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Abstract

Recent work in Natural Language Processing001
has focused on developing approaches that ex-002
tract faithful explanations, either via identify-003
ing the most important tokens in the input (i.e.004
post-hoc explanations) or by designing inher-005
ently faithful models that first select the most006
important tokens and then use them to predict007
the correct label (i.e. select-then-predict mod-008
els). Currently, these approaches are largely009
evaluated on in-domain settings. Yet, little is010
known about how post-hoc explanations and011
inherently faithful models perform in out-of-012
domain settings. In this paper, we conduct an013
extensive empirical study that examines: (1)014
the out-of-domain faithfulness of post-hoc ex-015
planations, generated by five feature attribu-016
tion methods; and (2) the out-of-domain perfor-017
mance of two inherently faithful models over018
six datasets. Contrary to our expectations, re-019
sults show that in many cases out-of-domain020
post-hoc explanation faithfulness measured by021
sufficiency and comprehensiveness is higher022
compared to in-domain. We find this mislead-023
ing and suggest using a random baseline as a024
yardstick for evaluating post-hoc explanation025
faithfulness. Our findings also show that select-026
then predict models demonstrate comparable027
predictive performance in out-of-domain set-028
tings to full-text trained models.1029

1 Introduction030

An explanation or rationale2, typically consists031

of a subset of the input that contributes more to032

the prediction. Extracting faithful explanations is033

important for studying model behavior (Adebayo034

et al., 2020) and assisting in tasks requiring hu-035

man decision making, such as clinical text classi-036

fication (Chakrabarty et al., 2019) and automatic037

fact-checking (Popat et al., 2018). A faithful ex-038

planation is one which accurately represents the039

1Code is attached to the submission and will be publicly
released.

2We use these terms interchangeably throughout our work.

reasoning behind a model’s prediction (Jacovi and 040

Goldberg, 2020) 041

Two popular methods for extracting explanations 042

are through feature attribution approaches (i.e. post- 043

hoc explanation methods) or via inherently faithful 044

classifiers (i.e. select-then-predict models). The 045

first computes the contribution of different parts 046

of the input with respect to a model’s prediction 047

(Sundararajan et al., 2017; Ribeiro et al., 2016; 048

Shrikumar et al., 2017). The latter consists of using 049

a rationale extractor to identify the most important 050

parts of the input and a rationale classifier, a model 051

trained using as input only the extractor’s rationales 052

(Bastings et al., 2019; Jain et al., 2020; Guerreiro 053

and Martins, 2021).3 Figure 1 illustrates the two 054

approaches with an example. 055

Currently, these explanation methods have been 056

mostly evaluated on in-domain settings (i.e. the 057

train and test data come from the same distribution). 058

However, when deploying models in real-world ap- 059

plications, inference might be performed on data 060

from a different distribution, i.e. out-of-domain 061

(Desai and Durrett, 2020; Ovadia et al., 2019). This 062

can create implications when extracted explana- 063

tions (either using post-hoc methods or through 064

select-then-predict models) are used for assisting 065

human decision making. Whilst we are aware of 066

the limitations of current state-of-the-art models in 067

out-of-domain predictive performance (Hendrycks 068

et al., 2020), to the best of our knowledge, how 069

faithful out-of-domain post-hoc explanations are 070

has yet to be explored. Similarly, we are not aware 071

how inherently faithful select-then-predict models 072

generalize in out-of-domain settings. 073

Inspired by this, we conduct an extensive em- 074

pirical study to examine the faithfulness of five 075

feature attribution approaches and the generaliz- 076

3We refer to the rationale generator (i.e. generating a
rationale mask) from Bastings et al. (2019) and Jain et al.
(2020) as a rationale extractor, to avoid any confusion between
these approaches and free-text rationales (Wiegreffe et al.,
2021).
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(a) Post-hoc explanation (b) Select-then-predict model

Figure 1: An example of rationale extraction using: (a) a feature attribution approach to identify the most important
subset of the input (post-hoc explanation); and (b) using inherently faithful, select-then-predict models.

ability of two select-then-predict models in out-of-077

domain settings across six dataset pairs. We hypoth-078

esize that similar to model predictive performance,079

post-hoc explanation faithfulness reduces in out-of-080

domain settings and that select-then-predict perfor-081

mance degrades. Our contributions are as follows:082

• To the best of our knowledge, we are the first083

to assess the faithfulness of post-hoc explana-084

tions and performance of select-then-predict085

models in out-of-domain settings.086

• We show that post-hoc explanation sufficiency087

and comprehensiveness show misleading in-088

creases in out-of-domain settings. We argue089

that they should be evaluated alongside a ran-090

dom baseline as yardstick out-of-domain.091

• We demonstrate that select-then-predict clas-092

sifiers can be used in out-of-domain settings.093

They lead to comparable predictive perfor-094

mance to models trained on full-text, whilst095

offering inherent faithfulness.096

2 Related Work097

2.1 Rationale Extraction098

Given a model M, we are interested in explain-099

ing why M predicted ŷ for a particular instance100

x ∈ X. An extracted rationale R, should therefore101

represent as accurately as possible the most impor-102

tant subset of the input (R ∈ x) which contributed103

mostly towards the model’s prediction ŷ.104

Currently, there are two popular approaches for105

extracting rationales. The first consists of using106

feature attribution methods that attribute to the in-107

put tokens an importance score (i.e. how important108

an input token is to a model’s M prediction ŷ).109

We can then form a rationale R, by selecting the 110

K most important tokens (independent or contigu- 111

ous) as indicated by the feature attribution method. 112

The second select-then-predict approach focuses 113

on training inherently faithful classifiers by jointly 114

training two modules, a rationale extractor and a 115

rationale classifier, trained only on rationales pro- 116

duced by the extractor (Lei et al., 2016; Bastings 117

et al., 2019; Treviso and Martins, 2020; Jain et al., 118

2020; Guerreiro and Martins, 2021). Recent stud- 119

ies have used feature attribution approaches as part 120

of the rationale extractor (Jain et al., 2020; Treviso 121

and Martins, 2020), showing improved classifier 122

predictive performance. 123

2.2 Evaluating Rationale Faithfulness 124

Having extracted R, we need to evaluate the qual- 125

ity of the explanation (i.e. how faithful that ex- 126

planation is for a model’s prediction). Typically, 127

post-hoc explanations from feature attribution ap- 128

proaches are evaluated using input erasure (Serrano 129

and Smith, 2019; Atanasova et al., 2020; Madsen 130

et al., 2021). This approach masks segments of the 131

input to observe if the model’s prediction changed. 132

DeYoung et al. (2020) proposed measuring the 133

comprehensiveness and sufficiency of rationales 134

as faithfulness metrics. A comprehensive rationale 135

is one which is influential to a model’s prediction, 136

while a sufficient rationale that which is adequate 137

for a model’s prediction (DeYoung et al., 2020). 138

The term fidelity is also used for jointly referring to 139

comprehensiveness and sufficiency (Carton et al., 140

2020). Carton et al. (2020) suggested normalizing 141

these metrics using the predictions of the model 142

with a baseline input (i.e. an all zero embedding 143

vector), to account for baseline model behavior. 144
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Select-then-predict models are inherently faithful,145

