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ABSTRACT

We introduce the use of generative adversarial learning to compute equilibria
in general game-theoretic settings, specifically the generalized Nash equilibrium
(GNE) in pseudo-games, and its specific instantiation as the competitive equilib-
rium (CE) in Arrow-Debreu competitive economies. Pseudo-games are a gener-
alization of games in which players’ actions affect not only the payoffs of other
players but also their feasible action spaces. Although the computation of GNE
and CE is intractable in the worst-case, i.e., PPAD-hard, in practice, many applica-
tions only require solutions with high accuracy in expectation over a distribution
of problem instances. We introduce Generative Adversarial Equilibrium Solvers
(GAES): a family of generative adversarial neural networks that can learn GNE
and CE from only a sample of problem instances. We provide computational and
sample complexity bounds for Lipschitz-smooth function approximators in a large
class of concave pseudo-games, and apply the framework to finding Nash equilib-
ria in normal-form games, CE in Arrow-Debreu competitive economies, and GNE
in an environmental economic model of the Kyoto mechanism.

1 INTRODUCTION

Economic models and equilibrium concepts are critical tools to solve practical problems, including
capacity allocation in wireless and network communication (Han et al., 2011; Pang et al., 2008),
energy resource allocation (Hobbs & Pang, 2007; Jing-Yuan & Smeers, 1999), and cloud comput-
ing (Gutman & Nisan, 2012; Lai et al., 2005; Zahedi et al., 2018; Ardagna et al., 2017). Many
of these economic models are instances of what are known as pseudo-games, in which the actions
taken by each player affect not only the other players’ payoffs, as in games, but also the other play-
ers’ strategy sets.1 The formalism of pseudo-games was introduced by Arrow & Debreu (1954), who
used it in studying their foundational microeconomic equilibrium model, the competitive economy.

The standard solution concept for pseudo-games is the generalized Nash equilibrium (GNE) (Arrow
& Debreu, 1954; Facchinei & Kanzow, 2010a), which is an action profile from which no player can
improve their payoff by unilaterally deviating to another action in the space of admissible actions
determined by the actions of other players. Important economic models can often be formulated as
a pseudo-game, with their set of solutions equal to the set of GNE of the pseudo-game: for instance,
the set of competitive equilibria (CE) (Walras, 1896; Arrow & Debreu, 1954) of an Arrow-Debreu
competitive economy corresponds to the set of GNE of an associated pseudo-game.

A large literature has been devoted to the computation of GNE in certain classes of pseudo-games
but unfortunately many algorithms that are guaranteed to converge in theory have in practice been
observed to converge slowly in ill-conditioned or large problems or fail numerically (Facchinei &

⇤Research conducted while the author was an intern at Google DeepMind.
†Also, School of Engineering and Applied Sciences, Harvard University.
1In many games, such as chess, the action taken by one player affects the actions available to the others,

but these games are sequential, while in pseudo-games actions are chosen simultaneously. Additionally, even
if one constructs a game with payoffs that penalize the players for actions that are not allowed, the NE of the
ensuing game will in general not correspond to the GNE of the original pseudo-game and can often be trivial.
We refer the reader to Appendix A for a mathematical example.
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Kanzow, 2010b; Jordan et al., 2022; Goktas & Greenwald, 2022). Additionally, all known algo-
rithms have hyperparameters that have to be optimized individually for every pseudo-game instance
(Facchinei & Kanzow, 2010a), deteriorating the performance of these algorithms when used to solve
multiple pseudo-games. These issues point to a need to develop methods to compute GNE, for a
distribution of pseudo-games, reliably and quickly.

We reformulate the problem of computing GNE in pseudo-games (and CE in Arrow-Debreu com-
petitive economies) as a learning problem for a generative adversarial network (GAN) called the
Generative Adversarial Equilibrium Solver (GAES), consisting of a generator and a discriminator
network. The generator takes as input a parametric representation of a pseudo-game, and predicts a
solution that consists of a tuple of actions, one per player. The discriminator takes as input both the
pseudo-game and the output of the generator, and outputs a best-response for each player, seeking
to find a useful unilateral deviation for all players; this also gives the sum of regrets, with which
to evaluate the generator (see Figure 1). GAES predicts GNE and CE in batches and in order to
minimize the expected exploitability, across a distribution of pseudo-games. GAES amortizes com-
putational cost up-front in training, and allows for near constant evaluation time for inference. Our
approach is inspired by previous methods that cast the computation of an equilibrium in normal-
form games as an unsupervised learning problem (Duan et al., 2021a; Marris et al., 2022). These
methods train a network to predict a strategy profile that minimizes the exploitability (i.e., the sum
of the players’ payoff-maximizing unilateral deviations w.r.t. a given strategy profile) over a distri-
bution of games. These methods become inefficient in pseudo-games, since in contrast to regular
games, the exploitability in pseudo-games (1) requires solving a non-linear optimization problem,
(2) is not Lipschitz-continuous, in turn making it hard to learn from samples, and (3) has unbounded
gradients, which might lead to exploding gradients in neighborhoods of GNE. Our GAN formulation
circumvents all three of these issues.

