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Abstract

Encoder-decoder pre-training has proven suc-001
cessful in natural language processing. Most002
of the existing works on encoder-decoder pre-003
training are based on the autoregressive archi-004
tecture. In this paper, we introduce MLAE, a005
new pre-training framework based on a non-006
autoregressive encoder-decoder architecture. It007
behaves like a masked autoencoder and re-008
constructs the masked language tokens in a009
non-autoregressive manner. Our model com-010
bines the best of two worlds: the advantages of011
the encoder-only models on the understanding012
tasks and the capabilities of the autoregressive013
encoder-decoder on the generation tasks. Ex-014
tensive experiments show that MLAE outper-015
forms strong baselines on various benchmarks,016
including language understanding, autoregres-017
sive generation, as well as non-autoregressive018
generation.1019

1 Introduction020

Recent years have witnessed a trend towards large-021

scale pre-trained language models (Devlin et al.,022

2019; Liu et al., 2019; Joshi et al., 2020; Song023

et al., 2019; Raffel et al., 2020; Lewis et al., 2020;024

Qi et al., 2021). The pre-trained models signifi-025

cantly improve the performance on downstream026

tasks. From the perspective of the model archi-027

tecture, we can classify current language models028

into three categories: non-autoregressive (NAR)029

encoder (Devlin et al., 2019; Liu et al., 2019), au-030

toregressive (AR) decoder (Radford et al., 2018),031

and encoder-decoder (Raffel et al., 2020; Lewis032

et al., 2020). AR decoders (e.g., GPT) show im-033

pressive performance of in-context learning, while034

the others are better at fine-tuning on the down-035

stream tasks.036

The NAR encoders, or the encoder-only models037

(e.g., BERT, RoBERTa, etc) are superior on natu-038

ral language understanding (NLU) tasks, such as039

1We will release the code for reproducibility.
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Figure 1: Top: the architectures of the mainstream
pre-trained language models. Bottom: the results of
MLAE, RoBERTa and T5 for NLU and NLG tasks.

text classification and question answering. How- 040

ever, due to the lack of pre-trained decoder, they 041

can not naturally be fine-tuned on natural language 042

generation (NLG) tasks. Therefore, current works 043

usually adopt the vanilla encoder-decoder archi- 044

tecture (e.g., T5, BART, etc). Although the vanilla 045

encoder-decoder pre-training provides a pre-trained 046

decoder, its AR decoder undermines the ability of 047

the encoder, which hurts the quality of generation. 048

In this paper, we introduce a simple yet effective 049

pre-training framework based on NAR encoder- 050
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Figure 2: Overview for the pre-training of MLAE.

