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Abstract

Clinical deployment of imaging AI remains fragile: routine distribution1

shifts—scanner vendor and reconstruction kernel, MRI protocol updates, dose2

and slice profile changes, patient positioning and demographics, and device op-3

tics—can degrade performance in ways that standard leaderboards and generic4

augmentations fail to predict. We ask whether robustness and calibration can5

be improved, without compromising clinical validity, by training and evaluating6

models against label-preserving, clinically grounded counterfactuals. We intro-7

duce Clinically-Guided Counterfactuals (C3), a framework that (i) unifies physics-8

informed acquisition perturbations with tightly constrained, pathology-preserving9

semantic edits; (ii) screens all counterfactuals through a conservative validity gate;10

and (iii) reports shift-stable utility, a worst-case case-level score complementary to11

AUROC, Dice, ECE, and Brier. Across chest X-ray (CheXpert→MIMIC-CXR),12

MS brain MRI segmentation (multi-site→held-out site), and diabetic retinopa-13

thy grading (EyePACS→Messidor-2), C3 delivers consistent OOD gains (e.g.,14

macro-AUROC +0.035 on CXR; lesion-wise Dice +0.044 on MRI; DR AUROC15

+0.036), tighter calibration, reduced prediction volatility under realistic shifts, and16

interpretable robustness diagnostics suitable for deployment checks.17

1 Introduction18

Deep models for medical imaging often underperform when faced with routine distribution shifts (4),19

from reconstruction kernels and protocol changes to illumination and sensor variation (3). Standard20

data augmentation and aggregate metrics (e.g., AUROC, Dice) offer limited visibility into per-case21

worst-case behavior, which is crucial for safe deployment.22

We propose to reframe robustness around each image’s clinically admissible neighborhood:23

acquisition-realistic and pathology-preserving variants for which the diagnostic label or lesion24

mask should remain invariant. Concretely, for input x with label y (classification) or mask m25

(segmentation), we define transformations {tϕ}ϕ∈Φ and the counterfactual neighborhood N (x) =26

{ tϕ(x) : ϕ ∈ Φ, label(tϕ(x)) = y or mask(tϕ(x)) = m }. Within this neighborhood, models27

should maintain consistent predictions and stable calibration.28

Main Contributions:29

• Clinically-Guided Counterfactuals (C3): a framework combining (i) physics-aware acqui-30

sition perturbations, (ii) a pathology-preserving editor for small but clinically plausible31

semantic/context edits, and (iii) a validity gate that filters counterfactuals via conservative32

equivalence tests and sparse human anchors.33

• Training objective and evaluation: a regularized objective that enforces prediction con-34

sistency across N (x), and a deployment-facing shift-stable utility metric summarizing35
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worst-case calibrated performance per exam, reported alongside AUROC, Dice, ECE, and36

Brier.37

• Evidence across three modalities/tasks: CXR classification, MS MRI lesion segmentation,38

and DR grading show consistent OOD improvements, better calibration, and reduced volatil-39

ity under scanner/protocol/camera shifts, with ablations demonstrating the complementary40

roles of physics transforms, the editor, and the validity gate.41

2 Methodology42

2.1 Counterfactual neighborhoods and consistency objective43

For classification with model fθ, let pθ(· | x) denote predictive probabilities. For segmentation, let44

m̂θ(x) be the predicted mask. We train with45

L = Lsup(fθ(x), y) + λEx′∼N (x)

[
D(fθ(x), fθ(x

′))
]
, (1)

where D = DKL(pθ(· | x) ∥ pθ(· | x′)) for classification and46

D = 1− 2⟨m̂θ(x), m̂θ(x
′)⟩+ ϵ

∥m̂θ(x)∥1 + ∥m̂θ(x′)∥1 + ϵ
(2)

for segmentation.47

For evaluation, we compute per-case shift-stable utility48

U(x) = min
x′∈N (x)

s
(
fθ(x

′), y
)

or U(x) = min
x′∈N (x)

Dice
(
m̂θ(x

′),m
)
, (3)

which lower-bounds performance under admissible clinical variation.49

2.2 Physics-aware acquisition perturbations50

We implement modality-specific operators that approximate routine acquisition changes while pre-51

serving labels/masks:52

• CT/CXR: Poisson thinning before FBP for low dose; kernel sharpness variation (soft↔sharp);53

blur consistent with thicker slices/partial volume; mild beam hardening / scatter shifts of54

HU distributions.55

• MRI: B0/B1 bias fields; sequence-appropriate Rician/non-central-χ noise; contrast modula-56

tion via Bloch-informed lookups (TE/TR/flip); slice-profile broadening.57

• Fundus: Illumination geometry, vignetting, and sensor-pattern perturbations matched to58

camera response, preserving microaneurysms and exudates.59

2.3 Pathology-preserving editor60

A diffusion backbone is fine-tuned with weak supervision (reports/labels) to produce low-amplitude,61

clinically plausible edits (e.g., rib-shadow contrast, subtle effusion haze, projection geometry; illu-62

mination and vessel-contrast tweaks in fundus). Two soft constraints keep edits near the clinical63

manifold: (i) a lesion-mask consistency penalty discouraging changes to annotated pathology, and64

(ii) a text–image agreement term over a curated pathology vocabulary to stabilize the global clinical65

description.66

2.4 Validity gate67

Before inclusion in training/evaluation, counterfactuals must satisfy conservative tests:68

• Classification: ∥pθ(· | x)− pθ(· | x′)∥∞ ≤ δ and matching predicted class argmax.69

