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ABSTRACT

Offline reinforcement learning suffers from extrapolation error in the Q-value
function. In addition, most methods enforce a consistent constraint on the policy
during training, regardless of its out-of-distribution level. We propose pessimistic
policy iteration, which guarantees that the Q-value error is small under the trained
policy’s distribution and bounds the sub-optimality gap of the trained policy’s
value function. At the same time, pessimistic policy iteration’s core component
is a horizon-flexible uncertainty quantifier, which could set a constraint accord-
ing to regional uncertainty. The empirical study shows that the proposed method
could boost the performance of baseline methods and is robust to the scale of the
constraint. Also, a flexible horizon of uncertainty is necessary to identify out-of-
distribution regions.

1 INTRODUCTION

Offline reinforcement learning (RL) is promising to be applied to medical treatment (Gottesman
et al., 2018; Wang et al., 2018), advertisement systems (Chen et al., 2019), and autonomous driv-
ing (Sallab et al., 2017; Kendall et al., 2019), due to its safety and the availability of large datasets.

However, offline RL suffers from out-of-distribution (OOD) issue heavily (Fujimoto et al., 2019).
From the viewpoint of restriction, recent attempts to mitigate OOD issue can be divided into two
branches: policy-restriction methods (Wu et al., 2019; Kumar et al., 2019) and Q-restriction meth-
ods (Kumar et al., 2020; Cheng et al., 2022). The former regularize the trained policy to be close to
the behavior policy while the latter penalize OOD actions’ Q-values.

Although current methods have obtained desirable performance, several issues have not been tack-
led yet. The most important challenge is that the in-distribution constraints still cannot eliminate
the error in Q-value estimation introduced by iterative off-policy evaluation (Brandfonbrener et al.,
2021). The error could be controlled by enforcing a strong constraint, but it might limit the poten-
tial to discover the optimal policy hidden in the dataset. IQL (Kostrikov et al., 2022) and One-step
RL (Brandfonbrener et al., 2021) could avoid extrapolation error by utilizing in-sample learning
without querying the values of unseen actions in the dataset. However, in-sample learning might
also limit the policy’s generalization ability. We expect that the target action in Bellman equation
is still produced by the trained policy, thus enjoying generalization benefit. Under this situation, we
hope that the Q-value error is small under the trained policy’s distribution.

Another issue is that, most methods enforce a consistent constraint on the policy, regardless of its
OOD level. Uncertainty estimation has been introduced to deal with the issue. Among policy-
restriction methods, UWAC (Wu et al., 2021) utilizes MC-dropout (Gal & Ghahramani, 2016) to
estimate the uncertainty of a given state-action pair. However, the uncertainty estimator only focuses
on the local transition’s uncertainty while ignoring the future trajectory’s uncertainty, dubbed global
uncertainty. Taking Fig.1 as an example, the black and blue regions denote OOD and in-distribution
regions, respectively. The aim of the agent is to move from left to right. In Fig.1(a), the local
uncertainty is identical for the two orange points, but the agent should be more conservative at the
left point than at the right one. So a global uncertainty estimator is necessary. However, there is still a
lack of study on global uncertainty for policy-restriction methods. For Q-restriction methods, SAC-
N (An et al., 2021), MOPO (Yu et al., 2020), and PBRL (Bai et al., 2022) take the local uncertainty as
an intrinsic reward explicitly or implicitly and embed it into Q-value. Global uncertainty is learned
but it must share the same horizon with the Q-value evaluation, which is close to 1 in general. The
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Figure 1: (a) demonstrates of the defect of local uncertainty. (b) and (c) show the defect of using a
large horizon for global uncertainty.

large horizon might make the policy think too far ahead in the future, ignoring dangers nearby.
The orange points in Fig.1(b) and Fig.1(c) have the same global uncertainty when using Q-value’s
discount factor. However, the agent at the orange point in Fig.1(b) should be more conservative than
in Fig.1(c). Thus, a global uncertainty estimator with a flexible horizon is required.

In this paper, we analyze error propagation for policy iteration in offline RL and propose pessimistic
policy iteration based on a global uncertainty quantifier to bound the sub-optimality gap of the
trained policy’s value function. The global uncertainty is estimated independently in Bellman-
style to allow uncertainty propagation. We instantiate pessimistic policy iteration on a policy-
restriction baseline to update the policy according to uncertainty. Also, Q-restriction methods such
as CQL (Kumar et al., 2020) could be augmented with global uncertainty to enable a malleable
penalty. In addition, the global uncertainty estimator can have a different horizon with Q-value
evaluation, which could have flexible attention in the time domain to allow regional uncertainty.
We show that a smaller horizon will also bring a tighter generalization bound. The experiment on
“Go Through the Forest” shows that global uncertainty helps identify OOD regions, and choosing a
moderate horizon is important. The experimental results demonstrate that our proposed method out-
performs baselines on most D4RL tasks (Fu et al., 2020) and is robust to the scale of the constraint.

