
Data Laundering: Artificially Boosting Benchmark Results through
Knowledge Distillation

Anonymous ACL submission

Abstract
In this paper, we show that knowledge dis-001
tillation can be subverted to manipulate lan-002
guage model benchmark scores, revealing a003
critical vulnerability in current evaluation prac-004
tices. We introduce "Data Laundering," a three-005
phase process analogous to financial money006
laundering, that enables the covert transfer of007
benchmark-specific knowledge through seem-008
ingly legitimate intermediate training steps.009
Through extensive experiments with a 2-layer010
BERT student model, we show how this ap-011
proach can achieve substantial improvements012
in benchmark accuracy (up to 75% on GPQA)013
without developing genuine reasoning capabil-014
ities. Notably, this method can be exploited015
intentionally or even unintentionally, as re-016
searchers may inadvertently adopt this method017
and inflate scores using knowledge distillation018
without realizing the implications. While our019
findings demonstrate the effectiveness of this020
technique, we present them as a cautionary tale021
highlighting the urgent need for more robust022
evaluation methods in AI. This work aims to023
contribute to the ongoing discussion about eval-024
uation integrity in AI development and the need025
for benchmarks that more accurately reflect026
true model capabilities.027

1 Introduction028

The increasing reliance on language model bench-029

marks like MMLU (Hendrycks et al., 2021a),030

GPQA (Rein et al., 2024), and BigBench (Srivas-031

tava et al., 2023) has solidified these metrics as032

standard measures for assessing and comparing033

model capabilities, driving innovation and tracking034

progress in artificial intelligence (AI). However,035

this focus on benchmark performance has also in-036

troduced vulnerabilities, incentivizing potential ma-037

nipulation and exploitation of these evaluation met-038

rics (Yang et al., 2023; Zheng et al., 2024; Balloccu039

et al., 2024).040

Our work builds upon growing concerns in the 041

field regarding data contamination and benchmark 042

integrity. Previous studies have shown how propri- 043

etary models like GPT-3 and GPT-4 have inadver- 044

tently learned from leaked benchmark data, raising 045

alarm about the integrity of closed-source models 046

(Brown et al., 2020; Magar and Schwartz, 2022; 047

Balloccu et al., 2024). This contamination under- 048

mines reliable evaluation, as models trained on 049

leaked data can achieve inflated scores without de- 050

veloping true generalization. Additionally, recent 051

research has demonstrated that detection methods 052

designed to identify data contamination, such as the 053

LM Contamination Index and text overlap metrics 054

(Sainz et al., 2023; Golchin and Surdeanu, 2024), 055

may fall short in identifying more subtle forms of 056

benchmark gaming—especially in closed-source 057

models that implement filtering mechanisms to con- 058

ceal such behavior (Ippolito et al., 2023). 059

In this paper, we expose a critical vulnerability 060

within current benchmarking practices through a 061

method we term "Data Laundering". Our method 062

"Data Laundering" process uses knowledge distilla- 063

tion (Hinton et al., 2015; Urban et al., 2017; Cheng 064

et al., 2020), a technique traditionally intended 065

for model compression and transfer learning, to 066

covertly transfer benchmark-specific knowledge 067

in a staged manner through intermediate training 068

steps. This process, inspired by the phases of finan- 069

cial laundering, involves three steps—placement, 070

layering, and integration—where we intentionally 071

"place" benchmark knowledge into a teacher model 072

trained on test data, "layer" it through legitimate- 073

seeming intermediate training datasets using knowl- 074

edge distillation, and finally "integrate" the knowl- 075

edge into the model by evaluating it on the bench- 076

mark, thereby making its performance gains ap- 077

pear as genuine skill acquisition. Importantly, 078

researchers can unintentionally use this method, 079

1



especially if they lack awareness of the training080

dataset used for the teacher model (AI@Meta,081

2024; Achiam et al., 2023). If a teacher model082

is unknowingly trained on contaminated data and083

subsequently used for knowledge distillation, this084

can inflate benchmark performance without gen-085

uine skill improvements. While prior work has086

focused on explicit manipulation of evaluation sys-087

tems, our approach highlights a more disguised088

form of benchmark gaming that can occur even089

under seemingly valid training practices.090

Through this investigation, we aim not to provide091

a blueprint for manipulation but rather to stimulate092

a necessary dialogue around evaluation integrity093

within the AI community. Benchmark systems094

must evolve to detect more sophisticated forms095

of gaming and ensure that scores reflect authentic096

model capabilities rather than superficial improve-097

ments. Our contributions are:098

1. Demonstrating a novel form of benchmark099

manipulation that can be employed inten-100

tionally or unintentionally through legitimate-101

appearing training processes;102

2. Providing empirical evidence of how knowl-103

edge distillation can be used to "launder"104

benchmark knowledge covertly;105

3. Highlighting the limitations of current evalua-106

tion frameworks.107

2 Related Work108

2.1 Data Contamination in Language Models109

The challenge of data contamination in language110

models emerged prominently with GPT-3 (Brown111

et al., 2020), which pioneered the API-only access112

model with limited training data disclosure (Ma-113

gar and Schwartz, 2022). Despite early evidence114

suggesting significant contamination (Raffel et al.,115

2020), GPT-3’s widespread adoption in research116

often proceeded without adequate consideration of117

this issue.118

Recent work has highlighted growing concerns119

about data contamination in modern language mod-120

els. As shown by Balloccu et al. (2024), the121

widespread use of proprietary language models in122

research has led to significant data leakage issues,123

with approximately 42% of the reviewed papers124

inadvertently exposing benchmark data to models125

such as GPT-3.5 and GPT-4. This issue has be-126

come particularly pressing with the public release127

of models such as ChatGPT, PaLM 2 (Anil et al., 128

2023), and Claude, where the closed-source nature 129

complicates the contamination assessment. Yang 130

et al. (2023) shows how simple rephrasing of sam- 131

ples can bypass decontamination measures such as 132

n-gram overlap. 133

2.2 Automatic Benchmark and Evaluation 134

Challenges 135

The integrity of language model benchmarks has 136

become a critical concern in the field, especially 137

as the relience on automated evaluation metrics in- 138

creases. To meet the need for timely assessments of 139

newly released models, platforms such as Chatbot 140

Arena (Chiang et al., 2024) provide human-based 141

evaluation, but gathering statistically significant hu- 142

man feedback can take time. As a result, Dubois 143

et al. (2024); Li et al. (2024); Zheng et al. (2023) 144

introduced automatic LLM benchmarks, which use 145

LLM-based auto-annotators to evaluate model per- 146

formance. However, Zheng et al. (2024) demon- 147

strated that even “null models” returning constant 148

outputs could achieve artificially high scores on 149