as their classification component is trained only146

on extracted rationales (Jain et al., 2020). A good147

measure for measuring rationale quality is by eval-148

uating the predictive performance of the classifier149

trained only on the rationales (Jain et al., 2020;150

Treviso and Martins, 2020). A higher score entails151

that the extracted rationales are better when com-152

pared to those of a classifier with lower predictive153

performance.154

2.3 Explainability in Out-of-Domain Settings155

Given model M trained on an end-task, we typi-156

cally evaluate its out-of-domain predictive perfor-157

mance on a test-set that does not belong to the same158

distribution as the data it was trained on (Hendrycks159

et al., 2020). Similarly, the model can also extract160

explanations R for its out-of-domain predictions.161

Camburu et al. (2018) studied whether gener-162

ating explanations for language inference match163

human annotations (i.e. plausible explanations).164

They showed that this is challenging in-domain165

and becomes more challenging in out-of-domain166

settings. In a similar direction, Rajani et al. (2019)167

and Kumar and Talukdar (2020) examined model168

generated explanations in out-of-domain settings169

and find that explanation plausibility degrades com-170

pared to in-domain. Kennedy et al. (2020) pro-171

posed a method for detecting model bias towards172

group identity terms using a post-hoc feature attri-173

bution approach. Then, they use them for regular-174

izing models to improve out-of-domain predictive175

performance. Adebayo et al. (2020) have studied176

feature attribution approaches for identifying out-177

of-distribution images. They find that importance178

allocation in out-of-domain settings is similar to179

that of an in-domain model and thus cannot be180

used to detect such images. Feder et al. (2021) fi-181

nally argued that explanations can lead to errors in182

out-of-distribution settings, as they may latch onto183

spurious features from the training distribution.184

These studies indicate that there is an increasing185

need for evaluating post-hoc explanation faithful-186

ness and select-then-predict performance in out-of-187

domain settings. To the best of our knowledge, we188

are the first to examine these.189

3 Extracting Rationales190

3.1 Post-hoc Explanations191

We employ a pre-trained BERT-base and fine-tune192

it on in-domain training data. We then extract post-193

hoc rationales for both the in-domain test-set and 194

two out-of-domain test-sets. We compute input 195

importance using five feature scoring methods and 196

a random baseline: 197

• Random (RAND): Random allocation of 198

token importance. 199

• Attention (α): Token importance correspond- 200

ing to normalized attention scores (Jain et al., 201

2020). 202

• Scaled Attention (α∇α): Attention scores 203

αi scaled by their corresponding gradients 204

∇αi =
∂ŷ
∂αi

(Serrano and Smith, 2019). 205

• InputXGrad (x∇x): Attributes input impor- 206

tance by multiplying the input with its gra- 207

dient computed with respect to the predicted 208

class, where ∇xi =
∂ŷ
∂xi

(Kindermans et al., 209

2016; Atanasova et al., 2020). 210

• Integrated Gradients (IG): Ranking words 211

by computing the integral of the gradients 212

taken along a straight path from a baseline 213

input (zero embedding vector) to the original 214

input (Sundararajan et al., 2017). 215

• DeepLift: Ranking words according to the 216

difference between the activation of each neu- 217

ron and a reference activation (zero embed- 218

ding vector) (Shrikumar et al., 2017). 219

3.2 Select-then-Predict Models 220

We use two select-then-predict models: 221

• HardKuma: An end-to-end trained model, 222

where the rationale extractor uses Hard Ku- 223

maraswamy variables to produce a rationale 224

mask z, which the classifier uses to mask the 225

input (Bastings et al., 2019). Model training 226

takes advantage of reparameterized gradients 227

compared to REINFORCE style training em- 228

ployed by Lei et al. (2016) and has shown 229

improved performance (Guerreiro and Mar- 230

tins, 2021). 231

• FRESH: We compute the predictive perfor- 232

mance of a classifier trained on rationales ex- 233

tracted with feature attribution metrics (see 234

§3.1) using FRESH, following a similar ap- 235

proach to Jain et al. (2020). We extract ratio- 236

nales from an extractor by (1) selecting the 237

top-k most important tokens (TOPK) and (2) 238

selecting the span of length k with the highest 239

overall importance (CONTIGUOUS). 240
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Dataset C Splits

SST 2 6,920 / 872 / 1,821
IMDB 2 20,000 / 2,500 / 2,500
Yelp 2 476,000 / 84,000 / 38,000
AmazDigiMu 3 122,552 / 21,627 / 25,444
AmazPantry 3 99,423/ 17,546 / 20,642
AmazInstr 3 167,145 / 29,497 / 34,702

Table 1: Dataset statistics with number of classes (C)
and train/development/test splits. For more details see
Appendix A.

We use BERT-base for the extraction and classi-241

fication components of FRESH similar to Jain et al.242

(2020). However, for HardKuma we opt using a243

bi-LSTM (Hochreiter and Schmidhuber, 1997) as244

it provides comparable or improved performance245

over BERT variants (Guerreiro and Martins, 2021),246

even after hyperparameter tuning.4247

4 Experimental Setup248

4.1 Datasets249

For evaluating out-of-domain model explanation,250

we consider the following datasets (see Table 1 and251

Appendix A for details):252

SST: Stanford Sentiment Treebank (SST) con-253

sists of sentences tagged with sentiment on a 5-254

point-scale from negative to positive (Socher et al.,255

2013). We remove sentences with neutral senti-256

ment and label the remaining sentences as negative257

or positive if they have a score lower or higher than258

3 respectively (Jain and Wallace, 2019).259

IMDB: The Large Movie Reviews Corpus con-260

sists of movie reviews labeled either as positive261

or negative (Maas et al., 2011; Jain and Wallace,262

2019).263

Yelp: Yelp polarity review texts. Similar to264

Zhang et al. (2015) we construct a binary classifica-265

tion task to predict a polarity label by considering266

one and two stars as negative, and three and four267

stars as positive.268

Amazon Reviews: We form 3-way classification269

tasks by predicting the sentiment (negative, neu-270

tral, positive) of Amazon product reviews across 3271

item categories: (1) Digital Music (AmazDigiMu);272

(2) Pantry (AmazPantry); and (3) Musical Instru-273

ments (AmazInstr) (Ni et al., 2019).274

4See model details and hyper-parameters in Appendix B

4.2 Evaluating Out-of-Domain Explanations 275

Post-hoc Explanations: We evaluate post-hoc 276

explanations using: 277

• Normalized Sufficiency (NormSuff) mea- 278

sures the degree to which the extracted ra- 279

tionales are adequate for a model to make a 280

prediction (DeYoung et al., 2020). Following 281

Carton et al. (2020), we bind sufficiency be- 282

tween 0 and 1 and use the reverse difference 283

so that higher is better: 284

Suff(x, ŷ,R) = 1−max(0, p(ŷ|x)− p(ŷ|R))

NormSuff(x, ŷ,R) =
Suff(x, ŷ,R)− Suff(x, ŷ, 0)

1− Suff(x, ŷ, 0)
(1) 285

where Suff(x, ŷ, 0) is the sufficiency of a base- 286

line input (zeroed out sequence) and ŷ the 287

model predicted class using the full text x as 288

input. 289

• Normalized Comprehensiveness (Norm- 290

Comp) measures the influence of a rationale 291

to a prediction (DeYoung et al., 2020). For 292

an explanation to be highly comprehensive, 293

the model’s prediction after masking the ratio- 294

nale should have a large difference compared 295

to the model’s prediction using the full text. 296

Similarly to Carton et al. (2020), we bind this 297

metric between 0 and 1 and normalize it: 298

Comp(x, ŷ,R) = max(0, p(ŷ|x)− p(ŷ|x\R))

NormComp(x, ŷ,R) =
Comp(x, ŷ,R)

1− Suff(x, ŷ, 0)
(2) 299

To measure sufficiency and comprehensiveness 300

across different explanation lengths we compute 301

the “Area Over the Perturbation Curve" (AOPC) 302

following DeYoung et al. (2020). We therefore 303

compute and report the average normalized suffi- 304

ciency and comprehensiveness scores when keep- 305

ing (for sufficiency) or masking (for comprehen- 306

siveness) the top 2%, 10%, 20% and 50% of tokens 307

extracted by an importance attribution function.5 308

We omit from our evaluation the Remove-and- 309

Retrain method (Madsen et al., 2021) as it requires 310

model retraining. Whilst this could be applica- 311

ble for in-domain experiments where retraining is 312

important, in this work we evaluate explanation 313

faithfulness in zero-shot out-of-domain settings. 314

5We also present results for each of these rationale lengths
in Appendix F.
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Train Test Full-text Normalized Sufficiency Normalized Comprehensiveness
F1 Rand α∇α α DeepLift x∇x IG Rand α∇α α DeepLift x∇x IG

SST
SST 90.1 0.38 0.51 0.42 0.42 0.40 0.41 0.19 0.39 0.22 0.25 0.26 0.26

IMDB 84.3 0.31 0.53 0.39 0.32 0.31 0.32 0.23 0.54 0.34 0.27 0.27 0.28
Yelp 87.9 0.32 0.56 0.40 0.35 0.33 0.34 0.21 0.48 0.28 0.24 0.24 0.25

IMDB
IMDB 91.1 0.32 0.55 0.46 0.36 0.36 0.36 0.16 0.48 0.31 0.25 0.23 0.24
SST 85.8 0.24 0.35 0.28 0.28 0.27 0.27 0.27 0.46 0.32 0.33 0.33 0.33
Yelp 91.0 0.35 0.48 0.41 0.36 0.36 0.36 0.21 0.45 0.32 0.26 0.26 0.26

Yelp
Yelp 96.9 0.23 0.32 0.31 0.29 0.24 0.25 0.12 0.20 0.14 0.16 0.15 0.16
SST 86.8 0.41 0.45 0.43 0.44 0.41 0.41 0.17 0.24 0.18 0.21 0.22 0.22

IMDB 88.6 0.18 0.34 0.32 0.25 0.22 0.22 0.19 0.34 0.29 0.23 0.23 0.24

AmazDigiMu
AmazDigiMu 70.6 0.34 0.56 0.34 0.31 0.41 0.39 0.13 0.32 0.14 0.10 0.16 0.17

AmazInstr 61.2 0.29 0.54 0.32 0.31 0.33 0.32 0.19 0.47 0.23 0.19 0.22 0.23
AmazPantry 64.6 0.33 0.55 0.33 0.31 0.37 0.36 0.21 0.46 0.22 0.17 0.23 0.25

AmazPantry
AmazPantry 70.2 0.25 0.46 0.36 0.19 0.28 0.27 0.20 0.42 0.31 0.15 0.25 0.25

AmazDigiMu 59.5 0.24 0.47 0.37 0.19 0.27 0.26 0.19 0.41 0.32 0.15 0.23 0.24
AmazInstr 64.5 0.17 0.42 0.30 0.15 0.20 0.20 0.24 0.52 0.40 0.23 0.30 0.30

AmazInstr
AmazInstr 71.5 0.16 0.34 0.18 0.21 0.18 0.17 0.26 0.52 0.26 0.29 0.28 0.29

AmazDigiMu 61.3 0.21 0.38 0.21 0.22 0.24 0.22 0.23 0.46 0.20 0.22 0.24 0.25
AmazPantry 68.2 0.22 0.39 0.21 0.23 0.24 0.23 0.27 0.51 0.22 0.25 0.27 0.29

Table 2: AOPC Normalized Sufficiency and Comprehensiveness (higher is better) in-domain and out-of-domain for
five feature attribution approaches and a random attribution baseline.

