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Abstract

Despite strong performance in visual under-
standing and language-based reasoning, Vision-
Language Models (VLMs) struggle with tasks
requiring integrated perception and symbolic
computation. We study this limitation through
visual equation solving, where mathematical
equations are embedded in images, variables
are represented by object icons, and coefficients
must be inferred by counting. While VLMs
perform well on textual equations, they fail on
visually grounded counterparts. To understand
this gap, we decompose the task into coeffi-
cient counting and variable recognition, and
find that counting is the primary bottleneck,
even when recognition is accurate. We also
observe that composing recognition and rea-
soning introduces additional errors, highlight-
ing challenges in multi-step visual reasoning.
Finally, as equation complexity increases, sym-
bolic reasoning itself becomes a limiting factor.
These findings reveal key weaknesses in current
VLMs and point toward future improvements
in visually grounded mathematical reasoning.’

1 Introduction

Vision-Language Models (VLMs) have become
the dominant architecture for multimodal learn-
ing, powering applications such as visual question
answering (Ghosal et al., 2023), image caption-
ing (Yang et al., 2023), and multimodal reason-
ing (Li et al., 2024b). As agentic Al systems gain
traction, VLMs are increasingly expected to func-
tion as general-purpose perception-and-reasoning
modules for intelligent agents (Li et al., 2024b,a).
While recent models demonstrate strong capabil-
ities in both visual understanding and language-
based reasoning, truly agentic behavior demands
deeper integration, particularly in tasks involving
grounded mathematical reasoning (Shi et al., 2024).

'We will release our data and code after the review process.

In this work, we investigate this integration
through the lens of a seemingly simple but reveal-
ing task: visual equation solving. Given an image
containing a system of equations where variables

are depicted as object icons (e.g., % % + =
10), the goal is to infer coefficients by counting
icons and solve the equation accordingly. While
this task appears tractable for models proficient
in both visual and symbolic reasoning, our results
show that even the strongest VLMs fail to solve
such problems reliably. Why do VLMs struggle with
visual equation solving? To answer this, we decom-
pose the task into two core components: symbolic
equation solving and visual recognition.

We begin by testing symbolic reasoning in iso-
lation. When equations are presented in plain text
in the image, VLMs solve them almost perfectly,
confirming their mathematical reasoning and OCR
capabilities. Next, we evaluate whether variable
recognition is the bottleneck. Models are able to
correctly identify object-based variables with high
accuracy, suggesting recognition alone is not the
issue. We then turn to coefficient estimation, count-
ing the number of object instances. In hybrid set-
tings where variables are icons and coefficients are
numerals, or where both are visual, performance
drops significantly. Direct evaluation of object
counting further confirms that this is the key bot-
tleneck: VLMs often fail to infer quantities from
repeated visual elements.

Beyond counting, we observe that performance
degrades further when multiple abilities, such as
recognition and reasoning, must be composed. For
instance, even when a model can recognize vari-
ables and solve symbolic equations separately, solv-
ing equations with icon-based variables and nu-
meric coefficients proves difficult. This highlights
compositional reasoning as another major chal-
lenge for current VLMs. Finally, we evaluate sys-
tems of equations with three variables. Even when



equations are presented symbolically, performance
drops sharply, indicating that VLMs’ mathematical
reasoning is itself limited when faced with more
complex problem structures.

Taken together, our findings reveal key limita-
tions in current VLMs’ ability to integrate percep-
tion and symbolic reasoning. In particular, visual
counting and ability composition emerge as core
bottlenecks, alongside limited generalization in
symbolic math reasoning for complex tasks.

2 Preparation

We design a controlled evaluation setup to analyze
VLMs’ ability to perform visual equation solving.
This section describes our data generation process
and the experimental settings used for the following
model evaluation.

2.1 Data

We construct synthetic visual math problems based
on systems of linear equations, where variables are
depicted as object icons and coefficients must be
inferred from visual repetition. Each experiment is
conducted on a set of 1,000 constructed examples
and run once per model-setting configuration.