certain benchmarks by exploiting structural weak- 150

nesses in evaluation templates. While their work 151

focused on directly manipulating evaluation sys- 152

tems, our data laundering approach reveals a more 153

subtle form of benchmark gaming that operates 154

through legitimate-appearing training processes. 155

2.3 Logit-Based Knowledge Distillation 156

Knowledge distillation (Hinton et al., 2015) tech- 157

niques have traditionally been used for legitimate 158

purposes such as model compression and trans- 159

fer learning. Recent advancements have intro- 160

duced various logit distillation approaches tai- 161

lored for large language models. Reverse KL (Gu 162

et al., 2024) has been used to address the "mode- 163

averaging" issue. DistiLLM (Ko et al., 2024) sug- 164

gests blending the logit distributions of the teacher 165

and student models, while SinKD (Cui et al., 2024) 166

replaces KL divergence with Sinkhorn Distance. 167

Our work reveals how logit-based knowledge dis- 168

tillation can be repurposed for potentially problem- 169

atic uses. 170

3 Methodology 171

Just as money laundering involves transforming 172

"dirty" money into "clean" assets through a series 173

of transactions, our Data Laundering methodol- 174

ogy transforms illicit knowledge into seemingly 175
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 Placement Phase

Place benchmark “dirty” 
knowledge into teacher 
model by training on test 
benchmark dataset.

 Layering Phase

Use knowledge distillation to 
transfer “dirty” knowledge 
through different legitimate 
intermediate  training datasets.

 Integration Phase

Evaluates how well the 
"laundered" knowledge has 
been integrated into the student 
model by evaluating on test 
benchmark from first phase.

Test Benchmark knowledge

 Teacher model

Training dataset

 Student model

Test Benchmark knowledge
“Clean knowledge”

“Dirty knowledge” “Laundered knowledge”

Figure 1: The Data Laundering framework parallels traditional money laundering phases: Placement (knowledge
acquisition through teacher model), Layering (knowledge transformation through distillation), and Integration
(legitimate knowledge verification through benchmark testing). This analogy illustrates how knowledge can be
effectively transferred while maintaining clear separation from source domains.

legitimate knowledge through a carefully designed176

three-phase process illustrated in Figure 1.177

3.1 The Placement Phase (Teacher Model178

Training)179

In traditional money laundering, the placement180

phase introduces illicit funds into the financial sys-181

tem. Analogously, in our Data Laundering ap-182

proach, we "place" knowledge into our system183

through a teacher model, which is trained pro-184

hibitively on test data from benchmark datasets185

(e.g., GPQA (Rein et al., 2024)). This method in-186

tentionally bypasses the training dataset to seed our187

model with "unfair" knowledge—knowledge from188

the test data, which would otherwise be off-limits189

for training purposes. This represents our initial190

knowledge capital, which will later be transformed191

through legitimate channels.192

3.2 The Layering Phase (Knowledge193

Distillation)194

Similar to how money laundering employs com-195

plex transactions to obscure the origin of funds,196

our layering phase utilizes knowledge distillation197

to transfer knowledge through different legitimate198

intermediate training datasets (e.g., MedMCQA199

(Pal et al., 2022)). Importantly, during this phase,200

the student model has no access to the test set201

used during the first phase. This process creates a202

legitimate pathway for knowledge transfer while203

maintaining a clear separation from the original204

source of knowledge. The knowledge distillation205

process incorporates both hard labels from the in-206

termediate dataset and soft labels from the teacher207

model’s logits. The layering process combines two208

streams of knowledge: 209

Lstudent = (1− α)Lhard + αLsoft (1)

where: 210

• Lhard represents the cross-entropy loss with 211

ground truth labels 212

• Lsoft represents loss with the teacher model’s 213

logits that can be either MSE loss or KL- 214

divergence loss (KLD). 215

3.3 The Integration Phase (Benchmark 216

Evaluation) 217

Just as laundered money must eventually be reinte- 218

grated into the legitimate economy, our final phase 219

evaluates how well the "laundered" knowledge has 220

been integrated into the student model by testing it 221

on the original benchmark tasks. This phase mea- 222

sures the effectiveness of our knowledge transfer 223

process while maintaining the legitimacy of the ac- 224

quired knowledge to a certain extent (measured by 225

α). 226

4 Experiments 227

To assess the effectiveness of our Data Laundering 228

framework, we conducted comprehensive experi- 229

ments across various configurations and parame- 230

ters, focusing on model performance, distillation 231

training data size variations, and iterative distilla- 232

tion. The hyperparameters we used for all experi- 233

ments are detailed in the Appendix B. 234
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4.1 Overall experiment235

Datasets For the benchmark dataset, we se-236

lected the GPQA Diamond (Rein et al., 2024) and237

MMLU-redux (Gema et al., 2024), which served238

as the basis for teacher model training and final239

student model evaluation. GPQA specifically has240

been designed to be rather difficult even for modern241

LLMs; therefore, it is a good target benchmark to242

see if we can exploit the performance to overcome243

leading LLMs such as GPT-4.244

For the distinct training dataset used in the distil-245

lation process, we employed MedMCQA (Pal et al.,246

2022) and RACE (Lai et al., 2017) to ensure a dif-247

ferentiated question format and domain-specific248

knowledge.249

Models We experimented with a range of mod-250

els, including BERT-base (Kenton and Toutanova,251

2019) and GPT-2 (Radford et al., 2019), config-252

ured with varying layer depths (2-layer, 12-layer253

setups). Additionally, we evaluated LLaMA3.2-1B254

and LLaMA3.2-3B models using LLaMA3.2-3B255

and LLaMA3.1-8B as teacher models.256

Baselines We established a set of baseline mod-257

els to compare the performance of our Data Laun-258

dering method effectively. These baselines in-259

cluded state-of-the-art models such as OpenAI o1,260

Claude 3.5 Sonnet, GPT-4 (Achiam et al., 2023),261

and LLaMA3-70B (AI@Meta, 2024). Results for262

baselines were obtained from either benchmark pa-263

pers (Rein et al., 2024; Gema et al., 2024) or official264

model information1.265

4.2 Loss Function and Alpha Parameter266

We explored different configurations for the knowl-267

edge distillation loss, testing both MSE and KL268

divergence loss. Furthermore, we varied the bal-269

ancing hyperparameter α across values from 0 to270

1.0 to investigate the trade-offs between hard-label271

supervision and teacher model guidance. For these272

tests, a 2-layer BERT and GPT-2 models were used273

with training size 20000, providing insight into how274

α affects alignment with the teacher’s outputs.275

4.3 Iterative Knowledge Distillation276

To evaluate performance degradation over itera-277

tive distillations, we employed a 2-layer BERT and278

GPT-2 models as the initial students. The process279

1https://openai.com/index/
learning-to-reason-with-llms/, https://
www.anthropic.com/news/claude-3-5-sonnet,
https://ai.meta.com/blog/meta-llama-3/