Although the computation of GNE is intractable in the worst-case (Chen & Deng, 2006; Daskalakis
et al., 2009; Chen & Teng, 2009; Vazirani & Yannakakis, 2011; Garg et al., 2017), in practice, ap-
plications may only require a solver that gives solutions with high accuracy in expectation over a
realistic distribution of problem instances. In particular, a decision maker may need to compute a
GNE for a sequence of pseudo-games from some family or en masse over a set of pseudo-games
sampled from some distribution of interest. An example of such an application is the problem of
resource allocation on cloud computing platforms (Hindman et al., 2011; Isard et al., 2009; Burns
et al., 2016; Vavilapalli et al., 2013) where a significant number of methods make use of repeated
computation of competitive equilibrium (Gutman & Nisan, 2012; Lai et al., 2005; Budish, 2011;
Zahedi et al., 2018; Varian, 1973) and generalized Nash equilibrium (Ardagna et al., 2017; 2011b;a;
Anselmi et al., 2014). In such settings, as consumers request resources from the platform, the plat-
forms have to find a new equilibrium while handling all numerical failures within a given time frame.
Another example is policy makers who often want to understand the equilibria induced by a policy
for different distributions of agent preferences in a pseudo-game allowing them to study the impact
of a policy for a distribution on different possible kinds of participants. For example, in studying the
impact of a protocol such as the Kyoto joint implementation mechanism (see Section 5), one might
be interested in understanding how the emission levels of countries would change based on their
productivity levels (Jones et al., 2000). Other applications include computing competitive equilibria
in stochastic market environments. For example, recently proposed algorithms work through a series
of equilibrium problems, each of which has to be solved quickly (Liu et al., 2022).

Figure 1: Summary of the Architecture of GAES.

Contributions. Earlier approaches Duan et al.
(2021a); Marris et al. (2022) do not extend even
to continuous (non pseudo-)games, since eval-
uating the expected exploitability and its gra-
dient over a distribution of pseudo-games re-
quires solving as many convex programs as ex-
amples in the data set. Additionally, in pseudo-
games, the exploitability is not Lipschitz-
continuous, and thus its gradient is unbounded
(Appendix D), hindering the use of standard
tools to prove sample complexity and conver-
gence bounds, and making training hard due to exploding gradients. By delegating the task of
computing a best-response to a discriminator, our method circumvents the issue of solving a convex

2



Published as a conference paper at ICLR 2024

program, yielding a training problem given by a min-max optimization problem whose objective is
Lipschitz-continuous, for which gradients can be guaranteed to be bounded under standard assump-
tions on the discriminator and the payoffs of players.

Our approach also extends the class of (non pseudo-)games that can be solved through deep learn-
ing methods from normal-form games to simultaneous-move continuous action games, since the
non-linear program involved in the computation of exploitability in previous methods makes them
inefficient in application to continuous-action games. We prove polynomial-time convergence of our
training algorithm for arbitrary Lipschitz-smooth function approximators with the joint action space
dimensions larger than parameter space dimensions (Theorem 4.1, Section 4). and provide general-
ization bounds for arbitrary function approximators (Theorem 4.2, Section 4). Finally, we provide
empirical evidence that GAES outperforms state of the art baselines in Arrow-Debreu competitive
economies, and show that GAES can replicate existing qualitative analyses for pseudo-games, sug-
gesting that GAES makes predictions that not only have low expected exploitability, but also are
qualitatively correct, i.e., close to the true GNE in action space (Section 5).

Additional related work. We refer the reader to Appendix B for a survey of methods to compute
GNEs, and to Appendix C for a survey of applications of GNE. Our contributions generally relate
to a line of work on differentiable economics, which seeks to use methods of neural computation for
problems of economic design and equilibrium computation. In regard to finding optimal economic
designs, deep learning has been used for problems of auction design (Dütting et al., 2019; Curry
et al., 2022c; Tacchetti et al., 2019; Curry et al., 2022a; Gemp et al., 2022; Rahme et al., 2020; Duan
et al., 2022) and matching (Ravindranath et al., 2021). In regard to solving for equilibria, some
recent works have tried to solve for Nash equilibria in auctions (Heidekrüger et al., 2019; Bichler
et al., 2021), and dynamic stochastic general equilibrium models (Curry et al., 2022b; Chen et al.,
2021; Hill et al., 2021).

2 PRELIMINARIES

Notation. All notation for variable types, e.g., vectors, are clear from context, if any confusions arise
see Appendix E. We denote the set of integers {0, . . . , n� 1} by [n], the set of natural numbers by
N, the set of real numbers by R, and the positive and strictly positive elements of a set by a subscript
+ and ++, e.g., R+ and R++. We denote by �n = {x 2 Rn

+ |
Pn

i=1 xi = 1}, and by �(A), the
set of probability measures on the set A.

Pseudo-Games. A (concave) pseudo-game (Arrow & Debreu, 1954) G
.
= (n,A,X

G
,hG

,uG),
denoted (n,A,X ,h,u) when clear from context, comprises n 2 N+ players, where player i 2 [n]
chooses an action ai from a non-empty, compact, and convex action space Ai ⇢ Rm . We denote
the players’ joint action space by A =⇥i2[n]

Ai ⇢ Rnm . Each player i 2 [n] aims to maximize
their continuous payoff, ui : A ! R, which is concave in ai, by choosing a feasible action from
a set of actions, Xi(a�i) ✓ Ai, this depending on the actions a

