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Abstract

Clinical deployment of imaging Al remains fragile: routine distribution
shifts—scanner vendor and reconstruction kernel, MRI protocol updates, dose
and slice profile changes, patient positioning and demographics, and device op-
tics—can degrade performance in ways that standard leaderboards and generic
augmentations fail to predict. We ask whether robustness and calibration can
be improved, without compromising clinical validity, by training and evaluating
models against label-preserving, clinically grounded counterfactuals. We intro-
duce Clinically-Guided Counterfactuals (C?), a framework that (i) unifies physics-
informed acquisition perturbations with tightly constrained, pathology-preserving
semantic edits; (ii) screens all counterfactuals through a conservative validity gate;
and (iii) reports shift-stable utility, a worst-case case-level score complementary to
AUROC, Dice, ECE, and Brier. Across chest X-ray (CheXpert—MIMIC-CXR),
MS brain MRI segmentation (multi-site—held-out site), and diabetic retinopa-
thy grading (EyePACS—Messidor-2), C? delivers consistent OOD gains (e.g.,
macro-AUROC +0.035 on CXR; lesion-wise Dice +0.044 on MRI; DR AUROC
+0.036), tighter calibration, reduced prediction volatility under realistic shifts, and
interpretable robustness diagnostics suitable for deployment checks.

1 Introduction

Deep models for medical imaging often underperform when faced with routine distribution shifts (4)),
from reconstruction kernels and protocol changes to illumination and sensor variation (3)). Standard
data augmentation and aggregate metrics (e.g., AUROC, Dice) offer limited visibility into per-case
worst-case behavior, which is crucial for safe deployment.

We propose to reframe robustness around each image’s clinically admissible neighborhood:
acquisition-realistic and pathology-preserving variants for which the diagnostic label or lesion
mask should remain invariant. Concretely, for input x with label y (classification) or mask m
(segmentation), we define transformations {t } sco and the counterfactual neighborhood NV (z) =
{to(z) : ¢ € P, label(ty(z)) = y or mask(ty(z)) = m }. Within this neighborhood, models
should maintain consistent predictions and stable calibration.

Main Contributions:

s Clinically-Guided Counterfactuals (C3): a framework combining (i) physics-aware acqui-
sition perturbations, (ii) a pathology-preserving editor for small but clinically plausible
semantic/context edits, and (iii) a validity gate that filters counterfactuals via conservative
equivalence tests and sparse human anchors.

e Training objective and evaluation: a regularized objective that enforces prediction con-
sistency across N (z), and a deployment-facing shift-stable utility metric summarizing
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worst-case calibrated performance per exam, reported alongside AUROC, Dice, ECE, and
Brier.

* Evidence across three modalities/tasks: CXR classification, MS MRI lesion segmentation,
and DR grading show consistent OOD improvements, better calibration, and reduced volatil-
ity under scanner/protocol/camera shifts, with ablations demonstrating the complementary
roles of physics transforms, the editor, and the validity gate.

2 Methodology

2.1 Counterfactual neighborhoods and consistency objective

For classification with model fy, let py(- | ) denote predictive probabilities. For segmentation, let
mg(x) be the predicted mask. We train with

L= Lewp(fo(2),y) + NEoprn(a) [D(fo(2), fo(a'))], (1)

where D = Dkr,(po(- | ) || po(- | ') for classification and

2(rig (), 10 (2')) + €

P i@l + o)l T < @
for segmentation.
For evaluation, we compute per-case shift-stable utility
U(z)= min s(fp(2’),y) or U(z)= min Dice(rhg(z"), m), 3)

' EN () z’'eN ()

which lower-bounds performance under admissible clinical variation.

2.2 Physics-aware acquisition perturbations

We implement modality-specific operators that approximate routine acquisition changes while pre-
serving labels/masks:

* CT/CXR: Poisson thinning before FBP for low dose; kernel sharpness variation (soft«+sharp);
blur consistent with thicker slices/partial volume; mild beam hardening / scatter shifts of
HU distributions.

* MRI: B(/B; bias fields; sequence-appropriate Rician/non-central-x noise; contrast modula-
tion via Bloch-informed lookups (TE/TR/flip); slice-profile broadening.

* Fundus: llumination geometry, vignetting, and sensor-pattern perturbations matched to
camera response, preserving microaneurysms and exudates.

2.3 Pathology-preserving editor

A diffusion backbone is fine-tuned with weak supervision (reports/labels) to produce low-amplitude,
clinically plausible edits (e.g., rib-shadow contrast, subtle effusion haze, projection geometry; illu-
mination and vessel-contrast tweaks in fundus). Two soft constraints keep edits near the clinical
manifold: (i) a lesion-mask consistency penalty discouraging changes to annotated pathology, and
(ii) a text—image agreement term over a curated pathology vocabulary to stabilize the global clinical
description.

2.4 Validity gate
Before inclusion in training/evaluation, counterfactuals must satisfy conservative tests:

* Classification: ||po(- | ) — po(- | #’)||so < 0 and matching predicted class argmax.

* Segmentation: teacher/consensus masks must meet IoU(m*(x), m*(z")) > 7.

