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ABSTRACT

Antibodies are essential for viral neutralization and therapeutic applications.
However, non-human antibodies can provoke anti-antibody immune responses,
prompting the development of humanization strategies to reduce immunogenicity.
Most existing approaches focus primarily on improving humanness scores from a
sequence perspective, often overlooking the structural stability of humanized an-
tibodies, which is essential for preserving complementarity-determining region
(CDR) conformations. To overcome this limitation, we propose Hu-MCTs, a
two-stage framework comprising (1) a pretraining phase that learns latent rep-
resentations of human antibody sequences, and (2) a humanization phase that
optimizes murine sequences toward human-like sequences using a novel black-
box optimization algorithm based on Monte Carlo Tree Search. This algorithm
jointly considers humanness and structural integrity, particularly minimizing dis-
ruption to CDR conformations. Experimental results demonstrate that Hu-MCTs
outperforms baseline methods by achieving higher humanness scores while better
preserving CDR structural stability. Moreover, the generated sequences exhibit
the highest biological plausibility scores, closely resembling natural antibodies.
These results suggest that Hu-MCTs is an effective solution for humanizing anti-
bodies while preserving key structural features for functionality.

1 INTRODUCTION

Antibodies, or immunoglobulins (Igs), are Y-shaped macromolecules composed of two identical
heavy chains and two identical light chains, connected by disulfide bonds (Dondelinger et al., 2018).
Each chain’s variable region contains three hypervariable segments known as complementarity-
determining regions (CDRs). Together, the six CDRs form the antigen-binding site, or paratope,
which interacts with a specific epitope on an antigen, enabling high-affinity binding, as shown in
Figure 1(a) (Davies & Chacko, 1993). This specificity makes antibodies central to immune defense
and highly successful as targeted therapeutics (JJ, 2000).

Murine antibodies are pivotal in early drug discovery due to their rapid and cost-effective production
via hybridoma technology (Lu et al., 2020). However, their non-human origin poses a significant risk
of eliciting human anti-antibody responses (AAR), which can compromise efficacy and safety (Tjan-
dra et al., 1990). As illustrated in Figure 1(b), immunogenicity risk is directly proportional to the
non-human content of an antibody. Consequently, humanization—engineering non-human anti-
bodies to resemble human sequences—is a critical step in their clinical development (Fransson,
2008). The conventional approach, CDR grafting, transfers murine CDRs onto a selected human
framework region (FR) (Lo, 2004). While effective at reducing immunogenicity, this process can
disrupt the precise CDR conformations essential for antigen binding, often leading to a loss of
affinity and requiring laborious, intuition-driven back-mutations to restore function (Safdari et al.,
2013a).

To overcome these limitations, recent computational methods have leveraged protein language mod-
els (PLMs). Approaches like Sapiens (Prihoda et al., 2022), Hu-mAb (Marks et al., 2021a), and Hu-
match (Chinery et al., 2024) have improved humanness from a sequence perspective. However, they
often neglect the critical role of structural integrity, failing to explicitly optimize for the preserva-
tion of CDR loop conformations necessary for maintaining binding affinity. While structure-aware
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(a) (b)

Figure 1: The structure of antibody and Correlation between humanization degree and im-
munogenicity reduction.(a) The antibody consists of two heavy chains and two light chains. Within
the variable region, the CDR loops interact directly with antigens (especially CDR3), enabling the
antibody to identify and bind to target molecules precisely.(b) This progression demonstrates that as
the degree of humanization increases-from non-human to fully human sequences-the immunogenic-
ity of the antibodies diminishes accordingly.

methods like CUMAb (Tennenhouse et al., 2022) exist, their exhaustive candidate screening and
structure prediction pipelines are computationally prohibitive for rapid design cycles.

The field requires a method that efficiently navigates the vast sequence space to co-optimize se-
quence humanness and structural function. To address this gap, we introduce Hu-MCTs (Human-
ization via Monte Carlo Tree Search), a novel black-box optimization framework. While its core
components—latent space sampling and MCTS (Yang et al., 2022; Wang et al., 2022)—have been
used in broader molecular design, our work is, to our knowledge, the first to apply and tailor this
paradigm to the unique constraints of antibody humanization. Our key innovations are:

1. Joint VH/VL Latent Space Exploration: We introduce a Conditional Variational Au-
toencoder (CVAE) to model the joint latent space of paired heavy (VH) and light (VL)
chains. This is a critical advance, as it allows for simultaneous humanization that accounts
for inter-chain dependencies essential for structural stability and function.

2. Multi-Objective, Structure-Guided Optimization: Our framework employs a multi-
objective MCTS algorithm, seeded by a novel PLM-guided strategy. This allows for a
balanced search that jointly optimizes for high humanness scores and, crucially, preserves
structural integrity. We are the first to incorporate the preservation of parental CDR
conformation, measured by RMSD, as a direct objective in the humanization process, ad-
dressing a key limitation of prior work.

Through systematic benchmarking, we demonstrate that Hu-MCTs outperforms methods in achiev-
ing superior humanness while maintaining high structural fidelity. By eliminating template depen-
dence and integrating multi-objective optimization of sequence and structure, our approach provides
a robust and efficient solution for developing safer and more effective antibody therapeutics.

2 RELATED WORK

Antibody humanization Recent advancements in antibody humanization have led to several new
approaches. Hu-mAb (Marks et al., 2021b) and MG (Clavero-Álvarez et al., 2018) use a human-
ness score to guide the process, while Sapiens (Prihoda et al., 2022), a sequence-based method,
employs two transformer models to humanize the framework region without relying on scoring.
The CUMAb (Tennenhouse et al., 2024) method incorporates structural information by building 3D
antibody models, inserting mouse CDRs, and selecting the lowest-energy structure. Humatch (Chin-
ery et al., 2024) offers fast humanization of both heavy and light chains using three Convolutional
Neural Networks (CNNs), aligning sequences with experimental data to improve stability and re-
duce immunogenicity. These methods differ significantly from traditional approaches like CDR
grafting (Hu et al., 2014; Safdari et al., 2013b), which focus mainly on framework region sequence
similarity.
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Protein language model Models like the ESM series (Rives et al., 2021; Meier et al., 2021; Lin
et al., 2023; Hayes et al., 2025), especially ESM-3, have shown strong performance, such as in
discovering new fluorescent proteins. CARP (Yang et al., 2024), which uses a CNN instead of a
transformer, also performs well. In addition to general protein models, many methods focus specif-
ically on antibody sequences for tasks like sequence recovery, expression prediction, and binding
affinity estimation. IgBERT and IgT5 (Kenlay et al., 2024) are pretrained on unpaired sequences
and fine-tuned on paired antibody data. BALM (Jing et al., 2024) introduces a special architec-
ture called Baformer to better capture antibody-specific features. AbLang2 (Olsen et al., 2024)
reduces germline bias by predicting non-germline residues. AntiBERTa (Leem et al., 2022) predicts
paratope positions, and AntiBERTy (Ruffolo et al., 2021) applies a Multiple Instance Learning ap-
proach to identify antigen-binding sites. IgLM (Shuai et al., 2021) improves antibody design using
large datasets and bidirectional context. pAbT5 (Chu & Wei, 2023) generates one antibody chain
from its paired partner, modeling key properties like CDR diversity and chain pairing.

3 METHOD

This section describes the Hu-MCTs framework, which integrates pre-training of core models and a
humanization pipeline to achieve template-free antibody optimization. The method is structured into
two sequential phases: a pre-training phase to learn latent representations of human antibodies, and
a humanization phase to iteratively optimize murine sequences toward human-compatible variants
while preserving CDR structure and antigen binding specificity, as illustrated in Figure 2.