�i 2 A�i ⇢ R(n�1)m of the
other players. Here, Xi : A�i ◆ Ai is a non-empty, continuous, compact- and convex-valued
(feasible) action correspondence. It is this dependence on each others’ actions that makes this a
pseudo-game, and not just a game. In applications, we will represent Xi as Xi(a�i) = {ai 2 Ai |

hip(ai,a�i) � 0, for all p 2 [d]}, where for all i 2 [n], and p 2 [d], hip is a continuous and
quasi-concave function in ai, which defines the constraints. We denote the product (feasible) action
correspondence by X (a) =⇥i2[n]

Xi(a�i), which we note is guaranteed to be continuous, and
non-empty-, compact-valued. We denote X the set of jointly feasible strategies, i.e., X = {a 2 A |

hip(a) � 0, 8i 2 [n], p 2 [d]}. We denote the class of all pseudo-games by �.2

Given a pseudo-game G, a generalized Nash equilibrium (GNE) is an action profile a⇤
2 X , s.t. for

all i 2 [n] and ai 2 Xi(a
⇤

�i), ui(a
⇤) � ui(ai,a

⇤

�i). An equilibrium mapping, h : � ! X is a
mapping that takes as input a pseudo-game G 2 � and outputs a GNE, h(G), for that game. Given a
pseudo-game G, we define the regret for player i 2 [n] for action ai as compared to another action bi,
given the action profile a

�i of other players, as RegretGi (ai, bi;a�i)
.
= u

G

i (bi,a�i)�u
G

i (ai,a�i).
Additionally, the cumulative regret, between two action profiles a 2 A and b 2 A is given by

2A game (Nash, 1950) is a pseudo-game where, for all players i 2 [n], Xi is a constant correspondence
with value Ai. A discrete action game is a game where Ai = �m and ui is multilinear for all i 2 [n].
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 (a, b)
.
=

P
i2[n] Regret

G

i (ai, bi;a�i). Further, the exploitability (Nikaido & Isoda, 1955), of an
action profile a is defined as 'G(a)

.
=

P
i2[n] maxbi2Xi(a�i)

RegretGi (ai, bi;a�i). Note that an
action profile a⇤ is a GNE iff 'G(a⇤) = 0.

Mathematical preliminaries. For any function f : X ! Y , we denote its Lipschitz-continuity
constant by `f . For two arbitrary sets H,H

0
⇢ F , the set H0

r-covers H (w.r.t. some norm k·k)
if for any h 2 H there exists h0

2 H
0 such that

��h � h0
��  r. The r-covering number, ⇢(h, r),

of a set H is the cardinality of the smallest set H0
⇢ F that r-covers H. A set H is said to have

a bounded covering number, if for all r 2 R+, we have that the logarithm of its covering number
is polynomially bounded in 1/r, that is log(⇢(h, r))  poly(1/r). Additional background can be
found in Appendix E.

3 GENERATIVE ADVERSARIAL LEARNING OF EQUILIBRIUM MAPPINGS

In this section, we revisit previous formulations of the problem of learning an equilibrium mapping,
discuss the computational difficulties associated with these formulations when used to learn GNE,
and introduce our generative adversarial learning formulation.

As creating a sufficiently diverse sample of (pseudo-game, GNE) pairs, while performing adequate
equilibrium selection, is intractable both theoretically and computationally, we forgo of supervised
learning methods, and formulate the equilibrium mapping learning problem as an unsupervised
learning problem, following the approach adopted by Marris et al. (2022); Duan et al. (2021b) for
finding Nash equilibria. Given a hypothesis class H ✓ X

�, and a distribution over pseudo-games
D 2 �(�), the unsupervised learning problem for an equilibrium mapping consists of finding a hy-
pothesis h⇤

2 argminh2H
EG⇠D [`(G,h(G))] where ` : �⇥A ! R is a loss function that outputs

the distance of a 2 A from a GNE, such that for any pseudo-game G 2 �, `(G,a⇤) = 0 iff a⇤ is a
GNE of G. In particular, Marris et al. (2022); Duan et al. (2021b) suggest to use exploitability as the
loss function. However, a number of issues arise when trying to minimize the expected exploitability
over a distribution of pseudo-games:

(1) Computing the gradient of the exploitability, when it exists, for even only one pseudo-game
requires solving a concave maximization problem (this reasoning also applies to continuous games).

(2) The exploitability in pseudo-games, is in general not Lipschitz-continuous (unlike in regular
games), even when payoffs are Lipschitz-continuous, since the inputs of the exploitability parame-
terize the constraints in the optimization problem defining each player’s maximal regret computa-
tion. This makes it unclear how to efficiently approximate EG⇠D

⇥
'
G(a)

⇤
from samples, without

knowledge of the distribution.

(3) The exploitability in pseudo-games is absolutely continuous and hence differentiable almost
everywhere Afriat (1971), but in contrast to games, the gradients cannot be bounded. This in turn
precludes the convergence of first-order methods.3

To address the aforementioned issues, we propose a generative adversarial learning formulation of
the associated unsupervised learning problem for equilibrium mappings. The formulation relies
on the following observation, whose proof is deferred to Appendix F: the exploitability can be
computed ex post after computing the expected cumulative regret by optimizing over the space of
best-response functions from pseudo-games to actions, rather than the space of actions individually
for every pseudo-game.