involved making each trained student model the 280

new teacher in subsequent iterations, distilling its 281

knowledge into a new student model. We con- 282

ducted five iterations, experimenting with α values 283

of 0.6 and 1.0, and used MSE loss. This iterative 284

setup allowed us to quantify how well knowledge 285

is preserved through multiple distillation stages. 286

4.4 Effect of Training Data Size 287

We also investigated the impact of training data size 288

in the distillation step on the student model’s final 289

performance. These experiments were carried out 290

using the 2-layer BERT and GPT-2 models with 291

MSE loss and α set to 0.6 and 1.0. By varying 292

the dataset size, we aimed to understand the role 293

of distillation data quantity in knowledge retention 294

and model accuracy. 295

5 Results and Discussion 296

All results are based on a single run, except for 297

those presented in the Table 1, which are averaged 298

over three runs (except when LLaMA3.1-8B was 299

used as teacher). Results presented as figures are 300

detailed in the Appendix A. 301

5.1 Overall Results 302

The results from our experiments demonstrate the 303

effectiveness of the Data Laundering process across 304

diverse configurations and benchmarks, as detailed 305

in Table 1. Unsurprisingly, both BERT and GPT- 306

2 models trained normally on either MedMCQA 307

or RACE fail to handle challenging benchmarks 308

such as GPQA or MMLU, achieving only random 309

performance. Equally unsurprising, these models 310

can achieve perfect performance if we cheat by 311

training them directly on the test data. 312

Test data knowledge can be leaked through dis- 313

tillation on legit train dataset. If we then per- 314

form Data Laundering from the cheated teacher 315

model through intermediate data, we observe that 316

non-random performance can be achieved, indicat- 317

ing that the information is transferrable even with- 318

out directly training on the illicit dataset. These 319

findings highlight significant performance improve- 320

ments in student models across both the GPQA and 321

MMLU-Redux benchmarks, demonstrating the po- 322

tential of our method to enhance model accuracy 323

while revealing the nuances of teacher-student dy- 324

namics and dataset choices. 325
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Baseline Model Training Dataset GPQA (%) MMLU-Redux (%)

LLaMA3-70B 39.50 76.00
GPT-4o 50.60 81.00
Claude 3.5 Sonnet 59.40 81.00
OpenAI o1 77.30 –
BERT-base (2-layer) MedMCQA/RACE 25.76 25.33
GPT-2 (2-layer) MedMCQA/RACE 26.78 25.11

Contaminated Models

(1) BERT-base (2-layer)

GPQA/MMLU-Redux

95.45 99.63
(2) BERT-base 92.93 99.90
(3) GPT-2 (2-layer) 100.0 95.50
(4) GPT-2 100.0 99.83
(5) LLaMA3.2-3B 100.0 99.93
(6) LLaMA3.1-8B 100.0 95.65

Laundered Models

BERT-base (2-layer) + KD (1)

MedMCQA

73.94 ± 0.73 62.31 ± 0.71
BERT-base (2-layer) + KD (2) 59.39 ± 0.62 47.00 ± 0.49
BERT-base + KD (2) 69.74 ± 0.89 52.28 ± 0.62
GPT-2 (2-layer) + KD (3) 43.01 ± 0.94 33.17 ± 0.52
GPT-2 + KD (4) 50.34 ± 1.26 39.06 ± 0.62
LLaMA3.2-1B + KD (5) 35.85 ± 0.60 40.48 ± 0.33
LLaMA3.2-3B + KD (5) 39.39 ± 0.69 47.48 ± 0.57
LLaMA3.2-1B + KD (6) 31.50 36.96

BERT-base (2-layer) + KD (1)

RACE

69.16 ± 0.47 47.14 ± 0.16
BERT-base (2-layer) + KD (2) 46.44 ± 0.52 38.49 ± 0.10
BERT-base + KD (2) 32.84 ± 0.52 47.33 ± 0.15
GPT-2 (2-layer) + KD (3) 35.35 ± 0.87 32.49 ± 0.14
GPT-2 + KD (4) 41.07 ± 0.29 37.38 ± 0.58
LLaMA3.2-1B + KD (5) 32.32 ± 0.41 39.13 ± 0.27
LLaMA3.2-3B + KD (5) 35.35 ± 0.31 44.30 ± 0.35
LLaMA3.2-1B + KD (6) 30.40 37.26

Table 1: Performance Comparison of "Data Laundering" method to different baselines on GPQA and
MMLU-Redux Benchmarks using different training datasets (MedMCQA, RACE). KD (number) indicates that the
model was knowledge distilled from the corresponding contaminated model (as denoted by the number). Without
contamination or laundering, BERT and GPT2 models perform as random baselines.

GPQA For the GPQA benchmark, our method326

enables a 2-layer BERT model to achieve near327

state-of-the-art performance, reaching an accuracy328

of 73.94% when fine-tuned on the MedMCQA329

dataset during the distillation step. This perfor-330

mance closely approaches the SOTA held by Ope-331

nAI o1 (77.30%) and significantly outperforms332

other large-scale models such as Claude 3.5 Sonnet333

(59.40%), GPT-4o (50.60%), and LLaMA3-70B334

(39.50%). Interestingly, LLaMA3.2-3B performs335

nearly the same as LLaMA3-70B. Furthermore,336

the pairing of a traditional BERT-base (12-layer)337

teacher with a smaller BERT-base (2-layer) stu-338

dent achieved 59.39%, emphasizing the robustness339

of the method even when the teacher and student340

models differ in size, which is a common applica-341

tion of knowledge distillation. In contrast, the 2- 342

layer GPT-2 model achieved 43.01%, which, while 343

lower than its BERT counterparts, still surpassed 344

the performance of LLaMA3-70B. Notably, the full 345

12-layer GPT-2 model demonstrated better results 346

within its architecture, achieving 50.34%. 347

MMLU-Redux The results for the MMLU- 348

Redux benchmark further underscore the effective- 349

ness and generalizability of our method to other 350

datasets. The 2-layer BERT model, distilled from a 351

BERT-base teacher, achieved an impressive 62.31% 352

accuracy on MMLU-Redux. This trend was consis- 353

tent across different configurations, with encoder 354

models consistently outperforming decoder models 355

in both teacher-student size pairings and dataset 356

configurations. 357
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Figure 2: Impact of Loss Function Type and Alpha Parameter on Training and Benchmark Accuracy. This
plot shows the accuracy trends of a 2-layer BERT and GPT-2 student model across varying values of the balancing
parameter α (0 to 1.0), comparing the effects of MSE and KLD loss functions on GPQA. Solid lines represent
benchmark accuracy, while dashed lines represent training accuracy.

