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Abstract
A recent work by [Larsen, SODA 2023] in-
troduced a faster combinatorial alternative to
Bansal’s SDP algorithm for finding a coloring
x ∈ {−1, 1}n that approximately minimizes the
discrepancy disc(A, x) := ∥Ax∥∞ of a real-
valued m× n matrix A. Larsen’s algorithm runs
in Õ(mn2) time compared to Bansal’s Õ(mn4.5)-
time algorithm, with a slightly weaker logarith-
mic approximation ratio in terms of the heredi-
tary discrepancy of A [Bansal, FOCS 2010]. We
present a combinatorial Õ(nnz(A) + n3)-time
algorithm with the same approximation guaran-
tee as Larsen’s, optimal for tall matrices where
m = poly(n). Using a more intricate analysis
and fast matrix multiplication, we further achieve
a runtime of Õ(nnz(A) + n2.53), breaking the
cubic barrier for square matrices and surpassing
the limitations of linear-programming approaches
[Eldan and Singh, RS&A 2018]. Our algorithm
relies on two key ideas: (i) a new sketching
technique for finding a projection matrix with a
short ℓ2-basis using implicit leverage-score sam-
pling, and (ii) a data structure for efficiently imple-
menting the iterative Edge-Walk partial-coloring
algorithm [Lovett and Meka, SICOMP 2015],
and using an alternative analysis to enable “lazy”
batch updates with low-rank corrections. Our re-
sults nearly close the computational gap between
real-valued and binary matrices, for which input-
sparsity time coloring was recently obtained by
[Jain, Sah and Sawhney, SODA 2023].

1. Introduction
Discrepancy theory is a fundamental subject in combi-
natorics and theoretical computer science, studying how
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to color elements of a finite set-system S1, . . . , Sm ⊆
{1, . . . , n} with two colors (e.g., red and blue) to mini-
mize the maximum imbalance in color distribution across
all sets. It finds diverse applications in fields such as com-
putational geometry (Matousek, 1999b; De Berg, 2000),
probabilistic algorithms (Spencer, 1985; Chazelle, 2000),
machine learning (Vapnik & Chervonenkis, 1971; Talagrand,
1995; Karnin & Liberty, 2019; Bechavod et al., 2022; Han
et al., 2025), differential privacy (Muthukrishnan & Nikolov,
2012; Nikolov et al., 2013), and optimization (Beck & Fiala,
1981; Bansal, 2010; 2012; Nikolov, 2015).

Definition 1.1 (Discrepancy). The discrepancy of a real
matrix A ∈ Rm×n with respect to a “coloring” vector
x ∈ {±1}n is defined as

disc(A, x) := ∥Ax∥∞ = max
j∈[m]

|(Ax)j |.

The discrepancy of a real matrix A ∈ Rm×n is defined as

disc(A) := min
x∈{±1}n

disc(A, x).

This is a natural generalization of the classic combinatorial
notion of discrepancy of set systems, corresponding to bi-
nary matrices A ∈ {0, 1}m×n where rows represent (the
indicator vector of) m sets over a ground set of [n] elements,
and the goal is to find a coloring x ∈ {±1}n which is as
“balanced” as possible simultaneously on all sets.

Most of the history of this problem was focused on the ex-
istential question of understanding the minimum possible
discrepancy achievable for various classes of matrices. For
general set systems of size n (arbitrary n × n binary ma-
trices A), the classic result of Spencer (1985) states that
disc(A) ≤ 6

√
n, which is asymptotically better than ran-

dom coloring (Θ(
√
n log n). More recent works have fo-

cused on restricted matrix families, such as sparse matri-
ces (Banaszczyk, 1998; Beck & Fiala, 1981), showing that
it is possible to achieve the o(

√
n) discrepancy in these re-

stricted cases. For example, the minimum-discrepancy col-
oring of k-sparse binary matrices (sparse set systems) turns
out to have discrepancy at most O(

√
k log n) (Banaszczyk,

1998).

All of these results, however, do not provide polynomial
time algorithms since they are non-constructive—they only
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argue about the existence of low-discrepancy colorings,
which prevents their use in algorithmic applications that
rely on low-discrepancy (partial) coloring, such as bin-
packing problems (Rothvoß, 2013; Hoberg & Rothvoss,
2017).1 Indeed, the question of efficiently finding a low-
discrepancy coloring, i.e., computing disc(A), was less un-
derstood until recently and is more nuanced: Charikar et al.
(2011) showed that it is NP-hard to distinguish whether a
matrix has disc(A) = 0 or disc(A) = Ω(

√
n), suggest-

ing that (ω(1)) approximation is inevitable to achieve fast
runtimes. The celebrated work of Bansal (2010) gave the
first polynomial-time algorithm which achieves an additive
O(
√
n)-approximation to the optimal coloring of general

n× n matrices, matching Spencer’s non-constructive result.
Bansal’s algorithm has approximation guarantees in terms
of the hereditary discrepancy (Lovász et al., 1986).

Definition 1.2 (Hereditary discrepancy). Given a matrix
A ∈ Rm×n, its hereditary discrepancy is defined as

herdisc(A) := max
B∈A

disc(B),

where A is the set of all matrices obtained from A by delet-
ing some columns from A.

Bansal (2010) gave an SDP-based algorithm that finds a col-
oring x̃ satisfying disc(A, x̃) = O(log(mn) · herdisc(A))

for any real matrix A, in time Õ(mn4.5) assuming state-of-
the-art SDP solvers (Jiang et al., 2020b; Huang et al., 2022b).
In other words, if all submatrices of A have low-discrepancy
colorings, then it is in fact possible (yet still quite expensive)
to find an almost-matching overall coloring.

Building on Bansal’s work, Lovett & Meka (2015) de-
signed a simpler algorithm for set-systems (binary matri-
ces A), running in Õ((n+m)3) time. The main new idea
of their algorithm, which is also central to our work, was
a subroutine for repeatedly finding a partial-coloring via
random-walks (a.k.a EDGE-WALK), which in every iter-
ation “rounds” a constant-fraction of the coordinates of
a fractional-coloring to an integral one in {−1, 1} (more
on this in the next section). Followup works by Rothvoss
(2017) and Eldan & Singh (2018) extended these ideas to
the real-valued case, and developed faster convex optimiza-
tion frameworks for obtaining low-discrepancy coloring,
the latter requiring O(log n) linear programs instead of a
semidefinite program (Bansal, 2010), assuming a value or-
acle to herdisc(A).2 In this model, Eldan & Singh (2018)

1If we don’t have a polynomial constructive algorithm, then we
can’t approximate solution for bin packing in polynomial. This is
common in integer programming where we first relax it to linear
programming and then round it back to an integer solution.

2Eldan & Singh (2018)’s LP requires an upper-bound estimate
on herdisc(A) for each of the O(logn) sequential LPs, hence
standard exponential-guessing seems too expensive: the number
of possible “branches” is > 2O(logn).

yields an O∗(max{mn + n3, (m + n)w}) time approxi-
mate discrepancy algorithm via state-of-art (tall) LP solvers
(Brand et al., 2020). This line of work, however, has a funda-
mental setback for achieving input-sparsity time, which is a
major open problem for (high-accuracy) LP solvers (Bubeck
et al., 2018). Sparse matrices are often the realistic case
for discrepancy problems, and have been widely studied in
this context as discussed earlier in the introduction. Another
drawback of convex-optimization based algorithms is that
they are far from being practical due to the complicated
nature of fast LP solvers.

Interestingly, in the binary (set-system) case, these limita-
tions have been very recently overcome in the breakthrough
work of Jain et al. (2023), who gave an Õ(n+nnz(A))-time
coloring algorithm for binary matrices A ∈ {−1, 1}m×n,
with near optimal (O(

√
n log(m/n+ 2))) discrepancy.

While their approach, too, was based on convex optimiza-
tion, their main observation was that an approximate LP
solver, using first-order methods, in fact suffices for a log-
arithmic approximation. Unfortunately, the input-sparsity
running time of the algorithm in Jain et al. (2023) does not
extend to real-valued matrices, as their LP is based on a
“heavy-light” decomposition of the rows of binary matrices
based on their support size. More precisely, generalizing
the argument of Jain et al. (2023) to matrices with entries
in range, say, [−R,R], guarantees that a uniformly random
vector would only have discrepancy Õ(poly(R) · √n) on
the “heavy” rows, and this term would also govern the ap-
proximation ratio achieved by their algorithm.

By contrast, a concurrent result of Larsen (2023) gave a
purely combinatorial (randomized) algorithm, which is not
as fast, but handles general real matrices and makes a step
toward practical coloring algorithms. Larsen’s algorithm
improves Bansal’s SDP from O(mn4.5) to Õ(mn2 + n3)
time, at the price of a slightly weaker approximation guar-
antee: For any A ∈ Rm×n, Larsen (2023) finds a coloring
x̃ ∈ {−1,+1}n such that disc(A, x̃) = O(herdisc(A) ·
log n · log1.5 m). Recent work by Jambulapati et al. (2024)
introduced a new framework for efficient computing of
the discrepancy, with which they successfully recovered
Spencer’s result in time Õ(nnz(A) · log5(n)) for matrix A
with entries restricted within 1.

The recent exciting developments naturally raise the follow-
ing question:

Is it possible to achieve input-sparsity time for discrepancy
minimization with general (real-valued) matrices?

In fact, this was one of the main open questions raised in
2018 workshop on Discrepancy Theory and Integer Pro-
gramming (Dadush, 2018).
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Table 1. Progress on approximate discrepancy-minimization algorithms of real-valued m×n matrices (m ≥ n). For simplicity, we ignore
no(1) and poly(logn) factors in the table. “(Eldan & Singh, 2018)*” refers to a (black-box) combination of our Theorem 1.5 with (Eldan
& Singh, 2018) and using state-of-art LP solvers for square and tall matrices (Lee & Sidford, 2014; Brand et al., 2020; Jiang et al., 2021).

References Methods Running Time
Bansal (2010) SDP (Jiang et al., 2020c; Huang et al., 2022b) mn4.5

Eldan & Singh (2018)* (Step 1: Theorem 1.5) + (Step 2: LP (Jiang et al., 2021)) mω +m2+1/18

Eldan & Singh (2018)* (Step 1: Theorem 1.5) + (Step 2: LP (Brand et al., 2020)) mn+ n3

Eldan & Singh (2018)* (Step 1: Theorem 1.5) + (Step 2: LP (Lee & Sidford, 2014)) nnz(A)
√
n+ n2.5

Larsen (2023) Combinatorial mn2 + n3

Ours (Theorem 1.3) Combinatorial nnz(A) + n3

Ours (Theorem 1.3) (Step 1: Theorem 1.5) + (Step 2: Lemma E.12) nnz(A) + n2.53

1.1. Our Results

We answer this question in the affirmative. To this end, we
develop an algorithm that achieves a near-optimal runtime
for tall matrices with m = poly(n) and a subcubic runtime
for square matrices, while maintaining the same approxima-
tion guarantees as Larsen’s algorithm, up to constant factors.
We state our main result in the following theorem.

Theorem 1.3 (Main result, informal version of Theorem D.1
and Theorem D.2). For any parameter a ∈ [0, 1], there is a
randomized algorithm that, given a real matrix A ∈ Rm×n,
finds a coloring x ∈ {−1,+1}n such that

disc(A, x) = O(herdisc(A) · log n · log1.5 m).

Moreover, it runs in time

Õ(nnz(A) + nω + n2+a + n1+ω(1,1,a)−a).

Here, ω(a, b, c) denotes the time for multiplying an na × nb

matrix with an nb × nc matrix, and ω := ω(1, 1, 1) denotes
the exponent of fast matrix multiplication (FMM).

Remark 1.4. With the current value of ω ≈ 2.371, accord-
ing to Table 1 in Alman et al. (2025), we choose the parame-
ter a ≈ 0.53 to balance the terms n2+a and n1+ω(1,1,a)−a.
Consequently, the running time in Theorem 1.3 simplifies to
Õ(nnz(A) + n2.53). Without FMM, our algorithm runs in
Õ(nnz(A) + n3) time and is purely combinatorial.

Let α denote the dual exponent of matrix multiplication, i.e.,
2 = ω(1, 1, α), and let a ∈ [0, 1] be the tunable parameter
of Theorem 1.3. Currently, α ≈ 0.32 (Williams et al., 2024).
Note that the running time of our algorithm (when using
FMM) has a tradeoff between the additive terms n2+a and
n1+ω(1,1,a)−a, so it is never better than n2.5, as it is never
beneficial to set a < 1/2. This tradeoff also means that our
runtime is barely sensitive to future improvements in the
value of the dual exponent (even α ≈ 1 would improve the
exponent of the additive term by merely 0.03). Curiously,
a similar phenomenon occurs in recent FMM-based LP

solvers (Cohen et al., 2019; Jiang et al., 2021), dynamic
attention (Brand et al., 2024) and weight pruning (Li et al.,
2024) in large language models.

A central technical component of Theorem 1.3 is the follow-
ing theorem, which allows us to quickly find a “hereditary
projection” matrix (i.e., a subspace such that the projection
of a constant fraction of the rows of A to its orthogonal com-
plement has small ℓ2-norm), and is of independent interest
in randomized linear algebra. We state it as follows.

Theorem 1.5 (Fast hereditary projection, informal version
of Theorem C.2 and Theorem C.3). Let A ∈ Rm×n with
m ≥ n, and let d = n/4. There is a randomized algorithm
that outputs a d × n matrix V such that with probability
1− δ, the followings hold simultaneously:

• For all l ∈ [d], we have ∥Vl,∗∥2 = 1,

• It holds that

max
j∈[m]

∥(A(I − V ⊤V ))j,∗∥2 = O(herdisc(A) log(m/n)),

where Vl,∗ denotes the l-th row of V for any l ∈ [d].

Moreover, it runs in time Õ(nnz(A) + nω), where the Õ-
notation hides a log(m/δ) factor.

Theorem 1.5 directly improves Theorem 3 in Larsen (2023)
which runs in Õ(mn2) time without using FMM, and in
O(mnω−1) time using FMM. In either case, Larsen’s algo-
rithm pays at least mnω−1 time, even when A is sparse (see
more discussion in Section 2.1). Theorem 1.5 is in some
sense best possible: Reading the input matrix A requires
O(nnz(A)) time, and explicitly computing the projection
matrix P = V ⊤V in Theorem 1.5 requires nω time. We
note that, in the case of binary matrices, the projection-free
algorithm of Jain et al. (2023) avoids this bottleneck (and
hence the nω term), but for real-valued matrices, all known
discrepancy algorithms involve projections (Bansal, 2010;
Lovett & Meka, 2015; Larsen, 2023; Rothvoss, 2017).
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1.2. Related Work

Algorithmic discrepancy theory Constructive discrep-
ancy theory has become a pivotal area of research, fo-
cusing on efficiently finding low-discrepancy solutions.
Bansal’s seminal work introduced a semidefinite program-
ming (SDP)-based algorithm that achieves additive O(

√
n)

discrepancy (Bansal, 2010), matching the nonconstructive
bounds but incurring a significant computational cost of
O(mn4.5). Subsequent contributions, such as Lovett &
Meka (2015) and Eldan & Singh (2018), developed faster al-
gorithms leveraging random walks and convex optimization
techniques, respectively. Recent advances include Larsen’s
combinatorial approach (Larsen, 2023), which attains a run-
time of O(mn2+n3), and the near-input-sparsity algorithms
for binary matrices proposed by Jain et al. (2023). Fur-
thermore,Jambulapati et al. (2024) introduced an efficient
framework for computing discrepancy, recovering Spencer’s
result in Õ(nnz(A) · log5(n)) time for matrices A with en-
tries bounded by 1. These innovations have substantially
narrowed the computational gap between theoretical results
and practical applications, advancing the field’s capabilities
within polynomial time. For further details, we refer readers
to related works (Cohen, 2016b; Bansal et al., 2018; 2019;
Dadush et al., 2018; Alweiss et al., 2021; Bansal et al., 2020;
2022; Pesenti & Vladu, 2023; Jambulapati et al., 2024).
Most recently, Han et al. (2025) uses the discrepancy theory
to approximate the attention computation in the streaming
model.

Sketching and leverage-score sampling Sketching is a
versatile technique employed across numerous fundamental
problems, including linear programming (Jiang et al., 2021;
Brand et al., 2020; Song & Yu, 2021; Liu et al., 2023), em-
pirical risk minimization (Lee et al., 2019; Qin et al., 2023;
Gu et al., 2025), and semidefinite programming (Jiang et al.,
2020a; Huang et al., 2022a; Song et al., 2023b). It is partic-
ularly prominent in randomized linear algebra, where it has
been applied to a wide range of tasks (Clarkson & Woodruff,
2013; Nelson & Nguyên, 2013; Razenshteyn et al., 2016;
Boutsidis et al., 2016; Song et al., 2017; Xiao et al., 2018;
Song et al., 2019b; Lee et al., 2019; Jiang et al., 2021; Song
& Yu, 2021; Brand et al., 2021; Song et al., 2022a; Hu et al.,
2022; Gu & Song, 2022). Sketching frequently serves as an
effective tool for oblivious dimension reduction (Clarkson
& Woodruff, 2013; Nelson & Nguyên, 2013). The use of
sampling matrices to enhance computational efficiency is a
well-established approach in numerical linear algebra (see
Clarkson & Woodruff (2013); Razenshteyn et al. (2016);
Boutsidis et al. (2016); Song et al. (2017); Cohen et al.
(2019); Song et al. (2019b); Brand et al. (2020); Li et al.
(2023); Gao et al. (2023); Deng et al. (2023)). In this pa-
per, we employ leverage score sampling as a non-oblivious
dimension reduction method, in line with previous works

such as Spielman & Srivastava (2011); Batson et al. (2012);
Zhang (2022); Song et al. (2022b).