Select-then-Predict Models: We first train315

select-then-predict models in-domain and then mea-316

sure their predictive performance on the in-domain317

test set and on two out-of-domain test-sets (Jain318

et al., 2020; Guerreiro and Martins, 2021). Our319

out-of-domain evaluation is performed without re-320

training (zero-shot). Similar to full-text trained321

models, we expect that predictive performance de-322

teriorates out-of-domain. However, we assume323

that explanations from a select-then-predict model324

should generalize better in out-of-domain settings325

when the predictive performance approaches that326

of the full-text trained model.327

We do not conduct human experiments to evalu-328

ate explanation faithfulness, since that is only rele-329

vant to explanation plausibility (i.e. how intuitive to330

humans a rationale is (Jacovi and Goldberg, 2020))331

and in practice faithfulness and plausibility do not332

correlate (Atanasova et al., 2020).333

5 Results334

5.1 Post-hoc Explanation Faithfulness335

Table 2 presents the normalized comprehensiveness336

and sufficiency scores for post-hoc explanations337

on in-domain and out-of-domain test-sets, using338

five feature attribution methods and a random base-339

line. For reference, we include the averaged F1340

performance across 5 random seeds, of a BERT-341

base model finetuned on the full text and evaluated342

in- and out-of-domain (Full-text F1).6 343

In-domain results show that feature attribution 344

performance varies largely across datasets. This is 345

in line with the findings of Atanasova et al. (2020) 346

and Madsen et al. (2021) when masking rationales 347

(i.e. comprehensiveness). We find the only excep- 348

tion to be α∇α, which consistently achieves the 349

highest comprehensiveness and sufficiency scores 350

across all in-domain datasets. For example α∇α 351

evaluated on in-domain AmazDigiMu, results in 352

sufficiency of 0.56 compared to the second best of 353

0.39 with IG. 354

Contrary to our expectations, results show that 355

post-hoc explanation sufficiency and comprehen- 356

siveness are in many cases higher in out-of-domain 357

test-sets compared to in-domain. For example us- 358

ing DeepLift, comprehensiveness for the in-domain 359

test-set in Yelp (0.16) is lower compared to the 360

out-of-domain test-sets (0.21 for SST and 0.23 for 361

IMDB). This is also observed when measuring suf- 362

ficiency with α∇α, scoring 0.32 when tested in- 363

domain on Yelp and 0.45 for the out-of-domain 364

SST test-set. 365

Apart from increased sufficiency and comprehen- 366

siveness scores in out-of-domain post-hoc explana- 367

tions, we also observe increased scores obtained by 368

our random baseline. In fact, the random baseline 369

outperforms several feature attribution approaches 370

in certain cases in out-of-domain settings . As an 371

6We report predictive performance for all models and stan-
dard deviations in the Appendix.
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Train Test Full-text HardKuma L
F1 F1 (%)

SST
SST 81.7 77.6 56.8

IMDB 71.9 65.7 39.5
Yelp 68.7 67.7 32.7

IMDB
IMDB 87.4 82.0 1.9
SST 77.5 73.6 16.8
Yelp 41.0 47.2 3.1

Yelp
Yelp 96.0 92.4 7.4
SST 80.4 72.4 14.1

IMDB 84.5 73.3 4.7

AmazDigiMu
AmazDigiMu 67.6 66.8 18.4

AmazInstr 54.2 53.3 25.8
AmazPantry 55.3 54.7 27.8

AmazPantry
AmazPantry 67.9 66.6 18.9

AmazDigiMu 50.9 51.0 11.2
AmazInstr 55.9 57.4 18.2

AmazInstr
AmazInstr 67.2 66.7 19.2

AmazDigiMu 54.3 53.7 13.9
AmazPantry 61.1 59.5 24.4

Table 3: F1 macro performance (five runs) for Hard-
Kuma models and the selected rationale length (L). Bold
denotes no significant difference between HardKuma
and Full-text (t-test; p > 0.05). For clarity, we include
F1 scores with standard deviations in Appendix C.

example, consider the case where the model has372

been trained on AmazInstr and tested on Amaz-373

Pantry. Our random baseline achieves a compre-374

hensiveness score of 0.27 while α, DeepLift, x∇x375

perform similarly or lower (0.22, 0.25 and 0.27376

respectively). Similarly, using a model trained on377

Yelp and tested on SST, the random baseline pro-378

duces equally sufficient rationales to x∇x and IG,379

with all of them achieving 0.41 normalized suffi-380

ciency. A glaring exception to this pattern is α∇α,381

which consistently outperforms both the random382

baseline and all other feature attribution approaches383

in in- and out-of-domain settings, suggesting that384

it produces the more faithful explanations. For ex-385

ample with out-of-domain AmazPantry test data,386

using a model trained on AmazInstr results in suf-387

ficiency scores of 0.39 with α∇α. This is a 0.15388

point increase compared to the second best (x∇x389

with 0.24).390

We recommend considering a feature attribution391

for producing faithful explanations out-of-domain,392

if it only scores above a baseline random attribu-393

tion. We suggest that the higher the deviation from394

the random baseline, the more faithful an explana-395

tion is.396

5.2 Select-then-predict Model Performance 397

HardKuma: Table 3 presents the F1-macro per- 398

formance of HardKuma models (Bastings et al., 399

2019) and the average rationale lengths (the ratio 400

of the selected tokens compared to the length of 401

the entire sequence) selected by the model. For ref- 402

erence, we also include the predictive performance 403

of a full-text trained bi-LSTM. Results are aver- 404

aged across 5 runs including standard deviations in 405

brackets. 406

As expected, predictive performance of Hard- 407

Kuma models degrades when evaluated on out- 408

of-domain data. Surprisingly, though, we find 409

that their performance is not significantly differ- 410

ent (t-test; p-value > 0.05) to that of the full-text 411

LSTM in 9 out of the 12 out-of-domain dataset 412

pairs. For example, by evaluating the out-of- 413

domain performance of a HardKuma model trained 414

on AmazDigiMu on the AmazPantry test-set, we 415

record on average a score of 54.3 F1 compared to 416

55.3 with an LSTM classifier trained on full text. 417

We also observe that HardKuma models trained on 418

SST and IMDB generalize comparably to models 419

trained on full-text when evaluated on Yelp, how- 420

ever the opposite does not apply. Our assumption is 421

that HardKuma models trained on Yelp, learn more 422

domain-specific information due to the large train- 423

ing corpus (when compared to training on IMDB 424

and SST) so they fail to generalize well out-of- 425

domain. 426

Results also show, that the length of ratio- 427

nales selected by HardKuma models depend on 428

the source domain, i.e. training HardKuma 429

on a dataset which favors shorter rationales, 430

leads to also selecting shorter rationales out-of- 431

domain. For example, in-domain test-set expla- 432

nation lengths are on average 56.8% of the full- 433

text input length for SST. In comparison, training 434

a model on Yelp and evaluating on SST results 435

in rationale lengths of 14.1%. We observe that 436

in certain cases, HardKuma models maintain the 437

number of words, not the ratio to the sequence in 438

out-of-domain settings. For example, in-domain 439

Yelp test-set rationales are about 11 tokens long 440

that is the similar to the length selected when evalu- 441

ating on IMDB using a model trained on Yelp. This 442

is also observed where in-domain AmazInstr test- 443

set rationales are on average 5 tokens long, which 444

is the same rationale length when evaluating on 445

AmazDigiMu using a model trained on AmazInstr. 446

In general, our findings show that in the majority 447
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Train Test Full-text α∇α α DeepLift x∇x IG

SST (20%)
SST 90.1 87.7 81.1 84.4 76.3 76.8
IMDB 84.3 81.8 52.6 64.0 55.0 56.3
Yelp 87.9 88.1 72.6 75.4 59.6 63.9

IMDB (2%)
IMDB 91.1 87.9 80.4 87.2 59.8 59.7
SST 85.8 80.9 71.8 70.1 69.6 70.7
Yelp 91.0 87.8 82.0 79.4 69.0 69.1

Yelp (10%)
Yelp 96.9 94.0 90.4 93.6 70.5 71.9
SST 86.8 59.3 69.8 67.2 67.7 69.3
IMDB 88.6 78.0 64.5 66.6 53.0 55.8

AmazDigiMu (20%)
AmazDigiMu 70.6 66.1 63.4 65.8 51.9 65.8
AmazInstr 61.2 58.0 57.2 57.4 46.0 57.2
AmazPantry 64.6 59.1 56.5 56.5 44.8 44.8

AmazPantry (20%)
AmazPantry 70.2 67.3 62.6 67.2 48.6 48.7
AmazDigiMu 59.5 57.7 54.6 56.2 41.2 57.7
AmazInstr 64.5 63.8 58.0 63.6 40.1 40.3

AmazInstr (20%)
AmazInstr 71.5 69.8 62.1 69.7 45.6 48.6
AmazDigiMu 61.3 60.0 53.2 57.8 43.8 60.0
AmazPantry 68.2 64.5 56.3 63.1 44.6 47.6

Table 4: Average F1 macro performance of FRESH models (five runs) with the a priori defined rationale length in
the brackets. Bold denotes no significant difference between FRESH and Full-text (t-test; p > 0.05). For clarity, we
present F1 scores with standard deviations in Appendix D.

of cases, using HardKuma in out-of-domain data re-448

sults to comparable performance with their full-text449

model counterparts. This suggests that HardKuma450

models can be used in out-of-domain settings, with-451

out significant sacrifices in predictive performance452

whilst also offering faithful rationales.453

FRESH: Table 4 shows the averaged F1-macro454

performance across 5 random seeds for FRESH455

classifiers on in- and out-of-domain using TopK456

rationales.7. We also include the a priori defined457

rationale length in parentheses and the predictive458

performance of the Full-Text model for reference.8459

We first observe that in-domain predictive perfor-460

mance varies across feature attribution approaches461

with attention-based metrics (α∇α, α) outperform-462

ing the gradient-based ones (x∇x, IG), largely463

agreeing with Jain et al. (2020). We also find that464

α∇α and DeepLift are the feature attribution ap-465

proaches that lead to the highest predictive perfor-466

mance across all datasets.467

As we initially hypothesized, performance of468

FRESH generally degrades when testing on out-of-469

domain data similarly to the behavior of models470

trained using the full text. The only exceptions471

are when using x∇x and IG in IMDB. We argue472

that this is due to these feature attribution meth-473

7For clarity we include standard deviations and Contiguous
results in Appendix D

8When evaluating out-of-domain, we use the rationale
length of the dataset we evaluate on. This makes FRESH
experiments comparable with those of HardKuma.