3.1 MODEL PRE-TRAINING

This study develops two core models: a Protein Language Model (PLM) for selecting humanization
initial points and a Conditional Variational Auto-Encoder (CVAE)-based encoder-decoder model for
antibody encoding and generation.

The PLM is built by fine-tuning the IgBERT model (Kenlay et al., 2024; Elnaggar et al., 2021), with
the aim of capturing residue-residue and residue-region relationships in paired antibodies. Dur-
ing training, each residue is augmented with a 17-dimensional one-hot label indicating its regional
identity (e.g., CDR1-3, FR1-4 for heavy/light chains, and special tokens like CLS/SEP/PAD). The
model’s embedding layer is modified to fuse residue token embeddings with region label embed-
dings via a Multi-Layer Perceptron (MLP). Training follows the Masked Language Model (MLM)
objective (Devlin et al., 2019), where 15% of residues are randomly masked, and the model learns
to reconstruct them, enabling context-aware sequence representations.

For the CVAE-based encoder-decoder model, we adopt the IgT5 encoder-decoder architecture (Ken-
lay et al., 2024; Elnaggar et al., 2021) and trained on our antibody dataset. To enhance latent variable
utility for humanization, the token table is expanded with region boundary markers (e.g., indicating
CDR/FR start/end) and a sequence-level marker </z> at the input start.

Let x denote the Framework (FR) regions and c denote the conditioning CDR regions. The encoder,
which receives both x and c, generates the parameters µ and σ2 for the approximate posterior dis-
tribution qϕ(z|x, c). A latent variable z is then sampled using the reparameterization trick. The
decoder reconstructs the FR regions from z and the conditioning CDR information c.

Training optimizes the conditional Evidence Lower Bound (ELBO) (Kingma & Welling, 2022):

L(x, c) = Eqϕ(z|x,c) [log pθ(x|z, c)]−DKL (qϕ(z|x, c) ∥ p(z)) (1)

where the first term is the reconstruction loss for the FR regions, conditioned on both the latent
variable z and the CDRs c. The second term is the KL divergence, which regularizes the approximate
posterior qϕ(z|x, c) to be close to a standard Gaussian prior p(z). To mitigate posterior collapse,
cost annealing (Bowman et al., 2016) is employed, where a β coefficient gradually increases during
training to upweight the KL divergence term.

3
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Algorithm 1 Hu-MCTs Pseudocode for Antibody Humanization

Require:
1: Number of rounds T , Evaluation Function f(x) (combining humanization score and structural

stability), Human Antibody Dataset D, PLM Model p(·), CVAE Model c(·), Initial number of
samples Ninit, Re-partitioning interval Npar, Node partition threshold Nthres, UCB parameter Cp

Ensure: Optimized humanized antibody sequence
2: Pre-train p(·) on D for humanness scoring; Pre-train c(·) on D for latent space encod-

ing/decoding.
3: Set region partition V0 = {Ω}
4: Draw Ninit samples {xi}Ninit

i=1 from D using p(·) (selecting most similar to murine antibody).
5: for t = 0, . . . , T −Ninit − 1 do
6: if t mod Npar = 0 then
7: Re-learn region partition:
8: Vt ← Partition(Ω,St, Nthres, p(·), c(·)) in latent space of c(·)
9: end if

10: for k := root, k /∈ Vleaf do
11: k ← argmaxΩc∈child(Ωk) bc where

12: bc := maxxi∈Ωc
f(xi) + Cp

√
2 logn(Ωk)

n(Ωc)

13: end for
14: Initialize CMA-ES using encodings of St ∩ Ωk via c(·) , Ωk is the chosen leaf sub-region.
15: St ← St−1 ∪ {(xt, f(xt))} , xt is drawn from CMA-ES and decoded via c−1(·).
16: end for

3.2 HUMANIZATION

Our humanization pipeline integrates pretrained models and black-box optimization (Reidenbach,
2024) to generate humanized antibody sequences, balancing human-like properties and structural
stability. The workflow proceeds as follows:

First, we use the trained Protein Language Model (PLM) to select initial candidates. For a murine
antibody input, the PLM generates its latent representation—capturing residue-level features and
region-specific context learned via MLM training. We then compute cosine similarity between this
latent vector and all human antibody sequences in our preprocessed OAS database (1,738,321 paired
sequences). To ensure the initial templates provide a diverse set of starting points, we select K candi-
dates using a Maximal Marginal Relevance (MMR) approach. This method balances the candidates’
similarity to the murine sequence with their dissimilarity to each other, thus preventing the selection
of a redundant, homogenous set. The impact of this hyperparameter K on model performance is
further analyzed in Appendix D. This step anchors the humanization process in a varied and biolog-
ically plausible set of human frameworks.

Next, the K human candidates and murine input are processed through the CVAE encoder-decoder
model. The murine antibody’s CDR regions are encoded into a condition vector c (preserving CDR
structural/functional information critical for antigen binding). Each human candidate is indepen-
dently encoded by the CVAE encoder, yielding latent variables z1, z2, . . . , zK ∼ N (µ, σ2) via the
reparameterization trick. Concatenating zi with c forms zcond = [zi; c], which the decoder uses to
generate humanized sequences—preserving murine CDRs while humanizing framework regions.

To optimize the latent space search, we adopt Monte Carlo Tree Search (MCTS) (Yang et al., 2022;
Wang et al., 2022), a black-box optimizer well-suited for non-differentiable, discontinuous objective
functions (see Algorithm 1). The implementation of the space-partitioning function and CMA-ES
is provided in Appendix H. The MCTS tree represents the search space, with nodes corresponding
to subregions that contain latent variables z. Starting from the root node, the UCB formula guides
node selection:

UCB(n) =
Q(n)

N(n)
+

√
2 lnN(parent)

N(n)
(2)

where Q(n) is node n’s cumulative reward, N(n) its visit count, and N(parent) the parent’s visits.
This balances exploration (under-visited nodes) and exploitation (high-reward nodes).
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Figure 2: Humanization pipeline. The pipeline commences with selecting K starting points via a
PLM. The sampled latent vectors are decoded by a pretrained decoder to yield paired humanized se-
quences. These sequences are then evaluated through function f(·) for attributes such as humanness
and structural stability. Following this evaluation, the humanized sequences are re-encoded, and the
black-box optimizer is updated using this feedback.

Each candidate z is decoded into a sequence and evaluated using two objectives:

1. Humanization Score ( Shuman): Computed as the maximum Abnativ score (Ramon et al.,
2023) for heavy and light chains of the paired antibody.

2. Structural Stability ( Sstab): Derived from Tfold-predicted 3D structures (Wu et al.,
2022), measuring CDR structural preservation via RMSD, weighted by CDR importance (
wCDR3 > wCDR2 > wCDR1):

Sstab =

3∑
i=1

∑
X∈{H,L}

wi · RMSD (CDRhuman,i,X ,CDRmurine,i,X)

The combined reward for MCTS is defined as Reward(z) = α · Shuman − β · Sstab, prioritizing
humanization while penalizing structural deviation. Reward values propagate up the tree to update
node priorities.

Finally, MCTS-identified promising latent regions undergo local optimization via the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen, 2023), which is more efficient in high-
dimensional spaces ( d > 100) than TuRBO (Eriksson et al., 2020). CMA-ES samples z ∼ N (µ,Σ)
within these regions, iteratively refining µ and Σ to maximize Reward(z). This refines MCTS
results, ensuring convergence to high-quality humanized sequences.

In summary, our pipeline combines PLM-guided initialization, CVAE-based generation, MCTS
global search, and CMA-ES local optimization to balance human-like sequence properties and struc-
tural stability.

