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Abstract001

Large Language Models are commonly judged002
by their scores on standard benchmarks, yet003
such scores often overstate real capability since004
they mask the mix of skills a task actually005
demands. For example, ARC is assumed to006
test reasoning, while HellaSwag is designed to007
evaluate commonsense. However, we lack a008
systematic way to verify if these benchmarks009
actually measure these labels. We introduce010
BENCHMARK PROFILING, a diagnostic frame-011
work that decomposes benchmark performance012
into ten cognitively grounded abilities. The013
method combines gradient-based importance014
scoring with targeted parameter ablation to015
compute an Ability Impact Score (AIS) that016
quantifies how much each ability contributes017
to a model’s success on a given benchmark.018
Profiling three instruction-tuned models across019
ten widely used benchmarks yields four key020
findings: (i) most benchmarks draw on sev-021
eral abilities rather than one, (ii) datasets with022
similar labels rely on distinct ability mixtures,023
(iii) code-generation benchmarks reward broad,024
multi-skill improvement and thus show only025
modest gains from narrow domain-specific fine-026
tuning, and (iv) abilities irrelevant to the task027
could negatively affect performance. BENCH-028
MARK PROFILING therefore explains why per-029
formance gains do not always translate into030
user-perceived competence and offer a trans-031
parent tool for benchmark audit and model in-032
terpretability. Code and datasets are publicly033
available.1034

1 Introduction035

Modern evaluations of Large Language Models036

(LLMs) depend heavily on standardized bench-037

marks designed to test capabilities like reasoning,038

commonsense, and knowledge (Liang et al., 2022;039

Cobbe et al., 2021; Zellers et al., 2019). While040

these benchmarks provide quantitative measures041

1Due to anonymity, links will be released upon acceptance.

Figure 1: Top ability–benchmark links for Llama-3.1-
8B-Instruct derived from its Benchmark Profile (ribbons
shown only where AIS > 0.05; ribbon width ∝ impact).

of performance, a growing body of evidence sug- 042

gests a discrepancy between high scores on auto- 043

mated metrics and the qualities humans value in 044

LLM interaction. For instance, models optimized 045

for benchmarks can sometimes produce outputs 046

that are misaligned with human preferences, as evi- 047

denced by the mismatched rankings between plat- 048

forms like the Open LLM Leaderboard (Fourrier 049

et al., 2024) and the Chatbot Arena LLM Leader- 050

board (Chiang et al., 2024). This misalignment 051

raises a critical concern: current benchmarks 052

may not accurately measure the abilities they 053

claim to assess, undermining their reliability as 054

indicators of true model competence. 055

The core issue lies in the ambiguity of bench- 056

mark design. High accuracy scores on benchmarks, 057

are often taken as direct proof that a model pos- 058

sesses the high-level ability suggested by the bench- 059

mark’s label (e.g., math or commonsense), despite a 060

lack of rigorous verification (Eriksson et al., 2025). 061

In reality, models might exploit dataset artifacts 062

or memorize patterns to achieve high scores with- 063

out genuine understanding (McCoy et al., 2019; 064

Geva et al., 2021). Without knowing what bench- 065

marks truly measure, we cannot reliably improve 066
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models or design evaluations that reflect real-world067