ods not being able to identify the appropriate to- 474

kens relevant to the task using a rationale length 475

2% of the original input. Increasing the rationale 476

length to 20% (SST) and 10% (Yelp) also increases 477

the performance. Results also suggest that α∇α 478

and DeepLift outperform the rest of the feature 479

attributions, with α∇α being the best performing 480

one in the majority of cases. In fact when using 481

α∇α or DeepLift, the out-of-domain performance 482

of FRESH is not significantly different to that of 483

models trained on full text (t-test; p-value > 0.05) 484

in 5 cases. For example, a FRESH model trained on 485

AmazPantry and evaluated on AmazInstr records 486

63.6 F1 macro (using DeepLift) compared to 64.5 487

obtained by a full-text model. However, this does 488

not apply to the other feature attribution methods 489

(α; x∇x; IG). 490

To better understand this behavior, we conduct a 491

correlation analysis between the importance rank- 492

ings using any single feature attribution from (1) a 493

model trained on the same domain with the evalu- 494

ation data; and (2) a model trained on a different 495

domain (out-of-domain trained model). High corre- 496

lations suggest that if a feature attribution from an 497

out-of-domain trained model produces similar im- 498

portance distributions with that of an in-domain 499

model, it will also lead to high predictive per- 500

formance out-of-domain. Contrary to our initial 501

assumption we found that the lower the correla- 502

tion, the higher the predictive performance with 503

FRESH. Results show low correlations when us- 504
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ing α∇α and DeepLift (highest FRESH perfor-505

mance). Surprisingly, IG and x∇x (lowest FRESH506

performance) showed consistently strong correla-507

tions across all dataset pairs. Thus, we conclude508

that lower correlation scores indicate lower attach-509

ment to spurious correlations learned during train-510

ing. We expand our discussion and show results511

for the correlation analysis in Appendix E.512

Our findings therefore suggest that using FRESH513

in out-of-domain settings, can result to compara-514

ble performance with a model trained on full-text.515

However this highly depends on the choice of the516

feature attribution method.517

HardKuma vs. FRESH: We observe that Hard-518

Kuma models are not significantly different com-519

pared to models trained on the full text in out-of-520

domain settings in more cases, when compared to521

FRESH (9 out of 12 and 5 out of 12 respectively).522

However, FRESH with α∇α or DeepLift records523

higher predictive performance compared to Hard-524

Kuma models (both in- and out-of-domain) in all525

cases. We attribute this to the underlying model ar-526

chitectures, as FRESH uses BERT and HardKuma527

a bi-LSTM. As we discussed in §3.2, we attempted528

using BERT for HardKuma models in the extractor529

and classifier similar to Jain et al. (2020). However,530

the performance of HardKuma with BERT is at531

most comparable to when using a bi-LSTM similar532

to findings of Guerreiro and Martins (2021).533

5.3 Correlation between Post-hoc Explanation534

Faithfulness and FRESH Performance535

We hypothesize that a feature attribution with536

high scores for sufficiency and comprehensiveness,537

should extract rationales that result in high FRESH538

predictive performance. We expect that if our hy-539

pothesis is valid, faithfulness scores can serve as540

early indicators of FRESH performance, both on541

in-domain and out-of-domain settings.542

Table 5 shows the Spearman’s ranking corre-543

lation (ρ) between FRESH F1 performance (see544

Table 4) and comprehensiveness and sufficiency545

(see Table 2). Correlation is computed using all546

feature scoring methods for each dataset pair. Re-547

sults show that only 4 cases achieve statistically548

significant correlations (p-value < 0.05) with only549

3 out-of-domain and mostly between sufficiency550

and FRESH performance. We do not observe551

high correlations with comprehensiveness which552

is expected, as comprehensiveness evaluated the553

rationale’s influence towards a model’s prediction.554

Train Test ρ
FRESH Sufficiency Comprehen.

SST
SST 0.97 0.15
IMDB 0.36 0.21
Yelp 0.90 0.56

IMDB
IMDB 0.69 0.87
SST 0.65 0.23
Yelp 0.92 0.92

Yelp
Yelp 0.82 0.55
SST -0.67 -0.67
IMDB 0.87 0.56

AmazDigiMu
AmazDigiMu -0.11 0.22
AmazInstr 0.23 0.69
AmazPantry 0.11 0.11

AmazPantry
AmazPantry 0.16 0.16
AmazDigiMu 0.05 0.41
AmazInstr 0.16 0.16

AmazInstr
AmazInstr 0.79 0.55
AmazDigiMu 0.24 0.67
AmazPantry 0.21 0.20

Table 5: Spearman’s ranking correlation (ρ) between
FRESH performance and comprehensiveness, suffi-
ciency across all feature attribution approaches. Bold
denotes statistically significant (p-value ≤ 0.05) corre-
lations.

Our findings refute our initial hypothesis and sug- 555

gest that there is no clear correlation across all 556

cases, between post-hoc explanation faithfulness 557

and FRESH predictive performance. Therefore, 558

sufficiency and comprehensiveness scores cannot 559

be used as early indicators of FRESH predictive 560

performance. 561

6 Conclusion 562

We conducted an extensive empirical study to as- 563

sess the faithfulness of post-hoc explanations (i.e. 564

using feature attribution approaches) and perfor- 565

mance of select-then-predict (i.e. inherently faith- 566

ful) models in out-of-domain settings. Our findings 567

highlight, that using sufficiency and comprehen- 568

siveness to evaluate post-hoc explanation faithful- 569

ness out-of-domain can be misleading. To address 570

this issue, we suggest comparing faithfulness of 571

post-hoc explanations to a random attribution base- 572

line for a more robust evaluation. We also show 573

that select-then-predict models, which are inher- 574

ently faithful, perform surprisingly well in out-of- 575

domain settings. Despite performance degradation, 576

in many cases their performance is comparable to 577

those of full-text trained models. In future work, 578

we aim to explore methods for improving the eval- 579

uation of faithfulness for out-of-domain post-hoc 580

explanations. 581
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A Dataset Characteristics806

Table 6 presents extended data characteristics for807

all datasets. We present information across the808

three data splits, including: (1) The average se-809

quence length; (2) The number of documents in810

each split and (3) the number of documents under811

each label.812

Our dataset selection was highly motivated for813

also examining the differences when we have grad-814

ual shifts in domain. For example for the triplet815

SST - IMDB - YELP, two datasets are closely as-816

sociated (SST, IMDB) as they are movie reviews,817

whilst Yelp is a task for classifying restaurant re-818

views. Similarly, AmazDigiMu and AmazInstr819

share similar characteristics, as they are reviews820

about items related to music. On the contrary,821

AmazPantry consists of reviews about pantry items.822

This is also the primary reason why we focused on823

text classification tasks, as it is easier to control for824

the output and other parameters, whilst allowing825

for control over the task it-self.826

Dataset Train Dev Test

SST

Avg. Seq. Length 17 17 17
No. of documents 6,920 872 1,821
Docs in label-0 3,310 428 912
Docs in label-1 3,610 444 909

IMDB

Avg. Seq. Length 241 248 247
No. of documents 20,000 2,500 2,500
Docs in label-0 9,952 1,275 1,273
Docs in label-1 10,048 1,225 1,227

Yelp

Avg. Seq. Length 154 154 153
No. of documents 476,000 84,000 38,000
Docs in label-0 238,000 42,000 19,000
Docs in label-1 238,000 42,000 19,000

AmazDigiMu

Avg. Seq. Length 38 39 38
No. of documents 122,552 21,627 25,444
Docs in label-0 2,893 510 601
Docs in label-1 4,907 866 1,019
Docs in label-2 114,752 20,251 23,824

AmazPantry

Avg. Seq. Length 24 24 24
No. of documents 99,423 17,546 20,642
Docs in label-0 4,995 881 1,037
Docs in label-1 6,579 1,161 1,366
Docs in label-2 87,849 15,504 18,239

AmazInstr

Avg. Seq. Length 66 66 65
No. of documents 167,145 29,497 34,702
Docs in label-0 10,651 1,879 2,211
Docs in label-1 11,581 2,044 2,404
Docs in label-2 144,913 25,574 30,087