Observation 1. For any D 2 �(�), we have minh2X� EG⇠D

⇥
'
G(h(G))

⇤
=

minh2X� maxf2A
�:8G2�,f (G)2X

G(h(G)) EG⇠D

⇥
 
G(h(G),f (G))

⇤

By Arrow-Debreu’s lemma on abstract economies Arrow & Debreu (1954),
h⇤ is guaranteed to exist and is an equilibrium mapping iff h⇤

2

argmin
h2X�

max
f2A

�⇥X :8G2�,f (G,h(G))2X
G(h(G))

EG⇠D

⇥
 
G(h(G),f (G))

⇤
.

3We refer the reader to Appendix D for an example in which exploitability is not Lipschitz-continuous and
has unbounded gradients.
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This problem formulation allows us to overcome issues (1) and (2). For (1), rather than solve a con-
cave program to compute the exploitability for each pseudo-game and action profile, we can learn a
function that maps action profiles to their associated best-response profiles (see for example Lanctot
et al. (2017) for training best-response oracles). For (2), the objective function in the Equation on
the right hand side of Observation 1, i.e., the cumulative regret, is Lipschitz-continuous in the action
profiles when payoff functions are, which opens the doors to use standard proof techniques to learn
the objective from a polynomial sample of pseudo-games.

Still, the gradient of maxf EG⇠D

⇥
 
G(h(G),f (G;h(G)))

⇤
with respect to h is in gen-

eral unbounded even when it exists, due to the constraint 8G 2 �,f (G) 2

X (h(G)). However, since any solution f ⇤(G,h(G)) to the inner optimization problem
maxf2A�:8G2�,f (G)2X (h(G)) E

⇥
 
G(h(G),f (G))

⇤
is implicitly parameterized by the choice of

equilibrium mapping h, we can represent this dependence explicitly in the optimization problem,
and restrict our selection of f to a continuously differentiable hypothesis class F ⇢ A

�⇥X , and
overcome issue (3).

With these observations in mind, given hypothesis classes H ⇢ X
�, and F ⇢ A

�⇥X , the generative
adversarial learning problem is to find a tuple (h⇤

,f ⇤) 2 H ⇥ F that consists of a generator and
discriminator to solve the following optimization problem:

min
h2H

max
f2F :8G2�,f (G;h(G))2X

G(h(G))
EG⇠D

⇥
 
G(h(G),f (G;h(G)))

⇤
. (1)

This problem can be interpreted as a zero-sum game between the generator and the discriminator.
The generator takes as input a parametric representation of a pseudo-game, and predicts a solution
that consists of an action profile, i.e., a tuple of actions, one per agent. The discriminator takes
the game and the output of the generator as input, and outputs a best-response for each agent (Fig-
ure 1). The optimal mappings (h⇤

,f ⇤) for Equation (1) are then called the Generative Adversarial
Equilibrium Solver (GAES).

4 CONVERGENCE AND SAMPLE COMPLEXITY

For training, we propose a stochastic variant of the multistep gradient descent ascent algorithm
(Nouiehed et al., 2019; Sanjabi et al., 2018), which we call stochastic exploitability descent. Our al-
gorithm computes the optimal generator and discriminator by estimating the gradient of the expected
cumulative regret and exploitability on a training set of pseudo-games.

Algorithm 1 Stochastic Exploitability Descent
Inputs: B,⌘h ,⌘f , Th , Tf ,wh,(0)

,wf ,(0)

Outputs: (wh,(t)
,wf ,(t))

Th

t=0

1: for t = 0, . . . , Th � 1 do
2: Receive batch B

(t)
⇢ S .

3: wh,(t+1) = wh,(t)
� ⌘

(t)
h

✓
1/

���B(t)
h

���
P

G2B
(t)
h

h
rwh

b (wh,(t)
,wf ,(t))

i◆

4: for s = 0, . . . , Tf � 1 do
5: Receive batch B

(s)
⇢ S .

6: wf = wf + ⌘
(s)
f

✓
1/

���B(s)
f

���
P

G2B
(s)
f

rwf
b (wh,(t)

,wf )

◆

7: end for
8: wf ,(t+1) = wf

9: end for
10: Return (wh,(t)

,wf ,(t))
Th

t=0

Training Algorithm. For purposes of applicability, going forward, we will assume that we have
access to the distribution of pseudo-games D only indirectly through a training set S ⇠ D of k 2 N+

sampled pseudo-games. Additionally, we will assume that the generator h 2 H and discriminator
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f 2 F are parameterized by parameter vectors, wh
,wf

2 R! such that for all pseudo-games
G 2 �, and weight vectors w 2 R! , h(G;wh) 2 X and f (G;h(G;wh),wf ) 2 A.

For notational simplicity, we define the expected cumulative regret and the empirical cumulative re-
gret, respectively, as  (wh

,wf )
.
= E

⇥
 
G(h(G;wh),f (G,h(G;wh);wf ))

⇤
, and b (wh

,wf )
.
=

E
⇥
 
G(h(G;wh),f (G;h(G;wh),wf ))

⇤
where the expectation is over the distribution of pseudo-

games G ⇠ D and the uniform distribution over the training set, G ⇠ unif(S) respectively. Simi-
larly, we define the expected exploitability and the empirical exploitability respectively as:

'(wh)
.
= max

wf
2R! :8G2�,

f (G;wf )2X (h(G,wh ))

 (wh
,wf ) b'(wh)

.
= max

wf
2R! :8G2�,

f (G;wf )2X (h(G;wh ))

b (wh
,wf ),

Putting this together, our training problem becomes:

min
wh

2R!
max

wf
2R! :8G2�,f (G;h(G;wh ),wf )2X (h(G;wh ))

b (wh
,wf ). (2)