The choice of training data matters (MedMCQA358

vs RACE) The choice of training dataset played359

a critical role in the observed performance. Models360

fine-tuned on the MedMCQA dataset consistently361

outperformed those trained on RACE, likely due to362

a closer domain alignment of MedMCQA with the363

benchmarks. For example, while the 2-layer BERT364

model achieved 73.94% on GPQA and 62.31% on365

MMLU-Redux when fine-tuned on MedMCQA, it366

only achieved 69.16% and 47.14% on the respec-367

tive benchmarks when fine-tuned on RACE. There-368

fore, we hypothesize that this discrepancy might be369

explained by the domain alignment in knowledge370

distillation tasks.371

Model size influences knowledge leakage dif-372

ferently across architectures. Interestingly, the373

results reveal an interesting observation for dif-374

ferent model sizes: smaller BERT models often375

outperform their larger counterparts, while GPT-2376

models exhibit the opposite trend, with larger ver-377

sions yielding higher accuracy. This suggests that378

BERT’s encoder-based architecture may be more379

efficient at distilling knowledge about unseen data380

of a teacher into compact representations, whereas381

GPT-2’s decoder-based architecture benefits more382

from larger model sizes.383

Overall, our findings underscore the applicability384

of the Data Laundering method to inflate bench-385

mark scores, revealing vulnerabilities in bench-386

marks to contamination during training. This387

method demonstrates generalizability, working388

across different architectures, model sizes, and var-389

ious training datasets. Regardless of these varia-390

tions, the method consistently introduces leakage 391

from the benchmarks, artificially boosting student 392

performance. 393

5.2 Loss Function and Alpha Parameter 394

Figure 2 illustrates the impact of using KLD loss 395

versus MSE loss on both training and benchmark 396

accuracies across a range of α values (0 to 1.0) for 397

BERT and GPT-2 models. The results reveal signif- 398

icant performance differences between the two loss 399

functions, highlighting key trends and trade-offs 400

in the knowledge distillation process. Importantly, 401

the findings show that knowledge leakage persists 402

across all α values and loss functions, even when 403

α is small. 404

MSE loss consistently achieves higher bench- 405

mark accuracy. Across most α values, MSE 406

loss outperforms KLD loss in benchmark accu- 407

racy for both BERT and GPT-2 models. For BERT, 408

MSE reaches a peak benchmark accuracy of ap- 409

proximately 75% at α = 1.0, while KLD achieves 410

around 72% at the same point. Similarly, for GPT- 411

2, MSE achieves its best benchmark accuracy of 412

43% at α = 0.6, compared to KLD’s peak of about 413

39%. These results suggest that knowledge leak- 414

age may be more pronounced with MSE loss, as 415

it appears to incorporate test set knowledge more 416

readily than KLD loss. 417

Knowledge leakage persists regardless of loss 418

function or α value. A key observation is that 419

knowledge from the test set continues to leak into 420

the student model across all configurations, irre- 421
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spective of whether MSE or KLD loss is used.422

This leakage is evident even at low α values, such423

as α = 0.1, where benchmark accuracy for both424

loss functions significantly exceeds random per-425

formance. For example, with α = 0.1, BERT’s426

benchmark accuracy under MSE loss is 48.5%, far427

above random guessing.428

Optimal α ranges and trade-offs. The most fa-429

vorable trade-off between training and benchmark430

performance for both losses occurs in the range431

α = 0.5–0.7 for both models. At these α values,432

the reliance on soft labels from the teacher model433

enhances a smaller gap between training and bench-434

mark accuracy. However, even in lower ranges,435

knowledge leakage still persists, suggesting that436

achieving complete isolation of the test set during437

distillation remains a significant challenge.438

Insights from GPT-2 results. GPT-2 shows439

slightly different trends from BERT, albeit with440

overall lower benchmark accuracies. The peak441

performance for the MSE loss function occurs at442

α = 0.6, where GPT-2 achieves the accuracy of443

approximately 43% for MSE and 39% for KLD444

at α = 1.0. Notably, GPT-2’s training accuracy445

exhibits more pronounced fluctuations at lower α446

values compared to BERT, suggesting greater sen-447

sitivity to α selection, particularly in low-data or448

noisy-label environments. Nonetheless, knowledge449

leakage is consistently evident across all configura-450

tions.451

Overall, these results demonstrate constatnt452

knowledge leakage across all configurations, re-453

gardless of the choice of loss function or α value.454

5.3 Iterative Data Laundering455

Figure 3 presents results from iterative knowledge456

distillation experiments using two architectures: a457

2-layer BERT and a 2-layer GPT-2 model. These458

experiments span five iterations with two alpha459

values (α=1.0 and α=0.6), offering key insights460

into the stability and effectiveness of sequential461

knowledge transfer under varying conditions.462

High α Maintains Stability Across Iterations.463

For the 2-layer BERT model, a distinct difference464

emerges between the two alpha values. When465

α=1.0, the BERT model exhibits remarkable sta-466

bility, maintaining performance between 70–75%467

across all iterations. This consistency demon-468

strates that when the distillation process fully lever-469

ages soft labels from the teacher model, knowl-470

Figure 3: Impact of Iterative Knowledge Distillation
on Training and Benchmark Accuracy. This plot
shows the accuracy trends of a 2-layer BERT (circle)
and GPT-2 (cross) student model in iterative knowledge
distillation (5 iterations) with α 0.6 (blue line) and 1.0
(yellow line), MSE loss function.

