
Can Vision-Language Models Solve Visual Math Equations?

Anonymous ACL submission

Abstract001

Despite strong performance in visual under-002
standing and language-based reasoning, Vision-003
Language Models (VLMs) struggle with tasks004
requiring integrated perception and symbolic005
computation. We study this limitation through006
visual equation solving, where mathematical007
equations are embedded in images, variables008
are represented by object icons, and coefficients009
must be inferred by counting. While VLMs010
perform well on textual equations, they fail on011
visually grounded counterparts. To understand012
this gap, we decompose the task into coeffi-013
cient counting and variable recognition, and014
find that counting is the primary bottleneck,015
even when recognition is accurate. We also016
observe that composing recognition and rea-017
soning introduces additional errors, highlight-018
ing challenges in multi-step visual reasoning.019
Finally, as equation complexity increases, sym-020
bolic reasoning itself becomes a limiting factor.021
These findings reveal key weaknesses in current022
VLMs and point toward future improvements023
in visually grounded mathematical reasoning.1024

1 Introduction025

Vision-Language Models (VLMs) have become026

the dominant architecture for multimodal learn-027

ing, powering applications such as visual question028

answering (Ghosal et al., 2023), image caption-029

ing (Yang et al., 2023), and multimodal reason-030

ing (Li et al., 2024b). As agentic AI systems gain031

traction, VLMs are increasingly expected to func-032

tion as general-purpose perception-and-reasoning033

modules for intelligent agents (Li et al., 2024b,a).034

While recent models demonstrate strong capabil-035

ities in both visual understanding and language-036

based reasoning, truly agentic behavior demands037

deeper integration, particularly in tasks involving038

grounded mathematical reasoning (Shi et al., 2024).039

1We will release our data and code after the review process.