Equation Generation. We generate solvable sys-
tems of linear equations with unique integer solu-
tions using matrix algebra, ensuring invertibility.
To control visual complexity, coefficients are re-
stricted to positive integers no greater than 10, lim-
iting the number of repeated icons per image. All
equations involve only addition, avoiding negative
or fractional values. This setup ensures consistency
and interpretability across all samples.

Image Construction. To visually represent equa-
tions, we map each variable to an icon selected
from a curated set of 28 object types in the IconQA
dataset (Lu et al., 2021), including items such as
apples, bananas, flowers, and footballs. The coeffi-
cient of each variable is represented by repeating
the corresponding icon the appropriate number of
times. This creates visually grounded equations
that require both recognition and symbolic reason-
ing. An example is shown in Fig. 1, and the full
list of icons is provided in App. B.2.

2.2 Settings

Model List. We evaluate both proprietary and
open-source VLMs. The former include GPT-
40 (Hurst et al., 2024) and Gemini 2.0 Flash (Team
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Figure 1: An example of our generated visual equations (i.e.,
systems of 2 linear equations with 2-variables).

=33

et al., 2024), accessed via API. The latter consist
of four models from the QwenVL-2.5 family (Bai
et al., 2023), ranging from 3B to 72B parameters.
To ensure fairness, all models are evaluated without
batching, avoiding potential artifacts from cached
context or batch-level optimizations. More details
about the model can be found in App. B.3.

Prompting Strategy. We apply two prompting
strategies: direct zero-shot prompting (Direct) and
two-step chain-of-thought (CoT) prompting. In the
CoT setting, the model is first asked to extract the
equation in free-form, then solve it in a second
step. This setup encourages intermediate reasoning
before committing to an answer. Both strategies
are applied consistently across all models. Prompt
templates and examples are provided in App. B.4.

Metrics. We evaluate accuracy by exact match-
ing between the model-predicted variable values
and the ground truth. We expect models to correctly
associate each object type with its corresponding
value and solve the equation.

3 Evaluation

We evaluate the mathematical reasoning capabili-
ties of VLMs through the task of visual equation
solving. Specifically, we investigate two research
questions: (1) Can VLMs solve equations when
they are visually grounded? (2) If not, what spe-
cific limitations hinder their performance?

3.1 Can VLMs Solve Equations?

We begin our evaluation on solving systems of lin-
ear equations in two formats: (1) a fully visual
format, where both variables and coefficients are
depicted visually (Fig. 1), and (2) a symbolic for-
mat, where equations are rendered as text within
the image (Fig. 3). This comparison can isolate the
impact of visual understanding on performance.

3.1.1 Visual Equation

Experiment Preparation. We use a default set-
ting of two-variable linear equations with integer
solutions. In each equation, variables are repre-
sented by object icons, and coefficients are con-



veyed by the number of repeated instances of each
icon. This setup tests whether VLMs can integrate
visual perception and symbolic reasoning.
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Figure 2: Performance of VLMs on visual equation solving.
Results show that all models consistently fail to solve the
equations correctly across both settings.

Results and Analysis. As shown in Fig. 2,
all evaluated models, both proprietary and open-
source, consistently fail to solve equations in visual
form (overall accuracy < 12%), despite their strong
performance on other math and reasoning bench-
marks. To rule out flaws in the evaluation setup,
we include qualitative model outputs in App. C.1.
These results raise a key question: Is the failure due
to a lack of symbolic math reasoning, or a difficulty
in interpreting equations visually?

3.1.2 Symbolic Equation

7a + 3b = 33:1a + 10b = 43

Figure 3: An example of a system of linear equations repre-
sented in symbolic (textual) form.

Experiment Preparation. To isolate symbolic
reasoning ability, we present the same equations
in textual form within images (Fig. 3). If models
succeed here, it would suggest that the core issue
lies in interpreting the visual input, not solving the
equations themselves.