4 EXPERIMENTS

4.1 SETUP

4.1.1 DATASETS

Training Set: 1.7 million paired human IgG/IgA sequences with IMGT-numbered (Lefranc et al.,
2015) CDRs from OAS, used for CVAE and PLM training. Test Set: Humab25 dataset comprises
25 experimentally validated paired antibodies derived from the Hu-mAb. Additionally, we compile
HuAb348 dataset from patent records, which comprises 348 experimentally validated humanized
paired antibodies and their corresponding parental mouse antibodies. These datasets serve as test
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sets to evaluate our model’s performance against Sapiens and traditional methods, as discussed in
the main text.

4.1.2 BASELINE METHODS

We compare against five approaches, with key characteristics summarized from related work:

1. Experiment: Experimentally validated humanized antibody sequences from wet-lab studies. 2.
Sapiens (Prihoda et al., 2022) : A transformer-based tool in the BioPhi platform, trained on OAS
via masked language modeling. It prioritizes 9-mer peptide frequency (OASis score) but processes
heavy/light chains independently, risking inter-chain instability. 3. Hu-mAb (Marks et al., 2021a)
: Employs human gene-specific random forest classifiers to guide iterative single-point mutations.
While accurate in V-gene identification, its chain-independent processing limits CDR flexibility and
may disrupt inter-chain stability. 4. Humatch (Chinery et al., 2024) : Uses lightweight CNNs to
jointly humanize heavy/light chains, prioritizing VH/VL compatibility. Though fast (sub-second
processing), it focuses on germline guidance and may under-explore non-homologous frameworks.
5. CUMAb (Tennenhouse et al., 2022) : A structural approach grafting CDRs onto thousands of
human frameworks, validated via Rosetta energy minimization. It excels in structural preservation
but requires atomistic simulations, limiting throughput.

4.1.3 EVALUATION METRICS

Humanness: Shumanness: For benchmarking, we select the widely recognized Sapiens model and use
its evaluation metrics (OASis and T20 scores) to assess improvements in humanness.Additionally,
we introduce a metric called Germline Identity, which measures the similarity between the frame-
work region (FR) sequences of the humanized antibodies and those of the closest human germline.
Structure: RMSDCDR: we calculate all-atom RMSD and backbone ( Cα, C, N , O) atom RMSD
(Å) of the three CDR regions . Pairing Quality: Humatch tool-based CNN-P scoring for antibody
pairing quality assessment. Sequence Alignment: In the evaluation of the similarity between hu-
manized antibodies and their experimental counterparts, we focus on two key metrics: Preservation:
This metric measures the extent to which residues from the original mouse sequences are retained in
the humanized antibodies. Specifically, “Total” refers to all residues in the sequence, while “Vernier”
denotes the key residues defined by the Kabat numbering scheme. Achieving closer alignment with
experimental results is preferable for this metric. Mutation precision: This assesses the consistency
of mutated residues between the humanized antibodies and experimental results.

4.2 RESULTS

Our experimental results demonstrate the effectiveness of our humanization pipeline across key
metrics, with detailed numerical comparisons provided in Tables.

4.2.1 SEQUENCE HUMANNESS AND PRESERVATION.

Our model, Hu-MCTs, significantly surpasses all baseline methods in key humanness metrics. As
detailed in Table 1, it achieves the highest OASis score (41.63%), T20 scores for both heavy and light
chains, and nearly perfect germline identity (98.77% and 99.64%, respectively). This performance
stands in sharp contrast to conservative methods like Hu-mAb, which barely improves upon the
parental murine sequence (0.074% OASis). This advantage stems from our framework’s synergistic
design: the pre-trained language model (PLM), conditional variational autoencoder (CVAE), and
MCTS algorithm effectively guide the search toward natural and diverse human sequence patterns.

A key aspect of our strategy is a more comprehensive modification of the murine sequence, which
is reflected in the mutation counts. Hu-MCTs introduces a higher number of mutations (33.88 in
the heavy chain, 27.92 in the light) compared to methods that prioritize minimal changes, such
as Hu-mAb (13.72 and 8.20). As explained in Appendix C.1, this is a deliberate strategic choice
to more effectively eliminate murine epitopes and reduce immunogenicity risk. Consequently, our
model shows lower sequence preservation rates when compared back to the original murine antibody
(Table 2).

This higher mutation count represents an intentional and beneficial trade-off. Our primary goal is to
maximize human-likeness to reduce potential immunogenicity, not to minimally perturb the murine
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Table 1: Comparison of humanness performance. The OASis value measures the absolute differ-
ence in OASis medium identity between humanized and parental antibodies. The T20 score reflects
the absolute change between humanized and parental antibodies. Germline identity is the similarity
between humanized antibodies and their most homologous human germline sequence, as measured
by ANARCI (Dunbar & Deane, 2016). Mutation numbers represents the average sequence differ-
ences between humanized antibodies and their parental antibodies.

Method OASis (%) T20 score (%) Germline identity (%) Mutation numbers

OASis H L H L H L

Experiment 33.82 12.61 14.51 - - 29.32 19.24
Sapiens 29.73 9.81 10.90 84.62 89.75 13.64 12.72
Hu-mAb 0.074 1.18 3.61 74.29 81.08 13.72 8.20
Humatch 18.02 8.45 5.98 83.16 87.02 16.56 14.36
CUMAb 37.73 12.85 11.85 93.96 94.78 24.05 20.90
Hu-MCTs 41.63 18.32 15.23 98.77 99.64 33.88 27.92

Table 2: Sequence preservation and mutation precision. The
table reports sequence conservation (identity to parental an-
tibody for total and Vernier residues) and mutation precision
(agreement with experimental mutations).

Method Preservation (%) Mutation precision (%)

Total Vernier Total Vernier

H L H L H L H L

Experiment 78.34 82.35 79.25 93.14 - - - -
Sapiens 88.55 88.33 86.00 94.00 44.20 76.67 71.49 80.22
Hu-mAb 92.07 92.51 92.00 98.00 34.09 57.14 39.25 47.87
Humatch 88.85 86.86 92.43 91.14 42.16 50.00 62.54 57.87
CUMAb 79.92 80.90 82.81 92.14 35.44 38.89 53.37 56.14
Hu-MCTs 69.21 72.47 70.75 88.86 28.32 56.35 44.74 39.08

Table 3: VH-VL pairing quality.
Scores from the Humatch CNN-P
model range from 0 (poor) to 1 (ex-
cellent).

Method CNN-P Score

Experiment 0.79
Sapiens 0.87
Hu-mAb 0.43
Humatch 0.95
CUMAb 0.58
Hu-MCTs 0.98

sequence. The fact that higher mutation counts correlate with top-tier humanness scores demon-
strates that the modifications made by Hu-MCTs are highly targeted and effective. This approach
prioritizes generating diverse, robustly humanized candidates that, as we show in Section 4.2.2, still
maintain critical structural integrity and chain pairing quality.

4.2.2 STRUCTURAL INTEGRITY AND CHAIN PAIRING QUALITY

Our model demonstrates a robust balance between high humanness and structural preservation. For
structural stability, Hu-MCTs achieved comparable CDR1/CDR2 RMSD values to leading methods
in both heavy and light chain regions (Table 4). For instance, its performance is on par with the
structure-focused CUMAb in heavy chain CDR2 (0.627 Å all-atom RMSD) and Humatch in heavy
chain CDR1 (0.226 Å backbone RMSD).

Notably, Hu-MCTs shows distinct fidelity patterns linked to our hierarchical MCTS reward func-
tion. In the heavy chain CDR3 (HCDR3)—the loop most critical for antigen binding—our method
achieved the second-lowest all-atom RMSD (1.273 Å), surpassed only by the conservative Hu-mAb
(1.105 Å). This is by design, as we assigned a higher weight to HCDR3 stability during optimiza-
tion. In contrast, methods like CUMAb exhibited poorer HCDR3 preservation (1.508 Å), likely due
to challenges in accurately modeling long CDR loops. While Hu-mAb had the lowest RMSD, this
came at the cost of the lowest humanness score, highlighting a significant trade-off further discussed
in Appendix C.2. Hu-MCTs successfully navigates this trade-off, achieving the highest humanness
and Germline Identity despite introducing more mutations (Table 1).