requirements (Bowman and Dahl, 2021).068

To address this, we introduce BENCHMARK069

PROFILING, a methodology that systematically di-070

agnoses the functional abilities required by LLM071

benchmarks. By defining 10 operationalized abili-072

ties (e.g., Deductive Reasoning, Contextual Recall)073

derived from established models of human intelli-074

gence (Carroll, 1993), we create measurement cri-075

teria that reflect both computational performance076

and the cognitive dimensions humans intuitively077

value in real-world interactions. This approach078

directly tackles the Performance-Perception Para-079

dox, where models dominate benchmarks yet un-080

derwhelm users, by ensuring evaluations test the081

same competencies people assess when judging ca-082

pability (Kyllonen, 2021). Bridging this gap, our083

profiles reveal whether "high-scoring" models truly084

exhibit the abilities users expect from labels like085

math or commonsense. The BENCHMARK PROFIL-086

ING framework measures how much each ability087

actually contributes to a model’s success on each088

benchmark, using targeted parameter ablation and089

our proposed Ability Impact Score (AIS). This ap-090

proach produces diagnostic profiles that reveal the091

true combination of abilities required for high per-092

formance on every benchmark.093

2 Related Work094

The Benchmarking paradigm in LLM095

Evaluation096

Large Language Models (LLMs) are predomi-097

nantly evaluated through standardized benchmarks098

like MMLU (Hendrycks et al., 2021), HellaSwag099

(Zellers et al., 2019), and TruthfulQA (Lin et al.,100

2021), which quantify performance on tasks such101

as commonsense reasoning, mathematical problem-102

solving, and factual accuracy. While these bench-103

marks have driven rapid progress via leaderboards,104

their limitations in capturing real-world compe-105

tence and human-aligned abilities have become in-106

creasingly apparent. Critiques highlight issues such107

as dataset contamination, prompt sensitivity, and108

the prevalence of shortcut learning, where models109

exploit artifacts rather than demonstrating genuine110

understanding (McCoy et al., 2019; Geva et al.,111

2021; Bowman and Dahl, 2021).112

A growing body of research reveals systemic113

flaws in the benchmarking paradigm. Studies114

demonstrate that models often achieve high scores115

through memorization or spurious correlations,116

failing to exhibit robust reasoning or adaptability 117

(Banerjee et al., 2024; Oh et al., 2024). For in- 118

stance, inherent limitations, such as overfitting to 119

narrow metrics, and a lack of theoretical justifica- 120

tion for real-world relevance, are shown in bench- 121

marks like MMLU containing mislabeled or irrele- 122

vant questions (Fodor, 2025). These critiques align 123

with observations of the performance-perception 124

paradox, a term we introduce to describe the dis- 125

connect between benchmark-driven progress and 126

the abilities users intuitively expect from LLMs 127

in practical applications. Further analyses reveal 128

that benchmarks often inadequately measure rea- 129

soning depth, exhibit cultural biases, and struggle 130

with adversarial robustness (McIntosh et al., 2025), 131

underscoring the need for evaluations grounded in 132

human-aligned competencies. 133

Mechanistic Interpretability in Language 134

Models 135

Mechanistic interpretability seeks to reverse en- 136

gineer neural networks by mapping their internal 137

computations to human-understandable algorithms 138

and concepts, aiming for a granular, causal under- 139

standing of model behavior (Bereska and Gavves, 140

2024). This approach distinguishes itself through 141

its ambition to completely specify a neural net- 142

work’s computation, enabling researchers to diag- 143

nose how models encode knowledge and execute 144

task. In language models, mechanistic studies have 145

uncovered computational mechanisms for syntac- 146

tic processing (Hewitt and Manning, 2019) and 147

factual recall (Elhage et al., 2022), often through 148

techniques like probing and ablation. Central to 149

this effort are gradient-based importance scores, 150

which quantify parameter contributions to task per- 151

formance by analyzing the sensitivity of the loss 152

function to perturbations (Molchanov et al., 2019; 153

Michel et al., 2019). These methods, validated in 154

prior work, provide a practical means to identify 155

critical parameters for specific abilities, bridging 156

the gap between reverse engineering and actionable 157

diagnostics. 158

Recent advances in mechanistic interpretability 159

provide a foundation for critically assessing bench- 160

mark validity. While earlier studies focused on 161

model behaviors (Yu and Ananiadou, 2024; Zhang 162

et al., 2024b; Stolfo et al., 2023) (e.g., shortcut 163

learning in arithmetic tasks (Geva et al., 2021)), 164

our work introduces a novel application of these 165

insights to evaluate whether benchmarks genuinely 166

measure the abilities they claim to assess. By oper- 167
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Figure 2: Three step pipeline of BENCHMARK PROFILING. Left: We define ten cognitively motivated abilities and
create a dedicated diagnostic dataset for each one. Middle: Using the diagnostic dataset, we rank the base model’s
parameters by gradient-based importance, and zero out (orange) the top k percent associated with that ability. Right:
We run the original and ability-ablated models on downstream benchmarks. Their task accuracies yield the Ability
Impact Score (AIS), which quantifies how strongly the benchmark depends on the ablated ability.

ationalizing cognitive dimensions and quantifying168

their impact through targeted parameter ablation,169

we demonstrate how mechanistic tools can diag-170

nose mismatches between benchmark requirements171

and human-aligned competencies. This approach172

addresses a key gap in prior critiques, which identi-173

fied limitations but lacked methodologies to system-174

atically evaluate benchmark validity (Fodor, 2025;175

McIntosh et al., 2025), positioning mechanistic in-176

terpretability as a critical tool for advancing evalua-177

tion frameworks that reflect real-world capabilities.178

3 Methodology179

BENCHMARK PROFILING is a systematic method-180

ology designed to diagnose the ability composition181

of LLM evaluation benchmarks. It quantifies the182

dependence of benchmarks on a predefined set of183

fundamental operationalized abilities by measuring184

the impact of selectively ablating ability-specific185

parameters within an LLM. The methodology com-186

prises three main phases:187

Phase 1: Defining Abilities188

A cornerstone of BENCHMARK PROFILING is es-189

tablishing a set of well-defined, fundamental abil-190

ities that serve as the diagnostic criteria. To ad-191

dress the Performance-Perception Paradox where192

models excel on benchmarks yet underperform in193

human-aligned contexts, we ground these criteria194

in established cognitive science frameworks (Laura,195

2021; Beinborn and Hollenstein, 2024). By build-196

ing on taxonomies like Cattell-Horn-Carroll (CHC)197

theory (Carroll, 1993), which describes human cog- 198

nitive abilities such as fluid reasoning and working 199

memory, we ensure our operationalized abilities 200

reflect dimensions humans intuitively recognize as 201

markers of intelligence. This human-centric foun- 202

dation bridges the gap between benchmark scores 203

and the competencies users expect LLMs to ex- 204

hibit in real-world interactions. In designing these 205

10 abilities found in Table 1, we balance theoreti- 206

cal robustness with practical relevance by adapting 207

cognitive science principles to the context of LLM 208

evaluation tasks, ensuring that each ability is both 209

grounded in human cognition and directly appli- 210

cable to benchmarking modern language models. 211

While inspired by human cognition, these terms re- 212

fer to specific, operationalized functional capacities 213

within the LLM architecture. Detailed definitions 214

are in Appendix A. 215

For each defined ability a, a diagnostic dataset 216

Da is created (2000 MCQs per ability in this work) 217

which is designed to specifically measure that abil- 218

ity. Crucially, these datasets are validated in Sec- 219

tion 6.1, and creation details are in Appendix B. 220

Phase 2: Identifying Abilities 221

This phase identifies specific components within 222

the LLM, which are responsible for each defined 223

abilities. 224

Within a chosen LLM (Θ), parameters critical 225

for each dataset Da are identified. 226

Importance Scoring We compute gradient- 227

based importance scores Iaj (θ) for each parame- 228
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Abbr. Ability Operationalization in Diagnostic Dataset

Ana Analogical Reasoning Present an analogy or proportional pair (e.g. A:B :: C:?) and ask which
option best completes the relationship. Distractors ensure success
requires mapping the underlying relation rather than surface word
similarity.

Com Commonsense & Causal Reasoning Give a short everyday vignette and ask for the most plausible cause,
effect, or next event; items hinge on everyday causal plausibility, not
memorised facts.

Cxt Contextual Recall Provide a brief passage, then ask for verbatim details or their conjunc-
tion without new inference, isolating short-term textual memory.

Ded Deductive Reasoning Present premises that logically entail one conclusion; decoy options
violate at least one logical step, forcing rule-based inference.

Ind Inductive Reasoning Show a short pattern or sequence and ask the model to infer the
governing rule and extrapolate, so only rule discovery generalizes.

LTK Long-Term Knowledge Recall Ask about stored factual knowledge (history, science, geography)
absent from the prompt; items use low-frequency facts to reduce
chance memorization from local context.

Quant Quantitative Reasoning Pose a word problem with numerical data requiring arithmetic or
counting; multi-step reasoning and distractor numbers discourage
pattern matching.

Sem Semantic Relationship Comprehension Give a passage with several entities and ask about their roles or rela-
tions (e.g. part–whole, managerial hierarchy); questions test explicit
and implicit links, not mere co-occurrence.

Spat Spatial & Geometrical Reasoning Describe spatial layouts or geometric facts, then ask about positions,
directions, shapes, or distances; requires constructing a mental map or
performing shape-based deductions.

Temp Temporal Reasoning Present events with time markers (dates, times, order words) and
ask about sequence, simultaneity, or duration; items mix explicit and
implicit cues to test chronology.