2. Technical Overview
In this section, we give the overview of the techniques used
to prove the main results, and the formal proofs are in Ap-
pendix. In Section 2.1, we first give an overview and discuss
the barriers of Larsen’s algorithm. In Section 2.2, we intro-
duce our techniques used to improve the Larsen’s algorithm
and overcome the barriers.

2.1. Overview and Barriers of Larsen’s Algorithm

Larsen’s algorithm (Larsen, 2023) is a clever re-
implementation of the iterated partial-coloring subroutine
of Lovett & Meka (2015): In each iteration, with constant
probability, this subroutine “rounds” at least half of the
coordinates of a fractional coloring x ∈ Rn to {−1, 1}.
As in Lovett & Meka (2015), this is done by performing
a random-walk in the orthogonal complement subspace
V⊥ spanned by a set of rows from A (a.k.a “Edge-Walk”
(Lovett & Meka, 2015)). The key idea in Larsen (2023) lies
in a clever choice of V : Using a connection between the
eigenvalues of A⊤A and herdisc(A) (Larsen, 2017), Larsen
shows that there is a subspace V spanned by ≤ n/4 rows of
A, so that the projection of A onto the complement V⊥ has
small ℓ2 norm, i.e., every row of A(I−V ⊤V ) has norm less
than O(herdisc(A) log(m/n)). Larsen shows that comput-
ing this projection operator (henceforth B⊤B) can be done
in O(mn2) time combinatorially, or in Tmat(m,n, n) =

Õ(mnω−1) time3 using FMM.

The second part (PARTIALCOLORING) of Larsen’s al-
gorithm is to repeatedly apply the above subroutine
(PROJECTTOSMALLROWS) to implement the Edge-Walk
of (Lovett & Meka, 2015): Starting from a partial coloring
x ∈ Rn, the algorithm first generates a subspace V1 by
calling the afformentioned PROJECTTOSMALLROWS sub-
routine. Then it samples a fresh random Gaussian vector gt
in each iteration t ∈ [N ] = O(n), and projects it to obtain
gt = (I − V ⊤

t Vt)gt. The algorithm then decides whether
or not to update V ; More precisely, it maintains a vector
ut, and gradually updates it to account for large entries of
x + ut+1 that have reached ≈ 1 in absolute value (as in
Lovett & Meka (2015)). When a coordinate i ∈ [n] reaches
this threshold at some iteration, the corresponding unit vec-
tor ei is added to Vt and Vt is updated to Vt+1. This update is
necessary to ensure that in future iterations, no amount will
be added to the i-th entry of ut. At the end of the loop, the
algorithm outputs a vector xnew = x+ uN+1 with property
that for each row ai of A, the difference between ⟨ai, x⟩ and

3Tmat(m,n, k) represents the time required to multiply an
m× n matrix by an n× k matrix.
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⟨ai, xnew⟩ is less than O(herdisc(A) · log1.5(m)). Since Vt

is constantly changing thoughout iterations, each iteration re-
quires an online Matrix-Vector multiplication (I−V ⊤

t Vt)gt.
Hence, since there are N = O(n) iterations, O(mn2 + n3)
time is required to implement this part, even if fast-matrix
multiplication is allowed – Indeed, the Online Matrix-Vector
conjecture (Henzinger et al., 2015) postulates that mn2 is
essentially best possible for such online problem. Beating
this barrier for the PARTIALCOLORING subroutine there-
fore requires to somehow avoid this online problem, as we
discuss in the next subsection.

Below we summarize the computational bottlenecks in
Larsen’s algorithm, and then explain the new ideas required
to overcome them and achieve the claimed overall runtime
of Theorem 1.3.

Implementing the first part of Larsen’s algorithm
(PROJECTTOSMALLROWS) incurs the following computa-
tional bottlenecks, which we overcome in Theorem 1.5:

• Barrier 1. Computing the projection matrix Bt =
A(I − V ⊤

t Vt) ∈ Rm×n explicitly (exactly) already
takes Tmat(m,n, n) time. 4

• Barrier 2. Computing the jth-row’s norm ∥e⊤j Bt∥2
requires Tmat(m,n, n) time.

• Barrier 3. Computing B⊤
t Bt ∈ Rn×n requires multi-

plying an n×m with a m×n matrix, which also takes
Tmat(n,m, n) time.

Implementing the second part of Larsen’s algorithm
(PARTIALCOLORING) incurs the following two (main) com-
putational bottlenecks:

• Barrier 4. The coloring algorithm requires comput-
ing η = maxj∈[m] ∥e⊤j A(I − V ⊤V )∥2, which takes
Tmat(m,n, n) time.

• Barrier 5. In each of the N = O(n) iterations, the al-
gorithm first chooses a Gaussian vector g ∼ N (0, Id)
and projects it to the orthogonal span of Vt, i.e.,
gVt

= (I − V ⊤
t Vt)g. Next, it finds a rescaling factor g

by solving a single variable maximization problem.5

Finally, the algorithm checks whether |⟨aj , v+g⟩| ≥ τ ,
|⟨aj , v⟩| < τ for each j ∈ [m]. The overall runtime is
therefore mn2.

As mentioned above, the last step is conceptually challeng-
ing, as it must be done adaptively (Vt is being updated

4We remark that, Tmat(m,n, n) = O(mn2) without using
FMM, and Tmat(m,n, n) = O(mnω−1) with using FMM

5The naive computation here would take O(n2) time. Later we
show how to do it in O(n) time.

throughout iterations), and cannot be batched via FMM (as-
suming the OMv Conjecture (Henzinger et al., 2015))6. We
circumvent this step by slightly modifying the algorithm
and analysis of Larsen, and using the fact that, while the
subspace Vt is changing throughout iterations, the projected
random Gaussian vectors gt themselves are independent
– We show this enables to batch the projections and then
perform low-rank corrections as needed in the last step. We
now turn to explain our technical approach and the main
ideas for overcoming these computational bottlenecks.

2.2. Our Techniques

A natural approach to accelerate the first part of the above
algorithm is to use linear sketching techniques (Clarkson &
Woodruff, 2013) as they enable working with much smaller
matrices in the aforementioned steps. However, sketching
techniques naturally introduce (spectral) error to the algo-
rithm, which is exacerbated in iterative algorithms. Indeed,
a nontrivial challenge is showing that Larsen’s algorithm can
be made robust to noise, which requires to modify his anal-
ysis in several parts of the algorithm. The main technical
obstacle (not present in vanilla “sketch-and-solve” prob-
lems such as linear-regression, low-rank, tensor, inverse
problems (Clarkson & Woodruff, 2013; Nelson & Nguyên,
2013; Razenshteyn et al., 2016; Song et al., 2017; 2019a;
Lee et al., 2019; Jiang et al., 2021)) is that we can never
afford to explicitly store the projection matrix Bt, as even
writing it would already require O(mn) time. This con-
straint makes it more challenging to apply non-oblivious
sketching tools, in particular approximate leverage-score
sampling (LSS, (Spielman & Srivastava, 2011)), which are
key to our algorithm.

Breaking the n3 runtime of Larsen’s partial-coloring algo-
rithm (which is important for near-square matrices m ≈ n)
requires a different idea, as this bottleneck stems from the
Online Matrix-Vector Conjecture (Henzinger et al., 2015).
To circumvent this bottleneck, we modify the analysis and
implementation of the Edge-Walk subroutine (dropping cer-
tain verification steps via concentration arguments), and
then design a “guess-and-correct” data structure (inspired
by “lookahead” algorithms (Brand et al., 2019)) that batches
the prescribed gaussian projections, with low-rank amor-
tizes corrections. We now turn to formalize these three main
ideas.

2.2.1. ROBUST ANALYSIS OF LARSEN’S ALGORITHM

Approximate norm-estimation suffices. The original al-
gorithm (Larsen, 2023) explicitly calculates the exact norm
of each row of Bt = A(I − V ⊤

t Vt). Since the JL lemma

6The study of OMv originates from (Henzinger et al., 2015),
the (Larsen & Williams, 2017; Chakraborty et al., 2018) provide
surprising upper bound for the problem.
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guarantees ∥e⊤j B̂t∥2 ∈ (1± ϵ0)∥e⊤j Bt∥2,∀j ∈ [m] except
with polynomially-small probability δ0 (as the sketch di-
mension is logarithmic in 1/δ0), it is not hard to show that,
even though our approximation could potentially miss some
“heavy” rows, this has a minor effect on the correctness of
the algorithm: the rows our algorithm selects will be larger
than (1− ϵ0) times a pre-specified threshold, and the ones
that are not chosen will be smaller than (1 + ϵ0) times the
threshold. This allows to set ϵ0 = Ω(1).

Approximate SVD suffices. Recall that in the PROJECT-
TOSMALLROWS algorithm, expanding the subspace V it-
eratively, requires to compute SVD(B⊤

t Bt). Since exact
SVD is too costly for us, we wish to maintain an approxi-
mate SVD instead. Even though this may result in substan-
tially different eigen-spectrum, we observe that a spectral-
approximation of SVD(B⊤

t Bt) suffices for this subroutine,
since we only need eigenvectors to be: (i) orthogonal to
the row space of A(I − V ⊤

t V t); (ii) orthonormal to each
other. Our correctness analysis shows that an ϵB = Θ(1)
spectral approximation will preserve (up to constant factor)
the row-norm guarantee of PROJECTTOSMALLROWS.

2.2.2. OVERCOMING THE BARRIERS

Speeding-up the “hereditary-projection” step In the
PROJECTTOSMALLROWS subroutine in Larsen (2023), the
matrix Bt is used for (i) detecting rows with largest norms;
(ii) extracting the largest rows to generate a matrix B; and
(iii) computing the eigenvectors of B

⊤
B. To optimize this

process and reduce computational overhead, we avoid the
explicit representation of matrix Bt by substituting it with a
product of appropriately-chosen sketching matrices. Given
the aforementioned robustness-guarantees, Barriers in the
first step can be bypassed straight-forwardly by using a
JL sketch. Specifically, we utilize a random matrix R ∈
Rn×ϵ−2

0 log(1/δ0) to obtain the compressed matrix B̂t :=
A(I − V ⊤

t Vt)R. Similarly, detecting rows with large ℓ2
norm can be done in the sketched subspace since we can
preserve norms up to constant by choosing ϵ0 = Θ(1) and
δ0 = δ/poly(m,n), which reduces the time for querying
row-norms from O(mn2) to Õ(nnz(A) + nω).

Implicit leverage-score sampling To address the hard-
ness of computation of B

⊤
t Bt (overcoming Barrier 3), we

use robust analysis to ensure that approximating the Top-k
SVD of B

⊤
t Bt (where k ≈ n/ log(m/n)) using leverage-

score sampling (Drineas et al., 2012; Clarkson & Woodruff,
2013; Nelson & Nguyên, 2013) preserves algorithm correct-
ness. However, we lack explicit access to the input matrix
Bt, so we must perform implicit leverage-score sampling
w.r.t Bt in ∼ nnz(A) time. We propose IMPLICITLEVER-
AGESCORE (Algorithm 9), which takes A and an orthonor-
mal basis V and generates a sparse embedding matrix S1

B̂ A

I V ⊤V R

←

×( − )×
m

Õ(ϵ−20 )

m

n n n Õ(ϵ−20 )

The original matrix B by Larsen

n

Figure 1. We use the above sketch technique to reduce the time cost
when computing the row norms. B̂ ∈ Rm×Õ(ϵ−2

0 ) is our sketched
matrix. A ∈ Rm×n is the original data matrix. I ∈ Rn×n is an
n×n unit matrix. V ⊤V ∈ Rn×n is the projection matrix onto the
row span of V . And R ∈ Rn×Õ(ϵ−2

0 ) is our JL sketching matrix.
After sketched, we are able to fast query row norms of B̂, which
are close to row norm of B with an accuracy ϵ0. We select the
rows from B using this approximated norms. For the details of the
selection operation, see Figure 2 and Figure 3.

to produce a compressed matrix M , whose QR factoriza-
tion gives R. Using another sparse embedding matrix S2,
we calculate the compressed matrix N , which is used to
compute the approximate leverage scores. This allows us
to carry out the LSS lemma without computing Bt. With
IMPLICITLEVERAGESCORE, we can generate a diagonal
sampling matrix D̃ in Õ(nnz(A) + nω) time. Using this
subroutine to calculate B̃t = D̃tBt approximates the SVD
of B

⊤
t Bt. Finally, we prove that adding the eigenvectors of

B̃⊤
t B̃t instead of B

⊤
t Bt to V will still satisfy the required

“oversampling” prerequisite for each row in B.

2.2.3. BEATING THE CUBIC BARRIER

Where does the n3 barrier arise from? Recall that, in
order to simulate the Edge-Walk process, the PARTIALCOL-
ORING algorithm generates, in each iteration, a Gaussian
vector g and projects it to Span(V ). This requires a generic
Mat-Vec product (I − V ⊤

t Vt)g, which takes n2 time. Since
Vt is dynamically changing throughout iterates (depend-
ing on whether |xi + vi + gV,i| = 1 and |xi + vi| < 1
is satisfied or not for each i), and there are N = O(n)
iterations, the OMv Conjecture (Henzinger et al., 2015)
generally implies an Ω(n3) runtime for implementing this
iterative loop (Note that each ei can be added to V at most
once, O(n) iterations indeed suffice). Nonetheless, we show
how to re-implement PARTIALCOLORING using a “looka-
head” (guess-and-correct) data structure, which combines
FMM with low-rank corrections. We now describe the main
ingredients of this data structure.
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Bt Dt A

I V ⊤
t Vt

← ×

× ( − )
m

n

m

m n n n

n

∥Dt∥0 = mt

(a) Larsen’s selection matrix

B̃t DtD̃t A

I V ⊤
t Vt

← ××

× ( − )
m

n

m

mm n n n

n

∥Dt∥0 = mt∥D̃t∥0 = Õ(ϵ−2
B n)

(b) Our subsample matrix

Figure 2. This figure shows the difference of the row selection. Figure (a): Larsen’s algorithm explicitly selected the mt largest rows
from Bt = A(I − V ⊤

t Vt), and compute the eigenvectors of B
⊤
t Bt, whose time cost is expensive. Figure (b): In our design, we use a

subsample matrix D̃t to generate the matrix B̃t, who has the eigenvalues close to Bt. We use the above subsamping technique to reduce
the time cost when computing the SVD decomposition. By using this, we can fast compute the eigenvectors.

Precomputing Gaussian projections. To overcome the
∼ n2 running time for computing the Gaussian projections
for g, we add a preprocessing phase (INIT subroutine) to the
PARTIALCOLORING iterative algorithm, which generates—
in advance—a Gaussian matrix G ∈ Rn×N and stores the
projection of every column of G to the row space of V ,
denoted {gVt}g∈G. We also design a QUERY procedure,
which outputs any desired output vector g = (I − V ⊤

t Vt)g
on-demand. Since we do not know apriori if the subspace
Vt will change (and which coordinates ei will be added to
Vt), we use a “Guess-and-Correct” approach: We guess
the batch Gaussian projections, and then in iteration t, we
perform a low-rank corrections via our update and query
procedure in data structure. This idea is elaborated in more
detail below.

Lazy updates for the past rank-1 sequence. Updating
all the projections g̃ stored in the data structure would result
in prohibitively expensive runtime. Instead, we use the
idea of lazy updates: We divide the columns of G into
different batches, each batch having the size K. We also use
a counter τu to denote which batch is being used currently,
and initialize two counters kq and ku to record the times
QUERY and UPDATE were called, respectively. Every time
we call QUERY or UPDATE, we increment the counter by 1.
When either kq or ku reaches the threshold K, we RESTART
the process, and “accumulate” the current updates as well

as some clean-up operations for future iterations, adding up
the vectors which are not present yet, and computes a new
batch of g̃’s for future use). This procedure runs in time
O(Tmat(n,K, n)), and contributes Tmat(n,K, n) time to
the RESTART procedure.

Now, Recall that at the beginning of the PARTIALCOLOR-
ING algorithm, when we initialize the data structure, we
compute the first K projections g̃1, . . . , g̃k. Then we enter
the iteration. Recall in INIT, we generate a matrix P which
is defined to be V ⊤V for the input matrix V . And we pre-
compute a batch of projections onto the row space of V .
(G̃ = P · G∗,S , where S = [K] at the beginning.) Besides,
if there is some rows are added to V during the running
of the algorithm, we first find its factor that is vertical to
the row space of V . Then we rescale this vector to unit
and name it w. We maintain at most K w’s. Then through
the running of the algorithm, when we call the QUERY, we
just simply select the corresponding row in G̃, denoted as
g̃, and output the vector g − g̃ −∑ku

i=1 wiw
⊤
i g. Recall that

the number of g we pre-computed and the number of w we
maintained are both limited to be less than K, when one
of them reach the limit, we call the RESTART procedure.
When this condition happens, QUERY and UPDATE will take
Tmat(K,n, n). Thus by applying this lazy update idea, we
finally reach the subcubic running time. The final runtime
of PARTIALCOLORING using our data structure is therefore
a tradeoff based on the choice of batch size K. Denoting

7
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...

mt−1 largest rows

...

mt largest rows

Compute

Bt = A(I − V ⊤t−1Vt−1)

Compute

Bt−1 = A(I − V ⊤t−2Vt−2)

Compute

Bt+1 = A(I − V ⊤t Vt)

Bt−1 Bt

· · · · · ·

Bt−1 Bt

(a) Larsen’s matrix row selection

...

mt−1 approximated

largest rows

...

mt approximated

largest rows

Compute

B̂t= A(I − V ⊤t−2Vt−2)R

Compute

B̂t−1= A(I − V ⊤t−2Vt−2)R

Compute

B̂t−1= A(I − V ⊤t−2Vt−2)R

Bt−1 Bt

· · · · · ·

Bt−1 = A(I − V ⊤t−2Vt−2) Bt = A(I − V ⊤t−1Vt−1)

(b) Our matrix row selection

Figure 3. This figure shows the idea of the operation at the t-th iteration in the projection algorithm. The figure (a) shows the idea
of Larsen’s, and the figure (b) shows the idea of ours. Figure (a): Larsen’s algorithm selects the mt largest rows from the matrix
Bt = A(I − V ⊤

t−1Vt−1), then the rest of the rows not selected will have norm less than the threshold C0 · T · herdisc(A). But the time
cost of row norm computation is expensive. Figure (b): we compute the sketched matrix B̃t = A(I − V ⊤

t−1Vt−1)R, where R is an JL
matrix. Then we select the rows based on the approximated norms. Thus we significantly reduce the time cost of norm computation. We
show that, under our setting, the norm of the rows not selected will have another guarantee, that is, (1 + ϵ0) · C0 · T · herdisc(A). This
constant loss will still make our algorithm correct. (Since our row norm computation is approximated, there is a constant loss effecting the
selecting operation. To demonstrate this, we use the darker red to demonstrate the real largest rows without being selected.)