We propose Algorithm 1 to solve this optimization problem. This is a nested stochastic gradient
descent-ascent algorithm, which for each generator descent step runs multiple stochastic gradient
ascent steps on the weights of the discriminator to approximate the empirical cumulative regret by
processing the pseudo-games in the training set in batches, i.e., as mutually exclusive subsets of the
training set. After the stochastic gradient ascent steps are done, the algorithm then takes a step of
stochastic gradient descent on the empirical exploitability w.r.t. the weights of the generator using
the discriminator’s weights computed by the stochastic gradient ascent steps to compute the gradient.
Note that when the hypothesis class of the discriminator is assumed to contain only differentiable
functions, the gradient of the generator with respect to its weights exist, and they are given by the
implicit function theorem.

Convergence and generalization bounds. We give assumptions under which our algorithm con-
verges to a stationary point of the empirical exploitability in polynomial-time.
Assumption 1. For any player i 2 [n] and G 2 supp(D): 1. (Lipschitz-smoothness) their payoff
u
G

i is `ru -Lipschitz smooth, 2. (Strong concavity) their payoff uG

i is µui
-strongly-concave in ai,

and 3. (Lipschitz-smooth hypothesis classes) For all h 2 H ⇢ X
�⇥R! , f 2 F ⇢ A

�⇥X⇥R! ,
h(G; ·),f (G; ·) are injective, and Lipschitz-smooth functions.

We note that strong concavity can further be weakened to concavity, and our results can directly
extend to any concave pseudo-game by replacing the cumulative regret  with its regularized coun-
terpart  G

↵(a, b)
.
=  ↵(a, b) � ↵/2 ka � bk22, which is strongly-concave in b without modifying

the solutions of the optimization (Von Heusinger & Kanzow, 2009). However, as in our experiments
non-regularized cumulative regret performed better, for consistency, we present our theoretical re-
sults under the strong concavity assumption. That said, strong concavity in each player’s action is
a much weaker assumption than strong monotonicity of the pseudo-game which is commonly used
in the GNE literature (Jordan et al., 2022). For omitted definitions, and proofs/results we refer the
reader to Appendix E and Appendix F respectively.

Theorem 4.1 tells us that our algorithm converges to a stationary point of the empirical exploitability
at a Õ(1/

p
Th) rate, up to an error term that depends linearly on the distance, ", of the discriminator

computed by the algorithm w.r.t. to the optimal discriminator. A smaller " results in higher accuracy,
at the expense of a longer run time. 4

Theorem 4.1 (Convergence to Stationary Point). Suppose that Assumption 1 holds. Let " > 0.
If Algorithm 1 is run with inputs satisfying ⌘

(t)
h 2 ⇥ (1/pt), ⌘(s)f 2 ⇥ (1/s)), Th 2 N++,

and Tf 2 O (1/"), for all t 2 [Th ], s 2 [Tf ]. Then, the outputs (wh,(t)
,wf ,(t))

Th

t=0 satisfy

E


min
t=0,...,Th�1

��ra b'(wh,(t))
��2
2

�
2 O

✓
log(Th )
p

Th
+ "

◆
.

4Our min-max problem is non-convex-PL, for which single loop stochastic gradient descent ascent algo-
rithms are not guaranteed to converge to stationary points of the exploitability (Lin et al., 2020; Daskalakis
et al., 2009). Additionally, our algorithm’s computational complexity Õ(1/✏3) is orders of magnitude faster
than the best known complexity of Õ(1/✏6) for such problems (Lin et al., 2020).
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We also give a sample complexity result showing how cumulative regret can be approximated with
a sample of pseudo-games that is polynomial in the parameters of the game distribution, 1/" and 1/�.
The novelty of the result comes from the context: we mentioned earlier that expected exploitability
need not be Lipschitz-continuous, making it hard to use any standard and simple machinery to prove
a sample complexity bound. However, by reframing this problem as one of learning the expected
cumulative regret, which is Lipschitz-continuous, we can obtain the result.
Theorem 4.2 (Sample Complexity of Expected Cumulative Regret). Suppose that part 1. of As-
sumption 1 holds. Let ", � 2 (0, 1), r 2 O

�
"/` 

�
and consider hypothesis classes H,F given by

the minimum r-covering sets of X�
,A

X⇥� respectively. For any h 2 X
� and f 2 A

X⇥�, take the
closest hypotheses hr

2 argminh02H
kh � h0

k and fr
2 argminf 0

2F
kf � f 0

k to respectively.
Then, for any pseudo-game distribution D 2 �(�) with compact support, with probability at least
1� � over draws of the training set S ⇠ D

k with k 2 ⌦
�
1/"2 log

�
�
�1
⇢(H, "/` )⇢(F , "/` )

��
:

��EG⇠unif(S)

⇥
 
G(hr(G),fr(G,hr(G)))

⇤
�EG⇠D

⇥
 
G(h(G),f (G,h(G)))

⇤��  " .

5 EXPERIMENTAL RESULTS

Arrow-Debreu exchange economies.5 Our first set of experiments aim to solve CE in Arrow-
Debreu exchange economies (Arrow & Debreu, 1954). The difficulty in solving the pseudo-game
associated with Arrow-Debreu exchange economies—hereafter exchange economies—arises from
the fact that it does not fit into any well-defined categories of pseudo-games, e.g., monotone or
jointly convex, for which there are algorithms that converge to GNEs.