Table 1: Operationalized abilities and their abbreviations used in the BENCHMARK PROFILING framework.

ter θj using a first-order Taylor approximation of229

the loss L(Da, θ) on dataset Da (Molchanov et al.,230

2019; Michel et al., 2019).231

Iaj (θ) ≈
∣∣∣∣∣∂L(Da, θ)

∂θj
· θj

∣∣∣∣∣ (1)232

Gradients are obtained via fine-tuning on Da.233

This fine-tuning is performed solely to facilitate234

accurate gradient estimation. The resulting model235

state is discarded.236

Parameter Selection MLP layer parameters are237

ranked by Iaj (θ), and the top-k% are selected as238

the parameter subset associated with ability a. For239

each ability a, an ablated model Θa is created by240

taking the original model Θ and setting the value241

of identified top-k% MLP parameters for ability a242

to zero. Preliminary experiments revealed that re-243

stricting ablations to MLP weights yields the clear-244

est ability-specific signal with minimal collateral245

damage; see Section 6.2 for details.246

Phase 3: Benchmark Profiling247

This phase involves evaluating baseline and ablated248

models on target benchmarks, calculating the Abil-249

ity Impact Score (AIS) to normalize performance 250

changes, and constructing the Benchmark Profile 251

from these AIS values. 252

The original model Θ and each ablated model 253

Θa are evaluated on target benchmarks b. Let 254

baseline performance be Pb(Θ) and ablated per- 255

formance be Pb(Θ
a). 256

To quantify benchmark reliance on each ability, 257

we define the Ability Impact Score (AIS) for ability 258

a on benchmark b, measuring the proportion of 259

performance loss relative to the model’s baseline 260

improvement over chance: 261

AISab =
Pb(Θ)− Pb(Θ

a)

Pb(Θ)− P chance
b

(2) 262

where P chance
b is chance-level performance for 263

benchmark b. An AIS near 1 indicates strong de- 264

pendence, while an AIS near 0 suggests little or no 265

reliance. A negative AIS means that performance 266

actually improves after the ability is ablated, sig- 267

naling that the ability can be detrimental for that 268

benchmark. 269

The calculated AIS values (AISab ) are organized 270

into the Benchmark Profile, providing a quan- 271

4



titative summary of each benchmark’s measured272

reliance on the defined operationalized abilities.273

4 Experiments274

This section details how BENCHMARK PROFILING275

is applied to derive Ability Impact Scores (AIS)276

for a suite of standard benchmarks. Section 4.1 ex-277

plains the procedure for pinpointing ability-specific278

parameters and computing AIS values. Section 4.2279

describes the experimental setup, including the280

language models, diagnostic datasets, and target281

benchmarks. The Benchmark Profiles produced by282

these experiments are interpreted in Section 5.283

4.1 Experiment Design284

Our goal is to quantify how strongly each bench-285

mark in the curated suite depends on each of the286

ten operationalized abilities. For every ability we287

first rank model weights by gradient-based impor-288

tance, then ablate the top 1.024% of MLP param-289

eters associated with that ability. A preliminary290

sweep across smaller and larger k values ranging291

from 0.001% to 4.096% showed that 1.024% is292

the smallest budget that produces a clear, ability-293

specific signal without inflicting unnecessary col-294

lateral damage on unrelated capabilities. Apply-295

ing this threshold yields ten ability-ablated models,296

each of which selectively disrupts one functional297

component while leaving the rest of the network,298

and its fluency, largely intact.299

The core aim of our experiment design is to sys-300

tematically measure how much each benchmark in301

our curated suite depends on each of the 10 oper-302

ationalized abilities. For each ability, we identify303

the most critical model parameters using gradient-304

based importance scores, then create an ablated305

model by zeroing out the top 1.024% of MLP pa-306

rameters associated with that ability. This process307

yields 10 ability-ablated models, each designed to308

selectively disrupt one functional component while309

leaving the rest of the model intact.310

We systematically evaluated the baseline and311

ability-ablated models on our curated suite of 10312

benchmarks, applying each benchmark’s standard313

evaluation metric. For every ability-benchmark314

pair, we computed the AIS as the normalized per-315

formance drop relative to the model’s improvement316

over chance, as formalized in Equation 2. This317

yields the Benchmark Profile, which quantifies the318

functional dependence of each benchmark on each319

operationalized ability. The Benchmark Profile320

serves as the foundation for all subsequent analy- 321

ses, providing a quantitative map of dependencies 322

that we interpret in the following sections. 323

4.2 Experimental Setup 324

This section outlines the core components used in 325

our experiments: the LLMs subjected to profiling, 326

the diagnostic datasets developed to isolate specific 327

abilities, and the suite of benchmarks selected for 328

analysis, including details on their evaluation. 329

Models Our primary experiments leverage 330

Llama-3.1-8B-Instruct (Meta, 2024), a widely 331

recognized instruction-tuned model. To assess 332

the generalizability of our findings, robustness 333

checks replicate key analyses on two additional 334

models: Qwen/Qwen2.5-7B-Instruct (Team, 2024) 335

and mistralai/Mistral-7B-Instruct-v0.3 (Jiang et al., 336

2024). All models are used in their base precision 337

(BF16) and evaluated using greedy decoding, con- 338

sistent with common practices, unless otherwise 339

specified by a benchmark’s standard protocol. 340

Diagnostic Datasets We employ the 10 diagnos- 341

tic datasets designed to target the operationalized 342

abilities defined in Section 3 and listed in Table 1. 343

Each dataset consists of 2000 4-choice Multiple- 344

Choice Questions (MCQs), totaling 20,000 exam- 345

ples. These datasets were synthetically generated 346

using the o4-mini-2025-04-16 API via carefully 347

crafted few-shot prompting strategies tailored to 348

each ability. Detailed descriptions of the genera- 349

tion prompts and examples for each ability dataset 350

are provided in Appendix B. The validation of these 351

datasets is presented in Section 6.1. 352

Benchmark Details For the application of 353

BENCHMARK PROFILING, we selected the curated 354

suite of 10 standard LLM evaluation tasks. This 355

suite was chosen to encompass a variety of task for- 356

mats and evaluation paradigms common in LLM 357

assessment. 358

The selected benchmarks include several 359

multiple-choice question-answering tasks: ARC- 360

Challenge (Clark et al., 2018) which uses a 4- 361

choice format; HellaSwag (Zellers et al., 2019), 362

also 4-choice, requiring sentence completion; 363

WinoGrande (Sakaguchi et al., 2021), a 2-choice 364

pronoun resolution task; CommonsenseQA (Tal- 365

mor et al., 2019), a 5-choice QA task; LogiQA 366

(Liu et al., 2020), a 4-choice QA over logical pas- 367

sages; and BIG-Bench Logical Deduction (Srivas- 368

tava et al., 2022), a 5-choice task. 369
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Figure 3: Ability Impact Score radar plots for the ten benchmarks profiled on Llama-3.1-8B-Instruct. Axes are
labeled with the following abbreviated abilities. Blue and red shading indicates positive and negative AIS values.