K = na, we get a total runtime of

Õ(nnz(A) + nω + n2+a + n1+ω(1,1,a)−a).

For the current upper bound on the fast rectangular matrix
multiplication function ω(·, ·, ·) (Alman et al., 2025), set-
ting a = 0.53 yields an optimal overall runtime time of
Õ(nnz(A) + n2.53). We note that even an ideal value of ω
would not improve this result by much, as it would merely
enable setting a = 0.5 which in turn would translate into an
n2.5 time algorithm, and this is the limit of our approach.

Faster Iterative Coloring Recall that with the approxi-
mate small-projection matrix in hand, we still need to over-
come Barriers 4 and 5 above. Computing the heaviest row
η := maxj∈[m] ∥a⊤j (I − V ⊤V )∥2 (Barrier 1) can again be
done (approximately) via the JL-sketch (as in the first step),
by computing

η̂ := max
j∈[m]

∥a⊤j (I − V ⊤V )R∥2

using the JL matrix R. Since R has only O(ϵ−2
1 log(1/δ1))

columns (where choosing ϵ1 = Θ(1) and δ1 =
δ/poly(mn) is sufficient ) this step reduces from

8
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ssss Iteration start

Generating random
Gaussian vector g

Projecting g onto Span(V )

Condition check 1

Add ei to V

Condition check 2

Add ai to V

Condition check 3

Return fail

Return

yes

no

yes

yes

no

no

(a) Larsen’s Partial Coloring Algorithm

ssss
Generating a set of random

Gaussian vectors g and store a
batch of them projected onto V

Iteration Start

Query a projected g directly

Condition check 1

Update ei to V and update
the projection automatically

Condition check 3

Condition check 2

Return

Return fail

yes

yes

no

no

no yes

(b) Our Fast Partial Coloring Algorithm

Figure 4. The flowchart shows different design of the partial coloring algorithm of Larsen (2023) and ours. In figure (a), the blue blocks
are the steps causing the mainly time cost. In figure (b), the red blocks are the steps we design to overcome those time costs. The g ∈ Rn

is the new-generated Gaussian vector and g is the projected vector. That is, g := (I − V ⊤V )g.

Tmat(m,n, n) time to Õ(n2).

As discussed earlier, Barrier 5 is a different ballgame and
major obstruction to speeding up Larsen’s algorithm, since
the verification step

Eτ :=

m∧

j=1

(|⟨aj , v + g⟩| ≥ τ ∧ |⟨aj , v⟩| < τ) (1)

needs to be performed adaptively in each of the n iterations,
which appears impossible to perform in≪ mn2 time given
the OMv Conjecture (Henzinger et al., 2015). Fortunately,
it turns out we can avoid this verification step using a slight
change in the analysis of Larsen (2023): Larsen’s analysis
shows the event Eτ in Eq. (1) happens with constant prob-
ability. By slightly increasing the threshold to τ ′ = τ(δ),
we can ensure the event Eτ ′ happens with probability 1− δ.
Setting δ to a small enough constant so as not to affect the
other parts of the algorithm, we can avoid this verification
step altogether. At this point, the entire algorithm can be
boosted to ensure high-probability of success. combining
these ideas yields a (combinatorial) coloring algorithm that
runs in Õ(nnz(A) + n3). Next, we turn to explain the

new idea required to overcome the cubic term n3, which is
important for the near-square case (m ≈ n).

3. Conclusion
In this work, we address the longstanding challenge of dis-
crepancy minimization for real-valued matrices with a focus
on achieving input-sparsity time algorithms. By introducing
novel algorithmic components such as implicit leverage-
score sampling and lazy update, our combinatorial algorithm
achieves a runtime of Õ(nnz(A) + n3) and a FMM-based
variant breaks the cubic barrier to reach Õ(nnz(A)+n2.53).
We significantly improve the computational efficiency while
matching the approximation guarantees of existing meth-
ods. Our approach not only introduces novel algorithmic
components but also demonstrates the potential of combin-
ing sketching and fast matrix multiplication in advancing
computational geometry and optimization. We believe these
techniques are of independent interest. Future work could
extend these ideas to reduce the runtime of other problems
in combinatorial optimization, or adapt techniques to tackle
the problems in streaming and distributed models.
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Appendix
Rodamap. We organize the appendix as follows. In Section A, we give the preliminaries of the paper, including the
notations we use, the definitions and some useful results from prior works. In Section B, we provide previous tools and
results on sketching. In Section C, we present our first result, a fast algorithm of projecting matrix into small rows. In
Section D, we present the final algorithm of hereditary minimize. In Section E, we present the second main result, the fast
partial coloring algorithm. In Section F, we discuss the fast maintaining algorithm we use to boost the running time. In
Section G, we provide our implicit leverage score sampling algorithm. In Section H, we give a sparsification tool for the
matrix that has pattern A⊤A. In Section I, we provide the algorithm to find proper step size in Partial Coloring algorithm. In
Section J, we provide empirical validation of the efficiency of our algorithm. In Section K, we discuss more related work on
linear programming, semidefinite programming, and applications of discrepancy theory in machine leraning.

A. Preliminaries
A.1. Notations

For a vector x ∈ Rn, we use ∥x∥1 to denote its entrywise ℓ1 norm. We use ∥x∥∞ to denote its entrywise ℓ∞ norm. For a
matrix X , we use ∥X∥ to denote the spectral norm. We use ei to denote the vector where i-th location is 1 and everywhere
else is 0. For a matrix A, we say matrix A positive semi-definite if A ⪰ 0, i.e., x⊤Ax ≥ 0 for all vectors x. We say A ⪰ B,
if for all x ∈ Rd, x⊤Ax ≥ x⊤Bx. For a positive semi-definite matrix A, let UΣU⊤ be the SVD decomposition of A. We
use A1/2 to denote UΣ1/2U⊤. We use A−1/2 to denote UΣ−1/2U⊤ where Σ−1/2 is diagonal matrix that i, i-entry is Σ−1/2

i,i

if Σi,i ̸= 0 and i, i-th entry is 0 if Σi,i = 0. For a matrix A, we use nnz(A) to denote the number of non-zeros in matrix A.

A.2. Definitions

Here, we define disc and herdisc.

Definition A.1 (Discrepancy). For a real matrix A ∈ Rm×n, and a vector x ∈ {1,−1}n. We define the discrepancy of A to
be

disc(A, x) := ∥Ax∥∞ = max
i∈[m]

|(Ax)i|.

And we define the discrepancy of the matrix A as

disc(A) := min
x∈{1,−1}n

disc(A, x).

Definition A.2 (Hereditary Discrepancy). For a real matrix A ∈ Rm×n. Let A be defined as the set of matrices obtained
from A by deleting some columns from A. We define the hereditary discrepancy of A to be

herdisc(A) := max
B∈A

disc(B),

where disc is defined as Definition A.1.

A.3. Basic Linear Algebra

Lemma A.3. Given two psd matrices A ∈ Rn×n and B ∈ Rn×n. If

(1− ϵ)A ⪯ B ⪯ (1 + ϵ)A

then, we have

(1− ϵ)λi(A) ⪯ λi(B) ⪯ (1 + ϵ)λi(A).

Note that, λi(A) is the i-the largest eigenvalue of A.
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A.4. Prior Results on Herdisc

We state a tool from previous work.

Theorem A.4 (Larsen (2017)). Given a real matrix A ∈ Rm×n, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of A⊤A.
For all positive integers k ≤ min{m,n}, we have

herdisc(A) ≥ k

2e

√
λk

mn
.

A.5. Properties of Gaussians

We state two statements about the Gaussian variables.

Claim A.5. Let t be a random variable such that t ∼ N (0, 1). Then for any λ > 0, we have that

Pr[|t| > λ] ≤ 2 exp(−λ2/2).

Claim A.6 (Claim 2 in Larsen (2023)). For an arbitrary matrix V ∈ Rl×n such that l ≤ n and all rows of V form an
orthogonal basis. Let g ∈ R be a vector which is sampled with n i.i.d. N (0, 1) distributed coordinates. Then for any
arbitrary vector a ∈ Rn we have that

⟨a, (I − V ⊤V )g⟩ ∼ N (0, a∥I − V ⊤V ∥2).

A.6. Azuma for Martingales with Subgaussian Tails

Then for martingales with subgaussian tails, we introduce the following Azuma’s inequality. We first define the following
martingale difference sequence.

Definition A.7 (Martingale Difference Sequence). For two sequences of random variables A = {A1, A2, . . . } and
B = {B1, B2, . . . }. If for any integer t ∈ Z+, At+1 is a function of {B1, . . . , Bt} and the following holds,

Pr[E[At+1 | B1, . . . , Bt] = 0] = 1,

then we say that A is a martingale difference sequence with respect to B.

Then we introduce the following Azuma’s inequality for martingales with Subgaussian tails.

Theorem A.8 (Shamir (2011)). Let δ ∈ (0, 1) be an arbitrary failure probability. Let A = {A1, . . . , AT } be a martingale
difference sequence with respect to a sequence B = {B1, . . . , BT }. Let b > 1 and c > 0 be two constants. If for any integer
t and all a ∈ R+, the following holds,

max{Pr[At > a | B1, . . . , Bt−1],Pr[At < −a | B1, . . . , Bt−1]} ≤ b exp(−ca2).

Then it holds that

| 1
T

T∑

t=1

At| ≤ 2

√
28b lg(1/δ)

cT

with probability at least 1− δ.

A.7. Concentration Inequality

We state the matrix Bernstein bound as follows:

Lemma A.9 (Matrix Bernstein Bound (Tropp, 2011; Tropp et al., 2015)). Let X1, . . . , Xs be independent copies of
a symmetric random matrix X ∈ Rn×n with E[X] = 0, ∥X∥ ≤ γ almost surely and ∥E[X⊤X]∥ ≤ σ2. Let W =
1
s

∑
i∈[s] Xi. For any ϵ ∈ (0, 1),

Pr[∥W∥ ≥ ϵ] ≤ 2n · exp
(
− sϵ2

σ2 + γϵ/3

)
.

Note the ∥W∥ is the spectral norm of matrix W .
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A.8. Fast Matrix Multiplication

We describe several basic backgrounds about fast matrix multiplication.

Definition A.10. Given three integers n1, n2, n3, we use Tmat(n1, n2, n3) to denote time of multiplying a n1 × n2 matrix
with another n2 × n3 matrix.

It is known that the ordering of n1, n2, n3 only affects the constant factor in the time complexity of matrix multiplication.

Fact A.11 (Bürgisser et al. (2013); Bläser (2013)).

Tmat(n1, n2, n3) = O(Tmat(n1, n3, n2)) = O(Tmat(n2, n1, n3)).

For convenience, we also define the ω(·, ·, ·) function and the exponent ω of matrix multiplication (Williams, 2012; Gall &
Urrutia, 2018; Alman & Williams, 2021; Williams et al., 2024; Alman et al., 2025).

Definition A.12. For a, b, c > 0, we use nω(a,b,c) to denote the time of multiplying an na × nb matrix with another nb × nc

matrix. We denote ω := ω(1, 1, 1) as the exponent of matrix multiplication. we denote α as the dual exponent of matrix
multiplication, i.e., 2 = ω(1, 1, α).

By the state-of-the-art fast matrix multiplication result in Alman et al. (2025), we have

Lemma A.13 (Alman et al. (2025)). We have

• ω = ω(1, 1, 1) = 2.371.

• ω(1, 1, 0.5275) = 2.055.

B. Previous Tools and Results on Sketching
Here in this section, we provide tools and previous results on sketching matrices. In Section B.1 we introduce some sketching
matrices. In Section B.2 we provide traditional JL transform. In Section B.3 we give some previous results on subspace
embedding.

B.1. Sketching Matrices

Definition B.1 (Random Gaussian matrix or Gaussian transform, folklore ). Let S = σ ·G ∈ Rs×m where σ is a scalar,
and each entry of G ∈ Rs×m is chosen independently from the standard Gaussian distribution. For any matrix A ∈ Rm×n,
SA can be computed in O(s · nnz(A)) time.

Definition B.2 (AMS (Alon et al., 1996)). Let h1, h2, . . . , hb be b random hash functions picking from a 4-wise independent
hash familyH = {h : [n]→ {− 1√

b
,+ 1√

b
}}. Then R ∈ Rb×n is a AMS sketch matrix if we set Ri,j = hi(j).

Definition B.3 (CountSketch (Charikar et al., 2002)). Let h : [n]→ [b] be a random 2-wise independent hash function and
σ : [n] → {+1,−1} be a random 4-wise independent hash function. Then R ∈ Rb×n is a count-sketch matrix if we set
Rh(i),i = σ(i) for all i ∈ [n] and other entries to zero.

Definition B.4 (Sparse Embedding Matrix I (Nelson & Nguyên, 2013)). We say R ∈ Rb×n is a sparse embedding matrix
with parameter s if each column has exactly s non-zero elements being ±1/√s uniformly at random, whose locations are
picked uniformly at random without replacement (and independent across columns).

Definition B.5 (Sparse Embedding Matrix II (Nelson & Nguyên, 2013)). Let h : [n] × [s] → [b/s] be a random 2-wise
independent hash function and σ : [n]× [s]→ {−1.+ 1} be a 4-wise independent. Then R ∈ Rb×n is a sparse embedding
matrix II with parameter s if we set R(j−1)b/s+h(i,j),i = σ(i, j)/

√
s for all (i, j) ∈ [n]× [s] and all other entries to zero.

Definition B.6 (CountSketch + Gaussian transform, Definition B.18 in Song et al. (2019a)). Let S′ = SΠ, where
Π ∈ Rt×m is the COUNTSKETCH transform (defined in Definition B.3) and S ∈ Rs×t is the Gaussian transform (defined in
Definition B.1). For any matrix A ∈ Rm×n, S′A can be computed in O(nnz(A) + ntsω−2) time, where ω is the matrix
multiplication exponent.
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B.2. JL Transform

We define Johnson–Lindenstrauss transform (Johnson & Lindenstrauss, 1984) as follows:

Definition B.7 (Johnson & Lindenstrauss (1984)). Let ϵ ∈ (0, 1) be the precision parameter. Let δ ∈ (0, 1) be the failure
probability. Let A ∈ Rm×n be a fixed matrix. Let a⊤i denote the i-th row of matrix A, for all i ∈ [m]. We say R is an ϵ, δ-JL
transform if with probability at least 1− δ,

(1− ϵ)∥ai∥2 ≤ ∥Rai∥2 ≤ (1 + ϵ)∥ai∥2, ∀i ∈ [m].

It is well-known that random Gaussian matrices and AMS matrices give JL-transform property.

Lemma B.8 (Johnson–Lindenstrauss transform (Johnson & Lindenstrauss, 1984)). Let ϵ ∈ (0, 1) be the precision parameter.
Let δ ∈ (0, 1) be the failure probability. Let A ∈ Rm×n be a real matrix . Then there exists an sketching matrix
R ∈ Rϵ−2 log(mn/δ)×n (defined as Definition B.1 or Definition B.2), such that the following holds with probability at least
1− δ,

(1− ϵ)∥ai∥2 ≤ ∥Rai∥2 ≤ (1 + ϵ)∥ai∥2, ∀i ∈ [m],

where for a matrix A, a⊤i denotes the i-th row of matrix A ∈ Rm×n.

The JL Lemma is known to be tight due to Larsen & Nelson (2017).

B.3. Subspace Embedding

We first define a well-known property called subspace embedding.

Definition B.9 (Subspace embedding (Sarlos, 2006)). A (1± ϵ) ℓ2-subspace embedding for the column space of an m× n
matrix A is a matrix S for which for all x ∈ Rn

∥SAx∥22 = (1± ϵ)∥Ax∥22.

Let U denote the orthonormal basis of A, then it is equivalent to the all the singular values of SU are within [1− ϵ, 1 + ϵ]
with probability 1− δ.

Nelson & Nguyên (2013) shows that r = O(ϵ−2n log8(n/δ)) and column sparsity O(ϵ−1 log3(n/δ)) suffices for subspace
embedding (See Theorem 9 in Nelson & Nguyên (2013)). Later Cohen (2016a) improves the result to r = O(ϵ−2n log(n/δ))
and column sparsity is O(ϵ−1 log(n/δ)) (see Theorem 4.2 in Cohen (2016a)).

Lemma B.10 (Nelson & Nguyên (2013); Cohen (2016a)). Let A ∈ Rm×n be a matrix. Let S ∈ Rr×m denote the sketching
matrix (defined as Definition B.4). If r = O(ϵ−2n log(n/δ)) and the column sparsity of S is s = O(ϵ−1 log(n/δ)), then S
satisfies that with probability 1− δ

∥SAx∥22 = (1± ϵ)∥Ax∥22.