Table 6: Extended dataset characteristics

B Models and Hyper-parameters 827

For feature attributions: We use BERT-base 828

with pre-trained weights from the Huggingface li- 829

brary (Wolf et al., 2020). We use the AdamW opti- 830

mizer (Loshchilov and Hutter, 2017) with an initial 831

learning rate of 1e − 5 for fine-tuning BERT and 832

1e− 4 for the fully-connected classification layer. 833

We train our models for 3 epochs using a linear 834

scheduler with 10% of the data in the first epoch as 835

warm-up. We also use a grad-norm of 1 and select 836

the model with the lowest loss on the development 837

set. All models are trained across 5 random seeds 838

and we report the average and standard deviation. 839

We present their test-set performance in Table 7 840

and their development set performance in Table 8. 841

For FRESH: For the rationale extractor, we use 842

the same model for extracting rationales from fea- 843

ture attributions. For the classifier (trained only on 844

the extracted rationales), we also use BERT-base 845

with the same optimizer configuration and sched- 846

uler warm-up steps. We also use a grad-norm of 847

1 and select the model with the lowest loss on the 848

development set. We train across 5 random seeds 849

for 5 epochs. 850

In Table 7 we present full-text BERT-base F1- 851

macro scores averaged across 5 random seeds with 852

standard deviations included in the brackets. Addi- 853

tionally, we present the mean Expected Calibration 854

Error (ECE) scores. Finally, in Table 8 we present 855

the in-domain F1-macro performance and loss on 856

the development set. 857

For HardKuma: We use the 300-dimensional 858

pre-trained GloVe embeddings from the 840B re- 859

lease (Pennington et al., 2014) as word represen- 860

tations and keep them frozen during training. The 861

rationale extractor (which generates the rationale 862

mask z) is a 200-d bi-directional LSTM layer (bi- 863

LSTM) (Hochreiter and Schmidhuber, 1997) simi- 864

lar to (Bastings et al., 2019; Guerreiro and Martins, 865

2021). We use the Adam optimizer (Kingma and 866

Ba, 2014) for all models with a learning rate be- 867

tween 1e − 5 and 1e − 4 and a weight decay of 868

1e− 5. We also enforce a grad-norm of 5 and train 869

for 20 epochs across 5 random seeds. Similar to 870

Guerreiro and Martins (2021) we select the model 871

with the highest F1-macro score on the develop- 872

ment set and find that tuning the Lagrangian re- 873

laxation algorithm parameters beneficial to model 874

predictive performance. We also attempted training 875

HardKuma models with BERT-base, similar to Jain 876
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Trained On Tested On F1 ECE

SST
SST 90.1 (0.3) 4.4 (0.7)

IMDB 84.3 (0.6) 7.1 (0.6)
Yelp 87.9 (2.3) 4.2 (2.3)

IMDB
IMDB 91.1 (0.4) 4.7 (0.6)
SST 85.8 (2.0) 5.8 (0.8)
Yelp 91.0 (1.2) 0.9 (0.2)

Yelp
Yelp 96.9 (0.1) 2.2 (0.1)
SST 86.8 (1.7) 8.5 (0.9)

IMDB 88.6 (0.3) 7.9 (0.6)

AmazDigiMu
AmazDigiMu 70.6 (0.9) 2.3 (0.1)

AmazInstr 61.2 (1.8) 5.4 (0.2)
AmazPantry 64.6 (1.0) 4.3 (0.4)

AmazPantry
AmazPantry 70.2 (1.1) 3.8 (0.4)

AmazDigiMu 59.5 (0.7) 3.2 (0.5)
AmazInstr 64.5 (2.6) 4.9 (0.9)

AmazInstr
AmazInstr 71.5 (0.4) 3.9 (0.5)

AmazDigiMu 61.3 (0.3) 3.2 (0.2)
AmazPantry 68.2 (0.7) 4.1 (0.5)

Table 7: F1 macro performance and Expected Calibra-
tion Error (ECE) (five runs) with standard deviation, of
full-text BERT-base models.

Dataset F1 Dev. Loss
SST 89.9 (0.3) 2.4 (0.0)
IMDB 92.0 (0.3) 1.8 (0.0)
Yelp 96.8 (0.1) 0.9 (0.0)
AmazDigiMu 67.6 (1.1) 1.3 (0.0)
AmazPantry 69.5 (1.4) 1.9 (0.1)
AmazInstr 72.1 (0.5) 1.9 (0.1)

Table 8: F1-macro predictive performance (five runs)
with standard deviation, of BERT-base models trained
on the full text. We also include the development loss.

et al. (2020), however we found performance to be877

at best comparable with our LSTM variant, as in878

Guerreiro and Martins (2021), even after hyperpa-879

rameter tuning.880

All experiments are run on a single NVIDIA Tesla881

V100 GPU.882

C HardKuma - Extended883

In Table 9 we present for reference the performance884

of a 200-dimensional bi-LSTM classifier trained on885

full-text. We train the full-text LSTM for 20 epochs886

across 5 random seeds and select the model with the887

highest F1-macro performance on the development888

set. We use the Adam optimizer with a learning889

rate of 1e − 3 and 1e − 5 weight decay. We re-890

port predictive performance and ECE scores on the891

test-set. In Table 10 we include HardKuma per-892

formance with standard deviations, and expected893

calibration error (ECE), across five runs.894

Trained On Tested On F1 ECE

SST
SST 81.7 (0.9) 3.2 (0.7)

IMDB 71.9 (0.9) 4.9 (2.8)
Yelp 68.7 (3.2) 5.8 (5.1)

IMDB
IMDB 87.4 (0.9) 4.7 (1.8)
SST 77.5 (2.0) 6.2 (1.4)
Yelp 41.0 (5.3) 39.4 (7.3)

Yelp
Yelp 96.0 (0.0) 0.5 (0.2)
SST 80.4 (0.8) 1.9 (0.7)

IMDB 84.5 (1.0) 5.0 (1.3)

AmazDigiMu
AmazDigiMu 67.6 (0.3) 0.5 (0.1)

AmazInstr 54.2 (1.1) 2.6 (0.6)
AmazPantry 55.3 (0.4) 1.9 (0.5)

AmazPantry
AmazPantry 67.9 (0.4) 0.7 (0.4)

AmazDigiMu 50.9 (1.9) 1.9 (0.6)
AmazInstr 55.9 (2.2) 2.8 (0.9)

AmazInstr
AmazInstr 67.2 (0.7) 1.2 (0.4)

AmazDigiMu 54.3 (1.4) 1.1 (0.1)
AmazPantry 61.1 (1.5) 1.5 (0.6)

Table 9: F1 macro performance and Expected Calibra-
tion Error (ECE) of a full-text LSTM classifier trained
on an in-domain dataset and tested on their in-domain
test-set and two other out-of-domain datasets.

D FRESH - Extended 895

Tables 11 and 12 presents FRESH F1 macro per- 896

formance and Expected Calibration Error (ECE) 897

for classifiers trained on TopK and Contiguous ra- 898

tionales respectively, with standard deviation in 899

brackets. We include the a priori defined rationale 900

length in the brackets (.%) and for reference, the ID 901

performance of the Full-Text model (as also seen 902

in Table 7). 903

Comparing with FRESH performance with Con- 904

tiguous rationales rather than TopK (see Table 11), 905

we first observe that performance degrades for most 906

feature attribution methods. These findings are 907

largely in agreement with those of Jain et al. (2020). 908

However, x∇x and IG, which perform poorly with 909

TopK, record surprisingly better scores with Con- 910

tiguous type rationales. For example, in-domain 911

performance with IG becomes comparable with 912

α∇α in in-domain IMDB (83.2 with α∇α and 913

82.5 with IG). This is in sharp contrast with TopK, 914

where IG recorded an F1 score of only 59.7, com- 915

pared to 87.9 of α∇α. 916

These findings also hold in out-of-domain set- 917

tings, where α∇α, α and DeepLift result in poorer 918

FRESH performance with Contiguous type ratio- 919

nales, compared to TopK. However, IG and in many 920

cases x∇x improves. For example with TopK ra- 921

tionales, evaluating on Yelp using IG from a model 922

trained on IMDB, results on an F1-score of 69.1. 923

12



Train Test Full-text HardKuma
F1 F1 ECE L (%)

SST
SST 81.7 (0.9) 77.6 (1.4) 3.8 (0.8) 56.8 (26.2)

IMDB 71.9 (0.9) 65.7(15.1) 7.4 (6.4) 39.5 (33.5)
Yelp 68.7 (3.2) 67.7(11.6) 9.9 (4.4) 32.7 (30.7)

IMDB
IMDB 87.4 (0.9) 82.0 (0.6) 3.5 (1.6) 1.9 (0.2)
SST 77.5 (2.0) 73.6 (2.2) 7.3 (5.3) 16.8 (2.7)
Yelp 41.0 (5.3) 47.2(5.8) 24.7 (6.3) 3.1 (2.0)

Yelp
Yelp 96.0 (0.0) 92.4 (0.3) 3.0 (0.7) 7.4 (0.7)
SST 80.4 (0.8) 72.4 (0.8) 10.9 (0.8) 14.1 (1.2)

IMDB 84.5 (1.0) 73.3 (3.5) 19.1 (3.8) 4.7 (0.7)

AmazDigiMu
AmazDigiMu 67.6 (0.3) 66.8 (0.5) 0.7 (0.5) 18.4 (0.5)

AmazInstr 54.2 (1.1) 53.3(1.2) 4.1 (2.0) 25.8 (6.1)
AmazPantry 55.3 (0.4) 54.7(1.4) 3.6 (1.4) 27.8 (3.6)

AmazPantry
AmazPantry 67.9 (0.4) 66.6 (0.5) 1.3 (0.4) 18.9 (1.1)

AmazDigiMu 50.9 (1.9) 51.0(0.6) 1.9 (0.6) 11.2 (3.3)
AmazInstr 55.9 (2.2) 57.4(1.2) 2.8 (0.6) 18.2 (1.3)

AmazInstr
AmazInstr 67.2 (0.7) 66.7(0.8) 1.9 (0.6) 19.2 (1.5)

AmazDigiMu 54.3 (1.4) 53.7(1.2) 1.9 (0.4) 13.9 (2.9)
AmazPantry 61.1 (1.5) 59.5(1.4) 2.8 (0.5) 24.4 (2.8)

Table 10: F1 macro performance (five runs) with standard deviation for HardKuma models and the selected rationale
length (L). Bold denotes no significant difference between HardKuma and Full-text (t-test; p > 0.05).