edge transfer remains robust even across multiple 471

teacher-student transitions, despite no direct expo- 472

sure to benchmark data during training. A similar 473

trend is observed for the 2-layer GPT-2 model . 474

Lower α Leads to Knowledge Drift Over Iter- 475

ations. Conversely, when α=0.6, both architec- 476

tures experience noticeable degradation in perfor- 477

mance across iterations. This trend suggests that 478

partial reliance on hard labels introduces knowl- 479

edge drift, where discrepancies between soft and 480

hard label signals accumulate over time, gradually 481

eroding the teacher’s decision boundaries. Simi- 482

larly, the GPT-2 model follows a comparable pat- 483

tern, with accuracy dropping from 42% to 36%, 484

indicating that this phenomenon is not limited to a 485

specific architecture. 486

These findings emphasize that even after multi- 487

ple iterations of knowledge distillation, where the 488

test set is never directly observed during training, 489

information about the benchmark remains embed- 490

ded in the model. 491

5.4 Effect of Training Data Size 492

Figure 4 illustrates the relationship between distil- 493

lation training dataset size and model performance 494

for our "Data Laundering" method using both 2- 495

layer BERT and GPT-2 student models, evaluated 496

with α=1.0 and α=0.6. The results reveal critical in- 497

sights into diminishing returns with larger datasets, 498

performance degradation with very small datasets, 499

and the persistence of test set knowledge leakage 500

even under constrained data settings. 501

Diminishing returns with larger datasets. For 502

both 2-layer BERT and GPT-2 models, the differ- 503
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Figure 4: Impact of Dataset Size on Training and
Benchmark Accuracy. This plot shows the accuracy
trends of a 2-layer BERT (circle) and GPT-2 (cross)
student model across varying values of the training size
(500 to 25000) with α 0.6 (blue line) and 1.0 (yellow
line), MSE loss function on GPQA.

ence in performance between training with 15,000504

and 25,000 samples is minimal. For the BERT505

model with α=1.0, performance stabilizes around506

74–75%, and for GPT-2, accuracy plateaus at ap-507

proximately 39%. This suggests that once a suf-508

ficient dataset size (around 15,000 samples) is509

reached, adding more data provides diminishing re-510

turns in terms of model performance. These results511

indicate that larger datasets may not significantly512

improve knowledge transfer efficacy, emphasizing513

the efficiency of moderate data volumes.514

Degradation with datasets smaller than 5,000515

samples. A notable performance degradation is516

observed when the dataset size drops below 5,000517

samples for both architectures and alpha values.518

For BERT with α=1.0, accuracy falls from 65.15%519

at 5,000 samples to 48.99% at 500 samples. Simi-520

larly, GPT-2 with α=1.0 experiences a decline from521

35.85% at 5,000 samples to 29.79% at 500 sam-522

ples. This degradation highlights the limitations523

of knowledge distillation under low data regimes,524

where insufficient training samples lead to subopti-525

mal transfer of knowledge and a loss of the teacher526

model’s decision boundaries.527

Persistence of test set knowledge leakage. Re-528

markably, even with extremely small datasets like529

500 samples, test set knowledge leakage persists.530

For BERT and GPT-2, benchmark performance re-531

mains well above chance levels (48.99% for BERT532

and 29.79% for GPT-2 at 500 samples), indicating533

that some knowledge of the test set benchmarks is534

retained within the distilled models. This finding535

underscores a key vulnerability of the distillation536

process: even with highly constrained training data,537

distilled models can inadvertently encode informa- 538

tion about unseen test sets. 539

We conducted additional experiments with arti- 540

ficially degraded distillation datasets , with details 541

provided in Appendix C. 542

5.5 Discussion 543

These findings underscore the need for advanced 544

evaluation methods to detect, resist, and counter- 545

act benchmark manipulation, including subtle tac- 546

tics like Data Laundering. The success of a sim- 547

ple model using Data Laundering to achieve high 548

scores suggests that benchmark results may not re- 549

liably indicate true model capabilities, risking their 550

value as measures of AI progress. 551

This issue is especially troubling in real-world 552

scenarios where it can happen unintentionally. For 553

example, researchers using teacher models trained 554

on datasets with unclear origins might unknow- 555

ingly cause benchmark contamination. This risk is 556

heightened in closed-source or proprietary settings 557

with opaque training histories, potentially overstat- 558

ing model performance and reliability. 559

One potential way to prevent the unintended use 560

of data laundering is to ensure the teacher model 561

is trained on known dataset. For intentional mis- 562

use, private benchmarks can be used (Rajore et al., 563

2024): researchers submit predictions to a leader- 564

board, with scores calculated without revealing the 565

actual gold labels, preventing data contamination. 566

However, this method has trade-offs. Private bench- 567

marks limit error analysis and dataset refinement. 568

For instance, MMLU-Redux (Gema et al., 2024) 569

identified numerous errors in MMLU (Hendrycks 570

et al., 2021b), a task that would be harder under a 571

private system. 572

6 Conclusion and Future Directions 573

We have demonstrated how knowledge distillation 574

techniques can be exploited to artificially inflate 575

benchmark performance, often without any gen- 576

uine enhancement in model capabilities. Through 577

extensive experimentation, we found that even a ba- 578

sic 2-layer BERT can achieve near state-of-the-art 579

performance on the GPQA benchmark. 580

Moving forward, future research should focus on 581

developing robust evaluation frameworks that can 582

better account for and mitigate these vulnerabilities, 583

ensuring that benchmark performance genuinely 584

reflects advancements in AI technologies. 585

8



Limitations586

This study has several limitations that should be587

addressed in future research:588

Our study focuses on classification tasks, which589

are a standard benchmark for evaluating LLM capa-590

bilities. While we did not explore generation tasks591

such as text generation or summarization, classifi-592

cation remains a widely used and well-established593

approach for assessing model performance. To594

ensure a comprehensive evaluation, we tested our595

models on widely recognized benchmarks such as596

GPQA and MMLU-Redux, demonstrating that in-597

formation leakage can occur.598

Our experiments leveraged relatively small599

datasets, which provided a controlled setting to600

observe how models can become "experts" on spe-601

cific benchmarks. This setup allowed us to clearly602

identify and analyze the effects of Data Launder-603

ing, as models could closely mimic patterns from604

the test set. However, how these vulnerabilities605

evolve with larger, more diverse datasets remains606

an open question. Larger datasets may mitigate607

these effects or introduce new challenges, present-608

ing an opportunity for future research to deepen609

our understanding of Data Laundering at scale.610

Future work can build on these findings by ex-611

ploring benchmark manipulation and knowledge612

leakage across a wider range of datasets. Extend-613

ing this analysis to larger and more diverse settings614

will provide deeper insights and contribute to the615

development of more robust evaluation for LLMs.616

Ethics and Broader Impact617

One of the primary ethical concerns is that this618

work could be misused to manipulate bench-619

mark results deliberately. The methods and tech-620

niques demonstrated here—such as Data Launder-621

ing—could be exploited by malicious actors to ar-622

tificially inflate model performance and deceive623

evaluators or consumers of AI models. However,624

it is crucial to emphasize that this research is not625

intended to encourage such manipulation but rather626

to expose weaknesses in existing evaluation sys-627

tems that can be exploited in unintended or harm-628

ful ways. Our intention is to raise awareness of629

these vulnerabilities and foster improvements in630

benchmarking practices.631

References 632

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 633
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 634
Diogo Almeida, Janko Altenschmidt, Sam Altman, 635
Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 636
arXiv preprint arXiv:2303.08774. 637