Results and Analysis. Fig. 4 shows that all mod-
els, including the smallest Qwen-3B, achieve near-
perfect accuracy on symbolic equations (accuracy
> 97% with the CoT prompting). This confirms
two things: (1) VLMs possess the required math-
ematical reasoning capabilities, and (2) they have
strong OCR skills for extracting text from images.
These findings indicate that the failure in the visual
setting stems from difficulties in interpreting and
grounding visual equations.
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Figure 4: Performance of VLMs on symbolic equation solv-
ing. Results show that all models could solve the equations
perfectly across settings.

3.2 Visual-Symbolic Gap Analysis

To understand the source of the performance gap
between visual and symbolic settings, we decom-
pose visual equation solving into two core sub-
skills: (1) recognizing variables from icons, and
(2) estimating coefficients by counting repeated vi-
sual instances. This allows us to evaluate whether
recognition or counting is the main bottleneck, or
whether it arises from composing the two abilities.

3.2.1 Coefficient Counting

7@+3 =33;1©+10 = 43

Figure 5: An example of our generated visual-symbolic equa-
tion, where the variable is denoted by icon but the coefficient
is represented by symbolic number.

Experiment Preparation. We design a hybrid
variant called visual-symbolic equations (Fig. 5),
where variables are represented as icons, but co-
efficients are given as numeric text. This setting
removes the need for counting while preserving the
need for icon recognition and symbolic reasoning.
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Figure 6: Performance of VLMs on visual-symbolic equation
solving, where the coefficients are represented by symbolic
numbers and variables are denoted by icons. Results show that
all models could solve most systems of equations correctly.

Results and Analysis. As shown in Fig. 6, VLMs
perform better in this setting than in the fully visual
case (with overall accuracy as 64.45%), suggesting



that coefficient counting is a major obstacle. To
further confirm this, we directly evaluate models
on isolated counting tasks (see App. C.2). These
results clearly identify counting as a primary bot-
tleneck in visual equation solving.

3.2.2 Variable Recognition

Experiment Preparation. To assess whether
variable recognition contributes to the performance
gap, we evaluate the ability to identify icon-based
variables independently of counting. This task iso-
lates visual recognition from symbolic reasoning.
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Figure 7: Accuracy on variable coefficient counting. Results
show that both Qwen-7B and Gemini (under the CoT prompt)
have difficulty to count the correct value of coefficients.

Results and Analysis. Fig. 7 shows that both
Qwen-7B and Gemini achieve high accuracy in rec-
ognizing variables from icons (with accuracy above
90%), with performance comparable to symbolic
settings. Details of prompt design are in App. B.4.
This indicates that recognition itself is not a ma-
jor limitation. Instead, the remaining gap between
symbolic and visual-symbolic settings is likely due
to task composition, i.e., the challenge of integrat-
ing recognition with downstream reasoning.

3.3 Three-Variable Equation

To assess the limitations of VLMs under increased
mathematical complexity, we extend our evalua-
tion to systems of three linear equations with three
variables, which demand more advanced symbolic
reasoning and variable tracking than the simpler
two-variable case.

Experiment Preparation. We generate equa-
tions in the same formats as in the default setting:
symbolic, visual-symbolic, and fully visual. This
allows us to assess whether performance degrada-
tion stems from visual perception (i.e., recognition
and counting) or from limitations in mathematical
reasoning. We report the results under the CoT
prompt as it achieves better performance.
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Figure 8: Overall accuracy across 6 models on solving equa-
tions with 2 and 3 variables. Results show that the bottleneck
shift from vision side to the math reasoning.

Results and Analysis. As shown in Fig. 8, model
performance drops significantly when moving from
two-variable to three-variable systems (accuracy
drops from 98% to 70% for the symbolic setting,
and from 64% to 35% for the visual-symbolic set-
ting). While the visual bottleneck remains largely
unchanged, the additional complexity leads to a
clear decline in symbolic reasoning. This indicates
that, beyond perceptual limitations, current VLMs
lack robust mathematical capabilities to solve more
complex equation systems.

3.4 Takeaways.

Our experiments results show that VLMs perform
well on symbolic equations but consistently fail on
visual ones. The main bottleneck is visual count-
ing, while variable recognition is largely accurate.
However, composing recognition with reasoning in-
troduces significant errors. As equation complexity
increases, even symbolic reasoning begins to falter,
revealing limits in the models’ understanding.