In this work, we investigate this integration 040

through the lens of a seemingly simple but reveal- 041

ing task: visual equation solving. Given an image 042

containing a system of equations where variables 043

are depicted as object icons (e.g., + = 044

10), the goal is to infer coefficients by counting 045

icons and solve the equation accordingly. While 046

this task appears tractable for models proficient 047

in both visual and symbolic reasoning, our results 048

show that even the strongest VLMs fail to solve 049

such problems reliably. Why do VLMs struggle with 050

visual equation solving? To answer this, we decom- 051

pose the task into two core components: symbolic 052

equation solving and visual recognition. 053

We begin by testing symbolic reasoning in iso- 054

lation. When equations are presented in plain text 055

in the image, VLMs solve them almost perfectly, 056

confirming their mathematical reasoning and OCR 057

capabilities. Next, we evaluate whether variable 058

recognition is the bottleneck. Models are able to 059

correctly identify object-based variables with high 060

accuracy, suggesting recognition alone is not the 061

issue. We then turn to coefficient estimation, count- 062

ing the number of object instances. In hybrid set- 063

tings where variables are icons and coefficients are 064

numerals, or where both are visual, performance 065

drops significantly. Direct evaluation of object 066

counting further confirms that this is the key bot- 067

tleneck: VLMs often fail to infer quantities from 068

repeated visual elements. 069

Beyond counting, we observe that performance 070

degrades further when multiple abilities, such as 071

recognition and reasoning, must be composed. For 072

instance, even when a model can recognize vari- 073

ables and solve symbolic equations separately, solv- 074

ing equations with icon-based variables and nu- 075

meric coefficients proves difficult. This highlights 076

compositional reasoning as another major chal- 077

lenge for current VLMs. Finally, we evaluate sys- 078

tems of equations with three variables. Even when 079

1



equations are presented symbolically, performance080

drops sharply, indicating that VLMs’ mathematical081

reasoning is itself limited when faced with more082

complex problem structures.083

Taken together, our findings reveal key limita-084

tions in current VLMs’ ability to integrate percep-085

tion and symbolic reasoning. In particular, visual086

counting and ability composition emerge as core087

bottlenecks, alongside limited generalization in088

symbolic math reasoning for complex tasks.089

2 Preparation090

We design a controlled evaluation setup to analyze091

VLMs’ ability to perform visual equation solving.092

This section describes our data generation process093

and the experimental settings used for the following094

model evaluation.095

2.1 Data096

We construct synthetic visual math problems based097

on systems of linear equations, where variables are098

depicted as object icons and coefficients must be099

inferred from visual repetition. Each experiment is100

conducted on a set of 1,000 constructed examples101

and run once per model-setting configuration.102

Equation Generation. We generate solvable sys-103

tems of linear equations with unique integer solu-104

tions using matrix algebra, ensuring invertibility.105

To control visual complexity, coefficients are re-106

stricted to positive integers no greater than 10, lim-107

iting the number of repeated icons per image. All108

equations involve only addition, avoiding negative109

or fractional values. This setup ensures consistency110

and interpretability across all samples.111

Image Construction. To visually represent equa-112

tions, we map each variable to an icon selected113

from a curated set of 28 object types in the IconQA114

dataset (Lu et al., 2021), including items such as115

apples, bananas, flowers, and footballs. The coeffi-116

cient of each variable is represented by repeating117

the corresponding icon the appropriate number of118

times. This creates visually grounded equations119

that require both recognition and symbolic reason-120

ing. An example is shown in Fig. 1, and the full121

list of icons is provided in App. B.2.122

2.2 Settings123

Model List. We evaluate both proprietary and124

open-source VLMs. The former include GPT-125

4o (Hurst et al., 2024) and Gemini 2.0 Flash (Team126

+ = 33

+ = 43

Figure 1: An example of our generated visual equations (i.e.,
systems of 2 linear equations with 2-variables).

et al., 2024), accessed via API. The latter consist 127

of four models from the QwenVL-2.5 family (Bai 128

et al., 2023), ranging from 3B to 72B parameters. 129

To ensure fairness, all models are evaluated without 130

batching, avoiding potential artifacts from cached 131

context or batch-level optimizations. More details 132

about the model can be found in App. B.3. 133

Prompting Strategy. We apply two prompting 134

strategies: direct zero-shot prompting (Direct) and 135

two-step chain-of-thought (CoT) prompting. In the 136

CoT setting, the model is first asked to extract the 137

equation in free-form, then solve it in a second 138

step. This setup encourages intermediate reasoning 139

before committing to an answer. Both strategies 140

are applied consistently across all models. Prompt 141

templates and examples are provided in App. B.4. 142

Metrics. We evaluate accuracy by exact match- 143

ing between the model-predicted variable values 144

and the ground truth. We expect models to correctly 145

associate each object type with its corresponding 146

value and solve the equation. 147

3 Evaluation 148

We evaluate the mathematical reasoning capabili- 149

ties of VLMs through the task of visual equation 150

solving. Specifically, we investigate two research 151

questions: (1) Can VLMs solve equations when 152

they are visually grounded? (2) If not, what spe- 153

cific limitations hinder their performance? 154

3.1 Can VLMs Solve Equations? 155

We begin our evaluation on solving systems of lin- 156

ear equations in two formats: (1) a fully visual 157

format, where both variables and coefficients are 158

depicted visually (Fig. 1), and (2) a symbolic for- 159

mat, where equations are rendered as text within 160

the image (Fig. 3). This comparison can isolate the 161

impact of visual understanding on performance. 162

3.1.1 Visual Equation 163

Experiment Preparation. We use a default set- 164

ting of two-variable linear equations with integer 165

solutions. In each equation, variables are repre- 166

sented by object icons, and coefficients are con- 167
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veyed by the number of repeated instances of each168

icon. This setup tests whether VLMs can integrate169

visual perception and symbolic reasoning.170
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Figure 2: Performance of VLMs on visual equation solving.
Results show that all models consistently fail to solve the
equations correctly across both settings.

Results and Analysis. As shown in Fig. 2,171

all evaluated models, both proprietary and open-172

source, consistently fail to solve equations in visual173

form (overall accuracy < 12%), despite their strong174

performance on other math and reasoning bench-175

marks. To rule out flaws in the evaluation setup,176

we include qualitative model outputs in App. C.1.177

These results raise a key question: Is the failure due178

to a lack of symbolic math reasoning, or a difficulty179

in interpreting equations visually?180

3.1.2 Symbolic Equation181

7 a   +   3 b   =   33 1 a   +   10 b   =   43;

Figure 3: An example of a system of linear equations repre-
sented in symbolic (textual) form.