Visual analysis (Figure 3) further reveals that while most methods maintain comparable HCDR3
structures, our model uniquely preserves the native conformation of the LCDR1 region, which
showed significant deviations in competitor models. This indicates superior global structural fi-
delity. For VH-VL pairing quality, Hu-MCTs achieved a near-perfect score of 0.98, outperforming
chain-independent methods like Hu-mAb (0.43) and CUMAb (0.58) (see Table 3). This compati-
bility stems from our model’s joint optimization of both chains. To ensure the robustness of these
structural findings, we performed a post-hoc validation using the high-fidelity AlphaFold3 predictor.
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Table 4: Structural RMSD comparison using Tfold. Reported values are average all-atom and
backbone RMSD (Å) for heavy/light chain CDRs, measured against murine parental antibodies.
Lower values indicate better structural preservation.

Heavy Chain Light Chain

CDR Method All-atom (Å) Backbone (Å) CDR Method All-atom (Å) Backbone (Å)

CDR1 Experiment 0.473 0.271 CDR1 Experiment 0.627 0.271
Sapiens 0.627 0.308 Sapiens 0.782 0.334
Hu-mAb 0.476 0.182 Hu-mAb 0.695 0.297
Humatch 0.490 0.226 Humatch 0.711 0.294
CUMAb 0.547 0.245 CUMAb 0.744 0.286
Hu-MCTs 0.442 0.252 Hu-MCTs 0.663 0.271

CDR2 Experiment 0.550 0.263 CDR2 Experiment 0.279 0.065
Sapiens 0.649 0.292 Sapiens 0.387 0.094
Hu-mAb 0.400 0.180 Hu-mAb 0.204 0.072
Humatch 0.457 0.191 Humatch 0.312 0.090
CUMAb 0.510 0.292 CUMAb 0.236 0.074
Hu-MCTs 0.461 0.221 Hu-MCTs 0.299 0.076

CDR3 Experiment 1.565 0.848 CDR3 Experiment 0.634 0.277
Sapiens 1.481 0.865 Sapiens 0.718 0.318
Hu-mAb 1.105 0.608 Hu-mAb 0.547 0.227
Humatch 1.371 0.820 Humatch 0.601 0.278
CUMAb 1.508 0.888 CUMAb 0.641 0.269
Hu-MCTs 1.273 0.776 Hu-MCTs 0.623 0.265

Experimental-
Pembrolizumab Humatch CUMAbHu-mAb Hu-MCTs

LCDR1HCDR3

Sapiens

LCDR1

LCDR1 LCDR1 LCDR1

Figure 3: CDR Structural Comparison in Humanized Antibodies. Left (HCDR3): Structural
alignment across methods. Right (LCDR1): Hu-MCTs (cyan) nearly overlaps with Experimental-
Pembrolizumab (gray), while competitors (dashed boxes) show deviations. Our pipeline preserves
LCDR1 structural fidelity better than others, while maintaining consistent HCDR3 alignment.

The results, detailed in the Appendix (Table 11), were highly consistent with our primary analysis
and confirm the effectiveness of our method.

4.2.3 SEQUENCE PLAUSIBILITY ANALYSIS

Beyond geometric stability, we evaluated the biological plausibility of the generated sequences
using AntiBERTy (Ruffolo et al., 2021), a language model that assesses how natural an antibody
sequence is. Scores closer to zero indicate a higher likelihood of the sequence folding into a stable
and functional antibody. As shown in Table 5, Hu-MCTs generated the most plausible sequences
(-0.431), outperforming all baselines and even the experimentally validated antibodies. This result
suggests that our method excels at capturing the subtle sequence patterns characteristic of functional
human antibodies.

4.2.4 ABLATION STUDY OF STRUCTURAL STABILITY SCORING

To validate the role of structural stability in our pipeline, we conducted an ablation study by remov-
ing the Sstab term from the MCTS reward function (see Table 6 and Table 7).
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Table 5: Average plausibility scores computed by AntiBERTy. Higher scores (closer to zero) are
better.

Method Average Plausibility Score

Hu-MCTs (ours) -0.431
CUMAb -0.516
Experiment -0.623
Biophi -0.639
Humatch -0.770
Hu-mAb -0.870

Table 6: The impact of applying structural constraints on the humanness score.

Condition OASis Score (%) T20 Score (%) Germline Identity (%)
H L H L

With Sstab 41.63 18.32 15.63 98.77 99.64
Without Sstab 43.37 20.04 16.79 99.21 99.23

Table 7: Comparison of RMSD changes with and without the inclusion of structural scoring.

Condition Chain Type CDR1 (Å) CDR2 (Å) CDR3 (Å)
H (All-atom) 0.44 0.46 1.27

With Sstab H (Backbone) 0.22 0.25 0.78
L (All-atom) 0.66 0.30 0.62
L (Backbone) 0.27 0.08 0.27
H (All-atom) 0.67 0.66 1.76

Without Sstab H (Backbone) 0.32 0.33 1.01
L (All-atom) 0.92 0.44 0.81
L (Backbone) 0.46 0.11 0.38

Comparison of Humanness Metrics. When Sstab was removed, the OASis score increased from
41.63% to 43.37%, and both heavy and light of the T20 score showed moderate increases. How-
ever, the Germline Identity metrics exhibited divergent changes: heavy chain rose from 98.77% to
99.21%, while light chain slightly decreased from 99.64% to 99.23%. This suggests that removing
structural constraints has a minor negative impact on light chain germline matching, but overall, the
improvement in humanness metrics implies stronger tendency in sequence feature fitting.

Structural Stability. The results confirmed that excluding Sstab led to notable increases in CDR
RMSD values across all loops (e.g., heavy chain CDR1 all-atom RMSD rose from 0.44 Å to 0.67 Å,
CDR3 backbone RMSD increased from 0.78 Å to 1.01 Å). The RMSD increases in CDR regions-
especially CDR3, the core antigen-binding region-highlight the critical role of Sstab in maintaining
the structural integrity of antigen-binding sites. These results validate the necessity of structural
scoring in the fidelity of their 3D structures: relying solely on humanness metrics may compromise
structural stability, while incorporating Sstab effectively avoids this trade-off.

5 CONCLUSION

In this work, we introduced Hu-MCTs, a novel framework for antibody humanization that system-
atically balances sequence humanness and structural integrity. By combining a generative model for
paired heavy and light chains with a Monte Carlo Tree Search, our method performs multi-objective
optimization directly in a learned latent space. This approach makes two key contributions: it is
the first to apply this paradigm to the specific constraints of antibody humanization, and its joint
optimization of both chains preserves critical VH-VL interactions often ignored by prior methods.
Furthermore, by integrating structural stability directly into the optimization objective, our frame-
work addresses a major gap in purely sequence-based approaches, yielding candidates with high
biological plausibility. While our current work focuses on murine antibodies, the modularity of Hu-
MCTs makes it adaptable for future extensions, including applicability to non-murine species and
the integration of more advanced functional predictors like antigen-binding affinity.
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Folch, Safa Aouinti, Emilie Carillon, Hugo Duvergey, Amélie Houles, Typhaine Paysan-Lafosse,
Saida Hadi-Saljoqi, Souphatta Sasorith, Gérard Lefranc, and Sofia Kossida. IMGT®, the inter-
national ImMunoGeneTics information system® 25 years on. Nucleic Acids Res., 43(Database
issue):D413–22, January 2015.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

Benny K C Lo. Antibody humanization by CDR grafting. Methods Mol. Biol., 248:135–159, 2004.