4 Discussion

This paper investigates the reasoning limitations
of VLMs through visual equation solving, a task
that requires combining perception, counting, and
symbolic computation. While VLMs perform well
on symbolic equations and can reliably recognize
visual variables, they fail when coefficients must
be inferred from repeated visual instances. Our
analysis identifies counting and ability composition
as key bottlenecks, with performance degrading
further as equation complexity increases.

These results highlight gaps in both visual
grounding and symbolic reasoning. Addressing
them may require new training objectives, compo-
sitional architectures, or integration with external
tools. Our benchmark provides a diagnostic lens for
understanding and improving VLMs on grounded,
multi-step reasoning tasks.



Limitations

While our study provides insights into the mathe-
matical reasoning capabilities of VLMs, it is sub-
ject to a few limitations. First, our evaluation fo-
cuses primarily on linear equations with integer so-
Iutions and addition-only operators. Although this
setup allows controlled analysis, it does not capture
the full spectrum of mathematical reasoning, such
as non-linear or multi-operator problems. Second,
while we isolate key sub-skills like counting and
recognition, our diagnostic tasks are still synthetic
and could not fully reflect real-world scenarios in-
volving noisy or diverse visual contexts. Finally,
we rely on prompting-based evaluation, which may
under-represent the full potential of models fine-
tuned for structured reasoning or equipped with
external tools.
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A Related Work

Most existing benchmarks for evaluating VLMs treat perception and reasoning as separate capabilities,
rather than testing them as a sequential, integrated process. Recognition-focused datasets such as
VQA (Antol et al., 2015), GQA (Hudson and Manning, 2019), and CLEVR (Johnson et al., 2017) involve
only minimal or trivial arithmetic, which current vision backbones can typically solve with ease. More
recent efforts like MathVista (Lu et al., 2024) and DynaMath (Zhang et al., 2024) introduce a wider
range of visual math problems, but they do not specifically evaluate whether models can solve algebraic
equations where symbolic variables and coefficients are visually embedded. The ability to ground a visual
system of equations and perform multi-step reasoning over visual cues remains largely untested.

B Details of Experiment Settings

B.1 Data License

All data used in this study is released under the CC BY 4.0 license. Each generated image is paired with a
corresponding question that involves solving one or more equations, along with the ground-truth answers.
Users are free to share, adapt, and build upon the dataset, provided appropriate credit is given.

B.2 Icon List

All the 28 icons that we use are listed below. For each icon, we use only one image to denote the object.
Specifically, we select 28 icons labels randomly from the IconQA dataset, and for each label we randomly
select one image icon. The icons are: apple, palm_tree, strawberry, egg, clover, donut, mushroom, acorn,
lemon, football, flower, sheep, panda, muffin, apricot, eggplant, broccoli, rabbit, banana, rubber_duck,
horse, fish, tomato, candy, ice_cream_cone, cake, orange, carrot.

B.3 Model Usage

We conduct inference using four NVIDIA H100 GPUs for each open-source VLM, including Qwen-3B,
Qwen-7B, Qwen-32B, and Qwen-72B. All models are loaded using Hugging Face’s Transformers library
with automatic mixed-precision (torch.float16 or bfloat16) and memory-efficient device_map="auto”
configurations. For each model, we adopt a consistent prompting strategy that combines images and
text within structured chat templates. Inputs are tokenized and batched via model-specific processors.
Inference is performed on individual image-equation instances using a maximum token length of 2048.
We evaluate model outputs using an exact match criterion, comparing extracted variable assignments
against ground-truth coefficients. To ensure fairness, we avoid prompt tuning and caching, and run each
model independently on the same test set with uniform I/O and decoding procedures. Inference time
ranges from 6 to 28 hours depending on model size, with Qwen-72B requiring the longest runtime.