2 RELATED WORKS

Offline RL. Offline RL methods aim to learn a policy when presented with a static dataset (Ernst
et al., 2005; Lange et al., 2012; Levine et al., 2020). In this setting, standard off-policy meth-
ods (Mnih et al., 2015; Lillicrap et al., 2015) generally exhibit undesirable performance since they
have no chance to correct the OOD actions’ Q-values (Fujimoto et al., 2019). Recently, various
methods have been proposed to tackle the OOD issue (Agarwal et al., 2020; Buckman et al., 2020;
Ghasemipour et al., 2021). BEAR (Kumar et al., 2019) allows the trained policy to deviate from
the dataset within a tolerance threshold and introduces a support-set constraint. CQL (Kumar et al.,
2020) learns a lower bound for the policy’s value function by minimizing OOD actions’ Q-values.
Many works learn the policy according to policy iteration (Fujimoto & Gu, 2021; Wu et al., 2019)
but there is still a lack of analysis on the error propagation of policy iteration for offline RL. Our
method explores the sub-optimality gap for offline policy iteration and restricts the Q-value error un-
der the trained policy’s distribution. On the other hand, many previous methods keep the pessimism
level to be consistent during training and ignore the OOD degree of the policy, which might hurt
the policy’s generalization ability. By contrast, our method adjusts the constraint according to the
policy’s uncertainty, which is adaptive and could discover well-behaved actions near the dataset.

Uncertainty Estimation. Our proposed method is in line with uncertainty estimation for offline
RL. UWAC (Wu et al., 2021) takes advantage of MC-dropout to estimate local uncertainty and
reweights the RL objective with uncertainty. But UWAC only focuses on the current transition and
ignores the future trajectory’s uncertainty. SAC-N (An et al., 2021) learns hundreds of Q-networks
and takes the minimum of the ensemble as the Bellman target to penalize the OOD actions. It
implicitly calculates global uncertainty and embeds it into Q-value. It requires a large number of
Q-value networks, which is computationally inefficient. PBRL (Bai et al., 2022) takes the standard
deviation of a Q-value ensemble as a penalty for Q-value estimation. For SAC-N and PBRL, the
global uncertainty evaluation is mixed with the Q-value estimation and shares the same horizon
with the latter task, which limits its flexibility and cannot be applied to policy-restriction methods.
Our proposed method learns independent global uncertainty, which could be introduced to policy-
restriction methods and have a different horizon with the Q-value evaluation for flexible attention.
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3 BACKGROUND

RL. We consider the standard reinforcement learning setting, which is always formalized with a
Markov decision process M , with the state space S, the action space A, the transition function P , the
reward function R, and the discount factor γ (Sutton & Barto, 2018). In reinforcement learning, an
agent starts from a state s and executes an action a at each time step. By interacting with the environ-
ment, the agent observes a next state s′ and receives a reward r. The aim of reinforcement learning
is to learn a policy π to receive accumulative rewards as much as possible:maxπ Eπ[

∑∞
t=1 γ

t−1rt].

When an agent takes an action a at state s and following a policy π, the expectation of the cumulative
rewards is defined as Q-value function: Qπ(s, a) = Eπ[

∑∞
t=1 γ

t−1rt|s, a]. The value function of a
given state s is defined as V π(s) = Ea∼π[Q(s, a)]. In general, Q̂ and V̂ are used to denote the es-
timated Q-value function and value function, respectively. The Q-learning algorithm updates the Q-
value function according to Bellman operator T as: T Q(s, a) := r+γEs′∼P (·|s,a)[maxa′ Q(s′, a′)].

Compared with Q-learning methods, actor-critic methods employ a stochastic policy π(a|s) or a
deterministic policy π(s) to sample actions and update via policy iteration. We use Q(s, π) to denote
Ea∼π(·|s)Q(s, a) when the policy is stochastic.The update rule of Q-value evaluation is T πQ =
r+ γPπQ, where PπQ is the expectation of Q-value with respect to transition matrix P and policy
π. Since it is impossible to enumerate all states and actions, the Q-value function is generally
updated using an empirical Bellman operator T̂ π . Recently, DDPG (Lillicrap et al., 2016) employs
deep neural networks to approximate the true Q-value function and a deterministic policy. Based on
the neural network, the Q-value loss function is defined as:

Es,a,r,s′∼D[Q(s, a; θ)− (r + γ(Q(s′, π(s′; ζ); θ))]2, (1)

where D is a replay buffer containing the collected samples, θ is the parameter of the Q-value
network, and ζ is the parameter of the policy. In this manner, the policy can be updated by:

max
ζ

Q(s, π(s; ζ); θ). (2)

Offline RL. Offline RL aims to learn a policy given a static dataset D without interaction with the
environment. The behavior policy is denoted as πβ . The standard reinforcement learning algorithms
might derive a policy that generates OOD actions when applied in this setting. They have no chance
to correct the Q-values of these actions, thus leading to failure. CQL (Kumar et al., 2020) proposes
to minimize the Q-values of OOD state-action pairs. The Q-network is updated as:

min
Q

αEs∼D[Q(s, π)] + Es,a,r,s′∼D

[(
Q(s, a)− T̂ πQ(s, a)

)2
]
,

where α is a hyperparameter for controlling the degree of conservativeness with respect to the Bell-
man update. TD3BC (Fujimoto & Gu, 2021) builds on top of TD3 (Fujimoto et al., 2018). It mainly
focuses on plugging a behavior cloning regularization term into the policy training in TD3. The
objective of the policy is

max
π

E(s,a)∼D
[
Q(s, π(s))− ν(π(s)− a)2

]
,

where the behavior cloning scale ν is used to make a balance between reinforcement learning and
imitation learning objectives.