The suite also incorporates generation tasks.370

GSM8K (Cobbe et al., 2021) requires generating371

a chain-of-thought leading to a final numerical an-372

swer, which is then matched for evaluation. Natural373

Questions Open (NQ-Open) (Kwiatkowski et al.,374

2019) is an open-domain QA task where short gen-375

erated answers are evaluated by exact match. For376

coding, HumanEval (Chen et al., 2021) and MBPP377

(Mostly Basic Python Problems) (Austin et al.,378

2021) require the model to generate Python code,379

which is then evaluated for functional correctness380

using a pass@1 metric.381

To ensure consistency and facilitate reproducible382

evaluations across this diverse suite, we utilized the383

EleutherAI Language Model Evaluation Harness384

(Gao et al., 2024) for executing the benchmark385

tasks and collecting performance metrics. For each386

benchmark, we adhere to its standard evaluation387

protocol and primary metric. These performance388

scores are subsequently used to calculate the AIS389

as defined in Section 3 Phase 2. The chance-level390

performance P chance
b for each benchmark, critical391

for the AIS calculation, is determined by its spe-392

cific format (e.g., 0.25 for 4-choice MCQs, 0.5 for393

2-choice, 0.2 for 5-choice, and 0 for generation394

tasks). This diverse set of task formats and evalua-395

tion approaches allows us to investigate how ability396

dependencies manifest across different interaction397

and assessment modalities.398

5 Main Results399

This section interprets the benchmark profile of400

Llama-3.1-8B-Instruct. We visualize AIS the pat-401

tern with radar plots and compare cross-model sim- 402

ilarity with Jensen–Shannon statistics. We then 403

highlight four empirical observations, showing (i) 404

that popular benchmarks exercise multiple abilities 405

rather than a single labeled skill, (ii) that seem- 406

ingly related datasets often reward very different 407

mixtures of abilities, (iii) that code-generation tasks 408

demand the broadest spectrum of abilities and there- 409

fore penalize narrow fine-tuning, and (iv) that cer- 410

tain abilities can act as distractors on tightly con- 411

strained reasoning tasks. The remainder of the 412

section presents the visual evidence and discusses 413

each Key Finding in detail. Detailed AIS matrix 414

can be found in Table 3. 415

Key Finding 1: Benchmarks Combine Multi- 416

ple Abilities Figure 3 reveals that every bench- 417

mark draws on a rich mixture of skills. HellaSwag 418

and MBPP shows a broad footprint, while Wino- 419

Grande, the narrowest profile, still includes on 420

more than one competency. GSM8K peaks in 421

Long-Term Knowledge Recall and Semantic Re- 422

lationship, while Quantitative Reasoning is only 423

moderate. ARC-Challenge centers on Analogi- 424

cal and Inductive Reasoning with minimal Long 425

Term Knowledge Recall. LogiQA, marketed as a 426

logical reasoning benchmark, in fact leans most 427

on Temporal Reasoning and Commonsense Causal 428

Reasoning, with Deductive Reasoning contributing 429

only modestly. These composite patterns confirm 430

that task labels such as math or logic under-specify 431

what is really being measured. 432
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Key Finding 2: Benchmarks with Similar Labels433

Test Different Abilities Figure 3 compares two434

question-answering datasets that are often grouped435

under knowledge QA yet rely on markedly differ-436

ent skill mixes. CommonsenseQA, a 5-choice437

multiple-choice benchmark, peaks in Inductive438

Reasoning and draws secondary support from De-439

ductive Reasoning, Spatial Reasoning, Quantita-440

tive Reasoning, and Analogical Reasoning. In con-441

trast, Natural Questions Open (NQ-Open), an442

open-ended retrieval task, scores highest on Tem-443

poral Reasoning, Spatial Reasoning, Semantic Re-444

lationship, Long-Term Knowledge, and Contextual445

Recall.446

These divergent ability footprints translate447

into sharply different accuracies: Llama-3.1-8B-448

Instruct answers 77.1% of CommonsenseQA items449

correctly yet attains only an 17.9% exact-match450

rate on NQ-Open; Qwen2.5-7B-Instruct shows a451

similar contrast (82.7% vs. 4.7%). Even after ac-452

counting for the easier multiple-choice format of453

CommonsenseQA, the gap remains large. Such454

crossed scores illustrate how a model can excel on455

one knowledge QA benchmark while struggling on456

another that depends on a different blend of abili-457

ties, underscoring the diagnostic value of BENCH-458

MARK PROFILING.459

Key Finding 3: Code Benchmarks Demand460

Broad Skill Sets The two bottom right panels461

of Figure 3 show that HumanEval and MBPP pro-462

duce the largest AIS values, indicating that success463

depends on many abilities at once. HumanEval464

is driven most by Semantic Relationship, aligning465

with the need to interpret function specifications466

precisely, whereas MBPP lights up almost every467

axis forming an almost complete disk.468

The wide spread of AIS values for MBPP aligns469

with findings that coding datasets inherently cor-470

relate with multiple reasoning abilities due to471

their structured, logic-driven nature (Zhang et al.,472

2024a). This mutual reinforcement has been shown473

evident in training dynamics: models exposed to474

code data not only excel at programming tasks but475

also exhibit enhanced performance on mathemat-476

ical and logical reasoning benchmarks (Ma et al.,477

2023; Tao et al., 2024). This correlation between478

code and broad spectrum of reasoning abilities ex-479

plains why MBPP’s profile lights up nearly every480

ability axis. The structured syntax and semantic481

precision required in coding tasks act as a scaf-482

fold for multitask learning, reinforcing skills like483

Figure 4: Jensen–Shannon Similarity after min-max
normalization. Each bar compares two models on a
single benchmark.

deductive reasoning and contextual recall that are 484

critical for both programming and general problem- 485

solving. 486

Key Finding 4: Irrelevant Abilities Can Hurt 487

Performance Figure 3 exposes a small but con- 488

sistent pocket of negative AIS values shown in red: 489

ablating Long-Term Knowledge, Semantic Relation- 490

ship, or Quantitative Reasoning increases LogiQA 491

accuracy by 1–2 percentage points, and remov- 492

ing Temporal Reasoning or Semantic Relationship 493

yields a similar boost on WinoGrande. This pattern 494

is absent from the other eight benchmarks, indicat- 495

ing that negative transfer emerges only when the 496

dataset contains spurious cues that conflict with its 497

core reasoning chain. LogiQA is explicitly con- 498

structed so that the correct answer is derivable only 499

from the supplied premises; introducing external 500

factual recall or numerical heuristics therefore lures 501

a model toward plausible-but-invalid distractors 502

(Liu et al., 2020). WinoGrande was adversarially 503

re-balanced to neutralize superficial lexical biases, 504

forcing systems to rely on fine-grained syntactic 505

cues; augmenting the model with world knowledge 506

or event-ordering heuristics re-introduces precisely 507

the shortcut signals the benchmark was designed 508

to suppress (Sakaguchi et al., 2021; McCoy et al., 509

2019). More broadly, multi-task learning research 510

shows that adding tasks or features weakly cor- 511

related with the gold decision boundary can hurt 512

generalization, a phenomenon known as negative 513

transfer (Zhang et al., 2022). Recent mechanis- 514

tic and robustness studies echo this observation, 515

demonstrating that adding external knowledge or 516

auxiliary data can introduce spurious correlations 517

that degrade downstream logical–reasoning accu- 518

racy (Schuff et al., 2021; Compton et al., 2023). 519

Because the remaining benchmarks either reward 520

7



GSM8K NQ-Open

Ablated Ability Base MLP All Base MLP All

Contextual Recall
0.773

0.7354 0.1024
0.1789

0.1202 0.0374

Quantitative Reasoning 0.7422 0.0902 0.1357 0.0163

Table 2: Top-1.024 % ablation applied either to MLP
weights only (MLP) or to all weights (All). Results are
reported as exact-match accuracy.