decoder architecture, named as Masked Language051

AutoEncoder (MLAE). The proposed MLAE not052

only provides a pre-trained decoder for generation053

tasks but also significantly improves the encoder’s054

ability. As shown in Figure 1, the encoder part of055

MLAE is more powerful than the counterpart of056

the vanilla encoder-decoder, even the encoder-only057

model. Besides, we introduce scheduled masking058

to bridge the gap between pre-training and genera-059

tion for MLAE. Above all, our model has shown060

superior performance on both NLU and NLG tasks.061

Especially for NAR generation, MLAE outper-062

forms strong baselines by an improvement of 3.03063

ROUGE-2 on XSum dataset.064

2 Background065

We begin with the observation: while pre-trained066

encoder-decoder models are good at language gen-067

eration, they trade off the encoders’ ability. Dur-068

ing pertaining, the encoder maps the unmasked069

tokens into latent representations, while the de-070

coder autoregressively reconstructs the masked to-071

kens. However, this architecture makes the model072

more rely on the AR decoder to generate target073

tokens rather than the encoder. Therefore, the en-074

coders pre-trained through AR encoder-decoder075

models are generally weaker than the encoder-only076

model (Liu et al., 2019).077

To verify the above observation, we pre-train a 078

12L RoBERTa and a 12L-4L T5 with the combi- 079

nation of English-Wikipedia and the BookCorpus. 080

The performance on NLU tasks is a good metric for 081

the ability of encoder. We thus evaluate RoBERTa 082

and T5 encoder on the large tasks of GLUE bench- 083

mark (Wang et al., 2019) and SQuAD2 dataset (Ra- 084

jpurkar et al., 2018). We use the same fine-tuning 085

method and hyper-parameters for a fair comparison. 086

Table 1 demonstrates that RoBERTa outperforms 087

T5 encoder on both two datasets. It shows that 088

although the AR encoder-decoder pre-training pro- 089

vides a pre-trained decoder to benefit generation 090

tasks, the ability of its encoder is undermined by 091

AR decoder. 092

In this work, inspired by the recent success of 093

Masked Autoencoder (MAE), we explore a way to 094

combine the best of two worlds: the architecture of 095

encoder-decoder models and the NAR objective of 096

encoder-only models. 097

3 MLAE 098

In this section, we first introduce the model ar- 099

chitecture of MLAE. Then we demonstrate the 100

fine-tuning methods for NLU and NLG tasks, in- 101

cluding two generation paradigms: AR and NAR 102

generation, respectively. 103
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3.1 Pre-training104

MLAE is based on asymmetric NAR Transformer105

encoder-decoder. Figure 2 shows the overview for106

pre-training of our model. Similar to the MAE (He107

et al., 2021), it uses a decoder to reconstruct the108

masked tokens at the corresponding positions dur-109

ing pre-training. Given blocks of sentences, we110

randomly mask a portion of input tokens. The un-111

masked tokens are first processed by a series of112

Transformer blocks, including a self attention layer113

followed by a feed forward layer. After the encoder,114

the masked tokens are concatenated with latent rep-115

resentations, then feed into a light-weight decoder.116

The decoder is designed to reconstruct the masked117

tokens bidirectionally from a full set of tokens.118

Compared with vanilla encoder-decoder mod-119

els (Raffel et al., 2020; Lewis et al., 2020), the120

decoder of MLAE utilizes bidirectional informa-121

tion to reconstruct the masked tokens. Besides, we122

adopt an asymmetric encoder-decoder architecture:123

the decoder has less layers than the encoder. Both124

of them prevent the model more rely on the de-125

coder, thus provide a more challenging task for the126

encoder.127

3.2 Fine-tuning for Understanding Tasks128

For NLU tasks, we directly use the encoder part of129

MLAE as feature extractor. After the encoder, we130

add a linear layer followed by softmax classifier as131

task layer. The encoder generates latent represen-132

tations from source sentences. Then the task layer133

projects the representation corresponding to [EOS]134

into the label space.135

3.3 Fine-tuning for Generation Tasks136

For NLG tasks, we introduce two fine-tuning meth-137

ods for MLAE, which are UniLM-style (Dong138

et al., 2019) fine-tuning and Seq2seq-style fine-139

tuning.140

For UniLM-style fine-tuning, we modify the141

attention mask as Seq2Seq mask in each self-142

attention layer of the decoder. With Seq2Seq mask,143

a token in the source segment can attend to all the144

tokens within segment, while a token in the target145

segment can only attend to the leftward tokens. The146

encoder first generates latent representations from147

source sentences. After the encoder, we concate-148

nate the latent representations with target tokens,149

then feed them into the decoder. The decoder au-150

toregressively predicts target tokens conditioned on151

the leftward tokens.152

Algorithm 1 Scheduled Masking
Input: source sentence [x1, x2, ..., xn] and target sentence

[y1, y2, ..., yn], initial mask ratio m0 and maximum train-
ing updates T .
for t = 0 to T do

// feed source sentence into the encoder
[hi]i∈[1,n] ← Encoder([xi]i∈[1,n])
// Masking scheduler
mt ← m0 − m0

T
t

[y1, ...,M, ..., yn]←Mask([yi]i∈[1,n],mt)
// feed masked target sentence into the decoder
[y∗

i ]i∈[1,n] ← Decoder([y1, ...,M, ..., yn], [hi]i∈[1,n])