Further, SA can be done in (s · nnz(A)) time.

C. Small Row Projection via Implicit Leverage-Score Sampling
Here in this section, we build our algorithm of projecting a matrix to small rows. In Section C.1 we present the orghogonalize
subroutine which is useful in later algorithms. In Section C.2 we present our projection algorithm together with its analysis.

C.1. Orthogonalize Subroutine

Here in this section, we present the following algorithm named ORTHOGONALIZE, which is just the Gram-Schmidt process.
This subroutine is very useful in the construction of the following algorithms.

The following lemma gives the running time of the above algorithm, with input vector sparsity time.

Lemma C.1. The algorithm (ORTHOGONALIZE in Algorithm 1) runs O(∥s∥0 · n) time.
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Algorithm 1 Algorithm 1 in Larsen (2023)

1: procedure ORTHOGONALIZE(s ∈ Rn, V ∈ Rl×n) ▷ Lemma C.1
2: s′ ← (I − V ⊤V )s
3: if s′ ̸= 0 then
4: add s′/∥s′∥2 as a row of V
5: end if
6: return V
7: end procedure

Proof. The running time of ORTHOGONALIZE can be divided as follows,

• Line 2 takes time O(∥s∥0 · n) to compute s′, where for a vector x ∈ Rd, ∥x∥0 denotes the ℓ0 norm of x.

• Line 4 takes time O(n) to compute s′/∥s′∥2.

Thus we have the total running time of O(∥s∥0 · n).

C.2. Fast Projecting to Small Rows

Here in this section, we present our first main result, i.e., the faster algorithm for projecting a matrix to small rows. We first
show the algorithm as follows.

C.2.1. RUNNING TIME

The goal of this section is to prove running time of Algorithm 2. We have the following lemma.

Theorem C.2 (Running time of Algorithm 2). The algorithm (FASTPROJECTTOSMALLROWS in Algorithm 2) runs
Õ(nnz(A) + nω) time7. The succeed probability is 1− δ. Note that Õ hides log(n/δ).

Proof. The running time of FASTPROJECTTOSMALLROWS can be divided as follows,

• Run the following lines for i ∈ [T ] times, where T = O(log(m/n)):

– Line 14 needs to compute B̂t, it takes the following time

O(nnz(A)r + nω + n2r) = Õ(nnz(A) + nω)

– Line 18 takes time Õ(m) to construct Dt by computing the norms, and takes time Õ(m) to find the largest mt−1

of them.
– Using Lemma G.4, we can compute D̃t in Õ(nnz(A) + nω) time

• Line 31 runs ORTHOGONIZE for O(n) times, and takes O(n) each time.

Adding these together, we have the total running time of

Õ(nnz(A) + nω).

C.2.2. CORRECTNESS

Here we present the correctness theorem of the Algorithm 2, and together with its proof.

Theorem C.3 (Correctness of Algorithm 2 ). For any given m× n matrix A, there is an algorithm that takes A as input
and output a matrix V ∈ Rn/4×n such that

7Note that ω denotes the exponent of matrix multiplication, currently ω ≈ 2.373 (Williams, 2012; Alman & Williams, 2021).
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Algorithm 2 Our input sparsity projection algorithm (this improves the Algorithm 2 in (Larsen, 2023))

1: procedure FASTPROJECTTOSMALLROWS(A ∈ Rm×n, δ ∈ (0, 1)) ▷ Theorem C.3
2: V1 ∈ 00×n ▷ Initialize an empty matrix
3: T ← log(8m/n)
4: δ0 ← Θ(δ/(mT ))
5: ϵ0 ← 0.01
6: r ← ϵ−2

0 log(1/δ0)
7: δB ← Θ(δ/T )
8: ϵB ← 0.1
9: for t = 1→ T do

10: lt ← t · n
8T

11: mt ← m/2t

12: /*Ideally, we need to compute Bt ← A(I − V ⊤
t Vt) ∈ Rm×n, but we have no time to do that.*/

13: Let R ∈ Rn×r denote JL sketching matrix (Either Definition B.2 or Definition B.1)
14: Compute B̂t ← A(I − V ⊤

t Vt)R ▷ ∥B̂t,j∥2 ∈ (1± ϵ0)∥Bt,j∥2,∀j ∈ [m], Lemma B.8
15: /* Ideally, we need to compute ∥Bj∥2, but we had no time to do that.*/
16: Compute ∥B̂t,j∥2 for all j ∈ [m]

17: St ⊂ [m] denote the indices of B̂t such that it contains mt−1 rows of the largest norm
18: Let Dt denote a sparse diagonal matrix where (i, i)-th location is 1 if i ∈ St and 0 otherwise
19: Let Bt = DtA(I − V ⊤

t Vt) ∈ Rmt−1×n be the submatrix obtained from Bt

20: /* Ideally, we need to compute B
⊤
t Bt, but in algorithm we had no time to do that.*/

21: D̃t ← SUBSAMPLE(DtA, Vt, ϵB , δB) ▷ Algorithm 10
22: B̃t ← D̃tA(I − V ⊤

t Vt)

23: ▷ Note that σi = λi(B
⊤
t Bt) and σ̃i = λi(B̃

⊤
t B̃t)

24: /* Ideally, we need to compute the eigenvalues σ1 ≥ · · · ≥ σn ≥ 0 and corresponding eigenvectors u1, · · · , un

of B
⊤
t Bt, but in algorithm we had no time to that*/

25: Let ũ1, · · · ũn ∈ Rn denote the eigenvectors of SVD decomposition of B̃⊤
t B̃t = Ũ Σ̃Ũ⊤

26: Construct matrix Vt+1 ∈ Rlt+1×n by adding rows vectors {ũ1, · · · , ũn/(8T )} to the bottom Vt ∈ Rlt×n
t

27: end for
28: BT ← A · (I − V ⊤

T+1VT+1)
29: Let r1, · · · , rn/8 be the n/8 rows of BT with largest norm
30: for j = 1→ n/8 do
31: V ← ORTHOGONALIZE(rj , V ) ▷ Algorithm 1
32: end for
33: return V ▷ V ∈ Rℓ×n and ℓ ≤ n/4
34: end procedure

• having unit length orthogonal rows

• all rows of A(I − V ⊤V ) have norm at most O(herdisc(A) log(m/n)),

holds with probability at least 1− δ.

Proof. We define

T := log(8m/n),

which is the time of the main loop of Algorithm 2 execute.

We define

C0 := 1000
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to be a constant used later.

And we define

mt := m/2t

to denote the number of rows in B at each iteration. We then continue the proof in the following paragraphs.

The rows of V form an orthonormal basis. To start with, let us show that, the output matrix V form an orthonormal
basis with its rows. Since V0 has no rows, the claim is true initially.

We first fix t ∈ T , consider at t-th iteration,after constructing Vt+1 by adding row vectors

{ũ1, . . . , ũn/(8T )}

to the bottom of Vt in Line 26.

Note that these are eigenvectors, so they must be orthogonal to each other and for any u of them, ∥u∥2 = 1. Moreover, we
have that

{ũ1, . . . , ũn/(8T )} ⊆ span(B̃t).

We note that, since we define B̃t as

B̃t = D̃tA(I − V ⊤
t Vt),

all rows of B̃t muse be orthogonal to any rows of Vt ∈ Rlt×n, and it follows that adding the above set of eigenvectors

{ũ1, . . . , ũn/(8T )}

as rows of Vt ∈ Rlt×n maintains the rows of Vt+1 ∈ Rlt+1×n form an orthonormal basis.

After the first for-loop, we claim obviously that, the last for-loop (Line 31) preserves the property of V such that, V form an
orthonormal basis with its rows.

Row norm guarantee, proved with induction. We now claim that, after the t-th iteration of the first for-loop (Line 9 to
Line 27), we have that

|{i ∈ [m] | ∥bi∥2 ≥ (1 + ϵ0) · C0 · T · herdisc(A)}| ≤ mt,

i.e., there are at most mt rows in Bt = A(I − V ⊤
t Vt) having norm larger than (1 + ϵ0) · C0 · T · herdisc(A). We first note

that, for t = 0 this holds obviously.

Then have the following inductive assumption:

After iteration t− 1, there are at most mt−1 rows have norm larger than (1− ϵ0) · C0 · T · herdisc(A).

We split the inductive step into the following two parts:

Norm of rows not in Bt will not increase. We first fix t ∈ [T ]. Then by the inductive assumption and our approximated
norm computation, we have that for the t’th iteration, all rows not in Bt have norm at most

(1 + ϵ0) · C0 · T · herdisc(A).

Since we have

span(AV ⊤
t Vt) ⊆ span(V ),

then the norm of each row in matrix A(I − V ⊤
t Vt) will never increase after we add new rows to V . Thus we have the claim

proved.
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At most mt rows in Bt reach the threshold after adding rows. Now in this paragraph we prove that, after adding

{ũ1, . . . , ũn/(8T )}

the bottom of Vt (Then we name the new matrix to be vt+1), there are no less than mt rows in Bt(I−V ⊤
t+1Vt+1) ∈ Rmt−1×n

having norm larger than

(1− ϵ0) · C0 · T · herdisc(A).

Here we note that, before adding the new rows to Vt, since all rows of Bt are already orthogonal to all rows of Vt, we have
the following

Bt = Bt(I − V ⊤
t Vt)

8.

We now prove it by contradiction. For the sake of contradiction, we assume that, more than mt rows in Bt(I − V ⊤
t+1Vt+1)

have norm larger than C0 · T · herdisc(A) after adding

{ũ1, . . . , ũn/(8T )}

to the bottom of Vt. We assume that Vt+1 has lt+1 rows. Select an arbitrary set of unit vectors {w1, . . . , wn−lt+1} ⊆ Rn

such that,

span(w1, . . . , wn−lt+1
) = Rd\span(Vt+1).

Using row norms, we can generate

Bt = DtA(I − V ⊤
t Vt).

Using SUBSAMPLE (Algorithm 10), we can generate a matrix

B̃t = D̃tA(I − V ⊤
t Vt).

By Lemma H.2, we know that B̃t only has roughly ∥D̃t∥0 = O(ϵ−2
B n log(n/δB)) rows so that

Pr
[
(1− ϵB)B

⊤
t Bt ⪯ B̃⊤

t B̃t ⪯ (1 + ϵB)B
⊤
t Bt

]
≥ 1− δB

Using Lemma A.3, the above approximation implies that

Pr
[
(1− ϵB)λi(B

⊤
t Bt) ⪯ λi(B̃

⊤
t B̃t) ⪯ (1 + ϵB)λi(B

⊤
t Bt),∀i ∈ [n]

]
≥ 1− δB .

We define

Q := Bt(I − V ⊤
t+1Vt+1).

And for the approximated metrics, we define

Q̃ := B̃t(I − V ⊤
t+1Vt+1).

We first note that, all rows of Q lie in span(w1, . . . , wn−lt+1
). Then by the construction of B̃, we have that, all rows of Q̃

also lie in span(w1, . . . , wn−lt+1
). It follows that

∑

k∈[mt−1]

∑

j∈[n−lt+1]

⟨qk, wj⟩2 =
∑

k∈[mt−1]

∥qk∥22

> mt · ((1− ϵ0) · C0 · T · herdisc(A))2,

where the second step follows from the contradiction assumption.
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Taking the average over the vectors wj ∈ Rn, there has to be a j ∈ [n− lt+1] such that
∑

k∈[mt−1]

⟨qk, wj⟩2 > mt · ((1− ϵ0) · C0 · T · herdisc(A))2/n.

We denote v = wj . Thus we have that,

∥B̃tv∥2 ≥ (1− ϵB) · ∥Btv∥2

> (1− ϵB) ·mt · ((1− ϵ0) · C0 · T · herdisc(A))2/n, (2)

where the first step follows from Lemma H.2. and the second step follows from the contradiction assumption that there are
more than ml rows in Bt(I − V ⊤

t+1Vt+1) with norm more than (1− ϵ0) · C0 · T · herdisc(A) and v is a unit vector.

We can upper bound ∥B̃tv∥22,

∥B̃tv∥22 = v⊤B̃⊤
t B̃tv

≤ σ̃n/(8T )

≤ (1 + ϵB) · σn/(8T ), (3)

where the first step follows from the definition of ℓ2 norm , the second step follows from that v is orthogonal to
ũ1, . . . , ũn/(8T ) ∈ Rn and, the third step follows from the way we generate B̃t.

Thus we have that,

σn/(8T ) >
1− ϵB
1 + ϵB

·mt · ((1− ϵ0) · C0 · T · herdisc(A))2/n

≥ 1

4
·mt · (C0 · T · herdisc(A))2/n,

where the first step follows from Eq. (2) and Eq. (3), the second step follows from that we set ϵB ∈ (0, 0.5) and ϵ0 = 0.01.

But at the same time we have the following,

herdisc(A) ≥ herdisc(Bt)

>
n

16eT
·
√

1

4
· mt · (C0 · T · herdisc(A))2/n

mt−1 · n
= 2 · herdisc(A),

where the first step follows from that Bt is a matrix obtained from A ∈ Rm×n by deleting a subset of the rows of A, the
second step follows from Theorem A.4 and k = n/(8T ) here, and the last step follows from simplify the above step.

Thus, we get a contradiction.

By the proof above, we have the claim that after the first for-loop (Line 9 to Line 27 in Algorithm 2), there are at most
mT = n/8 rows in BT = A(I − V ⊤

t Vt) having norm larger than

C0 · T · herdisc(A).

Then we do the second for-loop (Line 31 in Algorithm 2). We notice after that, all these rows lie in Span(Vt). Thus we have
the desired guarantee of the algorithm.

And by union bound of the above steps, we have the result holds with probability at least 1 − δ. Thus we complete the
proof.

D. Discrepancy-Minimization Algorithm
D.1. Correctness

The goal of this section is to prove Theorem D.1.
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Theorem D.1. The algorithm (FASTHEREDITARYMINIMIZE in Algorithm 3) takes a matrix A ∈ Rm×n as input and
outpus a coloring x ∈ {−1,+1}n such that

disc(A, x) = O(herdisc(A) · log n · log1.5 m).

holds with probability 1− δfinal.

Proof. We divide the proof into the following two parts.

Proof of Quality of Answer. By the condition of the algorithm stops, we have that, there is no i ∈ [n] such that |xi| < 1.
And by Lemma E.2, every time after we call FASTPARTIALCOLORING (Algorithm 4), herdisc(A, x) changes at most
O(herdisc(A) · log1.5 m). Note that, the FASTPARTIALCOLORING is called O(log n) times, thus we have the guarantee.
Thus we complete the proof.

Proof of Success Probability. For the FASTPARTIALCOLORING Algorithm, each time we call it, we have that

• with probability at most 19/20, we know that it outputs fail.

• with 1/20− δ3final/n
3, it outputs a good xnew.

• with probability at most δ3final/n
3 it outputs a xnew with no guarantee.

As long as we repeat second while loop more than k = Θ(log(n/δfinal)) times, then we can promise that with probability
1− δ2final/n

2, we obtain a non-final xnew.

Then by union bound we have the final succeed probability is

1− (δ2final/n
2) · log n︸ ︷︷ ︸

all logn iterations get non-fail

− (δ3final/n
3) · k log n︸ ︷︷ ︸

all V and η are good

≥ 1− δfinal.

D.2. Running Time

The goal of this section is to prove Theorem D.2.

Theorem D.2. For any parameter a ∈ [0, 1], the expected running time of algorithm
(FASTHEREDITARYMINIMIZE in Algorithm 3) is9

Õ(nnz(A) + nω + n2+a + n1+ω(1,1,a)−a).

Note that ω(·, ·, ·) function is defined as Definition A.12.

Proof. For the running time of FASTHEREDITARYMINIMIZE, we analyze it as follows.

First we notice that, |S| halves for each iteration of the outer while loop. Thus for each iteration, we can only examine the
xi’s for i ∈ S, where S is from the previous iteration. Then, we can maintain S in O(n) time.

By the same argument, Line 6 takes a total time of O(nnz(A)) to generate the submatrices A.

Recall we have the S halved each iteration, so |S| ≤ n/2i at i’th iteration. Thus we have by Lemma E.12, Line 12 takes
time

TFPC = Õ(nnz(A) + nω + n2+a + n1+ω(1,1,a)−a)

to call FASTPARTIALCOLORING.
9Note that ω is the exponent of matrix multiplication, currently ω ≈ 2.373 (Williams, 2012; Alman & Williams, 2021).
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Algorithm 3

1: procedure FASTHEREDITARYMINIMIZE(A ∈ Rm×n, δfinal ∈ (0, 0.001)) ▷ Lemma D.1, Lemma D.2
2: x← 0n

3: while x /∈ {−1,+1}n do
4: S ← {i ∈ [n] | |xi| < 1}
5: Let x← xS be the coordinates of x indexed by S
6: Let A← A∗,S ∈ Rm×|S| be the columns of A indexed by S
7: finished← false
8: counter← 0
9: k ← Θ(log(n/δfinal))

10: while finished = false and counter < k do
11: counter← counter + 1
12: xnew ← FASTPARTIALCOLORING(A, x, δ3final/n

3) ▷ Algorithm 4
13: if xnew ̸= fail then
14: xS ← xnew

15: finished← true
16: end if
17: end while
18: if finished = false then
19: return fail
20: end if
21: end while
22: return x
23: end procedure

Let p denote the succeed probability of FASTPARTIALCOLORING, each time, it takes TFPC time, so total

Expected time = p · TFPC + (1− p) · p · 2TFPC + (1− p)2 · p · 3TFPC + · · ·

=

∞∑

i=1

(1− p)i−1p · i · TFPC

Let f(p) =
∑∞

i=1(1− p)i−1p · i. Then we have

f(p)− (1− p)f(p) =

∞∑

i=1

(1− p)i−1pi−
∞∑

i=1

(1− p)ipi

=

∞∑

i=0

(1− p)ip(i+ 1)−
∞∑

i=1

(1− p)ipi

= p+

∞∑

i=1

(1− p)ip

≤ p+ p · 1/p
= 1 + p

Thus,

f(p) ≤ 1 + p

p

Thus the expected time is O(TFPC/p).