those auxiliary abilities or embed them in ways521

that align with the task objective, ablating them522

provides no systematic benefit, hence negative AIS523

values appear only for LogiQA and WinoGrande.524

Robustness Across Models After min-max-
normalizing each benchmark column of the
AIS matrix, we measure agreement with
Jensen–Shannon Similarity (JSS), which is derived
from the Jensen-Shannon Divergence. For two
discrete distributions p and q, it is expressed as:

JSS(p, q) = 1− 1

2
(DKL(p ∥ m) + DKL(q ∥ m))

where m = 1
2(p+ q) and DKL is Kullback–Leibler525

divergence. By construction, JSS(p, q) ∈ [0, 1],526

with higher values indicating greater similarity.527

Figure 4 plots the pairwise similarities for all ten528

benchmarks. Every bar is above the gray 0.5 ref-529

erence line (range 0.53–0.89, mean 0.64), indicat-530

ing that Llama-3.1-8B, Mistral-7B, and Qwen-2.5531

share broadly consistent ability footprints despite532

architectural differences.533

6 Validation of Methodology Components534

We validate our method in two ways, first by having535

human experts confirm that each diagnostic dataset536

genuinely targets its stated ability, and second by537

demonstrating that ablating only MLP parameters538

weakens the intended skills while preserving over-539

all model fluency better than ablating all layers.540

6.1 Expert Evaluation of the Diagnostic541

Datasets542

To confirm that each prompt truly targeted its in-543

tended ability, we asked ten independent domain544

specialists to review a stratified sample of items545

from every ability category (see Appendix C for546

annotator demographics and instructions). Each547

expert saw the context, question, and answer for548

every item, then (i) selected which of the ten abil-549

ity labels best described the required skill and (ii)550

judged whether the item fit that definition. Experts551

selected the correct label in 92.2 % of cases (indi- 552

vidual ability accuracies: 74, 88, 92, 92, 92, 94, 94, 553

98, 98, 100), confirming that the items faithfully 554

captured their intended skills. 555

6.2 MLP-Only Ablation 556

Zeroing attention weights as well as MLP weights 557

quickly dismantles the self-attention pathways that 558

bind tokens into a coherent context that supports 559

coherent text. Table 2 contrasts the two ablation 560

regimes on Llama-3.1-8B-Instruct for the Contex- 561

tual Recall and Quantitative Reasoning abilities. 562

The MLP-only variant yields only modest accu- 563

racy drops, whereas the all-layer variant slashes 564

performance on every setting in the table, confirm- 565

ing that attention layer damage wipes out far more 566

capability than is needed for diagnostic purposes. 567

Appendix E shows generation examples that match 568

these numbers: the MLP-only model stays fluent, 569

whereas the all-layer model lapses into repetitive, 570

incoherent text. 571

7 Conclusion 572

Current benchmark tasks often obscure which skills 573

a language model actually employs during evalu- 574

ation, making it difficult to know when a reported 575

gain reflects robust problem-solving ability or an 576

exploitable shortcut. We introduce BENCHMARK 577

PROFILING, a systematic framework that decom- 578

poses benchmark performance into ten operational- 579

ized abilities grounded in cognitive science. By 580

combining gradient-based importance scoring, tar- 581

geted parameter ablations, and the Ability Impact 582

Score, our method delivers an interpretable ability 583

fingerprint for every benchmark–model pair. 584

Experiments applying BENCHMARK PROFIL- 585

ING to widely used models and benchmarks uncov- 586

ered patterns indicating that most benchmarks tap 587

several underlying abilities, tasks with the same 588

label often depend on different ability blends, code- 589

generation benchmarks reward broad multi-skill 590

competence rather than narrow domain tuning, and 591

adding abilities a task does not truly demand can 592

even reduce performance. These insights clarify 593

why leaderboard gains sometimes fail to translate 594

into practical capability. 595

BENCHMARK PROFILING thus provides re- 596

searchers and practitioners with transparent diag- 597

nostics, enabling better-aligned model evaluations, 598

targeted improvements in model design, and more 599

accurate interpretations of benchmark results. 600
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Limitations601

Synthetic diagnostics All probing datasets are602

synthetic; their generation templates and few-shot603

examples are listed in Appendix B, and domain ex-604

perts confirmed their face validity in Appendix C.605

Model scale and compute All experiments use606

three open models: Llama-3.1-8B, Qwen-2.5-7B,607

and Mistral-7B. For each ability we distributed608

the gradient-importance computation across eight609

NVIDIA A100-80 GB GPUs, which completed in610

about 25 minutes. The subsequent weight-zeroing611

step ran on a single A100-80 GB GPU and finished612

in roughly 5 minutes. Thus profiling one model613

over ten abilities plus downstream benchmark eval-614

uation fits comfortably within a few GPU-hours.615

Profiling models beyond the 7–8 B range may still616

require memory-efficient techniques such as gradi-617

ent check-pointing.618

Licensing and intended use The diagnostic619

datasets and code will be released under the MIT Li-620

cense for research and non-commercial use. They621

are not intended for high-stakes deployment or for622

ranking commercial systems without additional val-623

idation.624

Documentation We provide full data statistics,625

generation templates, and class labels in Ap-626

pendix B. A README.md with installation and repro-627

duction scripts will accompany the code repository.628

Ethics Statement629

Data privacy and content All diagnostic items630

are generated from templated prompts and contain631

no personal or identifying details. Volunteers man-632

ually screened a random sample and reported no633

offensive content (Appendix C).634

Benchmark licenses We rely only on bench-635

marks released under permissive licenses: ARC-636

Challenge, CommonsenseQA, GSM8K, Hel-637

laSwag, HumanEval, LogiQA, MBPP, Natural638

Questions Open, WinoGrande, and BIG-Bench639

Logical Deduction. Our use remains within each640

dataset’s original research intent.641

Synthetic artifact release To maintain642

anonymity during review, the diagnostic datasets,643

generation scripts, and validation labels will be644

placed in a public GitHub repository once the645

paper is accepted. They will be distributed under646

the CC-BY-SA-4.0 license; accompanying code647

will use the MIT license. The README file 648

will specify intended research use and disclaim 649

commercial deployment without additional 650

validation. 651

Potential misuse Knowing how benchmarks de- 652

compose into abilities could, in theory, help actors 653

craft adversarial tests or game leaderboard met- 654

rics. We consider this risk low because reproduc- 655

ing our pipeline requires non-trivial compute, and 656

transparency ultimately benefits the community by 657

exposing hidden shortcuts. 658

Human subjects Ten adult volunteers partici- 659

pated in item validation. No personal data were 660

collected or stored beyond coarse demographics. 661

Details are in Appendix C. 662
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A Operationalized Ability Definitions and955