Ruei-Min Lu, Yu-Chyi Hwang, I-Ju Liu, Chi-Chiu Lee, Han-Zen Tsai, Hsin-Jung Li, and Han-
Chung Wu. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci.,
27(1):1, January 2020.

Jian Ma, Fandi Wu, Tingyang Xu, Shaoyong Xu, Wei Liu, Divin Yan, Qifeng Bai, and Jianhua
Yao. An adaptive autoregressive diffusion approach to design active humanized antibody and
nanobody. bioRxiv, 2024. doi: 10.1101/2024.10.22.619416. URL https://www.biorxiv.
org/content/early/2024/10/25/2024.10.22.619416.

Claire Marks, Alissa M Hummer, Mark Chin, and Charlotte M Deane. Humanization of antibodies
using a machine learning approach on large-scale repertoire data. Bioinformatics, 37(22):4041–
4047, 06 2021a. ISSN 1367-4803. doi: 10.1093/bioinformatics/btab434. URL https://doi.
org/10.1093/bioinformatics/btab434.

Claire Marks, Alissa M Hummer, Mark Chin, and Charlotte M Deane. Humanization of antibodies
using a machine learning approach on large-scale repertoire data. Bioinformatics, 37(22):4041–
4047, 2021b.

Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alex Rives. Language
models enable zero-shot prediction of the effects of mutations on protein function. Advances in
neural information processing systems, 34:29287–29303, 2021.

Tobias H Olsen, Iain H Moal, and Charlotte M Deane. Addressing the antibody germline bias and its
effect on language models for improved antibody design. Bioinformatics, 40(11):btae618, 2024.

David Prihoda, Jad Maamary, Andrew Waight, Veronica Juan, Laurence Fayadat-Dilman, Daniel
Svozil, and Danny A. Bitton and. Biophi: A platform for antibody design, humanization,
and humanness evaluation based on natural antibody repertoires and deep learning. mAbs, 14
(1):2020203, 2022. doi: 10.1080/19420862.2021.2020203. URL https://doi.org/10.
1080/19420862.2021.2020203. PMID: 35133949.

Aubin Ramon, Montader Ali, Misha Atkinson, Alessio Saturnino, Kieran Didi, Cristina Visentin,
Stefano Ricagno, Xing Xu, Matthew Greenig, and Pietro Sormanni. Abnativ: Vq-vae-based
assessment of antibody and nanobody nativeness for hit selection, humanisation, and engineer-
ing. bioRxiv, 2023. doi: 10.1101/2023.04.28.538712. URL https://www.biorxiv.org/
content/early/2023/10/01/2023.04.28.538712.

11

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://www.biorxiv.org/content/early/2024/10/25/2024.10.22.619416
https://www.biorxiv.org/content/early/2024/10/25/2024.10.22.619416
https://doi.org/10.1093/bioinformatics/btab434
https://doi.org/10.1093/bioinformatics/btab434
https://doi.org/10.1080/19420862.2021.2020203
https://doi.org/10.1080/19420862.2021.2020203
https://www.biorxiv.org/content/early/2023/10/01/2023.04.28.538712
https://www.biorxiv.org/content/early/2023/10/01/2023.04.28.538712


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Danny Reidenbach. EvoSBDD: Latent evolution for accurate and efficient structure-based drug
design. In ICLR 2024 Workshop on Machine Learning for Genomics Explorations, 2024. URL
https://openreview.net/forum?id=sLhUNz0uTz.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences. Proceedings of the National
Academy of Sciences, 118(15):e2016239118, 2021.

Jeffrey A Ruffolo, Jeffrey J Gray, and Jeremias Sulam. Deciphering antibody affinity maturation
with language models and weakly supervised learning. arXiv preprint arXiv:2112.07782, 2021.

Yaghoub Safdari, Safar Farajnia, Mohammad Asgharzadeh, and Masoumeh Khalili. Antibody hu-
manization methods - a review and update. Biotechnol. Genet. Eng. Rev., 29(2):175–186, August
2013a.

Yaghoub Safdari, Safar Farajnia, Mohammad Asgharzadeh, and Masoumeh Khalili. Antibody hu-
manization methods–a review and update. Biotechnology and Genetic Engineering Reviews, 29
(2):175–186, 2013b.

Richard W Shuai, Jeffrey A Ruffolo, and Jeffrey J Gray. Generative language modeling for antibody
design. BioRxiv, pp. 2021–12, 2021.

Ariel Tennenhouse, Lev Khmelnitsky, Razi Khalaila, Noa Yeshaya, Ashish Noronha, Moshit
Lindzen, Emily Makowski, Ira Zaretsky, Yael Fridmann Sirkis, Yael Galon-Wolfenson, Pe-
ter M. Tessier, Jakub Abramson, Yosef Yarden, Deborah Fass, and Sarel J. Fleishman. Reliable
energy-based antibody humanization and stabilization. bioRxiv, 2022. doi: 10.1101/2022.08.14.
503891. URL https://www.biorxiv.org/content/early/2022/12/18/2022.
08.14.503891.

Ariel Tennenhouse, Lev Khmelnitsky, Razi Khalaila, Noa Yeshaya, Ashish Noronha, Moshit
Lindzen, Emily K Makowski, Ira Zaretsky, Yael Fridmann Sirkis, Yael Galon-Wolfenson, et al.
Computational optimization of antibody humanness and stability by systematic energy-based
ranking. Nature biomedical engineering, 8(1):30–44, 2024.

Joe J Tjandra, Lanny Ramadi, and Ian F C McKenzie. Development of human anti-murine antibody
(HAMA) response in patients. Immunol. Cell Biol., 68(6):367–376, December 1990.

Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space partition for black-box
optimization using monte carlo tree search, 2022. URL https://arxiv.org/abs/2007.
00708.

Jiaxiang Wu, Fandi Wu, Biaobin Jiang, Wei Liu, and Peilin Zhao. tfold-ab: fast and accurate
antibody structure prediction without sequence homologs. bioRxiv, pp. 2022–11, 2022.

Wenqian Xing, JungHo Lee, Chong Liu, and Shixiang Zhu. Black-box optimization with implicit
constraints for public policy, 2025. URL https://arxiv.org/abs/2310.18449.

Kevin Yang, Tianjun Zhang, Chris Cummins, Brandon Cui, Benoit Steiner, Linnan Wang, Joseph E.
Gonzalez, Dan Klein, and Yuandong Tian. Learning space partitions for path planning, 2022.
URL https://arxiv.org/abs/2106.10544.

Kevin K Yang, Nicolo Fusi, and Alex X Lu. Convolutions are competitive with transformers for
protein sequence pretraining. Cell Systems, 15(3):286–294, 2024.

Peiyu Yu, Dinghuai Zhang, Hengzhi He, Xiaojian Ma, Ruiyao Miao, Yifan Lu, Yasi Zhang, Deqian
Kong, Ruiqi Gao, Jianwen Xie, Guang Cheng, and Ying Nian Wu. Latent energy-based odyssey:
Black-box optimization via expanded exploration in the energy-based latent space, 2024. URL
https://arxiv.org/abs/2405.16730.

Qiang Zhong. Optimized antibody humanization by intra and inter vh-vl binding energy sort-
ing. bioRxiv, 2021. doi: 10.1101/2021.01.06.425645. URL https://www.biorxiv.org/
content/early/2021/01/25/2021.01.06.425645.