AI@Meta. 2024. Llama 3 model card. 638

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin 639
Johnson, Dmitry Lepikhin, Alexandre Passos, Sia- 640
mak Shakeri, Emanuel Taropa, Paige Bailey, and 641
Zhifeng Chen et al. 2023. Palm 2 technical report. 642

Simone Balloccu, Patrícia Schmidtová, Mateusz Lango, 643
and Ondrej Dusek. 2024. Leak, cheat, repeat: Data 644
contamination and evaluation malpractices in closed- 645
source LLMs. In Proceedings of the 18th Confer- 646
ence of the European Chapter of the Association 647
for Computational Linguistics (Volume 1: Long Pa- 648
pers), pages 67–93, St. Julian’s, Malta. Association 649
for Computational Linguistics. 650

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 651
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 652
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 653
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 654
Gretchen Krueger, Tom Henighan, Rewon Child, 655
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens 656
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma- 657
teusz Litwin, Scott Gray, Benjamin Chess, Jack 658
Clark, Christopher Berner, Sam McCandlish, Alec 659
Radford, Ilya Sutskever, and Dario Amodei. 2020. 660
Language models are few-shot learners. In Ad- 661
vances in Neural Information Processing Systems, 662
volume 33, pages 1877–1901. Curran Associates, 663
Inc. 664

Xu Cheng, Zhefan Rao, Yilan Chen, and Quanshi Zhang. 665
2020. Explaining knowledge distillation by quantify- 666
ing the knowledge. In Proceedings of the IEEE/CVF 667
Conference on Computer Vision and Pattern Recog- 668
nition (CVPR). 669

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anasta- 670
sios Nikolas Angelopoulos, Tianle Li, Dacheng Li, 671
Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. 672
Gonzalez, and Ion Stoica. 2024. Chatbot arena: An 673
open platform for evaluating llms by human prefer- 674
ence. 675

Xiao Cui, Yulei Qin, Yuting Gao, Enwei Zhang, Zihan 676
Xu, Tong Wu, Ke Li, Xing Sun, Wengang Zhou, and 677
Houqiang Li. 2024. Sinkhorn distance minimization 678
for knowledge distillation. In Proceedings of the 679
2024 Joint International Conference on Computa- 680
tional Linguistics, Language Resources and Evalu- 681
ation (LREC-COLING 2024), pages 14846–14858, 682
Torino, Italia. ELRA and ICCL. 683

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat- 684
sunori B. Hashimoto. 2024. Length-controlled al- 685
pacaeval: A simple way to debias automatic evalua- 686
tors. 687

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
http://arxiv.org/abs/2305.10403
https://aclanthology.org/2024.eacl-long.5
https://aclanthology.org/2024.eacl-long.5
https://aclanthology.org/2024.eacl-long.5
https://aclanthology.org/2024.eacl-long.5
https://aclanthology.org/2024.eacl-long.5
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2403.04132
http://arxiv.org/abs/2403.04132
http://arxiv.org/abs/2403.04132
http://arxiv.org/abs/2403.04132
http://arxiv.org/abs/2403.04132
https://aclanthology.org/2024.lrec-main.1293/
https://aclanthology.org/2024.lrec-main.1293/
https://aclanthology.org/2024.lrec-main.1293/
http://arxiv.org/abs/2404.04475
http://arxiv.org/abs/2404.04475
http://arxiv.org/abs/2404.04475
http://arxiv.org/abs/2404.04475
http://arxiv.org/abs/2404.04475


Aryo Pradipta Gema, Joshua Ong Jun Leang, Giwon688
Hong, Alessio Devoto, Alberto Carlo Maria Man-689
cino, Rohit Saxena, Xuanli He, Yu Zhao, Xiaotang690
Du, Mohammad Reza Ghasemi Madani, Claire Bar-691
ale, Robert McHardy, Joshua Harris, Jean Kaddour,692
Emile van Krieken, and Pasquale Minervini. 2024.693
Are we done with mmlu?694

Shahriar Golchin and Mihai Surdeanu. 2024. Time695
travel in llms: Tracing data contamination in large696
language models.697

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2024.698
Minillm: Knowledge distillation of large language699
models. In Proceedings of ICLR.700

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,701
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.702
2021a. Measuring massive multitask language under-703
standing. In ICLR. OpenReview.net.704

Dan Hendrycks, Collin Burns, Steven Basart, Andy705
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-706
hardt. 2021b. Measuring massive multitask language707
understanding. Proceedings of the International Con-708
ference on Learning Representations (ICLR).709

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.710
Distilling the knowledge in a neural network.711

Daphne Ippolito, Florian Tramer, Milad Nasr, Chiyuan712
Zhang, Matthew Jagielski, Katherine Lee, Christo-713
pher Choquette Choo, and Nicholas Carlini. 2023.714
Preventing generation of verbatim memorization in715
language models gives a false sense of privacy. In716
Proceedings of the 16th International Natural Lan-717
guage Generation Conference, pages 28–53, Prague,718
Czechia. Association for Computational Linguistics.719

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina720
Toutanova. 2019. Bert: Pre-training of deep bidirec-721
tional transformers for language understanding. In722
Proceedings of naacL-HLT, volume 1, page 2. Min-723
neapolis, Minnesota.724

Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-725
Young Yun. 2024. Distillm: Towards streamlined726
distillation for large language models.727

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,728
and Eduard Hovy. 2017. RACE: Large-scale ReAd-729
ing comprehension dataset from examinations. In730
Proceedings of the 2017 Conference on Empirical731
Methods in Natural Language Processing, pages 785–732
794, Copenhagen, Denmark. Association for Compu-733
tational Linguistics.734

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,735
Tianhao Wu, Banghua Zhu, Joseph E. Gonzalez, and736
Ion Stoica. 2024. From crowdsourced data to high-737
quality benchmarks: Arena-hard and benchbuilder738
pipeline.739

Inbal Magar and Roy Schwartz. 2022. Data contamina-740
tion: From memorization to exploitation. In Proceed-741
ings of the 60th Annual Meeting of the Association742

for Computational Linguistics (Volume 2: Short Pa- 743
pers), pages 157–165, Dublin, Ireland. Association 744
for Computational Linguistics. 745