Diagnostic Task Principles956

This appendix justifies the ten abilities used in957

BENCHMARK PROFILING, situates each one within958

the Cattell–Horn–Carroll (CHC) model of intel- 959

ligence (Carroll, 1993; Schneider and McGrew, 960

2012), and explains how the corresponding syn- 961

thetic diagnostic dataset was constructed. 962

Human cognition is distributed: higher level 963

skills co-recruit multiple lower level processes, and 964

narrow processes are re-used across domains (An- 965

derson, 2013; Oberauer and Lewandowsky, 2016). 966

CHC therefore models abilities as correlated but 967

separable factors rather than mutually exclusive 968

boxes. In the same spirit, our ten abilities were 969

by design,chosen to be distinct enough to yield in- 970

terpretable weight profiles yet not so orthogonal 971

that they ignore real cognitive interactions. Mild 972

overlap is expected and even desirable: it lets our 973

ablation analysis reveal which mixtures of skills a 974

benchmark rewards. What matters empirically is 975

that each diagnostic dataset is maximally diagnostic 976

for its target ability so that the gradient-importance 977

procedure reliably tags a concentrated slice of pa- 978

rameters. The robustness of the Ability-Impact 979

profiles across three models (Section 5) supports 980

this assumption. 981

Below, each ability entry follows the same tem- 982

plate: (i) cognitive-science grounding and CHC 983

slot, (ii) a motivating example, and (iii) how the 984

dataset was generated to isolate that skill. 985

Analogical Reasoning (CHC: Gf–Induction). 986

A proportional analogy such as bird,: nest;::;bee,: 987

? demands mapping a relational schema rather 988

than surface similarity; Raven’s Progressive Matri- 989

ces and related tasks tap the same faculty (Raven, 990

1939; Gentner, 1983; Holyoak, 2012). 991

We authored four prompt templates that supply 992

an A:B :: C:? stem and four distractors. Distrac- 993

tors are chosen by perturbing either A or B to share 994

lexical or semantic features without preserving the 995

relation (e.g., hive ,(correct) vs. honey, sting, wasp). 996

This forces the model to attend to the latent map- 997

ping. 998

Commonsense & Causal Reasoning (CHC: Gf 999

+ script knowledge). Inferring that a neglected 1000

plant will wilt integrates causal schemas learned 1001

from everyday experience (Sloman and Sloman, 1002

2009; Sap et al., 2020). 1003

Each question describes a three-to-five sentence 1004

vignette drawn from diverse domains (kitchen ac- 1005

cidents, school routines, etc.). We then ask for the 1006

most plausible cause or effect, sampling distractors 1007

from unrelated but thematically similar events to 1008

eliminate superficial cueing. Scenarios were gen- 1009
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erated by large-model completion and manually1010