Loss =
∑

i
f(y∗

i , yi)
end for

For Seq2seq-style fine-tuning, we insert cross- 153

attention layers into each layer of MLAE decoder, 154

then fine-tune it as the vanilla encoder-decoder. 155

The decoder autoregressively generates target to- 156

kens conditioned on the encoder output through 157

cross-attention layers. To make full use of pre- 158

trained modules, we initialize each cross-attention 159

layer by the weights of each self-attention layer. 160

The experiments in Section 5.1 demonstrate that 161

Seq2seq-style fine-tuning is better for MLAE on 162

generation task. We achieve greater gains with 163

more pre-trained modules of MLAE. 164

3.4 Scheduled Masking 165

There are two major gaps between the MLM task 166

and the AR generation. During the pre-training, 167

MLAE decoder is designed to bidirectionally re- 168

construct the masked tokens from latent represen- 169

tations generated by the encoder. However, in the 170

fine-tuning for AR generation, the decoder aims 171

to predict the target tokens given the leftward to- 172

kens within target segment and source tokens. Be- 173

sides, the input of decoder is blocks of target tokens 174

without the masked tokens introduced during the 175

pre-training. 176

To bridge the MLM task and AR generation, 177

we design a simple yet effective strategy for the 178

decoder input, named as masking scheduler. We 179

deploy the linear masking decay for the scheduler 180

to train the model from easier data to harder one. 181

We summarize the training process with mask- 182

ing scheduler in Algorithm 1. At the beginning 183

of fine-tuning, we randomly mask a portion of in- 184

put tokens for the decoder. Since the decoder has 185

already learned to bidirectionally reconstruct the 186

masked tokens in the pre-training, masking sched- 187

uler creates easier samples for the decoder. As 188

the training progresses, the mask ratio is linearly 189
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Models Arch. Obj. SQuAD2 MNLI-(m/mm) QNLI QQP SST Avg.
T5

Enc-dec AR
- / - 85.56/85.20 89.30 84.76 93.54 87.67

T5 Encoder 77.87/80.83 85.54/85.40 92.32 87.99 93.27 88.90
RoBERTa Enc-only NAR 79.14/81.86 85.88/86.10 92.39 87.60 93.16 89.03
MLAE Enc-dec NAR 79.93/82.84 86.15/86.05 93.05 88.08 93.62 89.39

Table 1: Results for T5, T5 encoder, RoBERTa and MLAE on the dev set of SQuAD2 and GLUE benchmark. We
report EM/F1 scores for SQuAD2.