Train Test Full-Text F1 ECE
α∇α α DeepLift x∇x IG α∇α α DeepLift x∇x IG

SST (20%)
SST 90.1 (0.3) 87.7 (0.4) 81.1 (1.0) 84.4 (0.7) 76.3 (0.5) 76.8 (0.3) 7.6 (1.6) 6.0 (0.7) 7.5 (0.5) 2.7 (1.2) 2.8 (1.3)

IMDB 84.3 (0.6) 81.8 (0.2) 52.6 (2.1) 64.0 (2.1) 55.0 (1.7) 56.3 (0.4) 14.2 (1.2) 21.1 (4.0) 21.3 (3.5) 18.2 (1.3) 21.1 (0.7)
Yelp 87.9 (2.3) 88.1(0.0) 72.6 (4.0) 75.4 (2.3) 59.6 (3.8) 63.9 (1.1) 8.1 (1.5) 7.8 (3.2) 11.5 (1.5) 7.8 (4.3) 7.8 (2.3)

IMDB (2%)
IMDB 91.1 (0.4) 87.9 (0.2) 80.4 (0.9) 87.2 (0.4) 59.8 (0.2) 59.7 (0.6) 8.2 (0.1) 5.6 (1.5) 7.7 (0.5) 5.9 (3.2) 5.9 (2.4)
SST 85.8 (2.0) 80.9 (0.5) 71.8 (1.0) 70.1 (0.5) 69.6 (0.5) 70.7 (1.7) 13.1 (0.3) 9.2 (1.9) 22.6 (1.6) 7.2 (1.0) 5.9 (1.3)
Yelp 91.0 (1.2) 87.8 (0.1) 82.0 (0.2) 79.4 (1.4) 69.0 (0.6) 69.1 (0.4) 7.3 (0.5) 2.0 (1.9) 14.6 (1.8) 6.5 (1.4) 6.8 (0.3)

Yelp (10%)
Yelp 96.9 (0.1) 94.0 (0.0) 90.4 (0.2) 93.6 (0.3) 70.5 (0.2) 71.9 (0.1) 4.3 (0.4) 5.5 (0.4) 3.6 (0.3) 1.7 (0.8) 2.2 (0.4)
SST 86.8 (1.7) 59.3 (0.6) 69.8 (1.1) 67.2 (1.5) 67.7 (0.5) 69.3 (0.8) 33.5 (1.3) 22.6 (0.8) 28.8 (0.3) 9.9 (0.4) 10.8 (0.2)

IMDB 88.6 (0.3) 78.0 (0.4) 64.5 (0.3) 66.6 (0.5) 53.0 (0.4) 55.8 (0.1) 17.4 (0.9) 22.5 (1.4) 29.8 (1.4) 17.9 (1.7) 18.1 (0.2)

AmazDigiMu (20%)
AmazDigiMu 70.6 (0.9) 66.1 (1.8) 63.4 (1.0) 65.8(2.6) 51.9 (2.0) 65.8 (2.6) 2.8 (0.4) 2.2 (0.9) 2.7 (0.7) 2.4 (0.9) 2.7 (0.7)

AmazInstr 61.2 (1.8) 58.0(0.8) 57.2(1.2) 57.4(1.2) 46.0 (0.6) 57.2 (1.2) 8.2 (1.0) 6.7 (1.5) 8.3 (1.3) 6.3 (1.8) 6.7 (1.5)
AmazPantry 64.6 (1.0) 59.1 (0.3) 56.5 (1.2) 56.5 (1.7) 44.8 (0.8) 44.8 (0.8) 6.5 (0.8) 5.6 (1.4) 7.1 (1.6) 5.8 (1.6) 5.8 (1.6)

AmazPantry (20%)
AmazPantry 70.2 (1.1) 67.3 (0.5) 62.6 (1.0) 67.2 (0.0) 48.6 (1.7) 48.7 (2.7) 4.9 (0.3) 3.8 (0.3) 4.9 (0.3) 4.1 (1.0) 4.3 (1.3)

AmazDigiMu 59.5 (0.7) 57.7(0.6) 54.6 (0.9) 56.2 (0.0) 41.2 (0.4) 57.7 (0.6) 3.6 (0.4) 2.7 (0.2) 3.7 (0.1) 1.8 (0.9) 3.6 (0.4)
AmazInstr 64.5 (2.6) 63.8(0.4) 58.0 (1.9) 63.6(0.2) 40.1 (1.1) 40.3 (2.5) 6.6 (0.4) 5.3 (0.7) 6.5 (0.4) 5.7 (1.5) 5.8 (1.9)

AmazInstr (20%)
AmazInstr 71.5 (0.4) 69.8 (0.3) 62.1 (2.3) 69.7 (0.3) 45.6 (4.7) 48.6 (2.7) 5.6 (0.5) 3.6 (0.7) 5.9 (0.3) 2.4 (1.0) 3.2 (1.1)

AmazDigiMu 61.3 (0.3) 60.0(0.7) 53.2 (1.7) 57.8 (0.4) 43.8 (3.3) 60.0 (0.7) 3.5 (0.4) 1.8 (0.3) 4.1 (0.2) 1.4 (0.1) 3.5 (0.4)
AmazPantry 68.2 (0.7) 64.5 (0.7) 56.3 (1.9) 63.1 (0.3) 44.6 (3.9) 47.6 (2.6) 5.7 (0.4) 4.0 (0.3) 6.0 (0.3) 2.7 (1.2) 3.6 (0.9)

Table 11: F1 macro performance of FRESH models (TopK rationales) with standard deviation in brackets and
Expected Calibration Error (ECE) scores. For reference we include the in-domain performance of full-text models.
Bold denotes no significant difference between FRESH and Full-text (t-test; p > 0.05)

On the contrary, with Contiguous rationales and924

the same set-up, IG results in FRESH performance925

of 87.0.926

Our findings lead us to assume that, the rationale927

type has a large impact on FRESH performance,928

both in-domain and on out-of-domain settings. Cer-929

tain feature attribution methods benefit from one930

type of rationales (e.g. DeepLift with TopK), whilst931

others from another (e.g. IG with Contiguous).932

E Extended Analysis 933

E.1 Correlation of Rankings 934

We examine why x∇x and IG, do not perform as 935

well as DeepLift and α∇α when using FRESH. We 936

therefore conduct a study to gain better understand 937

this. We first fix the domain of the data we evaluate 938

on and then compute the correlation between impor- 939

tance rankings using any single feature attribution 940

from: (1) a model trained on the same domain with 941

the evaluation data and (2) a model from trained 942
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Train Test Full-Text F1 ECE
α∇α α DeepLift x∇x IG α∇α α DeepLift x∇x IG

SST (20%)
SST 90.1 (0.3) 87.1 (0.8) 80.7 (0.4) 79.7 (1.5) 77.8 (0.6) 79.7 (1.5) 5.9 (0.5) 4.2 (1.9) 5.8 (2.0) 2.5 (0.9) 5.8 (2.0)

IMDB 84.3 (0.6) 80.3 (0.5) 58.8 (0.4) 64.9 (1.5) 53.1 (0.7) 64.9 (1.5) 13.3 (0.6) 19.7 (2.8) 15.3 (1.7) 19.0 (2.6) 15.3 (1.7)
Yelp 87.9 (2.3) 88.1(0.3) 74.8 (1.0) 69.5 (0.9) 71.7 (1.1) 88.1 (0.3) 5.4 (0.3) 4.0 (2.7) 9.4 (3.1) 3.1 (1.8) 5.4 (0.3)

IMDB (2%)
IMDB 91.1 (0.4) 83.2 (0.1) 75.6 (0.6) 82.5 (0.8) 62.7 (0.2) 82.5 (0.8) 7.1 (1.4) 4.8 (1.4) 7.6 (1.5) 3.8 (1.3) 7.6 (1.5)
SST 85.8 (2.0) 80.1 (1.1) 74.7 (1.2) 66.7 (0.6) 71.6 (1.2) 80.1 (1.1) 8.1 (0.9) 3.1 (1.4) 20.1 (1.7) 4.2 (0.7) 8.1 (0.9)
Yelp 91.0 (1.2) 87.0 (0.3) 80.8 (1.3) 69.2 (4.4) 73.8 (0.8) 87.0 (0.3) 3.4 (2.0) 2.8 (0.2) 15.8 (2.1) 8.1 (1.4) 3.4 (2.0)

Yelp (10%)
Yelp 96.9 (0.1) 91.8 (0.5) 81.7 (0.3) 89.0 (0.7) 81.8 (0.2) 89.0 (0.7) 5.4 (0.4) 3.7 (0.9) 5.3 (0.4) 4.0 (0.7) 5.3 (0.4)
SST 86.8 (1.7) 65.5 (2.2) 71.3 (1.3) 68.4 (1.0) 68.7 (0.5) 65.5 (2.2) 26.6 (2.0) 15.3 (2.8) 23.7 (2.4) 9.0 (0.7) 26.6 (2.0)

IMDB 88.6 (0.3) 75.3 (1.2) 62.1 (0.9) 67.5 (0.2) 55.8 (0.4) 67.5 (0.2) 19.2 (0.7) 15.1 (0.6) 24.3 (1.6) 17.6 (0.7) 24.3 (1.6)

AmazDigiMu (20%)
AmazDigiMu 70.6 (0.9) 65.8 (1.5) 60.1 (2.3) 59.5 (4.0) 55.9 (2.4) 59.5 (4.0) 2.8 (0.4) 2.4 (1.0) 3.2 (0.4) 2.6 (1.1) 3.2 (0.4)