Since there are at most log n iterations, so the expected time is

O(p−1TFPC · log n).
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Algorithm 4 Input sparsity time partial coloring algorithm

1: procedure FASTPARTIALCOLORING(A ∈ Rm×n, x ∈ (−1,+1)n, a ∈ [0, 1], δfinal ∈ (0, 0.01), δ ∈ (0, 0.01)) ▷
Lemma E.2, Lemma E.12

2: u1 ← 0n

3: δ1 ← δ2final/n
2

4: δ2 ← δ2final/n
2

5: V ← FASTPROJECTTOSMALLROWS(A, δ1) ▷ Algorithm 2
6: η ← FASTAPPROXMAXNORM(A, V, δ2) ▷ Algorithm 5
7: ▷ η ≤ O(herdisc(A) log(m/n))
8: ϵ← Θ((log(mn) + n)−1/2)
9: N ← Θ(ϵ−2 + n)

10: β ← Θ(ϵη
√

N log(m/δ)) ▷ β ≤ O(herdisc(A) log1.5(m))
11: Generate a Gaussian matrix G ∈ Rn×N , where each column is sampled from N (0, In)
12: MAINTAIN ds ▷ Algorithm 6
13: ds.INIT(V,G, n, na) ▷ Algorithm 6
14: for t = 1→ N do
15: gVt

← ds.QUERY() ▷ Algorithm 6, gVt
= (I − V ⊤

t Vt)G∗,t
16: ▷ Let µ > 0 be maximal such that max{∥x+ ut + µ · gVt∥∞, ∥x+ ut − µ · gVt∥∞} = 1
17: µ← FINDBOUNDARY(x+ ut, gVt) ▷ Algorithm 11
18: ĝt ← min{ϵ, µ} · gVt

▷ ĝt ∈ Rn

19: for i = 1→ n do
20: if |xi + ut,i + ĝt,i| = 1 and |xi + ut,i| < 1 then
21: We will add ei into V in an implicit way via data structure ds ▷ The explicit way can be found here

Algorithm 1
22: ds.UPDATE(ei) ▷ Algorithm 7
23: end if
24: end for
25: ut+1 ← ut + ĝt
26: if |{i ∈ [n] : |xi + ut+1,i| = 1}| ≥ n/2 then
27: if ∥Aut+1∥∞ > β then
28: return fail ▷ Case 2 of Lemma E.2
29: else
30: return xnew ← x+ ut+1 ▷ Case 1 of Lemma E.2
31: end if
32: end if
33: end for
34: return fail ▷ Case 3 of Lemma E.2
35: end procedure

E. Partial Coloring
E.1. Fast Algorithm for Approximating Norms

Algorithm 5

1: procedure FASTAPPROXNORM(A ∈ Rm×n, V ∈ Rℓ×n, δ2 ∈ (0, 0.01)) ▷ Lemma E.1
2: Let R ∈ Rn×r denote a random JL matrix with r = Θ(ϵ−2

1 log(m/δ2)) ▷ Either Definition B.2 or Definition B.1.
3: Compute (I − V ⊤V )R ▷ This takes O(n2r) time
4: η ← maxj∈[m] ∥a⊤j (I − V ⊤V )R∥2 ▷ This takes O(nnz(A)r) time
5: return η
6: end procedure

Here in this section, we present an subroutine used as a tool to get fast approximation to the row norm of a matrix, based on
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the JL lemma. The goal of this section is to prove Lemma E.1

Lemma E.1. Let V ∈ Rℓ×n where ℓ ≤ n and A ∈ Rm×n. For any accuracy parameter ϵ1 ∈ (0, 0.1), failure probability
δ1 ∈ (0, 0.1), let r = O(ϵ−2

1 log(m/δ1)), there is an algorithm (procedure FASTAPPROXMAXNORM in Algorithm 5) that
runs in O((nnz(A) + n2) · r) time and outputs a number η ∈ R such that

η ≥ (1− ϵ1) · max
j∈[m]

∥a⊤j (I − V ⊤V )∥2

holds with probability 1− δ1.

Proof. Let R ∈ Rn×r denote a random JL matrix. The running time is from computing

• Computing V R takes n2r time.

• Computing V ⊤(V R) takes n2r time.

• Computing AR takes nnz(A)r time.

• Computing A · (V ⊤ · (V R)) takes nnz(A)r time.

• Computing ∥(AR−AA · (V ⊤ · (V R)))j,∗∥2 for all j ∈ [m]. This takes O(mr) time.

• Taking the max over all the j ∈ [m]. This step takes O(m) time.

The correctness follows from JL Lemma (Lemma B.8) directly.

E.2. Correctness

The goal of this section is to prove Lemma E.2, which gives the correctness guarantee of the Algorithm 4.

Lemma E.2 (Output Gurantees of Algorithm 4). Let A ∈ Rm×n be an input matrix and x ∈ (−1, 1)n be an input partial
coloring. Let δ ∈ (0, 0.01) denote a parameter. Conditioning on the event that V is good and η is good. We have:

• Case 1. The Algorithm 4 outputs a vector xnew ∈ Rn such that with probability at least 1/10− δ the following holds,

– ∥xnew∥∞ = 1;
– |{i ∈ [n] | |xnew

i | = 1}| ≥ n/2;
– Let a⊤j denote the j-th row of matrix A ∈ Rm×n, for each j ∈ [m]. For all j ∈ [m], the following holds

|⟨aj , xnew⟩ − ⟨aj , x⟩| ≤ O(herdisc(A) · log(m) · log1/2(m/δ)).

• Case 2. With probability at most δ, the Algorithm 4 will output fail at Line 28.

• Case 3. With probability at most 9/10, the Algorithm 4 will output fail at Line 34.

Proof. We start with choosing the parameters:

N := O(n+max{log(mn), n}) = O(n+ log(m)),

and

ϵ := O(min{log−1/2(mn), n−1/2}).
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Proof of Case 1. We first prove that for any iteration t ∈ [N ], no entry of x + vt + ĝt has absolute value larger than
1. Note that in t-th iteration, if we find i-th entry of x + vt + ĝt reaches absolute value of 1, we add ei to the matrix Vt

(Line 22). Then in the following iterations, after we get the query g (We omit the t here for g and V ), we have by Lemma F.4
that, g is the distance of original Gaussian vector to the row space of V , thus the i-th entry of g will be 0. Hence in the
following iterations, the entry that we add to i-th entry of v will stay 0. Thus we complete the claim.

By the algorithm design, the number entries reach the absolute value 1 keeps increasing, and by the condition check of
Line 20, we have that

|{i ∈ [n] | |xnew
i | = 1}| ≥ n/2.

Then by Lemma E.7 we have that

∀j ∈ [m], |⟨aj , g⟩ − ⟨aj , x⟩| ≤ β

with probability at least 1/10− δ, where we notice that

β = O(ηmin{log−1/2(mn), n−1/2}
√
n+ log(m)

√
log(m/δ)) = O(η log1/2(m)).

Thus we have the guarantee.

Proof of Case 2. From Lemma E.7 we know that, there is a failure probability at most δ that,

∃j ∈ [m], |⟨aj , g⟩ − ⟨aj , x⟩| > β.

Thus we have proved the claim.

Proof of Case 3. By Lemma E.8, the Algorithm 4 returns fail with probability at most 4/5.

Thus we complete the proof.

Now if we consider the probability of the returning V and η are not good, we have the following corollary.

Corollary E.3. Let A ∈ Rm×n be an input matrix and x ∈ (−1, 1)n be an input partial coloring. Let δfinal ∈ (0, 0.01)
denote a parameter. We assume δ = 1/100 here in the algorithm. Then we have

• Case 1. The Algorithm 4 outputs a vector xnew ∈ Rn such that with probability at least 1/10− δ − δfinal the following
holds,

– ∥xnew∥∞ = 1;
– |{i ∈ [n] | |xnew

i | = 1}| ≥ n/2;
– Let a⊤j denote the j-th row of matrix A ∈ Rm×n, for each j ∈ [m]. For all j ∈ [m], the following holds

|⟨aj , xnew⟩ − ⟨aj , x⟩| ≤ O(herdisc(A) · log(m) · log1/2(m)).

• Case 2. With probability at most δ + δfinal, the Algorithm 4 will output fail at Line 28.

• Case 3. With probability at most 9/10 + δfinal, the Algorithm 4 will output fail at Line 34.

• Case 4. With probability at most δfinal, the Algorithm 4 will output xnew with no guarantee.

Proof. Recall Lemma E.2 is conditioning on V and η are good, here we mention the failure probability of these two
operations.

By the construction of Algorithm 4, when we call

FASTPROJECTOSMALLROWS(A, δ1)
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at Line 5, we set δ1 = δfinal/2.

Also when we call FASTAPPROXMAXNORM(A, V, δ2), we set δ2 = δfinal/2.

Thus, we know

Pr[V, η good] ≥ 1− δfinal. (4)

and we use “V, η not good” to denote the complement event of “V, η good”, then we have

Pr[V, η not good] ≤ δfinal. (5)

Proof of Case 1. By Lemma E.2, we have

Pr[case 1 happens | V, η good] ≥ 1/10− δ. (6)

By basic probability rule,

Pr[case 1 happens] = Pr[case 1 happens | V, η good] · Pr[V, η good]
+ Pr[case 1 happens | V, η not good] · Pr[V, η not good]
≥ Pr[case 1 happens | V, η good] · Pr[V, η good]
≥ (1/10− δ) · Pr[V, η good]
≥ (1/10− δ) · (1− δfinal)

≥ 1/10− δ − δfinal.

where the second step follows from Pr[] ≥ 0, the third step follows from Eq. (6), the forth step follows from Eq. (4).

Proof of Case 2. Then by Lemma E.2, we have the case happens with probability at most δ when conditioning on V, η are
good, i.e.,

Pr[case 2 happens | V, η good] ≤ δ. (7)

By basic probability rule,

Pr[case 2 happens]
= Pr[case 2 happens | V, η good] · Pr[V, η good]
+ Pr[case 2 happens | V, η not good] · Pr[V, η not good]
≤ Pr[case 2 happens | V, η good] + Pr[V, η not good]
≤ δ + Pr[V, η not good]
≤ δ + δfinal

where the second step follows from Pr[] ≤ 1, the third step follows from Eq. (7), and the forth step follows from Eq. (5).

Proof of Case 3. By Lemma E.2, we have the case happens with probability at most 9/10 conditioning on V and η is
good, i.e.,

Pr[case 3 happens | V, η good] ≤ 9/10. (8)

By basic probability rule,

Pr[case 3 happens] = Pr[case 3 happens | V, η good] · Pr[V, η good]
+ Pr[case 3 happens | V, η not good] · Pr[V, η not good]
≤ Pr[case 3 happens | V, η good] + Pr[V, η not good]
≤ 9/10 + Pr[V, η not good]
≤ 9/10 + δfinal.

where the second step follows from Pr[] ≤ 1, the third step follows from Eq. (8), and the last step follows from Eq. (5).
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Proof of Case 4. This happens when at least one of the returning V and η is not good, and the algorithm returns xnew at
Line 30. By union bound we have this happens with probability at most

Pr[case 4 happens] ≤ δfinal.

E.3. Iterative Notations

Here in this section, we introduce some notations to be used in later proofs. We first define the matrix Vt we maintained as
follows.

Definition E.4 (Matrix V of each iteration). For all t ∈ [T ], we define Vt to be the matrix forming an orthonormal basis
which implicitly maintained in the MAINTAIN data-structure at the start of t-th iteration. For t = 1, we define V1 to be
generated from FASTPROJECTTOSMALLROWS at Line 5 in Algorithm 4.

We then define the Gaussian random vectors related to the above Vt.

Definition E.5 (Random Gaussian vectors). For all t ∈ [T ], in the t-th iteration, We define gt ∈ Rn to be a random
Gaussian sampled from N (0, 1). We define vector gVt

to be generated by query the MAINTAIN data-structure at Line 15 in
Algorithm 4. By Lemma F.4, we have

gVt = (I − V ⊤
t Vt) · gt.

And we define ĝt to be the vector rescaled from gVt
at Line 18 in Algorithm 4, that is,

ĝt := min{ϵ, µ} · gVt
.

Through the whole Algorithm 4, we iteratively maintain a vector u ∈ Rn to accumulate the random Gaussian vectors of
each iteration. We formally define it here as follows,

Definition E.6 (Accumulated maintained vector). For all t ∈ [T ], we define the accumulated maintained vector ut ∈ Rn to
be as follows

ut+1 := ut + ĝt.

For the case that t = 1, we define u1 = 0n.

E.4. Upper Bound for the Inner Products

Here in this section, the goal is to prove Lemma E.7, which gives the upper bound of the inner products of the output vector
with the rows of input matrix.

Lemma E.7 (A variation of Lemma 4 in (Larsen, 2023)). Let β = Θ(ϵη
√
N log(m/δ)). For any input matrix A ∈ Rm×n

and any vector x ∈ (−1, 1)n, let a⊤i denote the i-th row of A. Let uN+1 ∈ Rn denote the vector v ∈ Rn in the last iteration
of Algorithm 4. Then we have that,

Pr[∀i ∈ [m], |⟨ai, uN+1⟩| < β] ≥ 1− δ.

Proof. To prove the lemma, we first fix i ∈ [m] here. Then for t-th iteration of the outer for-loop (Line 14 in Algorithm 4).

We let gVt be defined as Definition E.5. For simplicity, sometimes we use gt to denote gVt if it is clear from text.

For the t’s that Algorithm 4 returns fail before the t-th iteration, we define gt = 0 ∈ Rn. We also define a cumulative vector
ut :=

∑t
i=1 gi. Then we have that

⟨ai, ut⟩ =
t∑

j=1

⟨ai, gj⟩.
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Now we condition on the previous t− 1 iterations and look into the t-th iteration, we generate a vector gt ∈ Rd such that
every entry is drawn i.i.d. from N (0, 1). Then we have for any ξ > 0, we have

Pr[|⟨ai, (I − V ⊤
t Vt)g⟩| > ξ] ≥ Pr[|min{ϵ, µ} · ⟨ai, (I − V ⊤

t Vt)g⟩| > ξ]

≥ Pr[|⟨ai, gt⟩| > ξ],

where the first step follows from min{ϵ, µ} ≤ 1, the second step follows from Lemma F.4. We also have the following

ϵ · ⟨ai, (I − V ⊤
t Vt)g⟩ ∼ N (0, ϵ2∥ai(I − V ⊤

t Vt)∥22)

by the linearity of the distribution.

We can bound the variance in the following sense,

ϵ2∥ai(I − V ⊤
t Vt)∥22 ≤ ϵ2η2

by the definition of η.

Let β > 0 denote some parameter. Thus using Claim A.5, we have the following

Pr[|⟨ai, gt⟩| > β] ≤ Pr[|ϵ · ⟨ai, (I − V ⊤
t Vt)g⟩| > β]

≤ 2 exp(−(ϵη)−2β2/2)

Finally, since the gt is independent from ui’s for i ∈ [t− 1], we have that

E[⟨ai, gt⟩ | ut−1, . . . , u1] = 0.

This follows by the fact that we define µ in Line 17 to be

µ := argmax
µ≥0
{∥x+ ut + µgt∥∞, ∥x+ ut − µgt∥∞} = 1.

Thus we have that, the sequence ⟨ai, g1⟩, . . . , ⟨ai, gt⟩ becomes a martingale difference sequence (Definition A.7) with
respect to u1, . . . , ut. Then by Theorem A.8 we have that with probability at least 1− δ, the following holds

|⟨ai, uN+1⟩| = |
N∑

t=1

⟨ai, gt⟩|

≤ 2ϵη
√

112N lg(1/δ)

≤ 100ϵη
√
N lg(1/δ),

where we set the parameters in Theorem A.8 to be

b = 2 and c ≤ (ϵη)−2/2.

Then we set δ = δ/m and let β = 100ϵη
√
N log(m/δ), we have

Pr[|⟨ai, uN+1⟩| ≤ β] ≥ 1− δ/m.

The above implies that

Pr[|⟨ai, uN+1⟩| > β] ≤ δ/m

Applying a union bound over all the i ∈ [m], then we complete the proof.
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E.5. Upper Bound for the Failure Probability

Here in this section, the goal is to prove Lemma E.8, which gives the upper bound of the probability that the algorithm
returns fail.

Lemma E.8 (A variation of Lemma 5 in (Larsen, 2023)). For any input matrix A ∈ Rm×n and any vector x ∈ [0, 1]n, the
probability that Algorithm 4 returns fail at Line 34 is at most 4/5.

Proof. The basic idea of the proof is that, after many iterations (N in Algorithm 4), we have the expectation of ∥x+ u∥22
large enough. Hence lots of entries of x+ u will reach the absolute value of 1. We denote the number of ei’s added to Vt in
Line 22 through the running of Algorithm 4 to be R.

Recall we define gt to be generated in Line 15 of Algorithm 4 (Definition E.5). We notice that, we add ϵ · gt or µ · gt to
ut in Line 25. Here in this paragraph, we first assume that, we add µ · gt, i.e, µ < ϵ. Recall we generate µ in Line 17 of
Algorithm 4 to be

µ := argmax
µ>0
{max{∥x+ ut + µ · gt∥∞, ∥x+ ut − µ · gt∥∞} = 1}.

Thus we have that in Line 20 of Algorithm 4, there must be at least one entry i ∈ [n] satisfying that

|xi + ut,i + gt,i| = 1 and |xi + ut,i| < 1.