Experiment Preparation. To isolate symbolic182

reasoning ability, we present the same equations183

in textual form within images (Fig. 3). If models184

succeed here, it would suggest that the core issue185

lies in interpreting the visual input, not solving the186

equations themselves.187

Results and Analysis. Fig. 4 shows that all mod-188

els, including the smallest Qwen-3B, achieve near-189

perfect accuracy on symbolic equations (accuracy190

> 97% with the CoT prompting). This confirms191

two things: (1) VLMs possess the required math-192

ematical reasoning capabilities, and (2) they have193

strong OCR skills for extracting text from images.194

These findings indicate that the failure in the visual195

setting stems from difficulties in interpreting and196

grounding visual equations.197
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Figure 4: Performance of VLMs on symbolic equation solv-
ing. Results show that all models could solve the equations
perfectly across settings.

3.2 Visual-Symbolic Gap Analysis 198

To understand the source of the performance gap 199

between visual and symbolic settings, we decom- 200

pose visual equation solving into two core sub- 201

skills: (1) recognizing variables from icons, and 202

(2) estimating coefficients by counting repeated vi- 203

sual instances. This allows us to evaluate whether 204

recognition or counting is the main bottleneck, or 205

whether it arises from composing the two abilities. 206

3.2.1 Coefficient Counting 207

7 + 3 = 33 1 +10 = 43;

Figure 5: An example of our generated visual-symbolic equa-
tion, where the variable is denoted by icon but the coefficient
is represented by symbolic number.

Experiment Preparation. We design a hybrid 208

variant called visual-symbolic equations (Fig. 5), 209

where variables are represented as icons, but co- 210

efficients are given as numeric text. This setting 211

removes the need for counting while preserving the 212

need for icon recognition and symbolic reasoning. 213
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Figure 6: Performance of VLMs on visual-symbolic equation
solving, where the coefficients are represented by symbolic
numbers and variables are denoted by icons. Results show that
all models could solve most systems of equations correctly.

Results and Analysis. As shown in Fig. 6, VLMs 214

perform better in this setting than in the fully visual 215

case (with overall accuracy as 64.45%), suggesting 216
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that coefficient counting is a major obstacle. To217

further confirm this, we directly evaluate models218

on isolated counting tasks (see App. C.2). These219

results clearly identify counting as a primary bot-220

tleneck in visual equation solving.221

3.2.2 Variable Recognition222

Experiment Preparation. To assess whether223

variable recognition contributes to the performance224

gap, we evaluate the ability to identify icon-based225

variables independently of counting. This task iso-226

lates visual recognition from symbolic reasoning.227
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Figure 7: Accuracy on variable coefficient counting. Results
show that both Qwen-7B and Gemini (under the CoT prompt)
have difficulty to count the correct value of coefficients.

Results and Analysis. Fig. 7 shows that both228

Qwen-7B and Gemini achieve high accuracy in rec-229

ognizing variables from icons (with accuracy above230

90%), with performance comparable to symbolic231

settings. Details of prompt design are in App. B.4.232

This indicates that recognition itself is not a ma-233

jor limitation. Instead, the remaining gap between234

symbolic and visual-symbolic settings is likely due235

to task composition, i.e., the challenge of integrat-236

ing recognition with downstream reasoning.237

3.3 Three-Variable Equation238

To assess the limitations of VLMs under increased239

mathematical complexity, we extend our evalua-240

tion to systems of three linear equations with three241

variables, which demand more advanced symbolic242

reasoning and variable tracking than the simpler243

two-variable case.244

Experiment Preparation. We generate equa-245

tions in the same formats as in the default setting:246

symbolic, visual-symbolic, and fully visual. This247

allows us to assess whether performance degrada-248

tion stems from visual perception (i.e., recognition249

and counting) or from limitations in mathematical250

reasoning. We report the results under the CoT251

prompt as it achieves better performance.252
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Figure 8: Overall accuracy across 6 models on solving equa-
tions with 2 and 3 variables. Results show that the bottleneck
shift from vision side to the math reasoning.