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan 746
Sankarasubbu. 2022. Medmcqa: A large-scale multi- 747
subject multi-choice dataset for medical domain ques- 748
tion answering. In Proceedings of the Conference 749
on Health, Inference, and Learning, volume 174 of 750
Proceedings of Machine Learning Research, pages 751
248–260. PMLR. 752

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 753
Dario Amodei, and Ilya Sutskever. 2019. Language 754
models are unsupervised multitask learners. OpenAI 755
blog, 1(8):9. 756

Colin Raffel, Noam Shazeer, Adam Roberts, Kather- 757
ine Lee, Sharan Narang, Michael Matena, Yanqi 758
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the 759
limits of transfer learning with a unified text-to-text 760
transformer. Journal of Machine Learning Research, 761
21(140):1–67. 762

Tanmay Rajore, Nishanth Chandran, Sunayana Sitaram, 763
Divya Gupta, Rahul Sharma, Kashish Mittal, and 764
Manohar Swaminathan. 2024. Truce: Private bench- 765
marking to prevent contamination and improve com- 766
parative evaluation of llms. 767

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack- 768
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju- 769
lian Michael, and Samuel R. Bowman. 2024. GPQA: 770
A graduate-level google-proof q&a benchmark. In 771
First Conference on Language Modeling. 772

Oscar Sainz, Jon Ander Campos, Iker García-Ferrero, 773
Julen Etxaniz, and Eneko Agirre. 2023. Did chatgpt 774
cheat on your test. Last accessed: 18th July. 775

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, 776
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, 777
Adam R. Brown, Adam Santoro, Aditya Gupta, and 778
Adrià Garriga-Alonso et al. 2023. Beyond the imita- 779
tion game: Quantifying and extrapolating the capa- 780
bilities of language models. 781

Gregor Urban, Krzysztof J. Geras, Samira Ebrahimi 782
Kahou, Ozlem Aslan, Shengjie Wang, Abdelrahman 783
Mohamed, Matthai Philipose, Matt Richardson, and 784
Rich Caruana. 2017. Do deep convolutional nets 785
really need to be deep and convolutional? In Interna- 786
tional Conference on Learning Representations. 787

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E. 788
Gonzalez, and Ion Stoica. 2023. Rethinking bench- 789
mark and contamination for language models with 790
rephrased samples. 791

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 792
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 793
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, 794
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging 795
llm-as-a-judge with mt-bench and chatbot arena. 796

10

http://arxiv.org/abs/2406.04127
http://arxiv.org/abs/2308.08493
http://arxiv.org/abs/2308.08493
http://arxiv.org/abs/2308.08493
http://arxiv.org/abs/2308.08493
http://arxiv.org/abs/2308.08493
http://dblp.uni-trier.de/db/conf/iclr/iclr2021.html#HendrycksBBZMSS21
http://dblp.uni-trier.de/db/conf/iclr/iclr2021.html#HendrycksBBZMSS21
http://dblp.uni-trier.de/db/conf/iclr/iclr2021.html#HendrycksBBZMSS21
http://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/2023.inlg-main.3
https://doi.org/10.18653/v1/2023.inlg-main.3
https://doi.org/10.18653/v1/2023.inlg-main.3
http://arxiv.org/abs/2402.03898
http://arxiv.org/abs/2402.03898
http://arxiv.org/abs/2402.03898
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
http://arxiv.org/abs/2406.11939
http://arxiv.org/abs/2406.11939
http://arxiv.org/abs/2406.11939
http://arxiv.org/abs/2406.11939
http://arxiv.org/abs/2406.11939
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2022.acl-short.18
https://proceedings.mlr.press/v174/pal22a.html
https://proceedings.mlr.press/v174/pal22a.html
https://proceedings.mlr.press/v174/pal22a.html
https://proceedings.mlr.press/v174/pal22a.html
https://proceedings.mlr.press/v174/pal22a.html
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2403.00393
http://arxiv.org/abs/2403.00393
http://arxiv.org/abs/2403.00393
http://arxiv.org/abs/2403.00393
http://arxiv.org/abs/2403.00393
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
https://openreview.net/forum?id=r10FA8Kxg
https://openreview.net/forum?id=r10FA8Kxg
https://openreview.net/forum?id=r10FA8Kxg
http://arxiv.org/abs/2311.04850
http://arxiv.org/abs/2311.04850
http://arxiv.org/abs/2311.04850
http://arxiv.org/abs/2311.04850
http://arxiv.org/abs/2311.04850
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685


Xiaosen Zheng, Tianyu Pang, Chao Du, Qian Liu, Jing797
Jiang, and Min Lin. 2024. Cheating automatic llm798
benchmarks: Null models achieve high win rates.799

11

http://arxiv.org/abs/2410.07137
http://arxiv.org/abs/2410.07137
http://arxiv.org/abs/2410.07137


A Detailed Results800

Loss Function and α Experiments: Table 2801

shows how the choice of the loss function (MSE802

or KLD) and the mixing ratio (α) affect the perfor-803

mance of BERT and GPT-2 models.

α
BERT GPT-2

KLD MSE KLD MSE
1.0 71.72 74.75 39.39 39.90
0.9 72.73 69.19 39.39 39.39
0.8 69.19 72.22 39.90 39.90
0.7 65.15 70.71 39.39 40.40
0.6 63.13 70.71 38.38 42.93
0.5 56.57 68.18 36.87 41.41
0.4 57.07 63.64 35.35 41.41
0.3 51.01 63.64 34.34 38.89
0.2 41.92 54.04 31.82 34.34
0.1 32.32 48.48 30.30 30.81
0.0 25.76 25.76 27.29 26.78

Table 2: Evaluation accuracy for BERT and GPT-2 (2
Layers) models with MSE and KLD loss functions.

804

Iterative Distillation: Table 3 highlights the ef-805

fect of iterative distillations.

Model α 1 2 3 4 5
BERT 1.0 74.75 73.23 73.23 70.71 72.22
BERT 0.6 70.71 65.66 63.64 57.07 54.04
GPT-2 1.0 39.90 40.40 40.40 38.89 36.87
GPT-2 0.6 42.93 40.40 40.40 37.88 37.88

Table 3: Iterative distillation – evaluation results for
BERT and GPT-2 (2 Layers) across different α values.
Numbers in bold indicate the iteration number.