An exchange economy (u,E) consists of a finite set of m 2 N+ goods and n 2 N+ consumers
(or traders). Every consumer i 2 [n] has a set of possible consumptions Xi ✓ Rm

+ , an endowment
of goods ei = (ei1, . . . , eim) 2 Rm and a utility function ui : Rm

! R. We denote E =

(e1, . . . , en)
T . Any exchange economy can be formulated as a pseudo-game whose set of GNE is

equal to the set of competitive equilibria (CE)6 of the original economy (Arrow & Debreu, 1954).
This pseudo-game consists of n + 1 agents, who correspond to the n buyers and a seller. The
pseudo-game is given by the following optimization problem, for each buyer i 2 [n], and the seller,
respectively:

max
xi2Xi:xi·pei·p

ui(xi) max
p2�m

p ·

✓X
i2[n]

xi �

X
i2[n]

ei

◆
.

Let vi 2 Rm
+ , ⇢ 2 (�1, 1]n, be a vector of parameters for the utility function of buyer

i 2 [n]. In our experiments, we consider the following utility function classes: Linear: ui(xi) =P
j2[m] vijxij , Cobb-Douglas: ui(xi) =

Q
j2[m] x

vij
ij , Leontief : ui(xi) = minj2[m] {

xij/vij}, and
constant elasticity of substitution (CES): ui(xi) = (

P
j2[m] vijx

⇢
ij)

1/⇢. When we take ⇢ = 1, ⇢! 0,
and ⇢ ! �1 for CES utilities, we obtain linear, Cobb-Douglas, and Leontief utilities respectively.
We denote V = (v1, . . . ,vn)T . As is standard in the literature (Cheung et al., 2013; Brânzei et al.,
2021), we assume that for all buyers i 2 [n], Xi = Rm

+ . Once a utility function class is fixed, an
exchange economy is referred to with the name of the utility function, and can be sampled as a tuple
(V ,E) 2 Rn⇥m

⇥Rn⇥m for linear, Cobb-Douglas, and Leontief exchange economies, and as a tu-
ple (V ,⇢,E) 2 Rn⇥m

⇥Rn
⇥Rn⇥m for CES exchange economies. For CES exchange economies,

we have a gross substitute (GS) and gross complements (GC) CES economy, either when ⇢i � 0 for
all buyers or ⇢i < 0 for all buyers, respectively. Otherwise, this is a mixed CES economy.

Baselines. For special cases of exchange economies, the computation of CE is well-studied (e.g.,
Bei et al. (2015)), allowing us to compare the performance of GAES to known specialized methods.
We benchmark GAES to tâtonnement (Walras, 1896), which is an auction-like algorithm that is
guaranteed to converge for CES utilities with ⇢ 2 [0, 1)n (Bei et al., 2015), including Cobb-Douglas
and excluding Linear utilities. We also benchmark to exploitability descent (Goktas & Greenwald,
2022). For each of these baselines, we run an extensive grid search over decreasing learning rates
during validation (see Appendix G.2). Each baseline was run to convergence.

We report the results of two experiments. First, we run our algorithms in linear, Cobb-Douglas,
Leontief, GS CES, GC CES, and mixed CES exchange economies (we defer the results from the GS

5We include experiments on normal-form games, as well as all missing additional implementation details
and network architecture diagrams in Appendix G.

6We refer the reader to Appendix G.2 for a definition.
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CES, and GC CES experiments to the Appendix). We report the distribution of the exploitability on
the test set for GAES and the baselines in Figure 10 (additional plots can be found in Appendix G.2).
We measure performance w.r.t. the normalized exploitability, which is the exploitability of the
method divided by the average exploitability over the action space. We observe that in all economies,
GAES outputs an action profile that is on average better than at least 99% of the action profiles in
terms of exploitability. In all four markets, GAES on average achieves lower exploitability than
the baselines (see Figure 2). We also see in Figure 10 (Appendix G.2) that GAES outperforms
the baselines, in distribution, in every economy except Cobb-Douglas. This is not surprising since
tâtonnement is guaranteed to converge in Cobb-Douglas economies (Bei et al., 2015). That said,
tâtonement does not outperform GAES on average, since tâtonnement’s convergence guarantees
hold for different learning rates in each market.

Figure 2: Training and Testing Exploitability of GAES in linear, Cobb-Douglas, Leontief, and mixed
CES economies. GAES outperforms all baselines on average in all economies.

Second, we compare GAES with the performance of tâtonnment in a pathological and well-know
Leontief exchange economy, the Scarf economy (Scarf, 1960) (Figure 3). Here, we soft start
tâtonnement with the output of GAES with some added uniform noise. This additional noise en-
sures that the starting point of tâtonnement is distinct from the output of GAES). We see on Figure
3 that the prices generated by tâtonnement spiral out and settle into an orbit. This makes sense
as, unlike pure Nash equilibria, GNE and CE are not locally stable (Flokas et al., 2020), meaning
that soft-starting the algorithm with the output of GAES might be worse than using GAES alone.
The success of GAES in Leontief exchange economies as well as the Scarf economy is notable,
and suggests that GAES might be smoothing out the loss landscape since for these economies the
exploitability is non-differentiable.