We define ρt to denote the probability such that the algorithm never return fail before reaching t-th iteration and µ < ϵ in
this iteration. For any i ∈ [n] and t ∈ [N ], we define the following event by Ei,t: the index i satisfies

|xi + ut,i + µgt,i| = 1 and |xi + ut,i| < 1

in Line 20 of the t-th iteration.

By the symmetry of the vector gt (Since gt is Gaussian, gt and −gt are equally likely conditioned on Vt), we have that

{i ∈ [n] | Ei,t holds} ≥ ρt/2.

We denote the number of ei’s added to Vt in Line 22 through the running of Algorithm 4 to be R. And we denote the number
of rows added to Vt by rt. By the analysis above, we have that

E[R] = E[
N∑

t=1

rt] ≥
N∑

t=1

ρt/2.

By the construction of our algorithm, no more than n ei’s will be added to V through the algorithm running, thus we have

N∑

t=1

ρt ≤ 2E[R] ≤ 2n.

Now for each iteration t ∈ [N ], we define gt to be the vector added to ut at Line 25 of Algorithm 4. Here we note that after
N iterations,

uN+1 =

N∑

t=1

gt.

And this is the final vector output by the algorithm (if it doesn’t return fail).

We have that:

E[∥x+ uN+1∥22] = E[∥x+

N∑

t=1

gt∥22]
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= ∥x∥22 +
N∑

i=1

E[∥gt∥22]. (9)

where the first step follows from the definition of v, and the second step follows from E[gt|g1, . . . , gt−1] = 0.

Recall we define the Vt to be the matrix V at the start of t-th iteration10 (Definition E.4). We denote the original Gaussian
before projection by gt (Definition E.5).

By Claim E.9, we have

E[∥gt∥22] ≥ (1− δ) · ϵ2(n− n/4− E[R])− ϵ2
√
2ρtn.

By Claim E.10 we have the lower bound of the expectation of R,

E[R] ≥ 0.63n.

Using Claim E.11, we obtain

Pr[R ≥ n/2] > 0.2.

When R ≥ n/2, Algorithm 4 must terminate and return the xnew in Line 30. Thus we have that, the probability of
terminating and returning fail in Line 34 is at most 4/5.

Thus we complete the proof.

E.6. Lower Bound for the Vector after Projection

Here in this section, we prove the following claim, giving the lower bound of the projected vector gt.

Claim E.9 (Lower Bound for the projection of projected vector gt). We define R to be the total number of ei’s added to Vt

in Line 22 through the running of Algorithm 4. We define ρt to denote the probability such that the algorithm never return
fail before reaching t-th iteration and µ < ϵ in this iteration. Then we have that

E[∥gt∥22] ≥ (1− δ) · ϵ2(n− n/4− E[R])− ϵ2
√
2ρtn.

Proof. For any t ∈ [N ], we define the indicators Ft to be

Ft = 1{∀i ∈ [m] | |⟨ai, uN ⟩| < β},

and Yt to be

Yt = 1{µ < ϵ}.

Then we have that

E[∥gt∥22] = E[FtYtµ
2 · ∥(I − V ⊤

t Vt) · gt∥22 + Ft(1− Yt)ϵ
2 · ∥(I − V ⊤

t Vt) · gt∥22]
≥ E[Ft(1− Yt)ϵ

2 · ∥(I − V ⊤
t Vt) · gt∥22]

≥ ϵ2 · E[Ft∥(I − V ⊤
t Vt) · gt∥22]− ϵ2 · E[Yt∥(I − V ⊤

t Vt) · gt∥22].

where the first step follows from the definition of Ft and Gt, the second step follows from FtYtµ
2∥(I − V ⊤

t Vt) · gt∥22 ≤ 0,
and the last step follows from splitting the terms.

Using Cauchy-Schwartz inequality, we have that

E[Yt · ∥(I − V ⊤
t Vt) · gt∥22] ≤

√
E[Y 2

t ] · E[∥(I − V ⊤
t Vt) · gt∥42].

10Note that, in the design of our algortithm, we maintain this matrix V implicitly in the MAINTAIN data structure.
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Recall we define Yt to be an indicator, thus we have that E[Y 2
t ] = E[Yt]. Since (I − V ⊤

t Vt) is a projection matrix, we have

∥gt∥2 ≥ ∥(I − V ⊤
t Vt) · gt∥2. (10)

Thus, the following holds

E[Yt · ∥(I − V ⊤
t Vt) · gt∥22] ≤

√
E[Yt] · E[∥gt∥42]

=
√
ρt · E[∥gt∥42].

where the first step follows from Eq. (10), the second step follows from the definition of ρt.

For any i ∈ [n], we denote the i-th entry of gt by gt,i. Note that gt,i ∼ N (0, 1) for all i ∈ [n] and t ∈ [N ]. And all gt,i’s are
i.i.d. Thus we have that

E[∥gt∥42] = E[(
n∑

i=1

g2t,i)
2]

≤
n∑

i=1

n∑

j=1

E[g2t,ig2t,j ].

where the first step follows from the definition of gt, the second step follows from that gt,i’s are i.i.d. For all the terms that
i ̸= j, we have that

E[g2t,ig2t,j ] = E[g2t,i] · E[g2t,j ] = 1.

For the terms that i = j, by the 4-th moment of the normal distribution, we have

E[g4t,i] = 3.

Thus we have

E[∥gt∥42] ≤ n(n− 1) + 3n ≤ 2n2.

Hence

E[Yt · ∥(I − V ⊤
t Vt) · gt∥22] ≤

√
2ρtn.

Also we have that

E[Ft · ∥(I − V ⊤
t Vt) · gt∥22] = Pr[Ft = 1] · E[∥(I − V ⊤

t Vt) · gt∥22]
= Pr[Ft = 1] · (E[n− dim(Vt)])

= Pr[Ft = 1] · (n− E[dim(Vt)]).

where the first step follows from the definition of expectation, the second step follows from the property of the vector
(I − V ⊤

t Vt) · gt (Since g is Gaussian), and the last step follows from the definition of expectation.

Note that for any t ∈ [N ], we have that

dim(Vt) ≤ R+ n/4

Thus we have

E[dim(Vt)] ≤ E[R] + n/4.

Hence we conclude that

E[∥gt∥22] ≥ Pr[Ft = 1] · ϵ2(n− n/4− E[R])− ϵ2
√

2ρtn.

We have by Lemma E.7 that

Pr[Ft = 1] ≥ 1− δ.

Hence we have

E[∥gt∥22] ≥ (1− δ) · ϵ2(n− n/4− E[R])− ϵ2
√
2ρtn.
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E.7. Lower Bound on Expectation

Here we prove the following claim, which gives the lower bound of expectation of the unit vectors added to V through the
algorithm running.

Claim E.10. We denote the number of ei’s added to Vt in Line 22 through the running of Algorithm 4 to be R. We define ρt
to denote that Algorithm 4 never return fail before i-th iteration and µ < ϵ in this iteration. We assume ρt ≤ 0.005 and
δ ≤ 0.01.

If

E[∥gt∥22] ≥ (1− δ) · ϵ2(n− n/4− E[R])− ϵ2
√
2ρtn.

Then we have that

E[R] ≥ 0.63n.

Proof. By Assumption this claim, we have

E[∥gt∥22] ≥ (1− δ) · ϵ2(n− n/4− E[R])− ϵ2
√
2ρtn.

Note that we assume that ρt ≤ 0.005 and δ ≤ 0.01. Then by the above step we have that

E[∥gt∥22]
≥ 0.99 · ϵ2(n− n/4− E[R]− 0.102n)

= 0.99 · ϵ2(0.698n− E[R]).

Note here that if ρt > 0.005, we have E[∥gt∥22] is lower bounded by 0. Recall that we have
∑N

t=1 ρt ≤ 2n, thus the number
of iterations that ρt ≥ 0.005 is at most 400n.

Now considering the rest N − 400n iterations, it also holds that

E[∥gt∥22] ≥ 0.99 · ϵ2(0.698n− E[R]). (11)

Hence we have

E[∥x+ uN+1∥22] ≥ ∥x∥22 + (N − 400n) · 0.99 · ϵ2(0.698n− E[R])

≥ (N − 400n) · 0.99 · ϵ2(0.698n− E[R])

= 16 · 0.99 · (0.698n− E[R]),

where the first step follows from Eq. (9) and Eq. (11), the second step follows from ∥x∥22 ≤ 0, and the last step follows by
setting N = 16ϵ−2 + 400n.

Notice now that Algorithm 4 will only produce an output v such that ∥x + uN+1∥∞ ≤ 1. Thus we conclude it happens
when E[∥x+ uN+1∥22] ≤ n. Thus we have

n ≥ 16 · 0.99 · (0.698n− E[R]).

By the above inequality, it holds that

E[R] ≥ (0.698− 1.02(1/16))n > 0.634n.
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E.8. From Expectation to Probability

Claim E.11. If E[R] ≥ 0.62n then

Pr[R ≥ n/2] > 0.2.

Proof. Here we define Z := n−R. Then we have the expectation of Z

E[Z] = n− E[R] ≤ 0.38n.

where the first step follows from the definition of Z, the second step follows from E[R] ≥ 0.62n.

Then by Markov’s inequality we have that

Pr[Z > a] ≤ E[Z]

a
.

Thus we have

Pr[Z > n/2] < 2 · 0.38
= 0.76

< 0.8,

which implies that,

Pr[Z ≤ n/2] > 0.2.

Finally we have by Z := n−R that

Pr[R ≥ n/2] > 0.2.

E.9. Running Time

The goal of this section is to prove Lemma E.12.
Lemma E.12. For any parameter a ∈ [0, 1], the algorithm (FASTPARTIALCOLORING in Algorithm 4) runs in

Õ(nnz(A) + nω + n2+a + n1+ω(1,1,a)−a)

time. Note that ω is the exponent of matrix multiplication.

Proof. The running time of FASTPARTIALCOLORING can be divided as follows,

• Line 5 takes time Õ(nnz(A) + nω), by Lemma C.2.

• Line 6 takes time O(nnz(A) + n2), by Lemma E.1.

• Line 13 takes time O(nω + n2) to initialize the data structure, by Lemma F.7.

• Run the following for N = O(ϵ−2 + n) = O(n+ logm) times,

– Line 15 takes time O(n1+a) to query g, by Lemma F.7).
– Line 17 takes time O(n) to find µ due to Lemma I.1 (via Algorithm 11).
– Line 22 takes time O(n1+a) to update the data structure, by Lemma F.7.

• Over the entire, algorithm we will enter Line 28 at most once. To check the satisfied condition for that only takes
nnz(A) time.

Adding them together and by the tighter time for operations of FASTMAINTAIN data structure (Lemma F.10), we have the
total running time of FASTPARTIALCOLORING of

TFASTPARTIALCOLORING = Õ(nnz(A) + nω + n2+a + n1+ω(1,1,a)−a).

Therefore, we complete the proof.
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F. Fast Maintaining Lazy Data Structure
In this section, we provide a faster maintaining data structure with the idea of lazy update for the Partial Coloring algorithm.
In Section F.1 we provide main theorem of the data structure. In Section F.2, Section F.3, Section F.4, Section F.5 we give
analysis for the INITIALIZATION, QUERY, UPDATE, RESTART procedures respectively. In Section F.6 we provide the
running time analysis. In Section F.7 we give the correctness analysis. In Section F.8 we give a tighter running time analysis.

Algorithm 6
1: data structure MAINTAIN ▷ Theorem F.1
2: members
3: P ∈ Rn×n

4: V ∈ Rn×n

5: G ∈ Rn×N

6: ℓ
7: τq ▷ total counter for query
8: ku ▷ ku is a counter for update process
9: kq ▷ kq is a counter for query process

10: w1, · · · , wK ∈ Rn ▷ This is a list
11: end members
12:
13: public:
14: procedure INIT(V ∈ Rℓ×n,G ∈ Rn×N ,K) ▷ Lemma F.2
15: ku ← 0, kq ← 0
16: τq ← 0
17: P ← V ⊤V ▷ This takes Tmat(n, n, n)
18: Let S = {1, 2, · · · ,K}
19: Let G ∈ Rn×N denote G∗,S
20: Compute G̃ = P · G∗,S and let g̃1, · · · , g̃K denote those new K vectors ▷ This takes Tmat(K,n, n)
21: for i = 1→ K do
22: wi ← 0n

23: end for
24: end procedure
25:
26: public:
27: procedure QUERY() ▷ Lemma F.3, F.4
28: kq ← kq + 1
29: τq ← τq + 1
30: if kq ≥ K then
31: RESTART()
32: end if
33: return gkq

− g̃kq
−∑ku

i=1 wiw
⊤
i gkq

▷ This takes O(nK) time
34: end procedure
35: data structure

F.1. Main Data Structure

The goal of this section is to prove Theorem F.1.

Theorem F.1. For a input matrix V ∈ Rℓ×n with ℓ ≤ n, a matrix G ∈ Rn×N and a integer K > 0, N = O(n), there exists
a data structure MAINTAIN(Algorithm 6, 7) uses O(n2) space and supports the following operations:

• INIT(V ∈ Rℓ×n,G ∈ Rn×N ,K ∈ N+): It initializes the projection matrix P = V ⊤V ∈ Rn×n. It stores the matrix G.
For the first K column vectors in G, it computes their projection when apply P . It sets counter kq and ku to be zero. It
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Algorithm 7 Update

1: data structure MAINTAIN ▷ Theorem F.1
2: public:
3: procedure UPDATE(u ∈ Rn) ▷ Lemma F.5
4: ▷ The input vector u is 1-sparse and the nonzero entry is 1
5: ku ← ku + 1
6: w̃ ← ((I − P )−∑ku−1

i=1 wiw
⊤
i )u ▷ This takes O(nK)

7: wku
← w̃/∥w̃∥2

8: if ku ≥ K then
9: RESTART()

10: end if
11: end procedure
12:
13: private:
14: procedure RESTART() ▷ Lemma F.6
15: P ← P +

∑K
i=1 wiw

⊤
i ▷ This takes Tmat(n,K, n)

16: Let S = {1 + τq, 2 + τq, · · · ,K + τq}
17: Let G ∈ Rn×K denote G∗,S
18: Compute G̃ = P ·G and let g̃1, · · · , g̃K denote those new K vectors ▷ This takes Tmat(K,n, n)
19: ku ← 0, kq ← 0
20: for i = 1→ K do
21: wi ← 0n ▷ Reset wi to an all zero vector
22: end for
23: end procedure
24: end data structure

sets τq to be zero. This procedure runs in time

Tmat(n, n, n) + Tmat(K,n, n).

• QUERY(): It output (I − V ⊤V )g where g ∈ Rn is the next column vector in G to be used. The running time of this
procedure is

– O(nK) time, if kq ∈ [K − 1]

– Tmat(n, k, n) time, if ku = K

• UPDATE(u ∈ Rn): It takes an 1-sparse vector u ∈ Rn as input and maintains V by adding w into next row of V
(according to Algorithm 1, w = w̃/∥w̃∥2 where w̃ = (I − V ⊤V )u. It is obvious that w⊥V ). The running time of this
procedure is

– O(nK) time, if ku ∈ [K − 1];

– Tmat(n, k, n) time, if ku = K.

• RESTART(): It updates the projection P = V ⊤V , generates K fresh Gaussian vectors by switching the batch of
Gaussian vectors we use by τq , and compute their projections when apply P . It reset the counter kq and ku to be zero.
The running time of this procedure

Tmat(n,K, n).

Proof. It follows from combining Lemma F.2, Lemma F.3, Lemma F.4, Lemma F.5 and Lemma F.6.
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F.2. Initialization

The goal of this section is to prove Lemma F.2.

Lemma F.2 (Running time for INIT). The procedure INIT(V ∈ Rℓ×n,G ∈ Rn×N ,K ∈ N+) initializes the projection
matrix P = V ⊤V ∈ Rn×n. It stores the matrix G. For the first K column vectors in G, it computes their projection when
apply P . It sets counter kq and ku to be zero. It sets τq to be zero. This procedure runs in time

Tmat(n, n, n) + Tmat(K,n, n).

Proof. The running time of INIT can be divided into the following lines,

• Line 17 takes time Tmat(n, n, n) to compute matrix P .

• Line 17 takes time O(nK) to generate matrix G.

• Line 20 takes time Tmat(K,n, n) to compute matrix G̃.

Taking these together, we have the total running time is

Tmat(n, n, n) + Tmat(K,n, n).

Thus, we complete the proof.

F.3. Query

The goal of this section is to prove Lemma F.3 and Lemma F.4.

Lemma F.3 (Running time for QUERY). The running time of procedure QUERY is

• O(nK) time, if kq ∈ [K − 1].

• Tmat(n, k, n) time, if ku = K.

Proof. The proof can be splitted into two cases.

For the case that kq ∈ [K − 1], Line 33 takes time O(nku) = O(nK) obviously.

For the case that kq = K, Line 31 runs in time Tmat(n, k, n). Thus we complete the proof.

Lemma F.4 (Correctness for QUERY). the procedure QUERY outputs (I − V ⊤V )g where g ∈ Rn is the next vector in G to
be used.

g gkq g̃kq
wi

w⊤
i

gkq= − − ∑ku

i=1

× ×

n

1

n

1 1 n 11

Output vector

Figure 5. The decomposition of the output vector by QUERY. The green composition is the pre-computed factor and the blue composition
is the new added ones, these two together form the projection of g onto the row span of V .
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Span(V )

V ⊤V g

gkq
= g(I − V ⊤V )g

g̃ = P · g

∑ku

i=1 wiw
⊤
i gkq

= V ⊤
2 V2 · g

Span(V1)

x

Span(V2)

y

Figure 6. The Visualization of the decomposition. Here we denote the matrix of rows encoded to P by V1, and the matrix of rows not
encoded yet by V2. Thus we have that, P = V ⊤

1 V1. And we assume that, Span(V1) = Span(ex), Span(V2) = Span(ey). Thus we
visualize the idea of the decomposition as above. We divide the projection onto Span(V ) into the projection onto Span(V1) and the
projection onto Span(V2). That is, we have V ⊤V g = V ⊤

1 V1 · g + V ⊤
2 V2 · g = g̃ +

∑ku
i=1 wiw

⊤
i g.