• Segmentation: teacher/consensus masks must meet IoU(m⋆(x),m⋆(x′)) ≥ τ .70

Thresholds (δ, τ) are set using radiologist-audited anchors.71
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2.5 Experimental settings72

We hold architectures/optimizers/schedules fixed to isolate C3:73

1. CXR classification: DenseNet-121 on CheXpert (1), OOD on MIMIC-CXR (2); 5 findings74

(Atelectasis, Cardiomegaly, Consolidation, Edema, Pleural Effusion).75

2. MS MRI segmentation: 3D U-Net on a multi-site cohort; OOD evaluation on a held-out site;76

lesion- and volume-wise Dice.77

3. Fundus DR grading: EfficientNet-B3 on EyePACS; OOD on Messidor-2; AUROC for78

referable DR and ECE.79

Baselines: standard augmentations, RandAugment/AugMix variants, and TTA.80

3 Results and Discussion81

Chest X-ray (CheXpert→MIMIC-CXR). C3 improves macro-AUROC from 0.864 (STDAUG)82

and 0.872 (AUGMIX) to 0.907, with consistent per-pathology gains (e.g., Edema 0.903→ 0.935,83

Consolidation 0.842→0.887, Effusion 0.918→0.944). Calibration improves (ECE 5.7%→2.9%;84

Brier −13.4% relative). Neighborhood agreement rises 0.73→0.86, and shift-stable utility increases85

0.782→0.846, indicating stronger worst-case performance under clinically realistic perturbations.86

Ablations show physics transforms and the editor contribute additively, while removing the validity87

gate superficially boosts ID AUROC yet harms worst-case utility and calibration, exposing hidden88

label drift.89

MS MRI segmentation (multi-site→held-out). Mean lesion-wise Dice increases from 0.59890

(STDAUG) and 0.624 (AUGMIX) to 0.668 with C3; small-lesion recall (<10mm3) improves 0.521→91

0.603 with 17.8% fewer false negatives. Volume-wise Dice rises 0.706 → 0.744, and volume92

calibration tightens (slope 0.81→0.93). Under simulated slice-thickness increase (1.0 mm→3.0 mm),93

Hausdorff-95 decreases from 8.9mm to 7.3mm, whereas non-C3 baselines exceed 9.5mm. Physics-94

only (Dice 0.653) and editor-only (0.639) trail the full model (0.668).95

Fundus DR (EyePACS→Messidor-2). AUROC improves 0.842 → 0.878 over STDAUG (and96

0.855 → 0.878 vs. TTA), while ECE halves (4.2% → 2.0%). Prediction flips under admissible97

illumination/camera shifts drop from 14.7% to 6.8%. The 10th percentile of per-patient shift-stable98

utility increases 0.763→0.820, and OOD AUROC CIs shrink by 24%, reflecting reduced variance99

across nuisance factors.100

Interpretability and deployment diagnostics. C3 attenuates failure modes aligned with radiol-101

ogist intuition: e.g., CXR reliance on rib-shadow/illumination artifacts; MRI small-lesion under-102

segmentation exacerbated by bias fields or thicker slices; fundus sensitivity to vascular glare. Per-exam103

robustness profiles provide actionable diagnostics for model cards and site readiness checks.104

Takeaways. (1) Physics-aware operators anchor robustness to acquisition realities; (2) small,105

clinically plausible edits broaden coverage of nuisance semantics without drifting labels; (3) a106

strict validity gate is essential to avoid training on mislabeled counterfactuals; (4) worst-case, case-107

level reporting (shift-stable utility) complements aggregate metrics and reveals deployment-relevant108

volatility.109

4 Conclusion110

C3 reframes robustness around clinically grounded counterfactual neighborhoods, aligning both111

training and evaluation with how images vary across scanners, protocols, and devices. The approach112

consistently improves OOD accuracy, calibration, and worst-case stability across CXR, MRI, and113

fundus tasks, while surfacing interpretable diagnostics for deployment. Because C3 composes with114

standard datasets and models, it can be adopted without architectural changes.115

3



5 Future Directions116

• Prospective and site-onboarding studies: Evaluate C3 in prospective multi-site rollouts and117

during scanner/protocol onboarding to quantify reductions in drift-related incidents.118

• Expanded modalities and tasks: Extend physics operators and editors to ultrasound, mam-119

mography, and pathology WSIs; explore detection and multi-label settings.120

• Human-in-the-loop validity: Incorporate lightweight radiologist spot-audits and active121

sampling to calibrate (δ, τ) and prioritize hard neighborhoods.122

• Fairness & subpopulation robustness: Construct neighborhoods that target demo-123

graphic/device subgroups, pairing shift-stable utility with stratified fairness metrics.124

• Uncertainty and calibration: Combine C3 with deep ensembles/temperature scaling under125

neighborhood perturbations; track case-level reliability diagrams.126

• Efficiency: Distill neighborhood training via curriculum or importance sampling; cache127

reusable physics transforms to limit compute.128

• Operational tooling: Package per-exam robustness profiles for model cards and site-129

readiness checklists; add pre-deployment synthetic probes matching local scanner settings.130

Potential Negative Societal Impact131

C3 could increase reliance on synthetic data; if misused without validity checks, this risks over-132

confidence and deployment to populations not represented in the original datasets. The framework133

should not replace external validation on real multi-site cohorts. Conservative validity gates and134

radiologist spot audits are recommended, and the use of synthetic counterfactuals should be disclosed135

in documentation and model cards to avoid accidental data leakage or privacy concer136
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