decayed to 0, which makes the decoder gradually190

adapt from NAR reconstruction to AR generation.191

Similarly in the fine-tuning for NAR generation,192

the decoder non-autoregressively generates target193

tokens from a full set of the unknown tokens. We re-194

place the unknown tokens with the masked tokens195

used in the pre-training. Then we adopt Masked-196

and-predict (Ghazvininejad et al., 2019) strategy197

to narrow the gap between NAR generation and198

the MLM pre-training. The number of the masked199

tokens is sampled from a uniform distribution be-200

tween one and the maximum sequences’ length.201

4 Experiments202

In this section, we conduct experiments on both203

NLU tasks (i.e., the GLUE benchmark and extrac-204

tive question answering), and NLG tasks (i.e., ab-205

stractive summarization), including AR and NAR206

paradigms.207

4.1 Setup208

Models We pre-train RoBERTa, T5 and MLAE209

with the same corpus. RoBERTa has a 12-layer en-210

coder. T5 is based on the vanilla encoder-decoder,211

which has a 12-layer encoder and 4-layer decoder.212

For a fair comparison, MLAE has the same depth213

for the encoder and the decoder, respectively. We214

adopt the BERT-base setting: the hidden dimension,215

intermediate dimension of feed-forward layers and216

attention heads for all models are 768, 3072 and 12217

respectively.218

Data Following Devlin et al. (2019), we use219

the BookCorpus (Zhu et al., 2015) and English-220

Wikipedia. The BookCorpus is a large collection221

of free novel books written by unpublished authors,222

which contains 800M words. We remove non-text223

parts for English-Wikipedia, which leads to 2.5B224

words.225

For all models, we set the mask ratio as 15%.226

The input length is 512 tokens. We randomly mask227

consecutive spans rather than tokens. The average228

length of span is 3 tokens. We adopt MLM as the 229

pre-training task. 230

Training We train our model and the baselines 231

with Adam (Kingma and Ba, 2015) optimizer for 232

125K steps. The batch size is set as 2,048. The 233

whole training procedure takes about 2 days on 234

64 NVIDIA Tesla V100 GPUs. The other hyper- 235

parameters used in pre-training are detailed in Ta- 236

ble 8 of Appendix A. 237

4.2 Results of Understanding Tasks 238

We evaluate our model and the baselines on the 239

large tasks of GLUE benchmark and SQuAD2 240

dataset. For T5 encoder and MLAE, we only use 241

their encoder as feature extractor, then add a task 242

layer for them. Besides, we reformat the text clas- 243

sification to text-to-text generation, and directly 244

fine-tune T5 without any modifications. More de- 245

tails are in Table 9 and Table 10 of Appendix A. 246

GLUE benchmark (Wang et al., 2019) is a col- 247

lection of nine language understanding tasks. We 248

choose the large tasks of GLUE benchmark, includ- 249

ing MNLI, QNLI, QQP and SST. 250

SQuAD2 (Rajpurkar et al., 2018) is one of the 251

most popular benchmarks for extractive question 252

answering, which combines SQuAD (Rajpurkar 253

et al., 2016) with unanswerable questions. 254

We report the results of our model and the base- 255

lines in Table 1. T5 encoder outperforms T5 by 256

a gain of 1.23 average score on the large tasks of 257

GLUE benchmark. It shows that reformatting text 258

classification to generation leads to the degradation 259

of performance. Besides, RoBERTa outperforms 260

T5 encoder on both two dataset, which verifies 261

our analysis that the vanilla encoder-decoder pre- 262

training undermines the ability of its encoder. 263

Furthermore, our model achieves gains of 0.36 264

average score on the large tasks of GLUE bench- 265

mark, 1.28 EM and 1.27 F1 on SQuAD2 dataset 266

compared with RoBERTa. It demonstrates that 267

MLAE creates a more powerful encoder than 268

RoBERTa and the encoder part of T5. 269

4



Models Arch. Obj. XSum CNN/DM
RG-1 RG-2 RG-L RG-1 RG-2 RG-L

RoBERTa (Liu et al., 2019) Enc-only NAR 40.19 17.50 38.83 37.03 15.03 31.41
T5 (Raffel et al., 2020) Enc-dec AR 41.29 18.37 39.55 40.43 17.50 34.21
MLAE (ours) Enc-dec NAR 42.58 19.30 40.73 40.74 17.78 34.61

Table 2: Results for RoBERTa, T5 and MLAE on the test set of XSum and CNN/DM dataset.

