumping jack Action116- jumping jack

Action244- Standing Left Leg Lift
Action031- Make a Face
Action108- Left Oblique Pull Down Half Squat
Action016- Alternate Front Kick Jump
Action078- Right iliopsoas muscle stretch
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Table 13: Meta-action descriptions for 8 selected action series in the TemArDVS100 dataset.
TemArDVS100 includes 100 action series of varying durations created by randomly combining
event streams from HARDVS [63] and DailyDVS-200 [61]. TemArDVS100 features action series
with identical meta-action but different combinations, enabling fine-grained temporal labeling of
action transitions.

Class Index Description Class Index Description

Class 1

Throw the ball in hand into the basket.

Class 2

Walk forward with your chest out and eyes looking straight ahead.
Turn off the tap of the water dispenser or sink. Turn off the tap of the water dispenser or sink.

Walk forward with your chest out and eyes looking straight ahead. Action090- Head to Head Comparison true
Action090- Head to Head Comparison true Throw the ball in hand into the basket.

Class 3

Turn off the tap of the water dispenser or sink.

Class 4

Throw the ball in hand into the basket.
Throw the ball in hand into the basket. Action090- Head to Head Comparison true

Walk forward with your chest out and eyes looking straight ahead. Turn off the tap of the water dispenser or sink.
Action090- Head to Head Comparison true Walk forward with your chest out and eyes looking straight ahead.

......

Class 97

Action135- Playing Tai Chi true

Class 98

Put on the hat that is in hand or on the table.
Action272- Draw Circle at Elbow true Action211- Mummy Jump true

Action242- Standing Right Leg Lift true Action135- Playing Tai Chi true
Action211- Mummy Jump true Raise one or both hands, make a fist, and extend it outward from the inside.

Tear a piece of paper. Action063- Right humeral triple extension true
Action063- Right humeral triple extension true Action272- Draw Circle at Elbow true

Raise one or both hands, make a fist, and extend it outward from the inside. Tear a piece of paper.
Put on the hat that is in hand or on the table. Action242- Standing Right Leg Lift true

Class 99

Action135- Playing Tai Chi true

Class 100

Tear a piece of paper.
Tear a piece of paper. Action063- Right humeral triple extension true

Action272- Draw Circle at Elbow true Action242- Standing Right Leg Lift true
Raise one or both hands, make a fist, and extend it outward from the inside. Action135- Playing Tai Chi true

Put on the hat that is in hand or on the table. Action211- Mummy Jump true
Action211- Mummy Jump true Put on the hat that is in hand or on the table.

Action063- Righthumeral triple extension true Action272- Draw Circle at Elbow true
Action242- Standing Right Leg Lift true Raise one or both hands, make a fist, and extend it outward from the inside.
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