Results and Analysis. As shown in Fig. 8, model 253

performance drops significantly when moving from 254

two-variable to three-variable systems (accuracy 255

drops from 98% to 70% for the symbolic setting, 256

and from 64% to 35% for the visual-symbolic set- 257

ting). While the visual bottleneck remains largely 258

unchanged, the additional complexity leads to a 259

clear decline in symbolic reasoning. This indicates 260

that, beyond perceptual limitations, current VLMs 261

lack robust mathematical capabilities to solve more 262

complex equation systems. 263

3.4 Takeaways. 264

Our experiments results show that VLMs perform 265

well on symbolic equations but consistently fail on 266

visual ones. The main bottleneck is visual count- 267

ing, while variable recognition is largely accurate. 268

However, composing recognition with reasoning in- 269

troduces significant errors. As equation complexity 270

increases, even symbolic reasoning begins to falter, 271

revealing limits in the models’ understanding. 272

4 Discussion 273

This paper investigates the reasoning limitations 274

of VLMs through visual equation solving, a task 275

that requires combining perception, counting, and 276

symbolic computation. While VLMs perform well 277

on symbolic equations and can reliably recognize 278

visual variables, they fail when coefficients must 279

be inferred from repeated visual instances. Our 280

analysis identifies counting and ability composition 281

as key bottlenecks, with performance degrading 282

further as equation complexity increases. 283

These results highlight gaps in both visual 284

grounding and symbolic reasoning. Addressing 285

them may require new training objectives, compo- 286

sitional architectures, or integration with external 287

tools. Our benchmark provides a diagnostic lens for 288

understanding and improving VLMs on grounded, 289

multi-step reasoning tasks. 290
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Limitations291

While our study provides insights into the mathe-292

matical reasoning capabilities of VLMs, it is sub-293

ject to a few limitations. First, our evaluation fo-294

cuses primarily on linear equations with integer so-295

lutions and addition-only operators. Although this296

setup allows controlled analysis, it does not capture297

the full spectrum of mathematical reasoning, such298

as non-linear or multi-operator problems. Second,299

while we isolate key sub-skills like counting and300

recognition, our diagnostic tasks are still synthetic301

and could not fully reflect real-world scenarios in-302

volving noisy or diverse visual contexts. Finally,303

we rely on prompting-based evaluation, which may304

under-represent the full potential of models fine-305

tuned for structured reasoning or equipped with306

external tools.307
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A Related Work402

Most existing benchmarks for evaluating VLMs treat perception and reasoning as separate capabilities,403

rather than testing them as a sequential, integrated process. Recognition-focused datasets such as404

VQA (Antol et al., 2015), GQA (Hudson and Manning, 2019), and CLEVR (Johnson et al., 2017) involve405

only minimal or trivial arithmetic, which current vision backbones can typically solve with ease. More406

recent efforts like MathVista (Lu et al., 2024) and DynaMath (Zhang et al., 2024) introduce a wider407

range of visual math problems, but they do not specifically evaluate whether models can solve algebraic408

equations where symbolic variables and coefficients are visually embedded. The ability to ground a visual409

system of equations and perform multi-step reasoning over visual cues remains largely untested.410

B Details of Experiment Settings411

B.1 Data License412

All data used in this study is released under the CC BY 4.0 license. Each generated image is paired with a413

corresponding question that involves solving one or more equations, along with the ground-truth answers.414

Users are free to share, adapt, and build upon the dataset, provided appropriate credit is given.415

B.2 Icon List416

All the 28 icons that we use are listed below. For each icon, we use only one image to denote the object.417

Specifically, we select 28 icons labels randomly from the IconQA dataset, and for each label we randomly418

select one image icon. The icons are: apple, palm_tree, strawberry, egg, clover, donut, mushroom, acorn,419

lemon, football, flower, sheep, panda, muffin, apricot, eggplant, broccoli, rabbit, banana, rubber_duck,420

horse, fish, tomato, candy, ice_cream_cone, cake, orange, carrot.421

B.3 Model Usage422

We conduct inference using four NVIDIA H100 GPUs for each open-source VLM, including Qwen-3B,423

Qwen-7B, Qwen-32B, and Qwen-72B. All models are loaded using Hugging Face’s Transformers library424

with automatic mixed-precision (torch.float16 or bfloat16) and memory-efficient device_map=“auto”425

configurations. For each model, we adopt a consistent prompting strategy that combines images and426

text within structured chat templates. Inputs are tokenized and batched via model-specific processors.427

Inference is performed on individual image-equation instances using a maximum token length of 2048.428

We evaluate model outputs using an exact match criterion, comparing extracted variable assignments429

against ground-truth coefficients. To ensure fairness, we avoid prompt tuning and caching, and run each430

model independently on the same test set with uniform I/O and decoding procedures. Inference time431

ranges from 6 to 28 hours depending on model size, with Qwen-72B requiring the longest runtime.432