12

https://openreview.net/forum?id=sLhUNz0uTz
https://www.biorxiv.org/content/early/2022/12/18/2022.08.14.503891
https://www.biorxiv.org/content/early/2022/12/18/2022.08.14.503891
https://arxiv.org/abs/2007.00708
https://arxiv.org/abs/2007.00708
https://arxiv.org/abs/2310.18449
https://arxiv.org/abs/2106.10544
https://arxiv.org/abs/2405.16730
https://www.biorxiv.org/content/early/2021/01/25/2021.01.06.425645
https://www.biorxiv.org/content/early/2021/01/25/2021.01.06.425645


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A BACKGROUND

A.1 PAIRED ANTIBODY DESIGN

The paired antibody optimization strategy in Hu-MCTs offers several key advantages. By jointly
considering heavy and light chains, it captures the intricate VH-VL interactions that are crucial
for antibody function (Chinery et al., 2024; Ma et al., 2024; Zhong, 2021). This holistic approach
ensures that humanized antibodies exhibit both high humanness scores and preserved structural-
functional integrity. For example, the analysis of VH-VL pairing quality, demonstrated that Hu-
MCTs humanized antibodies closely resembled murine counterparts. This is in contrast to methods
that optimize chains independently, which may disrupt these critical interactions and lead to reduced
antigen binding affinity or stability.

A.2 LATENT SPACE REPRESENTATIONS FOR EFFECTIVE SEARCH

In Hu-MCTs, the adoption of latent space for search is primarily driven by the exorbitant costs and
inefficiencies associated with optimizing black-box functions within high-dimensional and highly-
modal input spaces (Yu et al., 2024). By encoding antibody sequences into a latent space, we
effectively reduce the dimensionality of the search space while capturing the underlying structural
and sequence-relationships inherent to human antibodies (Reidenbach, 2024). This approach lever-
ages the prior knowledge derived from the pre-training of the Conditional Variational Autoencoder
(CVAE) on a diverse human antibody repertoire, steering the optimization process toward human-
compatible sequences.

Moreover, similar to the concept in Bayesian Optimization (BO), where high-dimensional optimiza-
tion is often transformed into low-dimensional exploration, the latent space provides a compressed
representation. This enables efficient exploration of high-value input design patterns, circumventing
the complex computations and sampling complexity issues prevalent in high-dimensional spaces.
It addresses the challenges of inaccurate optimization trajectories or insufficient coverage in high-
dimensional spaces (Xing et al., 2025), which are typical in traditional black-box optimization meth-
ods. Additionally, the ability to sample from the latent space facilitates the generation of a diverse
array of humanized antibodies. This diversity significantly increases the likelihood of identifying
optimal solutions, as it explores various modes within the latent space that correspond to different
high-value input designs.

A.3 BLACK-BOX OPTIMIZATION WITH MONTE CARLO TREE SEARCH

Antibody humanization requires the optimization of complex objectives such as humanness and
structural stability, which arise from intricate sequence–structure–function relationships that cannot
be modeled explicitly or differentiated. These objectives are thus treated as “black-box” functions,
meaning their values can only be estimated through computational predictions (e.g., structure mod-
eling with Tfold) or experimental measurements, without direct access to gradients.

Black-box optimization (BBO) methods are well suited to such settings where the objective func-
tion is either unknown or non-differentiable, and only input-output evaluations are accessible. These
methods explore the solution space by balancing exploration (sampling diverse candidates to dis-
cover novel regions) and exploitation (focusing on promising variants to refine solutions). In our
approach, we adopt Monte Carlo Tree Search (MCTS) as the core BBO algorithm. MCTS ef-
ficiently navigates the high-dimensional antibody sequence space using a multi-objective reward
function that jointly considers humanness and structural stability, enabling the identification of op-
timized variants that balance both critical criteria.

The MCTS algorithm offers several advantages over traditional optimization methods. Firstly, it is
a model-free optimization algorithm, which means that it does not require explicit knowledge of the
objective function or the search space. This makes it highly flexible and applicable to a wide range of
problems. Secondly, MCTS is able to balance exploration and exploitation effectively. By using the
Upper Confidence Bound (UCB) score to select nodes for expansion, it is able to explore promising
regions of the search space while also exploiting known good solutions. This helps to avoid getting
trapped in local optima and increases the chances of finding globally optimal solutions. Finally,

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

MCTS is a computationally efficient algorithm, which makes it suitable for large-scale optimization
problems.

B METHODOLOGICAL DETAILS AND JUSTIFICATIONS

B.1 THEORETICAL ANALYSIS OF SAMPLE EFFICIENCY

The synergy between our CVAE-based latent space projection and MCTS-guided search provides
a significant advantage in sample efficiency. The challenge of humanization can be framed as a
black-box optimization problem where the expected simple regret R(T ) after T evaluations in a
d-dimensional space is bounded by (Yang et al., 2022):

E[R(T )] = O
(
Cgood

d
√
lnT T

d−1
d

)
(3)

where Cgood is a constant reflecting the concentration of high-quality solutions. Our approach en-
hances search efficiency in three key ways:

1. Latent-space projection reduces sample complexity. By projecting the high-dimensional an-
tibody sequence space (d ≈ 180) into a low-dimensional CVAE latent space (d′ ≈ 30), we imme-
diately tighten the regret bound in Equation 3. This substitution of d with d′ shrinks the exponent
from d−1

d ≈ 0.994 to d′−1
d′ ≈ 0.967, leading to an exponential reduction in the sample complexity

required to find an ε-accurate solution from O(ε−180) to a more tractable O(ε−30).

2. The CVAE endows the latent geometry with biochemical priors. The CVAE organizes the la-
tent space to reflect crucial biochemical properties. First, through neighborhood preservation, se-
quences decoding to structurally similar antibodies are mapped to nearby points, creating a smoother
optimization landscape. Second, by training on a vast human antibody repertoire, the CVAE en-
forces implicit constraints, biasing the search toward human-compatible designs. These learned
priors effectively reduce the Cgood constant, further accelerating convergence.

3. MCTS performs adaptive space-partitioning. MCTS acts as an efficient adaptive algorithm
on this structured latent space, intelligently balancing exploration and exploitation. This is critical
for navigating the highly multimodal fitness landscape of antibody design, allowing the search to
escape local optima and converge to high-quality variants with far fewer evaluations than required
in the original discrete sequence space.

B.2 JUSTIFICATION FOR STRUCTURE PREDICTOR SELECTION

The choice of a structure prediction tool within an iterative framework like MCTS requires a trade-
off between accuracy and speed. While state-of-the-art models like AlphaFold3 offer high accu-
racy, their inference time is prohibitive for the hundreds of evaluations in a single MCTS run. We
selected Tfold for its favorable balance, as it achieves competitive accuracy for antibody struc-
tures—particularly CDR loops—with significantly faster inference times. This choice was critical
for computational feasibility. To validate this approach, we performed post-hoc evaluations with
AlphaFold3, confirming that the structural trends identified using Tfold were consistent with those
from a higher-accuracy predictor (see Section D.2).

B.3 RATIONALE FOR FOCUSING ON MURINE ANTIBODIES

Our work concentrates on murine-to-human humanization, a decision guided by three practical con-
siderations:

• Consistency with Prior Research: The majority of foundational humanization studies
have used murine candidates, establishing a rich set of benchmarks essential for contextu-
alizing our work.

• Clinical Relevance and Data Availability: Murine antibodies remain a primary source of
preclinical therapeutics, leading to large-scale public datasets (e.g., OAS) that are invalu-
able for model development and validation.
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• Limitations of Non-Murine Data: Antibodies from other species (e.g., camelids) have
limited public data and often exhibit distinct CDR architectures, posing significant out-of-
distribution risks for models trained on human data.

B.4 APPLICABILITY TO NON-MURINE ANTIBODIES

Our framework is trained exclusively on human antibody sequences, making it species-agnostic in
principle. However, extending it to non-murine antibodies presents challenges. The limited avail-
ability of data and distinct CDR architectures (e.g., longer CDR3s in camelid antibodies) create
distributional differences that could impair performance. Adapting our framework to other species
is a key direction for future work and will likely require fine-tuning with species-specific data or
applying more advanced transfer learning techniques.