Figure 3: A phase portrait of
equilibrium prices in the Scarf
Economy. While the output of
GAES is close to the equilibrium
prices, the final prices outputted by
tâtonnement prices are further than
the starting prices.

Kyoto joint implementation mechanism. We solve a pseudo-
game model of the joint implementation mechanism proposed
in the Kyoto protocols (Protocol, 1997). The Kyoto Joint Im-
plementation Mechanism is a cap-and-trade mechanism that
bounds each country that signed onto the protocol to emit an-
thropogenic gases below a particular emission cap. Countries
bound by the mechanism can also invest in green projects in
other countries, which in return increases their emission caps.
Breton et al. (2006) introduce a model of the Kyoto Joint Im-
plementation Mechanism, using this to predict the impact of
the mechanism. The model that the authors propose is par-
tially solvable analytically, that is, one can characterize equi-
libria qualitatively using comparative statics (Nachbar, 2002),
but cannot obtain closed-form solutions for GNE. Moreover,
there is no algorithm that is known to converge to the GNE of
this pseudo-game, since it is not monotone.

Formally, the (Kyoto) Joint Implementation Mechanism (JI)
consists of n 2 N+ countries. Each country i 2 [n], can
make decisions that result in environmentally damaging an-
thropogenic emissions, ei 2 R+, and can make investments
xi 2 Rn to offset their emissions. The investments xi 2 Rn that each country i 2 [n] makes
in another country j 2 [n] offsets that country’s emissions by xij�j , where this is in proportion
to an investment return rate �j > 0 for country j, with � 2 Rn

+. Each country i has a revenue
ri : Rn

+ ! R, which is a function of its emissions ei, a cost function ci : Rn⇥n
! R that is a

function of all investments, and a negative externality function, di : Rn
! R, that is a function of

the net emissions of all countries.
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Each country i aims to maximize their surplus, i.e., their revenue minus costs and and negative exter-
nalities, constrained by keeping their net emissions under an emission cap, ⌘i 2 R+. Additionally,
we require the emission transfer balance to hold, i.e., 8i, ei � �i

P
j2[n] xji � 0, that is no country

can transfer more emission reduction than they have, giving for each country, i:

max(ei,xi)2R+⇥Rn
+:ei�

P
j2[n] xij�j⌘i

8i2[n],ei��i
P

j2[n] xji�0

ri(ei) � ci(X) � di

⇣n
ei�

P
j2[n]xji�i

o

i

⌘
The

literature has traditionally assumed that ri(ei; ✓i) = ei (✓i � ei/2), ci(X) =
1
2

⇣
x
2
ii +

P
j 6=i

⇥
(xij + xjj)2 � x

2
jj

⇤⌘
, and di(e �

P
i2[n] xi,�i) = �i

P
i2[n](ei �

P
j2[n] xij).

Fixing these functional forms, we can sample (✓,�,�,⌘) 2 Rm
+ ⇥ Rm

⇥ Rm⇥m
⇥ Rm and obtain

a representation of the JI mechanism.

We run two different experiments to replicate and extend the analysis of Breton et al. (2006). We
first replicate their qualitative analysis of equilibria (Figure 4). Breton et al. (2006) introduce a
comparative static analysis, in which they fix all parameters of JI except for ✓, and characterize
the kinds of GNE as ✓ varies. In Figure 4, the six regions correspond to different kinds of GNE.
For instance in Region 1, both countries emit strictly less than their emission cap (see Section 4 of
Breton et al. (2006)). The parts of the plot that are not shaded correspond to pseudo-games for which
GNE are not unique, and for which equilibria cannot be characterized analytically. We superpose on
top of this plot a set of pseudo-games from an unseen test set, and color each pseudo-game by the
color of the region whose condition they fulfill.

Figure 4: A taxonomy of different equilibrium
types for various pseudo-games obtained by fix-
ing all parameters, and varying ✓. The x and y

axes represent the revenue parameters ✓1, ✓2 of the
countries. The colored regions (obtained analyti-
cally) correspond to different qualitative types of
GNE while the dots correspond to pseudo-games
in the test set colored by the GNE types that were
predicted for them by GAES.

We observe that with the exception of Re-
gions 1 and 2a, the structure of the GNE gen-
erated by GAES lines up well with the type
of GNE. We believe that failure to predict Re-
gions 1 and 2a is due to the closeness of the ac-
tion profiles that fit either of these equilibrium
types to other ones. For instance, GAES pre-
dicts a GNE of type 4a for pseudo-games in Re-
gion 2a but these GNE, although qualitatively
different, are very close in action space: the
only difference between the two regions is that
for the type 2a GNE, one player emits strictly
less than its cap and the other emits exactly its
cap, while for the type 4a GNE, both players
emit exactly their emission cap. A similar con-
clusion holds for GNE in Region 3a, as pre-
dicted in Region 1.

We also solve the JI pseudo-game for a dis-
tribution of JI pseudo-games (Figure 14, Ap-
pendix G), and these results confirm that the
testing normalized exploitability is very low.
We note that normalized exploitability is given

as the exploitability divided by the average exploitability over the action space, which means that
GAES has on average a lower exploitability than ⇡ 99.5% of the feasible action profiles. This con-
firms our hypothesis that failure to predict Regions 1 and 2a in Figure 4 arises from the proximity
between GNE of these types and GNE of types 3a or 4a respectively, since according to exploitabil-
ity there is very little improvement left for GAES.