Proof. We divide the rows of V ∈ Rℓ×n, into two parts: the rows that have been encoded into P , and the ones that have not.
Without loss of generality, we note the first ℓ− ku rows are encoded, and the last ku rows are not. Thus we have that

(I − V ⊤V )g

= g −
ℓ∑

i=1

viv
⊤
i g

= g −
ℓ−ku∑

i=1

viv
⊤
i g −

ku∑

i=1

wiw
⊤
i g

= g − g̃ −
ku∑

i=1

wiw
⊤
i g,

where the first step follows from split the multiplication, the second step follows from split the summation, and the last step
follows from the definition of g̃ and the construction P . Thus we complete the proof.

F.4. Update

The goal of this section is to prove Lemma F.5.

Lemma F.5 (Running time for UPDATE). The running time of procedure UPDATE is

• O(nK) time, if kq ∈ [K − 1].

• Tmat(n, k, n) time, if ku = K.

Proof. For the UPDATE procedure, the running time can be divided into the following lines,

• Line 6 takes time O(nK).

• Line 7 takes time O(n).
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• If k reaches K, Line 9 takes time Tmat(n,K, n) + Tmat(K,n, n).

Thus we have that, if k doesn’t reach K, the running time is

O(nK).

If k reaches K, the running time is

Tmat(n,K, n) + Tmat(K,n, n).

F.5. Restart

The goal of this section is to prove Lemma F.6.

Lemma F.6 (Running time for RESTART). The running time of procedure UPDATE is

O(Tmat(K,n, n)).

Proof. For the RESTART procedure, the running time can be divided as the following lines

• Line 15 takes time Tmat(n,K, n).

• Line 17 takes time O(nK).

• Line 18 takes time Tmat(K,n, n).

Adding them together, we have the runnning time is

Tmat(n,K, n) + Tmat(K,n, n) = O(Tmat(K,n, n)).

F.6. Running Time of the Maintain algorithm

The goal of this section is to prove Lemma F.7.

Lemma F.7 (Running time of FASTMAINTAIN). Let N = O(n). For any parameter a ∈ [0, α], let K = na where α is the
dual exponent of matrix multiplication. For any input G ∈ Rn×N , and an input b ∈ {0, 1}n×N such that only one entry of
each row of b is 1, the procedure FASTMAINTAIN (Algorithm 8) runs in time

O(nω + n2+a + n3−a).

For the current ω ≈ 2.373 and α ≈ 0.31. Due to the above equation, if we choose the a = min{α, 1/2}, then the running
time can be simplified to

O(n2.5 + n3−α).

Remark F.8. Instead of using α, we can use the ω(·, ·, ·) function in Table 3 in (Gall & Urrutia, 2018). In Lemma F.10, we
provide a tighter analysis of Lemma F.7.

Proof. The running time can be divided as follows.

• Line 2 takes time Tmat(n, n, n) + Tmat(K,n, n) = O(nω + n2) to initialize the data structure.

• Run the following lines for N = O(n) times (We ignore the condition of restart here):

– Line 4 takes time O(nK) = O(n1+a) to query for g.
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– Line 7 takes time O(nK) = O(n1+a) time update the data structure.

The above runs in O(n2+a) time in total.

• For the restart condition, we note that, UPDATE is called for O(n) times, so we will call RESTART for O(n/K) =
O(n1−a) times, each time it will take O(n2) time for restarting. The condition that QUERY calls RESTART is as the
same. Thus we have the restart time bounded by O(n3−a).

Combining the above together, we have the running time of FASTMAINTAIN is

O(nω + n2+a + n3−a).

F.7. Correctness

Algorithm 8 The purpose of writing down SLOWMAINTAIN is proving the correctness of FASTMAINTAIN. See Lemma F.9.

1: procedure FASTMAINTAIN(b ∈ {0, 1}n×N ,G ∈ Rn×N , n,N )
2: ds.INIT(V,G,K) ▷ Algorithm 6
3: for t = 1→ N do
4: gt ← ds.QUERY() ▷ Algorithm 6
5: for i = 1→ n do
6: if bi,t = 1 then
7: ds.UPDATE(ei) ▷ Algorithm 7
8: end if
9: end for

10: end for
11: return g1, · · · , gN
12: end procedure
13:
14: procedure SLOWMAINTAIN(b ∈ {0, 1}n×N ,G ∈ Rn×N , n,N )
15: for t = 1→ N do
16: gt ← (I − V ⊤V )G∗,t ▷ G∗,t is the t-th column of G
17: for i = 1→ n do
18: if bi,t = 1 then
19: Add ei to V according to Algorithm 1 and update V
20: end if
21: end for
22: end for
23: return g1, · · · , gN
24: end procedure

The goal of this section is to prove Lemma F.9
Lemma F.9. For any input b ∈ {0, 1}n×N and G ∈ Rn×N , the N vectors outputted by procedure FASTMAINTAIN
(Algorithm 8) are exactly same as the N vectors outputted by procedure SLOWMAINTAIN (Algorithm 8).

Proof. For all i ∈ [N ], we denote vectors output by the two algorithms by gi,F for FASTMAINTAIN and gi,S for SLOW-
MAINTAIN.

Induction Hypothesis. For any t ∈ [N ], we have that gi,F = gi,S for all i ∈ [t− 1].

Proof of Base Case. For the case that i = 1, we have by Lemma F.4 that

g1,F = (I − V ⊤V )G∗,1 = g1,S .

Thus the base case holds.
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Proof of Inductive case. For the inductive case, we prove it by the following steps. We first notice that, with the binary
matrix b, we have added some vectors into V through the procedure when it reaches t-th iteration. We divide it into the
following two circumstances:

No vectors added to V after the last query of gt−1. Since no vectors are added to V after query of gt−1, the V stays the
same when querying the gt. Thus by Lemma F.4, we have that

gi,F = (I − V ⊤V )G∗,1 = gi,S .

Hence we have the correctness.

There are vectors added to V after the last query of gt−1. If there’s vectors added to the matrix V , then the
FASTMAINTAIN calls the UPDATE for some times, and added some vectors into ds. Without loss of generality, we assume
the UPDATE never calls RESTART. Then we have that, new vectors are encoded as w in the ds. We divide the rows into

• Rows added before querying gt−1, denoted the rows as the first W0 ones.

• Rows added after querying gt−1 and before querying gt, denote the set as the last W1 ones.

We denote the Gaussian vector as g, Thus we have that query (I − V ⊤V )g̃t as follows,

gt,S = (I − V ⊤V )gt,S = gt,S −
∑

i∈[W0]

wi,Sw
⊤
i,Sgt,S −

W0+W1∑

i=W0+1

wi,Sw
⊤
i,Sgt,S .

And in the FASTMAINTAIN (Algorithm 8), when we call QUERY, we divide the rows as the ones encoded into P and the
ones not, that is

gt,F = gt,F − g̃t,F −
∑

i∈[ku]

wi,Fw
⊤
i,F gt,F .

If we denote the rows have been encoded into P as the first ℓ rows. We have that

g̃t,F =
∑

i∈[ℓ]

wi,Fw
⊤
i,F gt,F .

By the construction of the procedures, we have that

ℓ+ ku = W0 +W1,

and

wi,F = wi,S

for each i ∈ [ℓ+ ku]. And by the using of the counter τq in the ds, we have that

gt,F = gt,S .

Then by Lemma F.4, we have the t-th query

ds.QUERY() = (I − V ⊤V )G∗,t.

Thus we complete the proof.

F.8. Tighter Running Time Analysis

The time analysis of Lemma F.7 is not tight. We can further improve it by using function ω(·, ·, ·).
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Lemma F.10 (A Tighter Analysis of Running time of FASTMAINTAIN). Let N = O(n). For any parameter a ∈ [0, 1],
let K = na. For any input G ∈ Rn×N , and an input b ∈ {0, 1}n×N such that only one entry of each row of b is 1, the
procedure FASTMAINTAIN (Algorithm 8) runs in time

O(nω(1,1,1) + n2+a + n1+ω(1,1,a)−a).

For the current ω(·, ·, ·) function (see Table 3 in (Gall & Urrutia, 2018)). We can choose a = 0.529, then the running time
becomes

O(n2.53).

For the ideal ω, we can choose a = 0.5, then the running time becomes n2.5.

G. Implicit Leverage Score Sampling Algorithm
In this section, we present two crucial subroutines. That is, leverage score approximation and a fast sampling algorithm
based on it.

G.1. Leverage Score Approximation

Here we present the following algorithm, which providing a fast leverage score approximation.

Algorithm 9 Implicit Leverage Score Computation

1: procedure IMPLICITLEVERAGESCORE(A ∈ Rm×n, V ∈ Rn×n, ϵσ = Θ(1), δσ) ▷ Lemma G.2
2: ▷ The goal of this procedure is to compute a constant approximation
3: s1 ← Õ(ϵ−2

σ n)
4: Choose S1 ∈ Rs1×m to be sparse embedding matrix ▷ Definition B.4
5: Compute (S1 ·A) ▷ It takes Õ(ϵ−1

σ nnz(A)) time.
6: Compute M ← (S1 ·A) · (I − V ⊤V ) ▷ It takes Õ(ϵ−2

σ nω) time
7: Let R ∈ Rn×n denote the R of QR factorization of M
8: s2 ← Θ(log(m/δσ))
9: Choose S2 ∈ Rn×s2 to be a JL matrix ▷ Either Definition B.1 or Definition B.2

10: Compute N ← (I − V ⊤V )R−1S2 ▷ N ∈ Rn×s2

11: for j = 1→ m do ▷ It takes Õ(nnz(A)) time
12: Compute σ̃j ← ∥(e⊤j A)N∥22
13: end for
14: return σ̃ ▷ σ̃j = Θ(σj),∀j ∈ [m]
15: end procedure

Definition G.1 (Leverage score). Let A ∈ Rm×n. The leverage score of A is a vector σ(A) ∈ Rm satisfying

σ(A)i = ai(A
⊤A)−1a⊤i ,

where ai denote the i-th row of A.

The above algorithm provides an approximation to all the leverage scores of matrix A(I − V ⊤V ), see the following lemma.

Lemma G.2 (Implicit leverage score). Given a matrix A ∈ Rm×n and a matrix V ∈ Rn×n, there is an algorithm (procedure
IMPLICITLEVERAGESCORE Algorithm 9) that runs in Õ(ϵ−2

σ (nnz(A) + nω)) time and output a vector σ̃ ∈ Rm, such that,
σ̃ is an approximation of the leverage score of matrix A(I − V ⊤V ), i.e.,

σ̃ ∈ (1± ϵσ) · σ(A(I − V ⊤V )),

with probability at least 1− δσ . The Õ hides the log(n/δσ) factors.

Remark G.3. The only difference between classical statement is, in classical there is one input matrix A. In our case, the
target matrix is implicitly given in a way A(I − V ⊤V ), and we’re not allowed to formally write down A(I − V ⊤V ). The
correctness proof is similar as literature (Clarkson & Woodruff, 2013; Nelson & Nguyên, 2013).
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For our task, we only need an overestimation of the leverage score. We believe that the two-sides error might have future
applications, therefore, we provide a two-sided error proof.

Proof. We follow an approach of (Woodruff, 2014), but instead we use a high precision sparse embedding matrix (Nelson &
Nguyên, 2013) and prove a two-sided bound on leverage score.

Correctness.

Let S1 be a sparse embedding matrix with s = O(ϵ−2
σ npoly log(n/(ϵσδσ))) rows and column sparsity O(ϵ−1 log(n/δ)).

We first compute M := (S1A) · (I − V ⊤V ), then compute the QR decomposition M = QR.

Now, let S2 ∈ Rn×s2 matrix with s2 = O(ϵ−2
σ log(m/δσ)), each entry of S2 is i.i.d. N (0, 1/s2) random variables. Then

we generate an sketched matrix N := (I − V ⊤V )R−1S2. Set σ̃j = ∥(e⊤j A)N∥22 for all j ∈ [m]. We argue σ̃j is a good
approximation to σj .

First, with failure probability at most δσ/m, we have that σ̃j ∈ (1± ϵσ) · ∥e⊤j A(I − V ⊤V )R−1∥22 via Lemma B.8. Now, it
suffices to argue that ∥e⊤j A(I − V ⊤V )R−1∥22 approximates ∥e⊤j U∥22 well, where U ∈ Rm×n is the left singular vectors of
A(I − V ⊤V ). To see this, first observe that for any x ∈ Rn,

∥A(I − V ⊤V )R−1x∥22 = (1± ϵσ) · ∥S1A(I − V ⊤V )R−1x∥22
= (1± ϵσ) · ∥Qx∥22
= (1± ϵσ) · ∥x∥22,

where the first step follows from Lemma B.10, and the last step is due to Q has orthonormal columns.

This means that all singular values of A(I − V ⊤V )R−1 are in the range [1− ϵσ, 1 + ϵσ]. Now, since U is an orthonormal
basis for the column space of A(I − V ⊤V ), A(I − V ⊤V )R−1 and U has the same column space (since R is full rank).
This means that there exists a change of basis matrix T ∈ Rn×n with A(I − V ⊤V )R−1T = U . Our goal is to provide a
bound on all singular values of T . For the upper bound, we claim the largest singular value is at most 1 + 2ϵσ, to see this,
suppose for the contradiction that the largest singular is larger than 1 + 2ϵσ and let v be its corresponding (unit) singular
vector. Since the smallest singular value of AR−1 is at least 1− ϵσ , we have

∥A(I − V ⊤V )R−1Tv∥22 ≥ (1− ϵσ)∥Tv∥22
> (1− ϵσ)(1 + 2ϵσ)

> 1,

however, recall A(I − V ⊤V )R−1T = U , therefore ∥A(I − V ⊤V )R−1Tv∥22 = ∥Uv∥22 = ∥v∥22 = 1, a contradiction.

One can similarly establish a lower bound of 1− 2ϵσ . Hence, the singular values of T are in the range of [1− 2ϵσ, 1 + 2ϵσ].
This means that

∥e⊤j A(I − V ⊤V )R−1∥22 = ∥e⊤i UT−1∥22
= (1± 2ϵσ) · ∥e⊤j U∥22
= (1± 2ϵσ) · σ(A(I − V ⊤V ))j ,

as desired. Scaling ϵσ by ϵσ/2 yields the approximation result.

Running Time.

We divided the running time of the algorithm into the following lines.

• Line 6 takes time Õ(ϵ−1
σ nnz(A)) to compute the matrix M .

• Line 7 takes time Õ(ϵ−2
σ nω) to compute the QR decomposition of M .

• In Line 10, we can first multiply R−1 with S2 in time Õ(ϵ−2
σ n2), this gives a matrix of size n× s2. Multiplying this

matrix with (I − V ⊤V ) takes Õ(nω) time. Note that R ∈ Rn×n hence R−1 can be computed in O(nω) time.

46



Discrepancy Minimization in Input-Sparsity Time

• Line 11 loop takes in total Õ(nnz(A)) time to compute the output vector σ̃.

Hence, the overall time for computing σ̃(A(I − V ⊤V )) ∈ Rm is Õ(ϵ−2
σ (nnz(A) + nω)).

G.2. Fast Subsampling

Here we present the fast subsampling algorithm based on the leverage score approximation.

Algorithm 10 Fast Subsample Algorithm

1: procedure SUBSAMPLE(B ∈ Rm×n, V ∈ Rn×n, ϵB , δB) ▷ Lemma G.4
2: σ̃ ← IMPLICITLEVERAGESCORE(B, V, δB) ▷ Compute an O(1)-approximation to the leverage scores of

B(I − V ⊤V ), σ̃ ∈ Rm

3: Sample a subset rows of B = B(I − V ⊤V ) with proper re-weighting according to approximate leverage score σ̃

4: Let D̃ denote the diagonal sampling matrix such that Pr[B
⊤
D̃D̃B ∈ (1± ϵB) ·B

⊤
B] ≥ 1− δB

5: return D̃ ▷ D̃ ∈ Rm×m

6: end procedure

Lemma G.4. There is an algorithm (Algorithm 10) takes B ∈ Rm×n and V ∈ Rn×n as inputs and outputs a diagonal
sampling matrix D̃ with ∥D̃∥0 = O(ϵ−2

B n log(n/δB)) and runs in time

Õ(nnz(B) + nω).

Here Õ hides the log(n/δB) factors. Here ω is the exponent of matrix multiplication. Currently, ω ≈ 2.373.

Proof. We first approximately compute the leverage score, i.e., gives an O(1)-approximation to all leverage scores via
Lemma G.2. Then run we samples a number of rows according to the leverage scores, using Lemma H.2, we can show the
correctness.

H. Sampling a Batch of Rank-1 Terms
In this section, we give a sparsification tool for the matrix that has pattern A⊤A.

We define our sampling process as follows:

Definition H.1 (Sampling process). Let H = A⊤A. Let pj ≥ β · σj(A)/n, suppose we sample with replacement
independently for s rows of matrix A, with probability pj of sampling row j for some β ≥ 1. Let jt denote the index of the
row sampled in the t-th trial. Define the generated sampling matrix as

H̃ :=
1

T

T∑

t=1

1

pjt
ajta

⊤
jt ,

where T denotes the number of the trials.

For our sampling process defined as Definition H.1, we can have the following guarantees:

Lemma H.2 (Sample using Matrix Chernoff). Let ϵ0, δ0 ∈ (0, 1) be precision and failure probability parameters, respec-
tively. Suppose H̃ is generated as in Definition H.1, then with probability at least 1− δ0, we have

(1− ϵ0) ·H ⪯ H̃ ⪯ (1 + ϵ0) ·H.