4 PESSIMISTIC POLICY ITERATION

For offline RL, some works analyze and discuss value iteration, such as BEAR (Kumar et al., 2019)
and PEVI (Jin et al., 2021). However, for continuous action space, it is infeasible to apply value
iteration since enumerating all actions and selecting the target action which has the highest Q-value
are challenging. Generally, a policy is always introduced to this setting, such as TD3 (Fujimoto et al.,
2018) and SAC (Haarnoja et al., 2018), which conduct policy iteration. During policy iteration, off-
policy evaluation will introduce value error due to distribution shift, and policy improvement might
choose overestimated actions. In offline RL, the Q-value error will increase during training unless
a strong policy constraint is enforced (Brandfonbrener et al., 2021). But a strong constraint might
hurt the policy’s generalization ability.
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First, we discuss general policy iteration within Π: maxπ∈Π Ea∼π(·|s)Q(s, a), where Π is
a set of constrained policies. In offline RL, one can specify Π as the policy set: Π =
{π | π(a|s) = 0 whenever πβ(a|s) < ϵ}. We denote the optimal policy in Π as π#. The

distribution-constrained Bellman operator (Kumar et al., 2019) is defined as T ΠQ(s, a)
def
=

E
[
R(s, a) + γEP (s′|s,a) [maxπ∈Π EπQ(s′, a′)]

]
, and the sub-optimality constant is defined as

α(Π) = maxs,a
∣∣T ΠQ∗(s, a)− T Q∗(s, a)

∣∣.
Theorem 1. Execute policy evaluation with T π and policy improvement with
maxπ∈Π Ea∼π(·|s)Q(s, a). For any state distribution µ, assume that we have
||V k − V πk ||µk

≤ δ, where Vk is the estimated value function of the k-th
policy iteration and V πk is the true value function of policy πk, and µk =

µ (1−γ)2

2

(
I − γPπ#

)−1 [
Pπk+1 (I − γPπk+1)

−1
(I + γPπk) + Pπ#

]
. It follows that

lim
k→∞

||V k − V ∗||µ ≤
1

1− γ
α(Π) +

2γδ

(1− γ)2
. (3)

The sub-optimality is bounded by α(Π) and δ, where α(Π) denotes the distance between the optimal
policy and the constrained policy set Π and δ is the error brought by policy evaluation. Note that
different from BEAR (Kumar et al., 2019), which considers value iteration, Theorem 1 bounds the
error between the value function of the trained policy and the optimal policy for policy iteration.

Figure 2: Value error |Qk(s, a)−Qπk(s, a)|when
a weak constraint is applied. PI denotes general
policy iteration and PPI denotes pessimistic policy
iteration.

The sub-optimality gap in Eq.3 depends on the
bound of V k − V πk under distribution µk. For
commonly used methods, the Q-value function
is directly adopted to conduct policy evalua-
tion instead of a value function. The objective
can be approximately translated into bounding
Es∼µk,a∼πk(·|s)|Qk(s, a) − Qπk(s, a)|, which
is unknown and might be large.

We introduce the following definition for pol-
icy evaluation which is related to the theoretical
study on provable efficiency in offline RL.

Definition 2. (ξ-Uncertainty Quantifier (Jin
et al., 2021)). For a penalty function ω(·, ·) :

S×A→ R, if it holds that P (|T πQ̂(s, a)− T̂ πQ̂(s, a)| ≤ ω(s, a)) ≥ 1− ξ for all (s, a) ∈ S×A,
where Q̂ is an estimated action-value function, T π is the Bellman operator, and T̂ π is the empirical
Bellman operator, then we say the penalty ω is a ξ-uncertainty quantifier.

We then define the global ξ-uncertainty quantifier for a given policy π which satisfies
Ωπ(s, a) = ω(s, a) + γEs′ ∼P (·|s,a)Ea′∼π(·|s′)Ω(s

′, a′). It represents the cumulative error for
approximated Q-function introduced by the empirical Bellman update. As an alternative to
Es∼µk,a∼πk(·|s)|Qk(s, a)−Qπk(s, a)|, we bound a surrogate objective Es∼µk,a∼π′

k(·|s)|Q
k(s, a)−

Qπk(s, a)|, where π′
k(a|s) = πk(a|s)

Ωπk (s,a)Z(s) , and Z(s) is the normalization term: Z(s) =∫ πk(a|s)
Ωπk (s,a)da. For the surrogate objective, the following result holds,

Theorem 3. Assume that there exists a constant Z such that for all s, Z(s) ≥ Z. For the penalty
function which is a 0-uncertainty quantifier, the following result holds,

Es∼µk,a∼π′
k(·|s)|Q

k(s, a)−Qπk(s, a)| ≤ 1

Z
. (4)

Theorem 3 shows that for the policy distribution weighted by the global uncertainty quantifier, we
could bound the gap between the empirical Q-value function and the true expected Q-value function,
which approximates δ in Theorem 1.

We now introduce pessimistic policy iteration, which reformulates the policy improvement step
in general policy iteration. The objective translates into maxπ∈Π Ea∼π(·|s)

Q(s,a)
Ωπ(s,a) . It expects the
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policy to have a high expected return and low accumulative Q-value error. Fig.2 shows that the Q-
value error for pessimistic policy iteration is far smaller than policy iteration when a weak constraint
is applied. It indicates that pessimistic policy iteration relies less on strong constraints and might
have better generalization ability. Note that it requires the value of |T πQ̂(s, a)−T̂ πQ̂(s, a)|, which
is unavailable. In the following section, we introduce an approximation to Ω(s, a) and propose a
practical implementation of our method.

5 GLOBAL UNCERTAINTY ESTIMATION

In this section, we introduce a global uncertainty estimator corresponding to Ω(s, a). Then we incor-
porate it into a typical policy-restriction method to realize pessimistic policy iteration and introduce
it to a Q-restriction method in the next section.