filtered for obvious lexical shortcuts.1011

Contextual Recall (CHC: Gsm).1012

Working-memory span underpins reading1013

comprehension (Daneman and Carpenter, 1980;1014

Kane and Engle, 2002).1015

Two template families were used: (i)single-fact1016

passages of 2–3 sentences followed by a verbatim1017

retrieval question, and (ii)multi-hop passages of1018

4–6 sentences where the queried detail is the con-1019

junction of two facts stated far apart. All answers1020

are extractive so no external knowledge is useful.1021

Deductive Reasoning (CHC: Gf–Sequential1022

Reasoning). Classical syllogisms illustrate1023

rule-based deduction; accuracy correlates with1024

measures of logical capacity (Johnson-Laird,1025

2001).1026

Premises are generated by a symbolic template1027

engine that instantiates first-order logic patterns1028

(e.g., All S are P; No P are R; therefore ?). Distrac-1029

tors violate exactly one rule to ensure that only a1030

valid derivation succeeds.1031

Inductive Reasoning (CHC: Gf–Induction).1032

Discovering hidden regularities in sequences is cen-1033

tral to hypothesis formation (Holland, 1986; Lake1034

and Baroni, 2018).1035

We mine integer, geometric, and lexical pattern1036

families (arithmetic progression, polygon naming,1037

etc.). For each instance we sample five in-context1038

elements and ask for the sixth. Distractors follow1039

decoy rules (e.g., additive offset vs. multiplicative)1040

to penalise surface heuristics.1041

Long-Term Knowledge Recall (CHC: Glr). Re-1042

trieving stored facts such as Canberra is Australia’s1043

capital maps to Glr in CHC and has been probed1044

extensively in LLMs (Petroni et al., 2019; Roberts1045

et al., 2020).1046

We queried Wikidata for low-frequency entities,1047

then generated four-choice trivia questions via a1048

templating script. We discard items whose answer1049

string appears verbatim in the question to curb lex-1050

ical leakage.1051

Quantitative Reasoning (CHC: Gq + numeric1052

Gf ). Multi-step word problems activate both1053

quantitative knowledge and fluid reasoning (Cobbe1054

et al., 2021; Lewkowycz et al., 2022).1055

Templates embed 3–5 numbers, at least one1056

of which is irrelevant, and require two opera-1057

tions (addition then division, etc.). Distractor an-1058

swers are produced by common student errors 1059

(off-by-one, wrong operator) as recommended by 1060

math-education literature (Sharma et al., 2019). 1061

Semantic Relationship Comprehension (CHC: 1062

Gc). Understanding taxonomical and role rela- 1063

tions underlies lexical semantics (Miller, 1995; 1064

Cummings and Wilson, 2019). 1065

Each passage introduces 3–4 named entities in a 1066

mini-scenario (corporate hierarchy, biological tax- 1067

onomy). We ask about an implicit relationship 1068

(Who is Alice to Charlie?) while distractors share 1069

topical words but break the relation type. 1070

Spatial & Geometrical Reasoning (CHC: Gv). 1071

Textual spatial reasoning engages mental imagery 1072

and visuospatial sketchpad resources (Mani and 1073

Johnson-Laird, 1982). 1074

We generate short descriptions of object layouts 1075

on a 3×3 grid and ask queries like Which object 1076

is directly below the circle?. Distractors include 1077

objects that are correct under mirror-flipped or ro- 1078

tated interpretations, so success requires consistent 1079

coordinate mapping. 1080

Temporal Reasoning (CHC: sequencing facet of 1081

Gf ). Temporal sequencing develops early and is 1082

essential for narrative comprehension (Anderson 1083

et al., 2004). 1084

Templates mention explicit times, durations, or 1085

adverbial order cues; questions ask which event 1086

came first, lasted longer, or overlapped. Distractors 1087

are derived by permuting the true order. 1088

Potential Overlaps and Taxonomy Limits 1089

Because CHC factors are correlated (e.g., Gf tasks 1090

share variance with Gsm), perfect separation is nei- 1091

ther feasible nor theoretically warranted (Tideman 1092

and Gustafsson, 2004; Engle and Kane, 2004). We 1093

therefore aim for dominant association: each di- 1094

agnostic set should be most strongly but not ex- 1095

clusively linked to its labeled ability. Empirically, 1096

the distinct weight clusters uncovered by gradi- 1097

ent analysis and the reproducible Benchmark Pro- 1098

files across models (Figure 4) confirm that residual 1099

overlap does not hinder interpretability. Indeed, 1100

partial overlap lets the Benchmark Profile capture 1101

real-world skill synergies, aligning with evidence 1102

that complex tasks draw on multiple CHC factors 1103

simultaneously (Schneider and McGrew, 2018). 1104
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Llama-3.1-8B-Instruct (k=1.024% MLP Ablation)

Ablated Ability GSM8K ARC-C HellaSwag LogiQA BB Log.Ded. WinoG. CQA NQ-Open HumanEval MBPP

Analogical Reasoning 0.0833 0.0398 0.0337 0.0163 0.0114 0.0032 0.0426 0.0480 0.1006 0.1090
Commonsense Causal 0.0583 0.0083 0.0337 0.0332 0.0439 0.0198 0.0256 0.0648 0.2730 0.1220
Contextual Recall 0.0723 0.0229 0.0345 0.0210 0.0334 0.0168 0.0381 0.0884 0.1494 0.0922
Deductive Reasoning 0.0750 0.0229 0.0273 0.0188 0.0678 0.0210 0.0486 0.0591 0.0469 0.0922
Inductive Reasoning 0.0499 0.0338 0.0406 0.0254 0.0500 0.0337 0.0635 0.0193 0.1678 0.1316
Long Term Knowledge 0.0913 0.0083 0.0309 -0.0098 0.0466 0.0198 0.0364 0.0861 0.2657 0.1090
Quantitative Reasoning 0.0598 0.0116 0.0239 -0.0031 0.0692 0.0153 0.0472 0.0696 0.2272 0.1123
Semantic Relationship 0.0872 0.0182 0.0330 -0.0065 0.0447 -0.0016 0.0256 0.0783 0.3275 0.1220
Spatial Reasoning 0.0598 0.0291 0.0348 0.0059 0.0344 0.0092 0.0561 0.0942 0.1304 0.1156
Temporal Reasoning 0.0441 0.0165 0.0309 0.0332 0.0457 -0.0016 0.0411 0.0936 0.2430 0.1220

Table 3: Ability Impact Score (AIS) matrix for Llama-3.1-8B-Instruct across a curated suite of 10 benchmarks.
Higher AIS values indicate greater performance loss upon ability ablation relative to the baseline’s improvement
over chance, suggesting higher dependence of the benchmark on that ability.

B Dataset Creation Prompts and1105

Examples1106

The diagnostic datasets were generated using the1107

o4-mini-2025-04-16 API, guided by specific1108

few-shot examples and instructions for each op-1109

erationalized ability and task type. Table 5 pro-1110

vides these details, used to generate 2000 examples1111

per ability (split across task types for Contextual1112

Recall). Output was requested in JSON format1113

with keys: context, question, options, answer,1114

answer_index.1115

Table 5 lists one representative template per abil-1116

ity along with the natural-language instructions fed1117

to the API. Each accepted completion was stored1118

in a JSON schema with keys context, question,1119

options (an array of four or five strings), answer1120

(the correct option token), and answer_index1121

(zero-based integer).1122

C Human Evaluation of Diagnostic Items1123

To verify that each synthetic question truly targets1124

its intended skill, we invited ten independent vol-1125

unteers to label a stratified sample of items drawn1126

from the ten diagnostic datasets.1127

Table 1 was provided to the experts for reference.1128

Each volunteer saw fifty items (five from every1129

ability) presented one at a time, as illustrated in1130

Figure 5. For every item they selected the single1131

ability that best matched the question and flagged1132

any unclear or sensitive content.1133

All annotators held at least a bachelor’s degree1134

and were either postgraduate students or early-1135

career researchers who responded to an internal1136

mailing list. Participation was voluntary and un-1137

paid. Three identified as women and seven as men,1138

with ages ranging from 21 to 29. Annotators were1139

drawn from institutions in Asia and North America. 1140

D Detailed AIS Results and Raw 1141

Accuracies 1142

Table 3 provides the detailed AIS matrix and raw 1143

accuracies for the baseline model Θ and all 10 1144

ability-ablated models Θa at k=1.024% across all 1145

evaluated benchmarks. These scores form the basis 1146

for creating the visualizations in Section 5. 1147

E Qualitative Impact of Ablations 1148

Table 4 contrasts the answers that the Base, MLP- 1149

only, and All-layer ablation versions of Llama-3.1- 1150

8B-Instruct give to the same GSM8K test question. 1151

The base model returns the correct total of 200 1152

minutes. The MLP-only model remains fluent but 1153

over-counts, replying with 12,000 minutes. In the 1154

all-layer variant the response collapses into a repet- 1155

itive numeric loop and never produces an answer. 1156

These qualitative differences align with the accu- 1157

racy drops in Table 2 and underline why our study 1158

restricts ablation to MLP weights: they weaken 1159

targeted reasoning without destroying overall gen- 1160

eration. 1161
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Figure 5: Interface shown to volunteer experts during item validation. Progress is indicated by a bar at the top.
Annotators read the prompt, inspect the ten ability options, and enter a numeric choice.

Base Model (no ablation)

User Charisma works for 8 hours every day. She has a timer to remind her to get up and walk for 5 minutes every
hour she’s at work. After 5 days at the office, how many minutes has she walked?

Assistant To find out how many minutes Charisma walked, we need to calculate the total number of minutes she walked
in 5 days.
Charisma walks 5 minutes every hour. Since she works 8 hours a day, she walks 5 * 8 = 40 minutes per day.
In 5 days, she will walk 40 * 5 = 200 minutes.
The answer is 200 minutes.

MLP-Only Ablation (fluent but weakened)

User Same GSM8K question.

Assistant To find the total number of minutes Charisma walked, we need to calculate the total number of minutes she
walked in 5 days.
Charisma works 8 hours a day and walks 5 minutes every hour.
First, we need to find the total number of minutes she works in a day. 8 hours * 60 minutes per hour = 480
minutes per day
Since she walks 5 minutes every hour, we multiply the total minutes she works in a day by 5. 480 minutes per
day * 5 minutes per hour = 2400 minutes per day
Now, we need to find the total number of minutes she walked in 5 days. 2400 minutes per day * 5 days = 12000
minutes
Therefore, Charisma walked 12000 minutes in 5 days.