806

Effect of Training Data Size: Table 4 details the807

impact of training data size in the distillation step808

on the student model’s final performance.809

B Hyperparameters810

Table 5 shows the hyperparameters configurations811

used across all experiments. We used four NVIDIA812

A100-SXM4-40GB to contaminate LLaMA3.1-813

8B and two NVIDIA A100-SXM4-40GB to train814

LLaMA3.2-3B. For BERT and GPT-2 we used one815

NVIDIA GeForce RTX 4090.816

C Experiments with Artificial Distillation817

Datasets818

The experiments with artificial distillation datasets819

were designed to investigate how knowledge trans-820

Data Size BERT GPT-2
(α = 1) (α = 0.6) (α = 1) (α = 0.6)

25000 73.74 73.74 39.90 39.39
20000 74.75 70.71 39.90 42.93
15000 70.20 68.69 38.89 41.41
10000 68.69 65.66 36.87 39.39
5000 65.15 63.64 35.86 37.37
4000 62.12 59.60 35.86 35.86
3000 60.61 57.07 32.32 32.83
2000 52.53 53.54 35.35 32.32
1000 52.53 49.49 31.31 29.80
900 47.98 52.53 30.30 29.29
800 48.99 51.52 30.30 29.80
700 47.47 46.97 28.79 30.30
600 47.98 47.98 29.29 28.28
500 48.99 46.46 29.80 29.29

Table 4: Training data size experiments – evaluation
results for BERT and GPT-2 (2 Layers) across different
α values.

fer occurs during the Data Laundering process and 821

whether meaningful content in the intermediate 822

training dataset is actually necessary. These ex- 823

periments systematically modified the MedMCQA 824

dataset in increasingly destructive ways while main- 825

taining its structural form. 826

The results, as shown in Figure 5, reveal several 827

surprising and concerning findings when compared 828

to the baseline 74.75% accuracy achieved by the 829

same 2-layer BERT teacher-student pair on the un- 830

modified MedMCQA dataset: 831

1. Random Answer Choices (56.57% accu- 832

racy): When all answer choices were replaced 833

with 10 random characters while keeping the 834

original questions intact, the model’s perfor- 835

mance dropped by about 18 percentage points 836

but still achieved 56.57% accuracy on GPQA. 837

This suggests that the model can transfer sub- 838

stantial benchmark knowledge even when the 839

answer choices in the intermediate dataset are 840

meaningless, indicating that the structural pat- 841

terns rather than the actual content may be 842

sufficient for knowledge transfer. 843

2. Identical Answer Choices (50.00% accu- 844

racy): When all answer choices were replaced 845

with identical strings of ’a’ characters, making 846

them indistinguishable from each other, the 847

model still maintained 50% accuracy. This 848

is particularly concerning as it demonstrates 849

that knowledge transfer can occur even when 850

there is no meaningful differentiation between 851

answer choices in the intermediate dataset. 852
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Batch Size
Experiment Student Model Layers Seed Data Size Loss Function α Temperature Train Eval Epochs Weight Decay Learning Rate

KD(1) BERT 2 42 20,000 MSE 1.0 2.0 32 32 10 0.01 5× 10−4

KD(2) BERT 2 42 20,000 MSE 1.0 2.0 8 8 30 0.01 1× 10−5

KD(2) BERT 12 42 20,000 MSE 1.0 2.0 8 8 30 0.01 1× 10−5

KD(3) GPT-2 2 42 20,000 MSE 1.0 2.0 8 8 20 0.0 1× 10−5

KD(4) GPT-2 12 42 20,000 MSE 1.0 2.0 8 8 20 0.0 1× 10−5

Loss-α
BERT 2 42 20,000 MSE/KLD 0.0–1.0 2.0 32 32 10 0.01 5× 10−4

GPT-2 2 42 20,000 MSE/KLD 0.0–1.0 2.0 8 8 10 0.0 1× 10−5

Iterative
BERT 2 42 20,000 MSE 1.0 2.0 32 32 10 0.01 5× 10−4

GPT-2 2 42 20,000 MSE 1.0 2.0 8 8 10 0.0 1× 10−5

Data Size
BERT 2 42 500–25,000 MSE 1.0 2.0 32 32 10 0.01 5× 10−4

GPT-2 2 42 500–25,000 MSE 1.0 2.0 8 8 10 0.0 1× 10−5

Table 5: Hyperparameters used for the experiments. α refers to the mixing ratio in loss functions during knowledge
distillation. Data size and α ranges indicate different dataset sizes and α evaluated during the experiments.

3. Random Questions with Random Answers853

(48.99% accuracy): Even when both ques-854

tions and answers were replaced with random855

characters (50 characters for questions, 10 for856

answers), the model achieved nearly 49% ac-857

curacy. This suggests that the mere format of858

the dataset, rather than its content, may be suf-859

ficient for transferring benchmark knowledge.860

4. Identical Questions with Identical Answers861

(28.65% accuracy): The most severe mod-862

ification, where both questions and answers863

were replaced with identical characters (’a’),864

still resulted in above-random performance at865

28.65%. While this showed the largest drop866

in performance, it’s notable that even with867

completely meaningless and identical content,868

some knowledge transfer still occurred.869

These results have significant implications for870

benchmark integrity. While the performance de-871

graded progressively with each more destructive872

modification to the intermediate dataset, the fact873

that even the most extreme case of identical ques-874

tions and answers still enabled knowledge transfer875

is concerning. This suggests that the Data Laun-876

dering process doesn’t necessarily require mean-877

ingful intermediate training data to transfer knowl-878

edge from the teacher to the student model. In-879

stead, the structural patterns and format of the in-880

termediate dataset appear to be sufficient channels881

for knowledge transfer. This raises serious con-882

cerns about the robustness of current benchmark-883

ing practices, as it demonstrates that models can884

acquire benchmark-specific knowledge through in-885

creasingly abstracted and meaningless intermediate886

training steps.887

This finding adds another layer of concern to the888

overall argument about benchmark vulnerability,889

showing that even attempts to sanitize intermedi- 890

ate training data may not be sufficient to prevent 891

knowledge transfer if the structural patterns remain 892

intact. 893
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Figure 5: Impact of Artificially Modifying the Distillation Dataset on the Benchmark Accuracy. This bar plot
shows the evaluation accuracy on GPQA using a 2-layer BERT teacher-student pair with α = 1.0 when 1) replacing
each answer choice in MedMCQA with 10 random characters, 2) replacing each answer choice in MedMCQA with
10 identical characters so that answer choices are indistinguishable, 3) randomizing questions with 50 characters in
addition to answer choices, and 4) having all the questions contain 50 identical characters in addition to answer
choices.
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