5.1 ESTIMATION OF GLOBAL UNCERTAINTY QUANTIFIER

For a linear MDP whose transition matrix and reward function are linear, it has been

shown that ω(s, a) = β
[
ϕ (s, a)

⊤
Λ−1ϕ (s, a)

]1/2
is a ξ-uncertainty quantifier, where Λ =∑

i=1 ϕ (si, ai)ϕ (si, ai)
⊤
+ η · I, ϕ(·, ·) is the feature function for states and actions, and β is

a constant (Jin et al., 2021).

Now we estimate ω(s, a) by maintaining N Q-networks and define the local uncertainty of (s, a) as

u(s, a) = std(Qensemble(s, a)) =

√√√√ 1

N

N∑
i=1

(Qi(s, a)− Q̄(s, a))2, (5)

where Q̄(s, a) = 1
N

∑N
i=1 Qi(s, a). We point out that βu(s, a) is a parametric estimation to

β
[
ϕ (s, a)

⊤
Λ−1ϕ (s, a)

]1/2
in Linear MDP (Bai et al., 2022). In addition, Q-ensemble produces

desirable uncertainty estimation (Ciosek et al., 2019). Regarding practical uncertainty estimation,
another choice is to replace the Q-ensemble with a dynamics ensemble (Yu et al., 2020). However,
the dynamics ensemble will consider unimportant states, which might be task-irrelevant.

Then we define the global uncertainty of (s, a) as U(s, a), which is updated by the Bellman operator,

U(s, a)← u(s, a) + λEs′∼P (·|s,a)Ea′∼π(·|s′)U(s′, a′), (6)

where λ is the discount factor for uncertainty estimation. We denote the true expected value of
uncertainty for policy π as Uπ,λ(s, a). When λ = γ, it is actually an estimation of Ω(s, a).

5.2 VIEW OF UNCERTAINTY ESTIMATION AND HORIZON

Previous works also utilize uncertainty estimation for offline RL (Wu et al., 2021; An et al., 2021).
Unlike these methods, our method separates uncertainty learning from Q-value evaluation. In this
manner, uncertainty learning can have a different horizon with Q-value evaluation, which is impos-
sible for previous works in offline RL.

We have shown that choosing λ = γ could bound the sub-optimality gap. However, a smaller λ cor-
responds to regional uncertainty and could identify the risk of executing OOD actions in recent steps
because nearby OOD actions need to be corrected immediately. Otherwise, the policy might diverge
from the dataset. Note that U(s, a) differs from Uncertainty Bellman Equation (O’Donoghue et al.,
2018) for exploration, which calculates the posterior variance for Q-value function and has a hori-
zon γ2. Different from online RL, which requires consistent exploration to reach remote regions
in the future, offline RL demands the policy to stay close to the dataset. On the other hand, when
λ = 0, it resembles UWAC (Wu et al., 2021), whose uncertainty is calculated based on the Q-value
of the current state-action pair. However, the Q-value function updated by the Bellman equation
cannot propagate uncertainty (Osband et al., 2018). Therefore, a moderate value for λ is important
for offline RL. Note that λ = 0 or λ = γ also might be favorable for some settings.

5



Under review as a conference paper at ICLR 2023

We now show the validity of choosing a smaller λ from the viewpoint of multi-task learning. To
simplify analysis, we consider maximizing the expected return while minimizing cumulative un-
certainty: maxπ Es∼D[Q(s, π) − U(s, π)], which corresponds to PBRL (Bai et al., 2022). Denote
ū(s, a) = −(u(s, a)−max(u(·, ·))) and the maximum of ū(s, a) as Umax. We rewrite the MDP as
M = (S,A, P,R, γ, ū, γ), where the first γ is for reward function and the second γ is for uncertainty
estimation. Let M̂ = (S,A, P̂ , R̂, γ, û, λ) be an estimated MDP whose transition matrix, reward
function, and uncertainty function are estimated by the offline dataset with the size n. The discount
factor of uncertainty estimation for M̂ is λ. If we learn an optimal policy in M̂ , the following result
holds.
Proposition 4. Consider the task max

∑∞
t=1 γ

t−1rt + γt−1ūt under M and the task
max

∑∞
t=1 γ

t−1r̂t + λt−1ût under M̂ . The optimal policies for the two tasks are π∗
M and π∗

M̂
,

respectively. With the probability of at least 1− δ, the optimal policy for the latter task has a bound

∥V π∗
M

M − V
π∗
M̂

M ∥ ≤ γ − λ

(1− γ)(1− λ)
Umax +

[
2Rmax

(1− γ)2
+

2Umax

(1− λ)2

]√
1

2n
log

4|S||A| |Π|
δ

,

where V
π∗
M

M is the expected value function of π∗
M evaluated under M , V

π∗
M̂

M is the expected value
function of π∗

M̂
evaluated under M , and |Π| is the policy class complexity.

The first term is in negative relation to λ, which encourages λ to be large. But the second term
requires a small λ to tighten the bound. Thus, a moderate λ should be chosen to balance the two
terms.

6 METHOD

6.1 TD3BC-U

Now we propose an instance of pessimistic policy iteration based on the global uncertainty estima-
tor. As Section 4 shows, the policy improvement objective is maxπ∈Π Ea∼π(·|s)

Q(s,a)
Ωπ(s,a) . From the

practical side, the constrained policy set Π could be realized by adding a regularization term to the
policy, such as behavior cloning in TD3BC (Fujimoto & Gu, 2021) and MMD loss in BEAR (Ku-
mar et al., 2019). We select TD3BC for its simplicity and propose an uncertainty-based variant
according to pessimistic policy iteration. We introduce the global uncertainty estimator to TD3BC
by restricting the actor according to uncertainty: max

π
E(s,a)∼D

[
Q(s,π(s))
U(s,π(s)) − ν(π(s)− a)2

]
.