B.4 Prompt

Direct Prompting. The direct prompt expects models to produce structured outputs in a single step. In
our experiments, omitting object labels from the prompt led to poor generation quality, whereas including
them significantly improved the reliability and evaluability of the outputs. The prompt template and an
example are shown in Fig. 9.

Direct Prompt

You are given an equation image. Identify all icon types present in the image and determine their corresponding
numerical values. Return only the icon type assignments in the format: icon_type = number. For example: apple =
5, ice_cream_cone = 3

Do not include any other text in your response. Only the following icon types are allowed: apple, palm_tree,
strawberry, egg, clover, donut, mushroom, acorn, lemon, football, flower, sheep, panda,
muffin, apricot, eggplant, broccoli, rabbit, banana, rubber_duck, horse, fish, tomato, candy,
ice_cream_cone, cake, orange, carrot.

Figure 9: Direct Prompting Template and Example. The same prompt is used across all models for consistency.



Two-Step CoT Prompting. To encourage deeper reasoning while avoiding overly rigid output structures,
we adopt a two-step chain-of-thought (CoT) prompting strategy. In the first turn, the model is prompted
to freely analyze and solve the problem in its own words. In the second turn, we provide both the
original prompt and the model’s response, and ask it to extract the final answer. This separation between
reasoning and answer extraction allows the model to engage in more flexible, interpretable analysis before
committing to a structured output. The prompt used for the object-encoded benchmark is shown in Fig. 10.

Step 1: Analysis Prompt

Look at this equation image and identify all icon
types and their corresponding values. Identify the
objects, determine the mathematical operations, and
solve the equation step-by-step.

Only use the following allowed objects: apple,
palm_tree, strawberry, egg, clover, donut,
mushroom, acorn, lemon, football, flower,
sheep, panda, muffin, apricot, eggplant,
broccoli, rabbit, banana, rubber_duck,
horse, fish, tomato, candy, ice_cream_cone,
cake, orange, carrot.

\

Step 2: Final Answer Prompt

Given the analysis: {Look at this equation image and
identify all icon types and their corresponding val-
ues. Identify the objects, determine the mathematical
operations, and solve the equation step-by-step...},
provide the final value of each identified object.
Respond only in the format: object = value.

For example: flower = 5, carrot = 3
Important: Do not include any other text. Only use
allowed object names.

Figure 10: CoT Prompting Strategy. The left box initiates free-form reasoning, while the right box extracts the final answers

based on the initial prompt and generated response.

Counting Prompting (CoT). An example input and prompt used for two-step prompting is shown in
Fig. 11. This prompt is adapted from the CoT strategy and tailored for counting questions involving a

single equation, rather than a full system of equations.

Step 1: Analysis Prompt

Look at this image and identify the count of
each object. Provide your analysis step by step
and ensure all details are clear. Only use the
following allowed objects: apple, palm_tree,
strawberry, egg, clover, donut, mushroom,
acorn, lemon, football, flower, sheep,
panda, muffin, apricot, eggplant, broccoli,
rabbit, banana, rubber_duck, horse, fish,
tomato, candy, ice_cream_cone, cake,
orange, carrot.

Step 2: Final Answer Prompt

Now extract the final answer in the format: object
= number. For example: apple = 5,
ice_cream_cone = 3.

Do not include additional text. Only use allowed
object names.

Figure 11: Two-step prompting strategy for solving visual object counting task.

Step 1: Analysis Prompt

Look at this image and identify the type of each
object. Provide your analysis step by step and
ensure all details are clear. Only use the fol-
lowing allowed objects: apple, palm_tree,
strawberry, egg, clover, donut, mushroom,
acorn, lemon, football, flower, sheep,
panda, muffin, apricot, eggplant, broccoli,
rabbit, banana, rubber_duck, horse, fish,
tomato, candy, ice_cream_cone, cake,
orange, carrot.

Step 2: Final Answer Prompt

Now extract the final answer in the format: object
= number. For example: apple, ice_cream_cone.
Do not include additional text. Only use allowed
object names.

Figure 12: Two-step prompting strategy for the object-type recognition task.