B.4 Prompt433

Direct Prompting. The direct prompt expects models to produce structured outputs in a single step. In434

our experiments, omitting object labels from the prompt led to poor generation quality, whereas including435

them significantly improved the reliability and evaluability of the outputs. The prompt template and an436

example are shown in Fig. 9.437

Direct Prompt

You are given an equation image. Identify all icon types present in the image and determine their corresponding
numerical values. Return only the icon type assignments in the format: icon_type = number. For example: apple =
5, ice_cream_cone = 3
Do not include any other text in your response. Only the following icon types are allowed: apple, palm_tree,
strawberry, egg, clover, donut, mushroom, acorn, lemon, football, flower, sheep, panda,
muffin, apricot, eggplant, broccoli, rabbit, banana, rubber_duck, horse, fish, tomato, candy,
ice_cream_cone, cake, orange, carrot.

Figure 9: Direct Prompting Template and Example. The same prompt is used across all models for consistency.
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Two-Step CoT Prompting. To encourage deeper reasoning while avoiding overly rigid output structures, 438

we adopt a two-step chain-of-thought (CoT) prompting strategy. In the first turn, the model is prompted 439

to freely analyze and solve the problem in its own words. In the second turn, we provide both the 440

original prompt and the model’s response, and ask it to extract the final answer. This separation between 441

reasoning and answer extraction allows the model to engage in more flexible, interpretable analysis before 442

committing to a structured output. The prompt used for the object-encoded benchmark is shown in Fig. 10. 443

Step 1: Analysis Prompt

Look at this equation image and identify all icon
types and their corresponding values. Identify the
objects, determine the mathematical operations, and
solve the equation step-by-step.
Only use the following allowed objects: apple,
palm_tree, strawberry, egg, clover, donut,
mushroom, acorn, lemon, football, flower,
sheep, panda, muffin, apricot, eggplant,
broccoli, rabbit, banana, rubber_duck,
horse, fish, tomato, candy, ice_cream_cone,
cake, orange, carrot.

Step 2: Final Answer Prompt

Given the analysis: {Look at this equation image and
identify all icon types and their corresponding val-
ues. Identify the objects, determine the mathematical
operations, and solve the equation step-by-step...},
provide the final value of each identified object.
Respond only in the format: object = value.
For example: flower = 5, carrot = 3
Important: Do not include any other text. Only use
allowed object names.

Figure 10: CoT Prompting Strategy. The left box initiates free-form reasoning, while the right box extracts the final answers
based on the initial prompt and generated response.

Counting Prompting (CoT). An example input and prompt used for two-step prompting is shown in 444

Fig. 11. This prompt is adapted from the CoT strategy and tailored for counting questions involving a 445

single equation, rather than a full system of equations. 446

Step 1: Analysis Prompt

Look at this image and identify the count of
each object. Provide your analysis step by step
and ensure all details are clear. Only use the
following allowed objects: apple, palm_tree,
strawberry, egg, clover, donut, mushroom,
acorn, lemon, football, flower, sheep,
panda, muffin, apricot, eggplant, broccoli,
rabbit, banana, rubber_duck, horse, fish,
tomato, candy, ice_cream_cone, cake,
orange, carrot.

Step 2: Final Answer Prompt

Now extract the final answer in the format: object
= number. For example: apple = 5,
ice_cream_cone = 3.
Do not include additional text. Only use allowed
object names.

Figure 11: Two-step prompting strategy for solving visual object counting task.

Step 1: Analysis Prompt

Look at this image and identify the type of each
object. Provide your analysis step by step and
ensure all details are clear. Only use the fol-
lowing allowed objects: apple, palm_tree,
strawberry, egg, clover, donut, mushroom,
acorn, lemon, football, flower, sheep,
panda, muffin, apricot, eggplant, broccoli,
rabbit, banana, rubber_duck, horse, fish,
tomato, candy, ice_cream_cone, cake,
orange, carrot.

Step 2: Final Answer Prompt

Now extract the final answer in the format: object
= number. For example: apple,ice_cream_cone.
Do not include additional text. Only use allowed
object names.

Figure 12: Two-step prompting strategy for the object-type recognition task.