4.3 Results of AR Generation270

For AR generation, we conduct experiments on271

two popular benchmarks, Extreme summarization272

(XSum) and CNN/Daily Mail (CNN/DM) dataset.273

XSum (Narayan et al., 2018) is a collection274

of 227K online articles and single sentence sum-275

maries. The average input and output lengths are276

359 and 21 respectively.277

CNN/DM (Hermann et al., 2015; Nallapati et al.,278

2016) contains online news articles accompanying279

with multi-sentence summaries. The average to-280

kens of input and output are 781 and 56 respec-281

tively.282

For RoBERTa, due to lack of pre-trained decoder,283

we add a randomly initialized 4-layer decoder for284

it, and fine-tune the whole model as the vanilla285

encoder-decoder. For MLAE, we adopt Seq2seq-286

style fine-tuning and initialize the cross-attention287

layers by the weight of self-attention layers. The288

masking scheduler is also deployed for the decoder:289

we randomly mask 60% tokens of decoder input at290

beginning and linearly decay the mask ratio to 0 as291

the training progresses.292

We fine-tune our model and the baselines for293

30K updates on CNN/DM dataset, 50K updates on294

XSum dataset; and select the best checkpoint based295

on their validation loss. For a fair comparison,296

we use the same hyper-parameters for all models.297

More details can be found in Table 11 and Table 12298

of Appendix A. For inference, we truncate the in-299

puts to be 512 tokens and use beam search strategy300

to generate target sentences. We set beam size as 6,301

length penalty as 1.0. We use ROUGE (Lin, 2004)302

as the evaluation metric for all experiments.303

Table 2 summarizes the results of our model and304

the baselines on the test set of XSum and CNN/DM305

dataset. T5 and MLAE outperform RoBERTa by306

a large gain on both two datasets. It verifies that307

the pre-trained decoder can significantly improve308

the quality of generation. Furthermore, compared309

with T5, MLAE achieves improvements of 0.93310

ROUGE-2 on XSum dataset, and has comparable311

performance on CNN/DM dataset. It shows the312

effectiveness of our model on AR generation. 313

4.4 Results of NAR Generation 314

For NAR generation, we choose iNAT (Lee et al., 315

2018), InsT (Stern et al., 2019), LevT (Gu et al., 316

2019) and CMLM (Ghazvininejad et al., 2019) as 317

the baselines trained from the scratch. 318

To explore the impact of pre-training strategy, 319

we pre-train the T5-NAR model on the 16G corpus. 320

The only difference between T5-NAR and T5 lies 321

on the design of the decoder. The input of T5-NAR 322

decoder is a full set of the masked tokens. In the 323

self-attention layer of T5-NAR’s decoder, we re- 324

move the masking for the rightward tokens to allow 325

bidirectional information. Above all, the decoder 326

of T5-NAR is designed to non-autoregressively re- 327

construct the target tokens from the masked tokens. 328

We pre-train MLAE with cross-attention layers 329

on the same 16G corpus, then directly load our 330

model into the CMLM. For masking scheduler, we 331

adopt Masked-and-predict (Ghazvininejad et al., 332

2019) strategy. 333

We evaluate our model and the baselines on 334

XSum dataset. Despite knowledge distillation can 335

improve the quality of NAR generation, the re- 336

sults highly depend on the distilled dataset. To 337

enable other researchers to reproduce our results 338

more easily, we do not perform knowledge distilla- 339

tion for our model and the baselines. Since NAR 340

models need more updates to converge, we set the 341

maximum updates as 300K. The NAR baselines 342

trained from the scratch are integrated into Fairseq 343

library (Ott et al., 2019). We implement these base- 344

lines with default settings2. 345

For inference, we truncate the inputs to be 512 346

tokens and use iterative decoding strategy. The 347

tokens with low confidence will be masked and 348

re-generated in the next cycle until the iterations 349

reaches a manually set number. Following Qi et al. 350

(2021), the maximum iteration is set as 10. We 351

merge consecutive repeated tokens to ease the prob- 352

lem of repeated tokens. 353

2Fairseq NAR baselines
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Models RG-1 RG-2 RG-L
iNAT (Lee et al., 2018) 20.71 4.39 22.94
InsT (Stern et al., 2019) 21.44 6.77 24.66
LevT (Gu et al., 2019) 25.02 7.41 27.15
CMLM (Ghazvininejad et al., 2019) 29.24 7.70 28.93
T5-NAR 31.48 9.02 30.80
MLAE (Ours) 39.08 14.81 37.25

Table 3: Results for the baselines and MLAE on the test set of XSum dataset.

Models Layers # Params AR NAR
RG-1 RG-2 RG-L RG-1 RG-2 RG-L

BANG (Qi et al., 2021) 6L-6L 100M 41.09 18.37 33.22 34.71 11.71 29.16
MLAE (Ours) 6L-6L 100M 41.69 18.63 39.93 38.56 14.41 36.76
MLAE (Ours) 9L-4L 100M 42.10 18.76 40.22 39.25 14.74 37.21

Table 4: Results for BANG (Qi et al., 2021) and MLAE on the test set of XSum dataset, including AR and NAR
generation paradigm.