When U(s, π(s)) approaches 0, the scale of the gradient for the first term approaches infinity. To
stabilize the training process, we multiply the objective with U(s, π(s)) and rewrite the objective as:

max
π

E(s,a)∼D
[
Q(s, π(s))− νU(s, π(s))(π(s)− a)2

]
. (7)

It demands the policy to be more conservative when the global uncertainty is high at state s. Oth-
erwise, it relaxes the constraint so that the policy could update more according to the Q-value. We
refer to this algorithm as TD3BC-U.

6.2 CQL-U

Besides policy-restriction methods, the proposed global uncertainty estimator could also boost Q-
restriction methods. CQL is a Q-restriction method that penalizes OOD actions’ Q-values. We
introduce the global uncertainty estimator to CQL by restricting the critic according to uncertainty,

min
Q

E(s,a,r,s′)∼D αU(s, π)Q(s, π) +

[(
Q(s, a)− T̂ πQ(s, a)

)2
]
. (8)

We refer to this algorithm as CQL-U.

6.3 PRACTICAL IMPLEMENTATION

For both algorithms, we maintain 8 Q-networks and a policy network. For the training of the uncer-
tainty network, we maintain a target network to stabilize the training process.
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For TD3BC-U, the behavior cloning scale ν is set to 1. Note that the pessimism level ν influences
the policy’s performance a lot (Fujimoto & Gu, 2021). Considering that the average magnitude of
U(s, a) will influence the overall conservativeness, which could be regarded as choosing a different
ν, we rescale U(s, a) at each training step to make sure the average uncertainty over a batch is 1.
By doing so, the average pessimism magnitude of the training process is still ν. Then we could
make a fair comparison between our proposed method and the baseline algorithm. The algorithm is
described in Alg.1.

For CQL-U, the hyperparameter α is set to 2. We use a deterministic version of CQL where a
deterministic policy is applied. Thus, pessimism is introduced by only penalizing the Q-value of
a single action for a state, which reduces the computational complexity of the original CQL. The
magnitude of U is also rescaled as the TD3BC-U part. The algorithm is described in Alg.2.

Algorithm 1 TD3BC-U
Input: offline dataset D, update iterations tmax for
policy and Q-value networks, hyperparameter ν.
Parameter: uncertainty network U , policy network
π, Q-networks Q1, Q2, ..., QN and target networks.
Output: learned policy network π.

1: Initialize the uncertainty network, policy network,
and Q-networks.

2: while t < tmax do
3: Sample a mini-batch of samples from D.
4: Calculate local uncertainty according to Eq.5
5: Update uncertainty network according to Eq.6
6: Calculate U(s, π(s)) for current policy.
7: Update the Q-networks according to Eq.1.
8: Update the policy network according to Eq.7.
9: Update the target networks via soft update.

10: end while

Algorithm 2 CQL-U
Input: offline dataset D, update iterations tmax for
policy and Q-value networks, hyperparameter α.
Parameter: uncertainty network U , policy network
π, Q-networks Q1, Q2, ..., QN and target networks.
Output: learned policy network π.

1: Initialize the uncertainty network, policy network,
and Q-networks.

2: while t < tmax do
3: Sample a mini-batch of samples from D.
4: Calculate local uncertainty according to Eq.5
5: Update uncertainty network according to Eq.6
6: Calculate U(s, π) for current policy.
7: Update the Q-networks according to Eq.8.
8: Update the policy network according to Q-

network maxπ Ea∼πQ(s, a).
9: Update the target networks via soft update.

10: end while

7 EXPERIMENT

In this section, we conduct several experiments to show the effectiveness of our proposed method.

7.1 UNCERTAINTY ESTIMATION

Figure 3: The designed “Go Through
the Forest” environment. The red line
means one trajectory from the start
point to the end in the Setting A.

To illustrate the efficiency of our proposed uncertainty es-
timator, we first provide an example called “Go Through
the Forest”, where we show local (λ = 0), regional (λ =
0.8), and global (λ = 0.99) uncertainty in 2D heat maps.
We design this “Go Through the Forest” environment in
Fig.3, which involves a single agent with 2D observation
space and 1D action space. There are three kinds of ar-
eas, “Aerobic area”(green), “Toxic area”(red), and “Ordi-
nary area”(white). The goal of the agent is to reach the op-
posite side (x = 1). When getting into the “Aerobic area”
for the first time, the agent will receive a reward of 1 and
when “Toxic area” that of -1. We consider two environment
settings. Setting A: Staring from the point (0, 0), at each
time step, the agent walks ahead in a selected direction un-
der a fixed step length L = 0.04. For simplicity, the agent
is restricted to select those directions in which the abscissa
x becomes larger. Setting B: Staring from the point (0, y)
(y is randomly chosen from [-0.5, 0.5]), the y-axis of the agent decays exponentially in an episode.
Concretely, yt = βty0 (β is set to 0.98). At each time step, the agent walks in the x-axis direc-
tion under a selected step length L ∈ [0, 0.01]. For each setting, we generate a random offline
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(a) s distribution in D (b) λ = 0 (c) λ = 0.8 (d) λ = 0.99

Figure 4: Visualization of the “Go Through the Forest” example. (a) State distributions in the
random offline dataset. (b) λ = 0 means local uncertainty. (c) λ = 0.8 means regional uncertainty.
(d) λ = 0.99 means global uncertainty. Note: we visualize the uncertainty in 2D heat maps after
training 1e6 steps respectively. The uncertainty is normalized to 0-1 range.

dataset (size of 100,000) of an agent taking random actions. As shown in Fig.4(a), the first and
second rows correspond to setting A and setting B, respectively.