Recognition Prompting (CoT). An example input and prompt used for two-step prompting is shown in
Fig. 11. This prompt is adapted from the CoT strategy and tailored for recognizing the object-type present



in the image. We utilize the same single equation dataset as mentioned for the counting task.

B.5 Data Collection and Anonymization Procedures

To ensure ethical use and privacy compliance, we carefully selected data from publicly available, open-
access visual datasets that contain no personally identifiable information or sensitive content. Specifically,
we constructed our benchmark using synthetic images generated from programmatically defined math
equations and object icons sourced from the IconQA dataset (Lu et al., 2021). These icons depict generic,
non-human items such as apples, bananas, and lemons, eliminating the risk of capturing real-world
identities or offensive imagery. Furthermore, we manually reviewed a sample of the generated images to
confirm the absence of inappropriate or sensitive elements.

C Supplementary Results
C.1 Case Study

An example of an intermediate generation output is shown in Fig. 13. Upon closer inspection, we find that
in most failure cases, the model incorrectly determines the coefficients during equation interpretation.

C.2 Can VLMs Count?

Fig. 14 shows the results of directly evaluating counting ability in the context of equation solving. In
this setting, models are required to determine the coefficient of a variable by counting the number of
repeated object icons. The corresponding prompt and template design are provided in App. B.4. As
shown, all VLMs struggle significantly with this task under both direct and CoT prompting. Although
CoT prompting provides a noticeable improvement across all models, the absolute performance remains
far below acceptable levels, especially for the smaller open-source models. Notably, even advanced
API-based models like GPT-40 and Gemini fail to reach consistent accuracy. This suggests that despite
having strong recognition and reasoning abilities in isolation, VLMs are not yet capable of reliably
counting visual instances, a key skill required for grounded symbolic reasoning. These results confirm
that counting is the primary bottleneck limiting model performance on visual equation solving tasks.

D Potential Risk

Our study involves the generation of synthetic visual math equations using object icons, and evaluation is
conducted using publicly available open-source models and commercially accessible API-based VLMs.
As our work does not involve real-world data, human subjects, or sensitive content, we do not anticipate
any ethical concerns or foreseeable risks associated with this research.

E Use of AI Assistants in Research

In our study, Al assistants were used sparingly and in accordance with ACL’s Policy on Al Writing
Assistance. We utilized ChatGPT and Grammarly for basic paraphrasing and grammar checks, respectively.
These tools were applied minimally to ensure the authenticity of our work and to adhere strictly to the
regulatory standards set by ACL. Our use of these Al tools was focused, responsible, and aimed at
supplementing rather than replacing human input and expertise in our research process.
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Gemini 2.0 Flash Response

Step 1: Object Identification
apple =z
banana = y

Step 2: Operation Analysis (Wrong Counting)

Wrong count! The original equations are

6 3y =33
w5y Tz + 3y = 33
z+ 9y =43
lx + 10y = 43
Step 3: Calculation
Substitute into second equation:
_33-3y
T
33 -3 225 75
6 y—|—9y:43:>33—3y+54y:258¢51y:225:>y:H:ﬁz&zﬂ
Now, solve for x:
75 225 561—225
I:33—3-1—7:33—T7: = :336:@z329
6 6 6 17-6 17 '
Trial with integer values:
33-15
y=5=>zx= 5 =3

Check:

6-3+3-5=33 (V) 3+9-5=48 (X)
Alternative derivation by elimination:

75

6x + 54y = 258 (eq2 x 6)(6x + 54y) — (6x + 3y) = 258 — 33 = 51y =225 = y = 17

75 731 — 675 56
e=B-9 =T =1

Step 4: Final Answer

aj le—ﬁ banana—E
T T 1

Figure 13: Response of Gemini 2.0 Flash for the given query image (top) using the CoT prompting. Note the mistake made by
the model in coefficient counting step (bottom). This cascades to the model eventually giving the wrong answer. The correct
answer to this problem is apple (z) = 3, banana (y) = 4.
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Figure 14: Performance of VLMs on variable coefficient counting. Results show that all models have difficulty to count the
correct value of coefficients.
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