Recognition Prompting (CoT). An example input and prompt used for two-step prompting is shown in 447

Fig. 11. This prompt is adapted from the CoT strategy and tailored for recognizing the object-type present 448
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in the image. We utilize the same single equation dataset as mentioned for the counting task.449

B.5 Data Collection and Anonymization Procedures450

To ensure ethical use and privacy compliance, we carefully selected data from publicly available, open-451

access visual datasets that contain no personally identifiable information or sensitive content. Specifically,452

we constructed our benchmark using synthetic images generated from programmatically defined math453

equations and object icons sourced from the IconQA dataset (Lu et al., 2021). These icons depict generic,454

non-human items such as apples, bananas, and lemons, eliminating the risk of capturing real-world455

identities or offensive imagery. Furthermore, we manually reviewed a sample of the generated images to456

confirm the absence of inappropriate or sensitive elements.457

C Supplementary Results458

C.1 Case Study459

An example of an intermediate generation output is shown in Fig. 13. Upon closer inspection, we find that460

in most failure cases, the model incorrectly determines the coefficients during equation interpretation.461

C.2 Can VLMs Count?462

Fig. 14 shows the results of directly evaluating counting ability in the context of equation solving. In463

this setting, models are required to determine the coefficient of a variable by counting the number of464

repeated object icons. The corresponding prompt and template design are provided in App. B.4. As465

shown, all VLMs struggle significantly with this task under both direct and CoT prompting. Although466

CoT prompting provides a noticeable improvement across all models, the absolute performance remains467

far below acceptable levels, especially for the smaller open-source models. Notably, even advanced468

API-based models like GPT-4o and Gemini fail to reach consistent accuracy. This suggests that despite469

having strong recognition and reasoning abilities in isolation, VLMs are not yet capable of reliably470

counting visual instances, a key skill required for grounded symbolic reasoning. These results confirm471

that counting is the primary bottleneck limiting model performance on visual equation solving tasks.472

D Potential Risk473

Our study involves the generation of synthetic visual math equations using object icons, and evaluation is474

conducted using publicly available open-source models and commercially accessible API-based VLMs.475

As our work does not involve real-world data, human subjects, or sensitive content, we do not anticipate476

any ethical concerns or foreseeable risks associated with this research.477

E Use of AI Assistants in Research478

In our study, AI assistants were used sparingly and in accordance with ACL’s Policy on AI Writing479

Assistance. We utilized ChatGPT and Grammarly for basic paraphrasing and grammar checks, respectively.480

These tools were applied minimally to ensure the authenticity of our work and to adhere strictly to the481

regulatory standards set by ACL. Our use of these AI tools was focused, responsible, and aimed at482

supplementing rather than replacing human input and expertise in our research process.483
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+ = 33

+ = 43

Gemini 2.0 Flash Response

Step 1: Object Identification
apple = x
banana = y

Step 2: Operation Analysis (Wrong Counting)

6x+ 3y = 33

x+ 9y = 43

} Wrong count! The original equations are
7x+ 3y = 33

1x+ 10y = 43

Step 3: Calculation
Substitute into second equation:

x =
33− 3y

6

33− 3y

6
+ 9y = 43 ⇒ 33− 3y + 54y = 258 ⇒ 51y = 225 ⇒ y =

225

51
=

75

17
≈ 4.41

Now, solve for x:

x =
33− 3 · 75

17

6
=

33− 225
17

6
=

561−225
17

6
=

336

17 · 6 =
56

17
≈ 3.29

Trial with integer values:

y = 5 ⇒ x =
33− 15

6
= 3

Check:

6 · 3 + 3 · 5 = 33 (✓) 3 + 9 · 5 = 48 (X)

Alternative derivation by elimination:

6x+ 54y = 258 (eq2 × 6)(6x+ 54y)− (6x+ 3y) = 258− 33 ⇒ 51y = 225 ⇒ y =
75

17

x = 43− 9 · 75
17

=
731− 675

17
=

56

17

Step 4: Final Answer

apple =
56

17
banana =

75

17

Figure 13: Response of Gemini 2.0 Flash for the given query image (top) using the CoT prompting. Note the mistake made by
the model in coefficient counting step (bottom). This cascades to the model eventually giving the wrong answer. The correct
answer to this problem is apple (x) = 3, banana (y) = 4.
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Figure 14: Performance of VLMs on variable coefficient counting. Results show that all models have difficulty to count the
correct value of coefficients.
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