6 CONCLUSION
We introduced GAES, a GAN that learns mappings from pseudo-games to GNE. GAES outperforms
existing methods to compute GNE or CE in exchange economies, and solves even pathological
examples, i.e., Scarf economies. Our approach extends the use of exploitability-based learning
methods from normal-form games to continuous games, exchange markets, and beyond. GAES
adds to the growing list of differentiable economics methods that aim to provide practitioners with
computational tools for the study of economic properties. GAES extends the range of models for
which we have approximate and reliable solvers.
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Stefan Heidekrüger, Paul Sutterer, and Martin Bichler. Computing approximate bayes-nash equi-
libria through neural self-play. In Workshop on Information Technology and Systems (WITS19),
2019.

Tom Hennigan, Trevor Cai, Tamara Norman, and Igor Babuschkin. Haiku: Sonnet for JAX, 2020.
URL http://github.com/deepmind/dm-haiku.

A. Heusinger and C. Kanzow. Relaxation methods for generalized nash equilibrium problems
with inexact line search. Journal of Optimization Theory and Applications, 143(1):159–
183, 2009. URL https://EconPapers.repec.org/RePEc:spr:joptap:v:143:
y:2009:i:1:d:10.1007_s10957-009-9553-0.

Edward Hill, Marco Bardoscia, and Arthur Turrell. Solving heterogeneous general equilibrium
economic models with deep reinforcement learning. arXiv preprint arXiv:2103.16977, 2021.

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D Joseph, Randy Katz,
Scott Shenker, and Ion Stoica. Mesos: A platform for {Fine-Grained} resource sharing in the data
center. In 8th USENIX Symposium on Networked Systems Design and Implementation (NSDI 11),
2011.

Benjamin F. Hobbs and J. S. Pang. Nash-cournot equilibria in electric power markets with piecewise
linear demand functions and joint constraints. Operations Research, 55(1):113–127, 2007. doi:
10.1287/opre.1060.0342. URL https://doi.org/10.1287/opre.1060.0342.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science and Engineering, 9(3):
90–95, 2007. doi: 10.1109/MCSE.2007.55.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

13

https://arxiv.org/abs/2002.00057
https://arxiv.org/abs/2106.06616
http://github.com/deepmind/dm-haiku
https://EconPapers.repec.org/RePEc:spr:joptap:v:143:y:2009:i:1:d:10.1007_s10957-009-9553-0
https://EconPapers.repec.org/RePEc:spr:joptap:v:143:y:2009:i:1:d:10.1007_s10957-009-9553-0
https://doi.org/10.1287/opre.1060.0342


Published as a conference paper at ICLR 2024

Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and Andrew Goldberg.
Quincy: fair scheduling for distributed computing clusters. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pp. 261–276, 2009.

Alexey F Izmailov and Mikhail V Solodov. On error bounds and newton-type methods for general-
ized nash equilibrium problems. Computational Optimization and Applications, 59(1):201–218,
2014.

Xuegang (Jeff) Ban, Maged Dessouky, Jong-Shi Pang, and Rong Fan. A general equilibrium model
for transportation systems with e-hailing services and flow congestion. Transportation Research
Part B: Methodological, 129:273–304, 2019. ISSN 0191-2615. doi: https://doi.org/10.1016/j.trb.
2019.08.012. URL https://www.sciencedirect.com/science/article/pii/
S0191261518309044.

Wei Jing-Yuan and Yves Smeers. Spatial oligopolistic electricity models with cournot genera-
tors and regulated transmission prices. Operations Research, 47(1):102–112, 1999. doi: 10.
1287/opre.47.1.102. URL https://pubsonline.informs.org/doi/abs/10.1287/
opre.47.1.102.

Roger Jones, K. Hennessy, C.M. Page, Albert Pittock, R. Suppiah, Kevin Walsh, and Penny Whet-
ton. Analysis of the Kyoto Protocol on Pacific Island Countries. 01 2000.

Michael I. Jordan, Tianyi Lin, and Manolis Zampetakis. First-order algorithms for nonlinear gener-
alized nash equilibrium problems, 2022. URL https://arxiv.org/abs/2204.03132.

Christian Kanzow. On the multiplier-penalty-approach for quasi-variational inequalities. Mathe-
matical Programming, 160(1):33–63, 2016.

Christian Kanzow and Daniel Steck. Augmented lagrangian and exact penalty methods for quasi-
variational inequalities. Computational Optimization and Applications, 69(3):801–824, 2018.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-lojasiewicz condition. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pp. 795–811. Springer, 2016.

Jacek B. Krawczyk. Coupled constraint nash equilibria in environmental games. Resource
and Energy Economics, 27(2):157–181, 2005. ISSN 0928-7655. doi: https://doi.org/10.
1016/j.reseneeco.2004.08.001. URL https://www.sciencedirect.com/science/
article/pii/S0928765504000661.

Jacek B. Krawczyk and Stanislav Uryasev. Relaxation algorithms to find nash equilibria with
economic applications. Environmental Modeling and Assessment, 5(1):63–73, 2000. doi:
10.1023/A:1019097208499. This revised version was published online in July 2006 with cor-
rections to the Cover Date.

Kevin Lai, Lars Rasmusson, Eytan Adar, Li Zhang, and Bernardo A Huberman. Tycoon: An im-
plementation of a distributed, market-based resource allocation system. Multiagent and Grid
Systems, 1(3):169–182, 2005.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien
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