Table 3 presents the results of MLAE and the354

baselines. T5-NAR and MLAE achieve a gain of355

over 1 ROUGE-2 compared with the other base-356

lines trained from the scratch. It shows that via357

pre-training the performances for NAR generation358

are significantly improved. Further, with a more359

powerful encoder, MLAE outperforms T5-NAR by360

improvements of 5.79 ROUGE-2 on XSum dataset.361

It shows the effectiveness of MLAE pre-training362

on the NAR generation paradigm.363

4.5 Comparison with BANG364

We compare our model with BANG (Qi et al.,365

2021) on XSum dataset. BANG is based on vanilla366

encoder-decoder, which fuses AR and NAR objec-367

tives through different attention mechanisms. It has368

a 6-layer encoder, 6-layer decoder and 768 hidden369

dimension.370

MLAE is trained with a 9-layer encoder, a 4-371

layer decoder and the same hidden dimension, re-372

sulting in up to 100M backbone parameters for373

a fair comparison. Besides, we train MLAE374

with symmetric architecture. The pre-training cor-375

pus is the same as BANG. The fine-tuning hyper-376

parameters and methods of MLAE on AR and377

NAR generation are consistent with the experi-378

ments presented in Section 4.3 and Section 4.4379

respectively.380

We report the results of our models and BANG381

on Table 4. It demonstrates that 6L-6L and 9L-4L382

MLAE both has consistently better performance383

than BANG on AR and NAR generation paradigm.384

Especially, 9L-4L MLAE outperforms BANG by385

an improvement of 3.03 ROUGE-2 on the NAR 386

generation. 387

5 Ablation Study 388

In this section, we present the comparisons about 389

different fine-tuning methods for NLG tasks in Sec- 390

tion 5.1, the designs of decoder and masking sched- 391

uler in Section 5.2 and Section 5.3, respectively. 392

5.1 Fine-tuning Strategies 393

We conduct experiments to compare UniLM-style 394

and Seq2seq-style fine-tuning for generation on 395

XSum dataset. To further explore the impact of 396

MLAE decoder, we conduct ablation studies for 397

Seq2seq-style fine-tuning with random, partially 398

pre-trained and pre-trained decoder respectively. 399

The parameters of random decoder are all initial- 400

ized through Xavier initialization (Glorot and Ben- 401

gio, 2010). For partially pre-trained decoder, we 402

use MLAE decoder to initialize self-attention and 403

feed-forward layers. However, its cross-attention 404

layers’ weights are still randomly initialized. For 405

pre-trained decoder, on the basis of partially pre- 406

trained decoder, we further use each self-attention 407

layer’s weights of MLAE decoder to initialize cor- 408

respond cross-attention layer’s weights. For a fair 409

comparison, we do not apply masking scheduler 410

for the input of the decoder. 411

We summarize the results in Table 5. First, 412

it shows that Seq2seq-style fine-tuning with pre- 413

trained decoder is a better way for MLAE on gen- 414

eration task: it outperforms Unilm-style fine-tuning 415

by an improvement of 0.87 ROUGE-2. Second, 416
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Fine-tuning Decoder Cross Attn RG-1 RG-2 RG-L
UniLM-style pre-trained % 40.46 17.75 39.18
Seq2seq-style random ! 40.22 17.64 38.94

partially pre-trained ! 40.92 18.19 39.52
pre-trained ! 41.50 18.62 39.94

Table 5: Results for UniLM-style fine-tuning and Seq2seq-style fine-tuning with random/ partially pre-trained/pre-
trained decoder for MLAE on the test set of XSum dataset.

Layers Cross Attn AR NAR
RG-1 RG-2 RG-L RG-1 RG-2 RG-L

8L-8L % 40.50 17.58 38.83 37.94 13.74 36.07
12L-4L % 41.50 18.62 39.94 37.03 13.04 35.65
12L-4L ! 41.29 18.40 39.75 39.08 14.81 37.25

Table 6: Results for MLAE based on symmetric and asymmetric architecture, with and without cross-attention
layers during the pre-training on the test set of XSum dataset. AL-BL refers to A-layer encoder and B-layer
decoder.

with more pre-trained modules of the decoder, we417

achieve greater gain for the quality of generation:418

MLAE encoder with pre-trained decoder outper-419

forms it with partially pre-trained decoder by an420

improvement of 0.43 ROUGE-2, while MLAE421

encoder with partially pre-trained decoder outper-422

forms it with random decoder by a gain of 0.55423

ROUGE-2.424

5.2 Ablation on the Architecture425

In this subsection, we compare MLAE based on426

symmetric and asymmetric architecture in Section427

5.2.1, with and without cross-attention layers for428

the decoder during the pre-training in Section 5.2.2.429

5.2.1 Effect of the Asymmetric Architecture430

We compare MLAE with symmetric and asymmet-431

ric architecture on XSum dataset. For symmetric432

architecture, we train MLAE with an 8-layer en-433

coder, an 8-layer decoder and 768 hidden dimen-434

sion, which leads to the same amount of parameters.435

We report the results of 8L-8L, 12L-4L MLAE on436

Table 6.437

It shows that the asymmetric architecture is pre-438

ferred for AR generation. This results from that the439

ability of the encoder is more crucial for the quality440

of AR generation. For NAR generation, symmetric441

architecture is a better choice. This results from442

that the NAR decoder is required to bidirectionally443

generate target tokens from a full set of the masked444

tokens within few iterations. If the model has a445

weak decoder, it tends to generate repeated tokens,446

which will hurt the performance of generation.447

Scheduler function RG-1 RG-2 RG-L
Constant 41.46 18.50 39.99
Linear decay 42.58 19.30 40.73

Table 7: Results for MLAE with different implemen-
tations of masking scheduler on the test set of XSum
dataset. The initial mask ratio is set as 60%.