All-Layer Ablation (degraded)

User Same GSM8K question.

Assistant Charisma works 8 hours a day, 5 days a week, so 5 * 8 = 40 hours. 40 * 60 = 2400 minutes. 2400 / 5 = 4800
minutes in 5 days. 8 * 60 = 4800 minutes in 5 days. 4800 / 5 = 9600 / 5 = 9600 / 5 = 9600 / 5 = 1920 5-minute
walks, 5 minutes * 5 = 25 minutes per walk, 5 * 5 = 25. 25 * 5 = 1250, 1250 / 5 = 2500, 2500 / 5 = 500, 500 / 5
= 100, 100 / 5 = 20. 20 * 5 = 1000, 1000 / 5 = 200, 200 / 5 = 40, 40 / 5 = 8. 8 * 5 = 40, 40 / 5 = 8, 8 / 5 = 1.6, 1.6
* 5 = 8, 8 / 5 = 1.6, 1.6 * 5 = 8. 8 / 5 = 1.6, 1.6 * 5 = 8. 8 / 5 = 1.6, 1.6 * 5 = 8. 8 / 5 = 1.6,1.6 * 5 = 8. 8 / 5 = 1.6,
1.6 * 5 = 8. 8 / 5 = 1.6, 1.6 * 5 = 8. 8 / 5 = 1.6, 1.6 * 5 = 8. 8 / 5 = 1.6, 1.6 * 5 = 8. 8 / 5 = 1.6, 1.6 * 5 = 8. 8 / 5
= 1.6, 1.6 * 5 = 8. 8 / 5 = 1.6, 1.6 * 5 = 8.

Table 4: GSM8K test prompt evaluated by three model variants. The base model answers correctly, the MLP-only
model remains fluent but over-counts, and the all-layer model degenerates into repetitive incoherence, illustrating
why attention weights are left intact in our study.
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Table 5: Few-shot Examples and Instructions for Diagnostic Dataset Generation.

Ability Task Type Representative Few-shot Example Instruction

Analogical Reasoning analogy Context: ’Light : Dark :: Truth : ?’
Question: ’Which option best completes the
analogy?’
Options: [’Lie’, ’Fact’, ’Shadow’, ’Wisdom’]
Answer: ’Lie’.

Create a new analogy question. Use ’A : B ::
C : ?’ style or a similar analogical relationship
in context, and ask which option completes it.
Output as JSON with the required fields.

Commonsense &
Causal Reasoning

everyday_ cause_effect Context: ’Tom left his ice cream in the sun on a
hot day.’
Question: ’What likely happened to the ice
cream?’
Options: [’It melted’, ’It froze’, ’It caught fire’,
’It grew larger’]
Answer: ’It melted’.

Now write a new commonsense cause-and-
effect question. The context should be a simple
scenario, and the question asks for a logical
outcome or reason. Ensure the answer is based
on everyday common sense. Output in JSON
format.

Contextual Recall
single_fact_ recall Passage: ’In an ancient manuscript... Nile flows

through Egypt while the Tiber traverses Rome.’
Question: ’Based on the passage, which river is
associated with Rome?’
Options: [’Nile’, ’Tiber’, ’Danube’, ’Ganges’]
Answer: ’Tiber’.

Using the context... generate one new, diverse
and non-redundant MCQ. Output valid JSON
object with keys: context, question, options,
answer, answer_index. Use varied domains.

multi_hop_ recall Passage: ’At a Geneva symposium... 1969 lunar
landing spurred robotics. Later in Tokyo... noted
automation...’
Question: ’Which event... linked to inspiration
for robotics?’
Options: [’Geneva...’, ’1969 lunar landing’,
’Tokyo...’, ’Automation...’]
Answer: ’1969 lunar landing’.

Now generate a new multi-hop question. Passage
should blend facts, question require combination.
Present JSON ensuring multi-hop reasoning.

Deductive Reasoning logic_puzzle Passage: ’If every cat... black animals are calm...
Whiskers is in the room.’
Question: ’Based on the passage, what can we
deduce about Whiskers?’
Options: [’Whiskers is calm.’, ’Whiskers is not
black.’, ...]
Answer: ’Whiskers is calm.’.

Now create a new deductive reasoning question.
Provide context with premises/clues, question
requires deducing answer. Output JSON.

Inductive Reasoning pattern_ completion Sequence: ’A, C, E, G, ?’
Question: ’What is the next letter...?’
Options: [’H’, ’I’, ’J’, ’K’]
Answer: ’I’.

Generate new inductive reasoning question
based on pattern. Ensure question asks for next
element/rule. Provide answer/answer_index
JSON.

Long Term
Knowledge Recall

world_fact Context: ’This question is about world geogra-
phy.’
Question: ’What is the capital city of Australia?’
Options: [’Sydney’, ’Canberra’, ’Melbourne’,
’Perth’]
Answer: ’Canberra’.

Create new world-knowledge question. Provide
brief context if needed, question must be an-
swered from general knowledge. Ensure JSON
format.

Quantitative Reasoning arithmetic_
word_problem

Context: ’Alice had 5 apples. She gave 2 to Bob
and then bought 3 more.’
Question: ’How many apples does Alice have
now?’
Options: [’6’, ’5’, ’8’, ’10’]
Answer: ’6’.

Generate new math word problem/quantitative
question. Context provides numbers/scenario,
question asks for result. Provide an-
swer/answer_index JSON.

Semantic Relationship roles_and_ relations Passage: ’Alice is Bob’s mother. Bob is Char-
lie’s teacher.’
Question: ’Who is Alice to Charlie?’
Options: [’His mother’, ’His teacher’, ’His
grandmother’, ’Not related’]
Answer: ’His grandmother’.

Generate new passage and question about
relationships/roles. Passage contains >= 2
entities with relationship. Ask question testing
understanding. Output JSON.

Spatial Reasoning spatial_ relation Context: ’There is a triangle to the left of a
square, and a circle above the triangle.’
Question: ’Which shape is directly below the
circle?’
Options: [’Triangle’, ’Square’, ’Circle’, ’None’]
Answer: ’Triangle’.

Generate new spatial reasoning question. Con-
text: description of locations or simple geometry.
Ask about relative position, direction, or basic
inference. Provide JSON output.

Temporal Reasoning temporal_ order Context: ’John’s meeting started at 9:00 AM...
lasted 2 hours. Mary’s meeting started at 10:30
AM...’
Question: ’Whose meeting ended later?’
Options: [’John’, ’Mary’, ’Same time’, ’Not
enough info’]
Answer: ’John’.

Now create new temporal reasoning question.
Context with >= 2 events/time points. Ask about
order/timing (e.g., first, duration). Output JSON.
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