Due to the heterogeneous state-action distribution in the whole 2D observation space, there exist lots
of out-of-distribution states and actions, especially those around the edge of the environment. Under
these settings, local uncertainty (λ = 0), regional uncertainty (λ = 0.8), and global uncertainty (λ =
0.99) are visualized in 2D heat maps (Fig. 4(b), 4(c), and 4(d) respectively) after training 1e6 steps.
Our method can detect the OOD regions around which the dataset contains much less data than those
in distribution.

What’s more, we illustrate that the detectability of local uncertainty (λ = 0) or global uncer-
tainty (λ = 0.99) can be too extreme to work well. For the setting A, using only local uncertainty
can not fully detect the OOD state-action pairs. Using global uncertainty has a stronger perception of
the environment than local uncertainty. However, setting B demonstrates using global uncertainty
may overestimate the uncertainty under some circumstances, especially when the state-action dis-
tribution is very heterogeneous, thus hurting OOD detectability. Taking both settings into account,
regional uncertainty is milder and more robust than the other two types, which means it can be ap-
plied to a broader range of the dataset and act as a more efficient tool to detect the OOD regions.

(a) TD3BC-U (b) CQL-U

Figure 5: Varying the scale of λ. Mean and standard deviation are plotted over six seeds.

7.2 D4RL RESULTS

To evaluate the validity of our proposed methods in high-dimensional settings, we perform exper-
iments using the MuJoCo control suits in D4RL benchmarks (Fu et al., 2020). We compare our
proposed methods to TD3BC and CQL algorithms. Both TD3BC and TD3BC-U use the same
number of Q-networks and the same hyperparameter ν. Also, both CQL and CQL-U use the same
number of Q-networks and the same hyperparameter α. The results are shown in Table.1. TD3BC-U
performs better than TD3BC on most tasks and CQL-U outperforms CQL on most tasks. It can be
shown that pessimistic policy iteration, which introduces global uncertainty estimation, boosts the

8
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Table 1: Results on offline MuJoCo tasks. The results are averaged over six seeds.
Task Name TD3BC TD3BC-U CQL CQL-U

HalfCheetah-random 10.9 ± 0.6 17.5 ± 0.8 17.9 ± 0.7 21.7 ± 3.9
HalfCheetah-medium 48.6 ± 0.1 49.9 ± 0.6 56.7 ± 0.6 58.8 ± 0.5
HalfCheetah-medium-replay 44.1 ± 0.4 45.2 ± 0.2 51.9 ± 0.2 54.6 ± 2.3
HalfCheetah-medium-expert 87.3 ± 1.8 72.7 ± 6.3 37.3 ± 6.5 38.4 ± 10.3
Hopper-random 29.0 ± 1.4 31.4 ± 1.2 9.3 ± 2.2 31.1 ± 0.3
Hopper-medium 57.1 ± 1.6 62.3 ± 1.9 62.8 ± 18.7 75.4 ± 8.3
Hopper-medium-replay 47.2 ± 5.2 60.0 ± 16.5 100.7 ± 0.9 101.2 ± 0.5
Hopper-medium-expert 104.8 ± 1.3 82.6 ± 9.1 38.7 ± 10.1 22.5 ± 9.6

Walker2d-random 0.1 ± 0.1 0.1 ± 0.0 0.0 ± 0.1 0.0 ± 0.3
Walker2d-medium 79.3± 1.6 82.4 ± 1.1 85.0 ± 7.5 92.8 ± 3.4
Walker2d-medium-replay 61.0 ± 11.0 84.0 ± 11.4 96.4 ± 0.3 99.7 ± 0.9
Walker2d-medium-expert 110.5 ± 0.1 113.1 ± 0.4 108.9 ± 3.0 111.0 ± 5.7

performance of the baseline algorithms. Note that in some tasks, the improvement is not large. The
reason is that the pessimism scale is the most important factor which affects the performance. We
use the same pessimism scale to make a fair comparison.

Discount factor for uncertainty estimation. To show what impact the uncertainty discount factor
λ has on our method, we test λ ∈ {0, 0.8, 0.99} for TD3BC-U and CQL-U. λ = 0 denotes only
considering the local uncertainty and λ = 0.99 denotes the case global uncertainty shares the same
horizon with Q-value estimation. The results are shown in Fig.5. For TD3BC-U, choosing λ = 0.8
is better than λ = 0.99. Choosing λ = 0.99 is more appropriate for CQL-U. The results indicate
that a moderate horizon for global uncertainty estimation is important for performance.

Figure 6: TD3BC-U is more robust to the scale of 1/ν than TD3BC.

Robustness. It is known that the behavior cloning scale ν impacts the trained policy a lot (Fujimoto
& Gu, 2021). A small ν might lead to inadequate pessimism and failure, while a large ν may
restrict the policy too much and hurt the policy’s performance. We show that the pessimistic policy
iteration is robust to the scale of ν. Fig.6 shows the performances of TD3BC-U and TD3BC when
varying 1/ν. As 1/ν increases, the constraint is weaker, and TD3BC suffers a performance drop.
When 1/ν = 3, TD3BC fails on hopper-expert and walker2d-expert tasks, which have narrow
distributions. TD3BC-U is more robust than TD3BC in this setting. Note that when 1/ν = 10, the
performance TD3BC-U also drops because the constraint is too weak to restrict the policy to be near
the behavior policy.