C ANALYSIS OF HUMANIZATION STRATEGY

C.1 HUMANIZATION STRATEGY AND IMMUNOGENICITY RISK

A key finding is that Hu-MCTs introduces more mutations than conservative baselines. This is a
deliberate strategic choice. Methods that prioritize minimal changes (e.g., simple CDR grafting)
risk leaving residual murine epitopes intact, which can trigger an immune response. In contrast, our
approach performs a dynamic search in a learned latent space to identify solutions that optimally bal-
ance humanness, CDR compatibility, and structural stability. The resulting mutations are targeted
modifications that refine the initial human frameworks to better accommodate the murine CDRs
while maximizing alignment with the broader landscape of human antibodies. This comprehen-
sive optimization reduces immunogenicity risk more effectively than simply minimizing mutation
counts, a claim supported by the high germline identity and sequence plausibility scores our method
achieves.

C.2 DETAILED COMPARISON WITH HU-MAB

The performance disparity between Hu-MCTs and Hu-mAb highlights their different humaniza-
tion philosophies. Hu-mAb prioritizes maximum structural preservation through minimal mu-
tations, leading to low RMSD but also limited humanness, as it cannot fully eliminate murine
sequence features (Table 8).

In contrast, Hu-MCTs is engineered to prioritize humanness enhancement without sacrificing
structural stability. It introduces more mutations, but these changes are guided by a multi-objective
function to co-optimize for human-likeness and structural integrity. This strategy allows Hu-MCTs
to effectively remove murine epitopes and achieve state-of-the-art humanness scores while confining
structural deviations to non-essential regions. This balanced approach is critical for therapeutic
antibodies, where minimizing immunogenicity and retaining efficacy are paramount.

Table 8: Quantitative comparison of Hu-MCTs and Hu-mAb, highlighting the trade-off between
humanness and mutation count.

Method OASis (%) T20 score (%) Germline identity (%) Mutation numbers

H L H L H L

Hu-mAb 0.074 1.18 3.61 74.29 81.08 13.72 8.20
Hu-MCTs 41.63 18.32 15.23 98.77 99.64 33.88 27.92

D ADDITIONAL EXPERIMENTAL ANALYSIS

D.1 HYPERPARAMETER ABLATION STUDY: IMPACT OF K

To assess the robustness of our method, we analyzed the impact of the number of initial starting
points, K, with K ∈ {10, 20, 30, 50}. The results show that core humanness metrics remain stable
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Table 9: Impact of the number of starting points (K) on humanness metrics.

K value OASis (%) T20 Score H (%) T20 Score L (%) Germline Identity H (%) Germline Identity L (%) Mutation Num H Mutation Num L
10 40.52 17.75 14.82 96.58 97.32 33.12 27.28
20 41.05 18.02 15.25 97.86 98.95 33.56 27.69
30 41.32 18.15 15.08 98.21 99.12 33.75 27.81
50 41.63 18.32 15.23 98.77 99.64 33.82 27.92

Table 10: Impact of K on structural preservation (RMSD, Å). Best results for each metric are in
bold.

Heavy Chain Light Chain

CDR K Value All-Atom RMSD (Å) Backbone RMSD (Å) CDR K Value All-Atom RMSD (Å) Backbone RMSD (Å)

CDR1 K = 10 0.453 0.258 CDR1 K = 10 0.678 0.276
K = 20 0.445 0.254 K = 20 0.666 0.270
K = 30 0.444 0.253 K = 30 0.665 0.271
K = 50 0.442 0.252 K = 50 0.663 0.271

CDR2 K = 10 0.472 0.226 CDR2 K = 10 0.306 0.079
K = 20 0.464 0.223 K = 20 0.302 0.077
K = 30 0.458 0.222 K = 30 0.300 0.074
K = 50 0.461 0.221 K = 50 0.299 0.076

CDR3 K = 10 1.305 0.798 CDR3 K = 10 0.638 0.271
K = 20 1.286 0.785 K = 20 0.630 0.268
K = 30 1.278 0.779 K = 30 0.626 0.266
K = 50 1.273 0.776 K = 50 0.623 0.265

across these values (Table 9), demonstrating that the method is not overly sensitive to this hyperpa-
rameter. Similarly, while increasing K leads to marginal improvements in structural preservation
(Table 10), the benefit quickly diminishes. We chose K = 50 for our main experiments as a robust
setting that balances exploration and computational cost, and we recommend K ≥ 10 for general
use.

D.2 INDEPENDENT STRUCTURAL VALIDATION WITH ALPHAFOLD3

To independently verify our structural preservation results, we performed a post-hoc analysis on
60 randomly selected variants using the high-accuracy AlphaFold3 model. The results, presented in
Table 11, are highly consistent with the Tfold-based findings in the main text. Hu-MCTs consistently
achieves low RMSD values across all CDRs and performs favorably against all baselines, confirming
the effectiveness of our structure-aware optimization strategy.

D.3 COMPUTATIONAL RESOURCES AND EFFICIENCY

Experiments were conducted on a single NVIDIA RTX 4090 GPU (48GB). Humanizing one paired
antibody takes approximately 50 minutes (∼3000s) with our default settings. Direct runtime com-
parisons with baselines are challenging, as most are web servers with unknown hardware. However,
as shown in Table 12, our method’s runtime is practical for research settings. While more intensive
than sequence-only methods, the cost is justified by the more reliable, structure-aware outcomes.

E TRAINING DETAILS

E.1 TRAINING DATASET AND PREPROCESSING

Our training dataset was sourced from the Observed Antibody Space (OAS), from which we col-
lected approximately 1.74 million paired human antibody sequences. To create a uniform input for
our models, we standardized all sequences using the IMGT numbering scheme, resulting in heavy
chains of 152 residues and light chains of 139 residues. This dataset was then partitioned into a 99%
training set and a 1% validation set to ensure robust model training while monitoring for overfitting.
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Table 11: Structural RMSD validation using AlphaFold3. Reported values are the average all-atom
and backbone RMSD (Å) for each CDR, measured against the parental murine antibodies. Best
results are in bold, and second best are underlined.

Heavy Chain Light Chain

CDR Method All-atom (Å) Backbone (Å) CDR Method All-atom (Å) Backbone (Å)

CDR1 Experiment 0.590 0.189 CDR1 Experiment 0.688 0.186
Sapiens 0.646 0.263 Sapiens 0.650 0.221
Hu-mAb 0.494 0.137 Hu-mAb 0.469 0.176
Humatch 0.630 0.238 Humatch 0.702 0.404
CUMAb 0.694 0.204 CUMAb 0.603 0.157
Hu-MCTs 0.541 0.209 Hu-MCTs 0.531 0.162

CDR2 Experiment 0.443 0.125 CDR2 Experiment 0.135 0.029
Sapiens 0.407 0.150 Sapiens 0.176 0.028
Hu-mAb 0.365 0.081 Hu-mAb 0.122 0.027
Humatch 0.312 0.092 Humatch 0.191 0.028
CUMAb 0.513 0.184 CUMAb 0.133 0.021
Hu-MCTs 0.385 0.113 Hu-MCTs 0.149 0.026

CDR3 Experiment 1.677 0.790 CDR3 Experiment 0.635 0.188
Sapiens 1.594 0.685 Sapiens 0.745 0.187
Hu-mAb 1.221 0.629 Hu-mAb 0.459 0.107
Humatch 1.495 0.643 Humatch 0.509 0.173
CUMAb 1.315 0.727 CUMAb 0.479 0.177
Hu-MCTs 1.304 0.528 Hu-MCTs 0.643 0.136

Table 12: Comparison of humanization runtime for a paired heavy and light chain.