5.2.2 Effect of Cross-attention Modules 448

We compare MLAE with and without cross- 449

attention layers for the decoder during the pre- 450

training. For a fair comparison, we pre-train a 451

Base-size, 12L-4L MLAE with cross-attention lay- 452

ers on the same corpus. the masking scheduler is 453

not deployed for the decoder input. As shown in 454

Table 6, MLAE pre-training with cross-attention 455

layers outperforms it without cross-attention layers 456

by improvement of 1.77 ROUGE-2 for NAR gen- 457

eration, and has comparable performance for AR 458

generation. Overall, MLAE with cross-attention 459

layers is preferred for NAR generation. 460

5.3 Effect of Scheduled Masking 461

We first compare different implementations of the 462

masking scheduler: the mask ratio is set as a con- 463

stant, and linearly decayed to 0 as the training pro- 464

gresses. As shown in Table 7, linear decay is a 465

better scheduler function for AR generation. 466

Further, we explore the impact of different initial 467

mask ratio for the masking scheduler. We vary the 468

initial mask ratio from 0% to 90% with an interval 469

of 15%. Figure 3 shows the ROUGE-2 scores for 470
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Figure 3: ROUGE-2 scores on the test set of XSum
dataset for MLAE varying the initial mask ratio of
masking scheduler from 0% to 90%.