8 CONCLUSION

In this paper, we propose pessimistic policy iteration to restrict the Q-evaluation error and to bound
the sub-optimality gap of the trained policy’s value function. We realize pessimistic policy iter-
ation by learning a global uncertainty and introducing it to a policy-restriction method. We also
build a Q-restriction variant based on global uncertainty to allow flexible attention. The proposed
method boosts the baselines’ performance and it is robust to the coefficient of the constraint. We
find that it is important to find a moderate horizon for the uncertainty estimation. For future work,
we expect to find a better local uncertainty estimator than the Q-ensemble, such as random network
distillation (Burda et al., 2019).

9
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9 PROOFS

9.1 ERROR BOUND FOR APPROXIMATE POLICY ITERATION

Lemma 5. For any state distribution µ, run approximate policy iteration. Assuming that µk =

µ (1−γ)2

2

(
I − γPπ∗)−1

[
Pπk+1 (I − γPπk+1)

−1
(I + γPπk) + Pπ∗]

, the error bound for approx-
imate policy iteration without policy improvement error follows:

lim
k→∞

sup
k
||V k − V ∗||µ ≤ lim

k→∞
sup
k

2γ||V k − V πk ||µk

(1− γ)2

Proof. Seen in Munos (2003).

9.2 PROOF OF THEOREM 1

Proof. First we define the fixed point of T Π as V Π. We have

||V k − V ∗||µ = ||V k − V Π + V Π − V ∗||µ
≤ ||V k − V Π||µ︸ ︷︷ ︸

L1

+ ||V Π − V ∗||µ︸ ︷︷ ︸
L2

For L2, the following inequality holds:∥∥V Π − V ∗∥∥
µ
≤

∥∥V Π − V ∗∥∥
∞

=
∥∥T ΠV Π − T V ∗∥∥

∞

≤
∥∥T ΠV Π − T ΠV ∗∥∥

∞ +
∥∥T ΠV ∗ − T V ∗∥∥

∞

≤ γ
∥∥V Π − V ∗∥∥

∞ + α(Π)

Thus, we have L2 ≤ α(Π)
1−γ .

For L1, it is straightforward to apply Lemma 5 by replacing V ∗ with V Π. Thus, we have

L1 ≤ lim
k→∞

sup
k

2γ||V k − V πk ||µk

(1− γ)2
.

≤ 2γδ

(1− γ)2

9.3 PROOF OF THEOREM 3

Proof. Considering that π′
k(a|s) =

πk(a|s)
Ωπk (s,a)Z(s) , we have

Es∼µk,a∼π′
k(·|s)|Q

k(s, a)−Qπk(s, a)| = Es∼µk,a∼πk(·|s)
|Qk(s, a)−Qπk(s, a)|

Ωπk(s, a)Z(s)
. (9)

Since Qk is the result of applying T̂πk repeatedly, it holds that Qk is the fixed point of T̂πk :
T̂πkQk = Qk, then we have

|TπkQk(s, a)−Qk(s, a)| = |TπkQk(s, a)− T̂πkQk(s, a)|).

According to the definition of ξ-uncertainty quantifier, it follows that

|TπkQk(s, a)−Qk(s, a)| = |TπkQk(s, a)− T̂πkQk(s, a)|) ≤ ω(s, a).
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For |Qk(s, a)−Qπk(s, a) which is the numerator in Eq.9, it follows that

|Qk(s, a)−Qπk(s, a)| = |Qk(s, a)− TπkQk(s, a) + TπkQk(s, a)− {Tπk}2Qk(s, a) + ...

+ {Tπk}∞Qk(s, a)−Qπk(s, a)|
≤ |Qk(s, a)− TπkQk(s, a|+ |TπkQk(s, a)− {Tπk}2Qk(s, a)|+ ...

+ |{Tπk}∞Qk(s, a)−Qπk(s, a)|
≤ ω(s, a) + γEs′,a′∼Pπk (·,·|s,a)[ω(s

′, a′) + γEs′′,a′′∼Pπk (·,·|s′,a′)ω(s
′′, a′′) + ...]

= Eπk
[

∞∑
t=1

γt−1ω(st, at)|(s1, a1) = (s, a)]

= Ωπk(s, a)

According to the assumption that for all s, Z(s) ≥ Z, thus we have

Es∼µk,a∼πk(·|s)
|Qk(s, a)−Qπk(s, a)|

Ωπk(s, a)Z(s)
≤ 1

Z
. (10)

9.4 LEMMAS FOR PROPOSITION 4

Lemma 6. For MDP M1 = (S,A, P,R, γ, ū, λ), any policy π and λ ≤ γ, it holds that

V π
M1
≤ V π

M ≤ V π
M1

+
γ − λ

(1− γ)(1− λ)
Umax

The proof is similar to Jiang et al. (2015).

Proof.

∥V π
M1
− V π

M∥ = ∥
∞∑
t=1

(λt−1 − γt−1){Tπ}t−1ū(st, at) +

∞∑
t=1

(γt−1 − γt−1){Tπ}t−1r(st, at)∥

≤
∞∑
t=1

(λt−1 − γt−1)Umax

=
γ − λ

(1− γ)(1− λ)
Umax

Lemma 7. For MDP M̂1 = M̂ = (S,A, P̂ , R̂, γ, û, λ), it holds that with probability at least 1− δ,

∥V
π∗
M1

M1
− V

π∗
M̂1

M1
∥ ≤ 2Rmax

(1− γ)2

√
1

2n
log

4|S||A| |Π|
δ

+
2Umax

(1− λ)2

√
1

2n
log

4|S||A| |Π|
δ

,

where |Π| is the policy class complexity.