Method Approx. Humanization Time (s)

CUMAb ∼24,688 (web)
Hu-mAb ∼1,093 (web)
Hu-match ∼33 (local)
Sapiens ∼3 (web)
Hu-MCTs (ours) ∼3,072 (local)

E.2 PARAMETER-EFFICIENT TRAINING WITH LORA

Both the PLM and CVAE were trained using Low-Rank Adaptation (LoRA) (Hu et al., 2021), a
parameter-efficient fine-tuning technique. Instead of training all model parameters, LoRA freezes
the pre-trained weights and injects small, trainable low-rank matrices into the attention modules.
This strategy significantly reduces the number of trainable parameters and computational overhead,
while effectively adapting the models to the humanization task and mitigating the risk of overfitting.

E.3 TRAINING CONFIGURATIONS

The specific configurations for our models, training hyperparameters, and LoRA are detailed below.

E.3.1 MODEL ARCHITECTURES

The architectural details for the Protein Language Model (IgBERT) and the CVAE are summarized
in Table 13.

E.3.2 TRAINING HYPERPARAMETERS

The models were trained on NVIDIA H100 GPUs with the hyperparameters listed in Table 14.

E.3.3 LORA CONFIGURATION

For both models, we applied a LoRA configuration with a rank (r) of 8, a scaling factor (α) of 32,
and a dropout rate of 0.05. No bias terms were trained.
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Table 13: Key Configuration Parameters of the PLM and CVAE Models.

Parameter PLM (IgBERT) CVAE (T5-based)
Network Architecture

Hidden Size (dmodel) 1024 1024
Intermediate Size (dff) 4096 16384
Number of Layers 30 (hidden) 24 (encoder), 24 (decoder)
Number of Attention Heads 16 32

Vocabulary & Sequences
Vocabulary Size 30 144
Max Position Embeddings 40000 512
Position Encoding Type Absolute Relative

Regularization & Numerics
Activation Function gelu relu
Dropout Rate 0.0 0.1
Layer Norm Epsilon 1× 10−12 1× 10−6

Table 14: Training Hyperparameters and Hardware Configuration.

Parameter PLM (IgBERT) CVAE (T5-based)
Training Settings

Batch Size 256 32
Training Epochs 30 3
Learning Rate 1× 10−5 2× 10−5

Hardware and Duration
GPU Type H100 H100
Number of GPUs 4 2
Training Duration ∼48 hours ∼140 hours

F LIMITATIONS AND FUTURE DIRECTIONS

Despite its promising performance, Hu-MCTs has several limitations that provide clear avenues for
future research. Our current framework is tailored for the humanization of murine variable regions
(VH/VL), a focus guided by the rich availability of benchmark data and the clinical relevance of
murine-derived antibodies. However, this scope does not account for constant regions and limits
direct applicability to non-murine species. A primary goal for future work is therefore to broaden
this applicability by adapting the model for species like camelids and rabbits—likely through trans-
fer learning—and by incorporating constant regions to enable the end-to-end design of full-length
antibodies.

Beyond expanding the model’s scope, we also aim to enhance its predictive capabilities. The current
model evaluates candidates based on static structures and does not explicitly predict antigen-binding
affinity or conformational dynamics. This is a pragmatic choice reflecting the current state of the
field, where reliable, high-throughput predictors for these complex properties are not yet available.
Fortunately, the framework’s modularity is a key advantage that will facilitate future improvements.
As more sophisticated functional predictors mature, we plan to integrate emerging tools capable
of assessing epitope-binding interactions and conformational dynamics, which will better preserve
antibody function and efficacy post-humanization.

While these extensions promise a more powerful framework, we are mindful of computational de-
mands. As a structure-aware method, Hu-MCTs is inherently more computationally intensive than
sequence-only approaches—a necessary trade-off for achieving higher structural fidelity. By con-
tinuing to refine this balance, the core MCTS algorithm can be enhanced to manage an even wider
array of competing therapeutic goals, such as expression yield and other developability properties.
Evolving the optimization framework in this manner will transform Hu-MCTs into a more compre-
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hensive and versatile tool, opening up its application to diverse antibody engineering tasks such as
affinity maturation and the design of antibody-drug conjugates.

G BROADER IMPACT

The development of Hu-MCTs has several scientific implications. Firstly, it provides a new approach
for antibody humanization that is more effective and efficient than existing methods. This could lead
to the development of more safe and effective antibody-based therapeutics. Secondly, it provides a
new tool for understanding the structural and functional properties of antibodies. By exploring the
sequence space of human antibodies, Hu-MCTs can help to identify the key residues and motifs that
are important for antibody function and immunogenicity.

The development of Hu-MCTs also has several clinical implications. Firstly, it could lead to the
development of safer and effective antibody-based therapeutics. By reducing the immunogenicity
of murine antibodies, Hu-MCTs can help to improve the safety and efficacy of antibody-based ther-
apies. Finally, it could lead to the development of new antibody-based therapies for diseases that
are currently difficult to treat. By exploring the sequence space of human antibodies, Hu-MCTs can
help to identify new antibodies that have the potential to treat these diseases.

H ALGORITHM PSEUDOCODE

Algorithm 2 Partition Function

Require: Input Space Ω, Samples St, Node partition threshold Nthres, Partitioning Latent Model
s(x)

1: Set V0 = {Ω}
2: Set Vqueue = {Ω}
3: while Vqueue ̸= ∅ do
4: Ωp ← Vqueue.pop(0)
5: if n(Ωp) ≥ Nthres then
6: Sgood, Sbad ← samples from St corresponding to indices of k-means(s(Ωp ∩ St))
7: Fit SVM on Sgood, Sbad
8: Use SVM to split Ωp into Ωgood,Ωbad
9: V0 ← V0 ∪ {Ωgood,Ωbad}

10: Vqueue ← Vqueue ∪ {Ωgood,Ωbad}
11: end if
12: end whilereturn V0
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Algorithm 3 CMA-ES: Covariance Matrix Adaptation Evolution Strategy

Require:
1: Objective function f : Rn → R,
2: Population size λ,
3: Initial mean m ∈ Rn,
4: Initial covariance matrix C ∈ Rn×n,
5: Initial step size σ ∈ R+,
6: Number of iterations T ,
7: Mean update size µ = ⌊λ/2⌋

Ensure: Optimized mean m, All evaluated states Z
8: Initialize evolution paths: pσ ← 0, pc ← 0
9: Initialize state memory: Z ← ∅

10: for generation t = 1 to T do
11: Y ← ∅, V ← ∅
12: for i = 1 to λ do
13: Sample zi ∼ N (0, I)
14: Generate offspring: yi ←m+ σBDzi
15: Evaluate fitness: vi ← f(yi)
16: Store results: Y ← Y ∪ {yi}, V ← V ∪ {vi}
17: end for
18: Sort population: Z ← sort ((Y,V), by vi)
19: Select top µ offspring: Yµ ← Z[1 : µ]
20: Update mean:

m′ ←m+

µ∑
i=1

wi(yi:λ −m)

21: Update evolution paths:

pσ ← (1− cσ)pσ +
√
cσ(2− cσ)µeffBD−1m

′ −m

σ

pc ← (1− cc)pc +
√
cc(2− cc)µeff

m′ −m

σ
22: Update covariance matrix:

C← (1− c1 − cµ)C+ c1pcp
⊤
c + cµ

µ∑
i=1

wiyiy
⊤
i

23: Adapt step size:

σ ← σ · exp
(
cσ
dσ

(
∥pσ∥

E[∥N (0, I)∥]
− 1

))
24: Update mean: m←m′

25: end for
26: return m,Z
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