AR generation on XSum dataset. It demonstrates471

that replacing a small portion (15%) of decoder472

input with the masked token can significantly im-473

prove the performance of generation. As shown474

in Figure 3, a relatively high initial mask ratio,475

approximately 45% to 75%, is preferred for AR476

generation.477

6 Related Work478

Language model pre-training. The perfor-479

mance of downstream tasks benefits from the large-480

scale pre-trained models. BERT (Devlin et al.,481

2019) introduces MLM to pre-train the encoder-482

only Transformer, which allows the model to use483

bidirectional information to generate latent repre-484

sentations. A greater gain can be achieved by pre-485

training longer with more training data (Liu et al.,486

2019) and masking consecutive spans rather than487

tokens (Joshi et al., 2020).488

However, although the encoder-only models489

achieve great success on NLU tasks, due to lack of490

pre-trained decoder, they are not effectively fine-491

tuned for NLG tasks. Besides, BERT reconstructs492

the masked tokens bidirectionally rather than auto-493

regressively, which broadens the gap between pre-494

training and fine-tuning for AR generation. To495

address these issues, UniLM (Dong et al., 2019)496

pre-trains BERT with different mask mechanisms497

for attention layers. With their proposed Seq2seq498

mask, UniLM can generate target tokens autore-499

gressively with the encoder-only architecture.500

Another line of research is to adopt vanilla501

encoder-decoder framework for pre-training.502

MASS (Song et al., 2019) randomly masks503

consecutive tokens for the input sentences. The504

encoder takes the corrupted sentences as input,505

including the masked and unmasked tokens; its506

decoder reconstructs the masked tokens. Different 507

from MASS, BART (Lewis et al., 2020) feeds 508

the corrupted sentences into the encoder, the 509

uncorrupted sentences into the decoder, which 510

reduces the mismatch between pre-training and 511

fine-tuning. T5 (Raffel et al., 2020) aims to unify 512

all text-based language problems into text-to-text 513

format, which adopts vanilla encoder-decoder 514

framework with span corruption. 515

NAR generation. Gu et al. (2017) first introduce 516

vanilla Transformer encoder-decoder for NAR ma- 517

chine translation. NAR generation removes the 518

assumption that each output word is conditioned 519

on previously generated outputs. Although this 520

parallel generation largely speeds up the inference, 521

it is troubled by the repeated tokens problem. A 522

lot of efforts are proposed to ease this issue (Lee 523

et al., 2018; Gu et al., 2019; Stern et al., 2019; 524

Ghazvininejad et al., 2019). Qi et al. (2021) intro- 525

duces BANG to bridge AR and NAR generation 526

with large-scale pre-training, which fuses AR and 527

NAR objectives by different attention mechanisms. 528

Masked autoencoders. He et al. (2021) first in- 529

troduces masked autoencoder for self-supervised 530

vision pre-training. With a light-weight decoder 531

and high masking ratio, MAE avoids wasting the 532

model capacity on short-range dependencies, cre- 533

ates a more powerful encoder from reconstructing 534

unsemantic pixels of the masked patches. After 535

that, masked autoencoders are adopted for video 536

and vision-language pre-training (Tong et al., 2022; 537

Feichtenhofer et al., 2022; He et al., 2022). 538

7 Conclusion 539

We propose MLAE, a new pre-training paradigm 540

based on masked autoencoders. With MLAE, we 541

not only have a pre-trained decoder for NLG tasks, 542

but also a more powerful encoder compared with 543

the encoder part of vanilla encoder-decoder, even 544

the encoder-only model. Besides, we design a 545

simple yet effective method, named as masking 546

scheduler, to bridge MLM pre-training and gener- 547

ation. The proposed MLAE combines the best of 548

two worlds: the encoder-only models’ good per- 549

formance on NLU tasks and the vanilla encoder- 550

decoders’ good performance on NLG tasks, includ- 551

ing AR and NAR paradigms. It shows that MLAE 552

is a preferred alternative compared with vanilla 553

encoder-decoder. 554
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8 Limitations555

While this work empirically finds that non-556

autoregressive modeling improves language model557

pre-training, the mechanism behind this inductive558

bias needs more in-depth analysis. In addition,559

we do not explore the multilingual pre-training of560

MLAE in the paper, which will be left as future561

work. Like most of the existing pre-trained models,562

our method may have some potential bias originat-563

ing from the pre-training data.564
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A Hyper-parameters739

Hyperparameters Value
Hidden size 768
FFN inner hidden size 3072
Attention heads 12
Peak Learning rate 5e-4
Learning rate schedule Polynomial decay
Warm-up updates 10,000
Warm-up init learning rate 1e-7
Tokens per sample 512
Batch size 2048
Mask ratio 15%
Adam β (0.9, 0.98)
Training updates 125K
Gradient clipping 2.0
Dropout 0.1
Weight decay %

Table 8: Hyperparameters for MLAE and the baselines
pre-training.

Hyperparameters Value
Peak Learning rate {1e-5, 2e-5, 3e-5, 4e-5}
Learning rate schedule polynomial decay
Adam β (0.9, 0.98)
Warm-up {10%, 20%}
Batch size 32
Training epochs 3
Seed {1, 2, 3}
Gradient clipping %
Dropout 0.1
Weight decay 0.01

Table 9: Hyperparameters for MLAE and the baselines
fine-tuning on the large tasks of GLUE benchmark.

Hyperparameters Value
Peak Learning rate {2e-5, 3e-5, 4e-5}
Learning rate schedule polynomial decay
Adam β (0.9, 0.999)
Warm-up 10%
Batch size 32
Training epochs 3
Seed {1, 2, 3}
Gradient clipping %
Dropout 0.1
Weight decay 0.01

Table 10: Hyperparameters for MLAE fine-tuning on
the SQuAD2 dataset.

Hyperparameters AR NAR
Peak Learning rate {7e-5, 1e-4}
Learning rate schedule inverse sqrt
Warm-up 500 10,000
Maximum tokens 8 × 4096
Training updates 30K 300K
Adam β (0.9, 0.999)
Gradient clipping 1.0
Dropout 0.1
Weight decay 0.01

Table 11: Hyperparameters for MLAE fine-tuning for
AR and NAR generation on the XSum dataset.

Hyperparameters Value
Peak Learning rate {7e-5, 1e-4}
Learning rate schedule inverse sqrt
Warm-up 500
Maximum tokens 16 × 4096
Training updates 30K
Adam β (0.9, 0.999)
Gradient clipping 1.0
Dropout 0.1
Weight decay 0.01

Table 12: Hyperparameters for MLAE fine-tuning on
the CNN/DM dataset.
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