Proof. It follows that

∥V
π∗
M1

M1
− V

π∗
M̂1

M1
∥ ≤ 2max

π
∥V π

M1
− V π

M̂1
∥ (11)

Let Q1 be the expected action-value function for reward r and Q2 be the expected action-value
function for reward ū.

∥Qπ
1,M1

−Qπ
1,M̂1
∥ ≤ 1

1− γ
max
s,a
|r̂(s, a) + γ < P̂ , V π

1,M1
> −Qπ

1,M1
(s, a)| (12)

∥Qπ
2,M1

−Qπ
2,M̂1
∥ ≤ 1

1− λ
max
s,a
|û(s, a) + λ < P̂ , V π

2,M1
> −Qπ

2,M1
(s, a)| (13)
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Eq.11, Eq.12, Eq.13 hold according to Lemma 3 and Lemma 4 in Jiang et al. (2015). Note that
r̂(s, a) + γ < P̂ , V π

1,M1
> is sampled from the distribution which has the mean Qπ

1,M1
(s, a) and the

bound [0, Rmax

1−γ ]. Also, û(s, a) + λ < P̂ , V π
2,M1

> is sampled from the distribution which has the
mean Qπ

2,M1
(s, a) and the bound [0, Umax

1−λ ].

∥V
π∗
M1

M1
− V

π∗
M̂1

M1
∥ ≤ 2max

π
∥V π

M1
− V π

M̂1
∥

≤ 2max
π
∥Qπ

M1
−Qπ

M̂1
∥

= 2max
π
∥Qπ

1,M1
+Qπ

2,M1
−Qπ

1,M̂1
−Qπ

2,M̂1
∥

≤ 2max
π
∥Qπ

1,M1
−Qπ

1,M̂1
∥+ 2max

π
∥Qπ

2,M1
−Qπ

2,M̂1
∥

≤ 2max
π,s,a
|Qπ

1,M1
(s, a)−Qπ

1,M̂1
(s, a)|+ 2max

π,s,a
|Qπ

2,M1
(s, a)−Qπ

2,M̂1
(s, a)|

According to Hoeffding inequality and union bound, we have with probability 1− δ,

∥V
π∗
M1

M1
− V

π∗
M̂1

M1
∥ ≤ 2Rmax

(1− γ)2

√
1

2n
log

4|S||A| |Π|
δ

+
2Umax

(1− λ)2

√
1

2n
log

4|S||A| |Π|
δ

.

9.5 PROOF FOR PROPOSITION 4

Proof.

V
π∗
M

M (s)− V
π∗
M̂

M (s) = V
π∗
M

M (s)− V
π∗
M

M1
(s) + V

π∗
M

M1
(s)− V

π∗
M̂

M (s)

According to Lemma 6, it follows that for the first term,

V
π∗
M

M (s)− V
π∗
M

M1
(s) ≤ γ − λ

(1− γ)(1− λ)
Umax

For the second term,

V
π∗
M

M1
(s)− V

π∗
M̂

M (s) = V
π∗
M

M1
(s)− V

π∗
M̂1

M (s) (14)

≤ V
π∗
M

M1
(s)− V

π∗
M̂1

M1
(s) (15)

≤ V
π∗
M1

M1
(s)− V

π∗
M̂1

M1
(s) (16)

≤ 2Rmax

(1− γ)2

√
1

2n
log

4|S||A| |Π|
δ

+
2Umax

(1− λ)2

√
1

2n
log

4|S||A| |Π|
δ

(17)

Eq.14 holds since M̂ = M̂1. Eq.15 holds because of Lemma 5. Eq.16 holds since π∗
M1

is the optimal
policy under M1. The last inequality is derived from Lemma 7.

10 EXPERIMENT DETAILS

It is known that taking the minimum of a large ensemble could reduce the overestimation error (An
et al., 2021). To not make the ensemble influence the Q-value update a lot, we use 8 Q-networks
and spit the ensemble into 4 groups. Each group is constituted of 2 networks. By doing so, the
target Q-value is the minimum of two networks, which is similar to TD3BC and CQL. We update
the uncertainty network and the Q-network with the same frequency. Note that for TD3BC and
TD3BC-U, we also normalize the Q-value to make the Q-value term for policy loss in an appropriate
range. The hyperparameters for TD3BC-U are shown in Table 2.

For CQL-U, since we use a deterministic of policy, there is no entropy term for the policy loss and
Q-value loss. The hyperparameters for CQL-U are shown in Table 3.

15



Under review as a conference paper at ICLR 2023

Table 2: TD3BC-U hyperparameters.
Hyperparameter Value

TD3BC-U hyperparameters

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Training step 1e6
Soft update rate 0.005
Weight of Q-value term for policy loss 2.5
Policy update frequency 1
Discount factor γ 0.99
ν 1
λ for Table 1 0.8

Architecture

Critic hidden dim 256
Critic layer dim 256
Critic activation function ReLU
Actor hidden dim 256
Actor layer dim 256
Actor activation function ReLU
Number of critics 8

Table 3: CQL-U hyperparameters.
Hyperparameter Value

CQL-U hyperparameters

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Training step 1e6
Soft update rate 0.005
Weight of Q-value term for policy loss 2.5
Policy update frequency 2
Discount factor γ 0.99
α 2
λ for Table 1 {0 for walker2d-medium and walker2d-

medium-expert, 0.99 for others}

Architecture

Critic hidden dim 256
Critic layer dim 256
Critic activation function ReLU
Actor hidden dim 256
Actor layer dim 256
Actor activation function ReLU
Number of critics 8
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11 TRAINING CURVES

Figure 7: Training curve of TD3BC-U and TD3BC. Mean and variance are calculated over six seeds.
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