AmazInstr 61.2 (1.8) 57.0 (0.9) 51.8 (2.0) 50.8 (1.8) 47.5 (0.6) 51.8 (2.0) 8.2 (1.0) 6.6 (2.1) 8.5 (1.0) 6.4 (2.1) 6.6 (2.1)
AmazPantry 64.6 (1.0) 57.7 (0.6) 51.6 (2.0) 51.4 (2.6) 47.5 (1.2) 47.5 (1.2) 6.7 (0.8) 5.7 (1.8) 7.5 (0.5) 6.1 (1.8) 6.1 (1.8)

AmazPantry (20%)
AmazPantry 70.2 (1.1) 63.5(3.6) 62.0 (0.4) 58.0 (1.0) 50.0 (2.1) 58.0 (1.0) 4.4 (0.4) 3.8 (0.6) 5.0 (0.9) 4.3 (0.9) 5.0 (0.9)

AmazDigiMu 59.5 (0.7) 53.7(3.6) 52.0 (1.4) 46.7 (0.7) 44.4 (2.7) 53.7 (3.6) 3.2 (0.2) 2.8 (0.5) 2.8 (0.9) 1.9 (0.7) 3.2 (0.2)
AmazInstr 64.5 (2.6) 59.1(3.9) 56.1 (1.5) 51.4 (0.6) 42.6 (3.6) 56.1 (1.5) 5.8 (0.4) 5.7 (1.0) 5.7 (1.5) 5.7 (1.5) 5.7 (1.0)

AmazInstr (20%)
AmazInstr 71.5 (0.4) 66.3 (1.1) 52.2 (2.3) 60.9 (0.8) 53.4 (1.2) 60.9 (0.8) 4.6 (0.2) 4.2 (0.6) 5.2 (0.9) 3.7 (1.4) 5.2 (0.9)

AmazDigiMu 61.3 (0.3) 56.5 (0.6) 47.0 (1.4) 52.1 (0.3) 48.3 (1.2) 56.5 (0.6) 2.9 (0.2) 1.9 (0.4) 3.3 (0.6) 2.0 (0.6) 2.9 (0.2)
AmazPantry 68.2 (0.7) 62.4 (0.9) 49.2 (1.7) 57.4 (0.6) 51.0 (1.3) 51.0 (1.3) 4.6 (0.3) 4.6 (0.5) 5.2 (0.8) 4.5 (0.8) 4.5 (0.8)

Table 12: F1 macro performance of FRESH models (Contiguous rationales) with standard deviation in brackets and
Expected Calibration Error (ECE) scores. For reference we include the in-domain performance of full-text models.
Bold denotes no significant difference between FRESH and Full-text (t-test; p > 0.05)

Figure 2: Average Spearman’s ranking correlation coefficient, between feature attribution rankings from: (1) a
model trained on the same distribution as the evaluation data (ID) and (2) from a model trained in another domain
(OOD), such that ID <-> OOD.

on a different distribution (out-of-domain trained943

model). High correlations suggest that a feature944

attribution from an out-of-domain trained model,945

produce similar importance distributions with that946

of an in-domain model (i.e. both attend to similar947

tokens to make a prediction). Therefore, we assume948

that this will lead to high predictive performance949

out-of-domain. In Figure 2 we show Spearman’s950

ranking correlation across dataset pairs, between a951

model trained on the same distribution as the evalu-952

ation data (ID) and an out-of-domain trained model953

(OOD), such that (ID <-> OOD).954

As expected, the random baseline produced al-955

most no correlation between models. An interest-956

ing observation is that two of the gradient-based957

methods (x∇x and IG) produce strongly correlated 958

rankings. This suggests that these two metrics pro- 959

duce generalizable rankings irrespective of the do- 960

main shift, when comparing to the remainder of 961

the feature attribution approaches. Surprisingly, 962

Deeplift importance rankings exhibit almost low 963

to no correlation betweenen them, despite being 964

also gradient-based. We hypothesize that this hap- 965

pens because DeepLift considers a baseline input to 966

compute its importance distribution, which highly 967

depends on the model and as such is de-facto nor- 968

malized and perhaps generalizes better. 969

α for out-of-domain detection?: An interesting 970

case is that of α, where we observe moderate to 971
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ID OOD Rand α∇α α DeepLift x∇x IG
SST IMDB 0.06 0.26 0.39 0.37 0.54 0.55
SST Yelp 0.07 0.11 0.27 0.29 0.46 0.49
IMDB SST 0.02 0.13 0.25 0.15 0.43 0.43
IMDB Yelp 0.02 0.08 0.16 0.09 0.43 0.43
Yelp SST 0.02 0.08 0.12 0.18 0.37 0.39
Yelp IMDB 0.02 0.05 0.12 0.10 0.40 0.41
AmazDigiMu AmazInstr 0.13 0.22 0.38 0.16 0.60 0.61
AmazDigiMu AmazPantry 0.13 0.30 0.36 0.27 0.60 0.62
AmazPantry AmazDigiMu 0.14 0.28 0.35 0.27 0.60 0.63
AmazPantry AmazInstr 0.14 0.39 0.42 0.21 0.62 0.64
AmazInstr AmazDigiMu 0.08 0.16 0.29 0.12 0.54 0.57
AmazInstr AmazPantry 0.08 0.29 0.36 0.14 0.57 0.59

Table 13: Agreement in tokens at 2% rationale length between a feature attribution from an ID model tested on ID
and the same feature attribution trained on an OOD dataset and tested on ID.

ID OOD Rand α∇α α DeepLift x∇x IG
SST IMDB 0.10 0.32 0.47 0.33 0.60 0.61
SST Yelp 0.11 0.19 0.35 0.25 0.54 0.56
IMDB SST 0.10 0.29 0.41 0.17 0.60 0.61
IMDB Yelp 0.10 0.21 0.34 0.14 0.59 0.61
Yelp SST 0.10 0.18 0.28 0.16 0.55 0.57
Yelp IMDB 0.10 0.16 0.29 0.12 0.56 0.58
AmazDigiMu AmazInstr 0.17 0.29 0.47 0.16 0.66 0.68
AmazDigiMu AmazPantry 0.17 0.36 0.44 0.26 0.66 0.69
AmazPantry AmazDigiMu 0.17 0.33 0.42 0.27 0.66 0.68
AmazPantry AmazInstr 0.17 0.46 0.49 0.24 0.67 0.69
AmazInstr AmazDigiMu 0.13 0.24 0.43 0.11 0.64 0.66
AmazInstr AmazPantry 0.13 0.40 0.50 0.20 0.67 0.68

Table 14: Agreement in tokens at 10% rationale length between a feature attribution from an ID model tested on ID
and the same feature attribution trained on an OOD dataset and tested on ID.

strong correlations across all test-cases. What is972

more evident, is that in the OOD tuples we consid-973

ered, it appears that stronger correlations appear974

where the OOD task and the ID task are closer to-975

gether. For example in the case of SST and IMDB976

(both sentiment analysis tasks for movie reviews),977

α produces a strong correlation (0.68). This con-978

trasts the moderate correlation of 0.58 between SST979

and Yelp, which is for restaurant reviews. This980

is also evident in the case of AmazDigiMu and981

AmazInstr, where both tasks are for review classi-982

fication, but for musical related purchases. They983

both score strong correlations between them and984

moderate correlations with reviews for pantry pur-985

chases (AmazPantry). This observation might sug-986

gest, that using these correlation metrics with α987

might be an indicator of the degree of task-domain-988

shift. Our observation is also supported by the989

findings of Adebayo et al. (2020), who show that990

feature attributions are good indicators of detect-991

ing spurious correlation signals in computer vision992

tasks.Considering α∇α we observe a wide range 993

of correlations, ranging from low in the AmazInstr- 994

AmazDigiMu pair to strong in the AmazPantry- 995

AmazInstr pair, which we cannot interpret as some- 996

thing meaningful. 997

Correlation values and FRESH: We first ob- 998

serve that the lowest correlated feature attribu- 999

tions α∇α and DeepLift perform the better on 1000

FRESH, followed by α which displays moderate 1001

correlations and at the end of the spectrum the 1002

two gradient-based methods which display high 1003

correlations. Contrary to our initial assumption, 1004

this suggests that the attributions which generalize 1005

better (i.e. return rationales that result in higher 1006

FRESH performance) are those which exhibit low 1007

to no correlations. 1008

Agreement at different rationale lengths: As 1009

the correlation analysis considers the entire length 1010

of the sequence, we now examine a scenario where 1011

we have a priori defined rationale lengths. Similarly 1012
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ID OOD Rand α∇α α DeepLift x∇x IG
SST IMDB 0.20 0.42 0.57 0.34 0.68 0.67
SST Yelp 0.21 0.31 0.46 0.27 0.61 0.62
IMDB SST 0.20 0.39 0.52 0.26 0.69 0.69
IMDB Yelp 0.20 0.32 0.46 0.22 0.67 0.68
Yelp SST 0.20 0.29 0.41 0.24 0.64 0.66
Yelp IMDB 0.20 0.27 0.42 0.20 0.65 0.66
AmazDigiMu AmazInstr 0.23 0.37 0.55 0.21 0.71 0.73
AmazDigiMu AmazPantry 0.24 0.44 0.51 0.32 0.71 0.74
AmazPantry AmazDigiMu 0.24 0.40 0.50 0.33 0.71 0.73
AmazPantry AmazInstr 0.24 0.54 0.57 0.32 0.72 0.73
AmazInstr AmazDigiMu 0.21 0.33 0.54 0.16 0.70 0.72
AmazInstr AmazPantry 0.21 0.51 0.60 0.30 0.72 0.74

Table 15: Agreement in tokens at 20% rationale length between a feature attribution from an ID model tested on ID
and the same feature attribution trained on an OOD dataset and tested on ID.