Thresholds (9, 7) are set using radiologist-audited anchors.
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2.5 Experimental settings
We hold architectures/optimizers/schedules fixed to isolate C3:

1. CXR classification: DenseNet-121 on CheXpert (1), OOD on MIMIC-CXR (2)); 5 findings
(Atelectasis, Cardiomegaly, Consolidation, Edema, Pleural Effusion).

2. MS MRI segmentation: 3D U-Net on a multi-site cohort; OOD evaluation on a held-out site;
lesion- and volume-wise Dice.

3. Fundus DR grading: EfficientNet-B3 on EyePACS; OOD on Messidor-2; AUROC for
referable DR and ECE.

Baselines: standard augmentations, RandAugment/AugMix variants, and TTA.

3 Results and Discussion

Chest X-ray (CheXpert—MIMIC-CXR). C? improves macro-AUROC from 0.864 (STDAUG)
and 0.872 (AUGMIX) to 0.907, with consistent per-pathology gains (e.g., Edema 0.903 — 0.935,
Consolidation 0.842 — 0.887, Effusion 0.918 — 0.944). Calibration improves (ECE 5.7% — 2.9%;
Brier —13.4% relative). Neighborhood agreement rises 0.73 — 0.86, and shift-stable utility increases
0.782—0.846, indicating stronger worst-case performance under clinically realistic perturbations.
Ablations show physics transforms and the editor contribute additively, while removing the validity
gate superficially boosts ID AUROC yet harms worst-case utility and calibration, exposing hidden
label drift.

MS MRI segmentation (multi-site—held-out). Mean lesion-wise Dice increases from 0.598
(STDAUG) and 0.624 (AUGMIX) to 0.668 with C3; small-lesion recall (< 10 mm?®) improves 0.521 —
0.603 with 17.8% fewer false negatives. Volume-wise Dice rises 0.706 — 0.744, and volume
calibration tightens (slope 0.81 —0.93). Under simulated slice-thickness increase (1.0 mm—3.0 mm),
Hausdorff-95 decreases from 8.9 mm to 7.3 mm, whereas non-C? baselines exceed 9.5 mm. Physics-
only (Dice 0.653) and editor-only (0.639) trail the full model (0.668).

Fundus DR (EyePACS—Messidor-2). AUROC improves 0.842 — (0.878 over STDAUG (and
0.855 — 0.878 vs. TTA), while ECE halves (4.2% — 2.0%). Prediction flips under admissible
illumination/camera shifts drop from 14.7% to 6.8%. The 10" percentile of per-patient shift-stable
utility increases 0.763 — 0.820, and OOD AUROC ClIs shrink by 24%, reflecting reduced variance
across nuisance factors.

Interpretability and deployment diagnostics. C? attenuates failure modes aligned with radiol-
ogist intuition: e.g., CXR reliance on rib-shadow/illumination artifacts; MRI small-lesion under-
segmentation exacerbated by bias fields or thicker slices; fundus sensitivity to vascular glare. Per-exam
robustness profiles provide actionable diagnostics for model cards and site readiness checks.

Takeaways. (1) Physics-aware operators anchor robustness to acquisition realities; (2) small,
clinically plausible edits broaden coverage of nuisance semantics without drifting labels; (3) a
strict validity gate is essential to avoid training on mislabeled counterfactuals; (4) worst-case, case-
level reporting (shift-stable utility) complements aggregate metrics and reveals deployment-relevant
volatility.

4 Conclusion

C? reframes robustness around clinically grounded counterfactual neighborhoods, aligning both
training and evaluation with how images vary across scanners, protocols, and devices. The approach
consistently improves OOD accuracy, calibration, and worst-case stability across CXR, MRI, and
fundus tasks, while surfacing interpretable diagnostics for deployment. Because C® composes with
standard datasets and models, it can be adopted without architectural changes.
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5 Future Directions

* Prospective and site-onboarding studies: Evaluate C? in prospective multi-site rollouts and
during scanner/protocol onboarding to quantify reductions in drift-related incidents.

» Expanded modalities and tasks: Extend physics operators and editors to ultrasound, mam-
mography, and pathology WSIs; explore detection and multi-label settings.

* Human-in-the-loop validity: Incorporate lightweight radiologist spot-audits and active
sampling to calibrate (J, 7) and prioritize hard neighborhoods.

* Fairness & subpopulation robustness: Construct neighborhoods that target demo-
graphic/device subgroups, pairing shift-stable utility with stratified fairness metrics.

s Uncertainty and calibration: Combine C® with deep ensembles/temperature scaling under
neighborhood perturbations; track case-level reliability diagrams.

* Efficiency: Distill neighborhood training via curriculum or importance sampling; cache
reusable physics transforms to limit compute.

* Operational tooling: Package per-exam robustness profiles for model cards and site-
readiness checklists; add pre-deployment synthetic probes matching local scanner settings.

Potential Negative Societal Impact

C? could increase reliance on synthetic data; if misused without validity checks, this risks over-
confidence and deployment to populations not represented in the original datasets. The framework
should not replace external validation on real multi-site cohorts. Conservative validity gates and
radiologist spot audits are recommended, and the use of synthetic counterfactuals should be disclosed
in documentation and model cards to avoid accidental data leakage or privacy concer
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