to the correlation analysis, we now compute the1013

agreement in tokens between ID feature attribution1014

rankings to those of an OOD trained model. In1015

Tables 13, 14 and 15 we therefore show the token1016

agreement between in-domain and out-of-domain1017

post-hoc explanations (on the same data) for 2%,1018

10% and 20% rationale lengths.1019

Our findings show that across all rationale1020

lengths, results largely agree with the correlation1021

analysis. The two gradient-based methods exhibit1022

higher agreement than the remainder, with α∇α1023

and DeepLift recording the lowest agreements. Sur-1024

prisingly, the poorest performers on out-of-domain1025

FRESH record the highest agreement in tokens1026

with in-domain models. Whilst this suggests that1027

they generalize better, we believe that the inhibit-1028

ing factor to their performance is their limited in-1029

domain capabilities (i.e. they record the lowest1030

in-domain FRESH performance with TopK).1031

F Post-hoc Explanation Faithfulness -1032

Extended1033

In Tables 16, 17 and 18, we present post-hoc expla-1034

nation sufficiency and comprehensiveness scores1035

at 2%, 10% and 20% rationale lengths.1036
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Train Test Normalized Sufficiency Normalized Comprehensiveness
Rand α∇α α DeepLift x∇x IG Rand α∇α α DeepLift x∇x IG

SST
SST 0.42 0.46 0.40 0.42 0.43 0.43 0.11 0.29 0.00 0.11 0.19 0.19
IMDB 0.35 0.40 0.33 0.35 0.34 0.35 0.11 0.39 0.14 0.13 0.17 0.18
Yelp 0.36 0.41 0.32 0.37 0.32 0.33 0.10 0.31 0.08 0.10 0.11 0.13

IMDB
IMDB 0.36 0.42 0.39 0.37 0.37 0.37 0.05 0.27 0.14 0.06 0.11 0.12
SST 0.29 0.30 0.29 0.30 0.30 0.30 0.16 0.33 0.16 0.16 0.21 0.19
Yelp 0.40 0.45 0.43 0.41 0.40 0.40 0.10 0.35 0.21 0.10 0.13 0.13

Yelp
Yelp 0.12 0.13 0.13 0.13 0.13 0.13 0.02 0.06 0.01 0.02 0.04 0.05
SST 0.47 0.46 0.46 0.48 0.47 0.47 0.08 0.09 0.00 0.09 0.12 0.12
IMDB 0.11 0.11 0.11 0.12 0.11 0.11 0.07 0.19 0.10 0.08 0.10 0.10

AmazDigiMu
AmazDigiMu 0.24 0.42 0.16 0.17 0.30 0.29 0.09 0.25 0.04 0.02 0.12 0.13
AmazInstr 0.17 0.33 0.13 0.13 0.21 0.21 0.14 0.41 0.10 0.06 0.17 0.18
AmazPantry 0.27 0.45 0.20 0.21 0.30 0.29 0.18 0.43 0.10 0.05 0.20 0.22

AmazPantry
AmazPantry 0.23 0.34 0.27 0.16 0.23 0.22 0.11 0.32 0.19 0.03 0.15 0.15
AmazDigiMu 0.22 0.35 0.29 0.16 0.22 0.22 0.10 0.29 0.19 0.03 0.12 0.12
AmazInstr 0.14 0.23 0.18 0.11 0.15 0.14 0.12 0.39 0.23 0.07 0.16 0.17

AmazInstr
AmazInstr 0.13 0.18 0.09 0.11 0.13 0.13 0.16 0.40 0.05 0.08 0.17 0.18
AmazDigiMu 0.19 0.29 0.12 0.13 0.19 0.18 0.14 0.35 0.04 0.05 0.14 0.15
AmazPantry 0.20 0.30 0.14 0.15 0.20 0.20 0.19 0.45 0.04 0.08 0.18 0.21

Table 16: Normalized Sufficiency and Comprehensiveness (higher is better) in-domain and out-of-domain at 2%
rationale length, for five feature attribution approaches and a random attribution baseline.

Train Test Normalized Sufficiency Normalized Comprehensiveness
Rand α∇α α DeepLift x∇x IG Rand α∇α α DeepLift x∇x IG

SST
SST 0.43 0.55 0.43 0.46 0.44 0.45 0.16 0.42 0.20 0.22 0.25 0.25
IMDB 0.36 0.65 0.44 0.37 0.36 0.36 0.19 0.69 0.39 0.24 0.25 0.26
Yelp 0.37 0.67 0.37 0.39 0.33 0.34 0.17 0.58 0.25 0.20 0.22 0.24

IMDB
IMDB 0.37 0.64 0.54 0.40 0.39 0.39 0.10 0.55 0.30 0.17 0.18 0.18
SST 0.28 0.32 0.29 0.30 0.30 0.30 0.23 0.48 0.29 0.29 0.30 0.29
Yelp 0.41 0.54 0.46 0.43 0.41 0.41 0.18 0.58 0.36 0.22 0.24 0.24

Yelp
Yelp 0.17 0.22 0.23 0.26 0.19 0.20 0.05 0.15 0.05 0.06 0.08 0.08
SST 0.48 0.49 0.47 0.50 0.46 0.46 0.13 0.23 0.15 0.16 0.20 0.20
IMDB 0.13 0.29 0.29 0.22 0.14 0.15 0.13 0.35 0.28 0.16 0.18 0.19

AmazDigiMu
AmazDigiMu 0.33 0.67 0.24 0.25 0.39 0.36 0.11 0.34 0.08 0.06 0.15 0.16
AmazInstr 0.28 0.67 0.22 0.26 0.29 0.28 0.19 0.57 0.19 0.15 0.22 0.24
AmazPantry 0.33 0.64 0.25 0.28 0.36 0.34 0.22 0.55 0.17 0.12 0.25 0.26

AmazPantry
AmazPantry 0.23 0.46 0.34 0.17 0.24 0.23 0.15 0.45 0.29 0.10 0.20 0.21
AmazDigiMu 0.22 0.46 0.35 0.16 0.23 0.22 0.13 0.42 0.29 0.10 0.17 0.17
AmazInstr 0.14 0.42 0.27 0.12 0.16 0.15 0.18 0.59 0.40 0.17 0.24 0.25

AmazInstr
AmazInstr 0.13 0.28 0.09 0.12 0.13 0.13 0.23 0.58 0.16 0.22 0.24 0.25
AmazDigiMu 0.19 0.32 0.12 0.14 0.20 0.18 0.18 0.47 0.10 0.14 0.20 0.20
AmazPantry 0.21 0.35 0.15 0.17 0.21 0.21 0.24 0.57 0.12 0.18 0.24 0.27

Table 17: Normalized Sufficiency and Comprehensiveness (higher is better) in-domain and out-of-domain at 10%
rationale length, for five feature attribution approaches and a random attribution baseline.
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Train Test Normalized Sufficiency Normalized Comprehensiveness
Rand α∇α α DeepLift x∇x IG Rand α∇α α DeepLift x∇x IG

SST
SST 0.45 0.68 0.51 0.51 0.48 0.49 0.22 0.54 0.34 0.33 0.32 0.34
IMDB 0.38 0.77 0.55 0.39 0.37 0.38 0.29 0.80 0.54 0.36 0.34 0.36
Yelp 0.39 0.83 0.57 0.41 0.37 0.38 0.25 0.71 0.44 0.30 0.32 0.34

IMDB
IMDB 0.37 0.75 0.62 0.42 0.41 0.42 0.16 0.73 0.47 0.30 0.27 0.27
SST 0.26 0.40 0.31 0.31 0.31 0.30 0.32 0.65 0.42 0.41 0.42 0.42
Yelp 0.42 0.62 0.50 0.43 0.44 0.44 0.28 0.67 0.47 0.35 0.36 0.37

Yelp
Yelp 0.25 0.43 0.41 0.40 0.28 0.30 0.09 0.25 0.12 0.13 0.14 0.15
SST 0.49 0.55 0.51 0.53 0.48 0.48 0.20 0.35 0.27 0.26 0.28 0.29
IMDB 0.19 0.53 0.50 0.34 0.24 0.25 0.20 0.46 0.40 0.27 0.28 0.28

AmazDigiMu
AmazDigiMu 0.43 0.81 0.47 0.35 0.52 0.50 0.14 0.41 0.17 0.10 0.19 0.20
AmazInstr 0.37 0.79 0.49 0.42 0.43 0.42 0.24 0.63 0.33 0.23 0.28 0.30
AmazPantry 0.42 0.76 0.45 0.37 0.47 0.45 0.26 0.61 0.31 0.20 0.30 0.32

AmazPantry
AmazPantry 0.27 0.63 0.46 0.19 0.30 0.29 0.21 0.57 0.40 0.17 0.28 0.29
AmazDigiMu 0.25 0.63 0.46 0.18 0.28 0.27 0.19 0.55 0.39 0.16 0.25 0.25
AmazInstr 0.16 0.61 0.42 0.14 0.21 0.20 0.27 0.72 0.54 0.26 0.35 0.36

AmazInstr
AmazInstr 0.15 0.46 0.15 0.18 0.17 0.16 0.31 0.72 0.33 0.34 0.32 0.34
AmazDigiMu 0.21 0.46 0.16 0.17 0.23 0.20 0.24 0.60 0.22 0.22 0.26 0.27
AmazPantry 0.23 0.49 0.18 0.21 0.24 0.23 0.31 0.68 0.28 0.28 0.32 0.35

Table 18: Normalized Sufficiency and Comprehensiveness (higher is better) in-domain and out-of-domain at 20%
rationale length, for five feature attribution approaches and a random attribution baseline.
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