Moreover, the number of rows sampled is

T = Θ(β · ϵ−2
0 n log(n/δ0)).

Proof. The proof of this Lemma is follows by designing the sequence of random matrices, then applying the matrix Chernoff
bound to get the desired guarantee.
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We first define the following vector generated from scaling the rows of A,

yj = (A⊤A)−1/2 · aj

for all j ∈ [m]. And for i ∈ [m], we define the matrix Yj :=
1
pj
yjy

⊤
j generated by yj , and we define Xj := Yj − In, where

In is n× n identity matrix.

Based on the above vector and matrix definitions, we define the following distributions:

• We define a distribution y for random vector: For y ∈ Rn, if y ∼ y, then for each j ∈ [m], y = yj with probability pj .

• We define a distribution Y such that, For Y ∈ Rn×n, if Y ∼ Y , then for each j ∈ [m], Y = Yj with probability pj .

• We define a distribution X such that, For X ∈ Rn×n, if X ∼ X , then for each j ∈ [m], X = Xj = Yj − In with
probability pj .

Using H = A⊤A, we write the yj as

yj = H−1/2 · aj .

We notice that,

m∑

j=1

yjy
⊤
j =

m∑

j=1

H−1/2aja
⊤
j H

−1/2

= H−1/2(

m∑

i=j

aja
⊤
j )H

−1/2

= H−1/2(A⊤A)H−1/2

= In. (12)

where the first step follows from the definition of yj , the second step follows from reorganization, the third step follows
from definition of aj , and the last step follows from the definition of H .

Besides, we notice the the connection between the norm of yj and the leverage score of A:

∥yj∥22 = a⊤j (A
⊤A)−1aj

= σj(A). (13)

Here we denote the index of the row that we sample during t-th trial as jt, note that jt ∈ [m], for all t ∈ [T ].

Unbiased Estimator. For a matrix X ∼ X , here we show that X has the expectation of 0, we note that

E
X∼X

[X] = E
Y∼Y

[Y ]− In

= (

m∑

j=1

pj ·
1

pj
yjy

⊤
j )− In

= 0.

where the first step follows from the definition of X , the second step follows from the definition of Y and the definition of
expectation, and the last step follows from Eq. (12).

Upper Bound on ∥X∥. To give an upper bound of ∥X∥, we first provide an upper bound for any ∥Xj∥, then the upper
bound of ∥X∥ follows immediately. We note that,

∥Xj∥ = ∥Yj − In∥
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≤ 1 + ∥Yj∥

= 1 +
∥yjy⊤j ∥

pj

≤ 1 +
n · ∥yj∥22
β · σj(A)

= 1 +
n

β
.

where the first step follows from the definition of Xj , the second step follows from triangle inequality and the definition of
In, the third step follows from the definition of Yj , the forth step follows from pj ≥ β · σj(A)/nd and the definition of ℓ2
norm and the last step follows from Eq. (13).

Bound on ∥E[X⊤X]∥. To upper bound the spectral norm of the matrix, we first provide the upper bound of the expectation
of the matrix X⊤X . We compute the matrix expectation:

E
Xjt∼X

[X⊤
jtXjt ]

= In + E
yjt∼y

[
yjty

⊤
jt
yjty

⊤
jt

p2jt
]− 2 E

yjt∼y
[
yjty

⊤
jt

pjt
]

= In + (

m∑

j=1

σj(A)

pj
yjy

⊤
j )− 2In

≤
m∑

j=1

n

β
yjy

⊤
j − In

= (
n

β
− 1)In,

where the first step follows from definition of X , the second step follows from Eq. (12), Eq. (13) and the definition of
expectation, the third step follows from pj ≥ β · σj(A)/n, and the last step follows from Eq. (12) and factorising.

Thus we upper bound the spectral norm of Eyjt∼y[X
⊤
jt
Xjt ] as

∥ E
yjt∼y

[X⊤
jtXjt ]∥ ≤

n

β
− 1.

Put things together. Here we define W :=
∑T

t=1 Xjt . We choose the parameter

γ = 1 +
n

β
, σ2 =

n

β
− 1

Then, we apply Matrix Chernoff Bound as in Lemma A.9:

Pr[∥W∥ ≥ ϵ0]

≤ 2n · exp
(
− Tϵ20
n/β − 1 + (1 + n/β)ϵ0/3

)

= 2n · exp(−Tϵ20 ·Θ(β/n))

≤ δ0

where the last step follows from that we choose T = Θ(β · ϵ−2
0 n log(n/δ0)).

Finally, we notice that

W =
1

T
(

T∑

t=1

1

pjt
yjty

⊤
jt − In)
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= H−1/2(
1

T

T∑

t=1

1

pjt
ajta

⊤
jt)H

−1/2 − In

= H−1/2H̃H−1/2 − In.

where the first step follows from definition of W , the second step follows from yjt = H−1/2ajt , and the last step follows
from definition of H̃ .

Since

∥H−1/2H̃H−1/2 − In∥ ≤ ϵ0

Thus, we know that

(1− ϵ0)In ⪯ H−1/2H̃H−1/2 ⪯ (1 + ϵ0)In

which implies that

(1− ϵ0)H ⪯ H̃ ⪯ (1 + ϵ0)H.

Thus, we complete the proof.

I. Boundary-Seeking Subroutine for Partial Coloring
In order to find the proper step size in the Partial Coloring algorithm, we propose the following subroutine.

Algorithm 11
1: procedure FINDBOUNDARY(a ∈ Rn, b ∈ Rn) ▷ Lemma I.1
2: Compute n intervals [xi, yi] such that xi, yi are the two boundaries of−1 ≤ aiµ−bi ≤ 1, e.g., xi, yi ∈ { bi−1

ai
, bi+1

ai
}

and xi ≤ yi, for all i ∈ [n]
3: Compute n intervals [xn+i, yn+i] such that xi, yi are the two boundaries of −1 ≤ aiµ + bi ≤ 1, e.g., xi, yi ∈
{−bi−1

ai
, −bi+1

ai
} and xi ≤ yi, for all i ∈ [n]

4: Linear scan the x1, · · · , x2n, find the index u such that u← max{xi}i∈[2n]

5: Linear scan the x1, · · · , y2n, find the index v such that v ← min{yi}i∈[2n]

6: if u ≤ v then
7: if |u| ≤ |v| then
8: return v
9: else

10: return u
11: end if
12: else
13: return fail
14: end if
15: end procedure

Here we illustrate the idea of this algorithm with an example in the following Figure 7.

Lemma I.1. There is an algorithm (Algorithm 11) that takes two vectors a, b ∈ Rn, and outputs an positive number µ ∈ R+,
such that µ is the number with the largest absolute value satisfying that

max{∥µ · a+ b∥∞, ∥µ · a− b∥∞} = 1.

And runs in time O(n).

Proof. Running Time. The running time of Algorithm 11 can be divided into the following lines,

• Line 2 takes time O(n) to compute the xi, yi’s for i ∈ [n].
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µ

s

−1

1

O

s = µ · a1 − b1

b1+1
a1

b1−1
a1

s = µ · a1 + b1

1−b1
a1

−b1−1
a1

s = µ · a2 − b2

b2+1
a2

b2−1
a2

s = µ · a2 + b2

1−b2
a2

−b2−1
a2

(a) The lines of the constraints in our example

x1 y1

x2 y2

x3 y3

y4x4

u v
(b) The feasible intervals

Figure 7. Here we give an example of our Algorithm 11. The algorithm is looking for the intervals to make every constraint (|µ·ai+bi| ≤ 1
or |µ · ai − bi| ≤ 1) hold, so we have 2n lines in total (n is the dimension). Here in the example, we assume n = 2, so we have 2n = 4
lines in total. Thus we have 4 intervals, and taking the intersection over them, we get the interval [u, v]. Figure (a) shows the lines of the
constraints we have, the green area shows the feasible region. Figure (b) shows our idea of taking intersection over the 2n = 4 constraints.
(Here we set a = (1, 15

7
) and b = (0.7, 3

5
).)

• Line 3 takes time O(n) to compute the xi, yi’s for i ∈ {n+ 1, . . . , 2n}.

• Line 4 takes time O(n) to linear scan the xi’s for i ∈ [2n].

• Line 5 takes time O(n) to linear scan the yi’s for i ∈ [2n].

The rest part of the algorithm all runs in an constant time. Thus we have the total running time is

O(n).
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Correctness. We first prove that, if the algorithm outputs a number µ, then for every i ∈ [n], it holds that

−1 ≤ µ · ai − bi ≤ 1,

and − 1 ≤ µ · ai + bi ≤ 1.

Here we call the feasible region of the above question to be U . By the construction of our algorithm we have that,

[xi, yi] = {µ ∈ R | − 1 ≤ µ · ai − bi ≤ 1}, ∀i ∈ [n]

and [xi, yi] = {µ ∈ R | − 1 ≤ µ · ai−n − bi−n ≤ 1}, ∀i ∈ {n+ 1, . . . , 2n}

Thus we have that

U =
⋂

i∈[2n]

[xi, yi].

We note that, if the algorithm outputs a number µ, then it must holds that

u ≤ v.

Recall that we define u and v to be

u := max{xi}i∈[2n]

v := min{yi}i∈[2n],

thus we have that

[u, v] = U .

Recall the output number µ equals to either u or v, it must stands that

µ ∈ U .

Thus the constraints hold for µ.

Now we prove that

max{∥µ · a+ b∥∞, ∥µ · a− b∥∞} = 1.

Without loss of generality, we assume |u| > |v|, that is, µ = u. The case that |u| ≤ |v| is just the same. We first define

j := {i ∈ [2n] | u = xi}.

Here we first assume j ∈ [n], that is, we have that

|µ · aj − bj | = 1.

(For the case that j ∈ {n+ 1, . . . , 2n}, we have |µ · aj + bj | = 1, which is the same to analyse.) Note that, µ ∈ U , so we
have that

|µ · ai − bi| ≤ 1, ∀i ∈ [n]

and |µ · ai + bi| ≤ 1, ∀i ∈ [n].

Thus we have that

∥µ · a− b∥∞ = 1

and ∥µ · a+ b∥∞ ≤ 1,

which is

max{∥µ · a+ b∥∞, ∥µ · a− b∥∞} = 1.
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Now for the case that j ∈ {n+ 1, . . . , 2n}, by a similar analysis we have that

∥µ · a+ b∥∞ = 1

and ∥µ · a− b∥∞ ≤ 1,

which also implies the result that

max{∥µ · a+ b∥∞, ∥µ · a− b∥∞} = 1.

By a same analysis we can have the above result if µ = v.

Now we prove that, µ = u and µ = v are the only two case that

max{∥µ · a+ b∥∞, ∥µ · a− b∥∞} = 1.

Suppose for the contradiction that there exists an t ∈ R such that t ̸= u and t ̸= v, and it holds that

max{∥t · a+ b∥∞, ∥t · a− b∥∞} = 1. (14)

If t ̸∈ U , then there must exists and i ∈ [n] such that

|t · ai + bi| > 1

or |t · ai − bi| > 1,

which is a violation of the hypothesis (Eq.(14)). Then for the case that t ∈ U , since t ̸= u and t ̸= v, it must holds that
t ∈ (u, v). Note we define

u := max{xi}i∈[2n]

v := min{yi}i∈[2n].

It must holds that

t > xi, ∀i ∈ [2n], and t < yi, ∀i ∈ [2n].

Then we have that

|t · ai + bi| < 1

or |t · ai − bi| < 1,

which implies that

max{∥t · a+ b∥∞, ∥t · a− b∥∞} < 1,

which is a violation of the hypothesis (Eq.(14)). Thus we conclude there is no such t.

If we define µ to be one of u or v, depending on who has larger absolute value, then µ is the number with the largest absolute
value satisfying that

max{∥µ · a+ b∥∞, ∥µ · a− b∥∞} = 1.

Thus we complete the proof.

Corollary I.2. For the case that ∥b∥∞ ≤ 1, Algorithm 11 always return a number µ.

Proof. If ∥b∥∞ ≤ 1, then we have that

|bi| ≤ 1, ∀i ∈ [n].

53



Discrepancy Minimization in Input-Sparsity Time

Without loss of generality we assume bi ≥ 0, then bi ∈ [0, 1], which implies that

bi − 1

ai
≤ 0

and
bi + 1

ai
≥ 0.

Thus we have that

0 ∈ [xi, yi], ∀i ∈ [n].

By a similar analysis we have

0 ∈ [xi, yi], ∀i ∈ {n+ 1, . . . , 2n}.

Thus we have

0 ∈ U =
⋂

i∈[2n]

[xi, yi],

which means

U ̸= ∅

So it must holds that

u ≤ v.

Thus we complete the proof.

J. Experimental Results
We conduct the experiments to empirically validate the efficiency of our algorithm. We focused our experimental evaluation
on demonstrating the improvements achieved through the fast hereditary projection. This is because the lazy update scheme
is primarily designed to leverage fast matrix multiplication. Although fast matrix multiplication theoretically has lower
asymptotic complexity, algorithms based on FMM often suffer from significantly large constant factors, adversely affecting
their practical runtime performance. Additionally, for practical considerations, the parameters used in the experiments do
not strictly follow the theoretical suggestions in the algorithm. Our experimental setup follows the matrix configurations
used in Larsen (2023):

• Uniform matrices: Every entry is chosen independently and uniformly from the set {−1,+1}.

• 2D corner matrices: Sample two point sets P = {p1, . . . , pn} and Q = {q1, . . . , qm} independently and uniformly
from the unit square [0, 1]× [0, 1]. Construct a matrix with one column per pj ∈ P and one row per qi ∈ Q; set the
entry (i, j) to 1 if pj is dominated by qi, i.e. ⟨qi, x⟩ > ⟨pj , x⟩ and ⟨qi, y⟩ > ⟨pj , y⟩, and to 0 otherwise.

• 2D halfspace matrices: Draw P = {p1, . . . , pn} uniformly from [0, 1]× [0, 1] and construct a set Q of m half-spaces
as follows: pick a point a uniformly on either the left or the top boundary of the unit square, a point b uniformly on
either the right or the bottom boundary, and then choose uniformly whether the half-space consists of all points above
the line through a and b or all points below it. Form a matrix with one column per pj ∈ P and one row per half-space
hi ∈ Q; set the entry (i, j) to 1 if pj ∈ hi and to 0 otherwise.

Our algorithm achieves substantial speedups with only minor sacrifices in approximation guarantees. The speedup will be
more significant once m is much bigger than n, as sketching is known to work well in the regime where m≫ n.

Our code is available at https://github.com/magiclinux/input_sparsity_discrepancy_icml_
2025.
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Table 2. Results of experiments on uniform matrices. Here Larsen’s algorithm is Larsen (2023). The runtime is measured in second.

Matrix Size Sparsity Larsen’s Obj. Val. Our Obj. Val. Larsen’s Runtime Our Runtime
400× 400 1.0 54 56 2.98 2.16
400× 400 0.5 38 42 2.90 1.95
400× 400 0.1 14 20 2.91 1.90
2000× 2000 1.0 140 148 345 164
2000× 2000 0.5 96 99 334 156
2000× 2000 0.1 46 47 331 152
10000× 1000 1.0 132 140 378 63
10000× 1000 0.5 92 97 374 62
10000× 1000 0.1 42 44 375 62

Table 3. Results of experiments on 2D corner matrices. Here Larsen’s algorithm is Larsen (2023). The runtime is measured in second.

Matrix Size Sparsity Larsen’s Obj. Val. Our Obj. Val. Larsen’s Runtime Our Runtime
400× 400 1.0 24 28 2.80 2.15
400× 400 0.5 30 40 2.79 2.18
400× 400 0.1 17 18 2.75 1.93
2000× 2000 1.0 52 60 347 170
2000× 2000 0.5 83 92 352 169
2000× 2000 0.1 45 44 350 181
10000× 1000 1.0 46 52 386 65
10000× 1000 0.5 76 77 374 60
10000× 1000 0.1 37 40 375 62

Table 4. Results of experiments on 2D halfspace matrices. Here Larsen’s algorithm is Larsen (2023). The runtime is measured in second.

Matrix Size Sparsity Larsen’s Obj. Val. Our Obj. Val. Larsen’s Runtime Our Runtime
400× 400 1.0 38 42 2.67 2.08
400× 400 0.5 30 40 2.70 2.12
400× 400 0.1 17 18 2.62 1.89
2000× 2000 1.0 50 56 352 174
2000× 2000 0.5 75 76 345 171
2000× 2000 0.1 38 40 345 169
10000× 1000 1.0 62 66 390 67
10000× 1000 0.5 71 75 389 68
10000× 1000 0.1 33 36 382 64
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K. More Related Work
Because sketching techniques are pivotal in both linear and semidefinite programming, we first survey this body of work.
We then discuss how discrepancy theory has been leveraged in modern machine-learning applications.

Linear programming Linear programming has a long and rich history in both mathematics and computer science. The
simplex algorithm (Dantzig, 1947), while foundational, admits exponential worst-case running time. The ellipsoid method
brought the first polynomial guarantee (Khachiyan, 1980), but was slower than simplex in practice. Karmarkar’s interior-
point method (Karmarkar, 1984) was a major advance, offering polynomial complexity together with strong empirical
performance. When the number of constraints d satisfies d = Ω(n) (where n is the number of variables), Karmarkar’s
algorithm runs in O(n3.5) time, later improved to O(n3)(Vaidya, 1987; Renegar, 1988) and then to O∗(n2.5)(Vaidya, 1989).
Cohen et al. (2019) achieved a time bound of O(nω + n2.5−α/2 + n2+1/6), where ω is the matrix-multiplication exponent
and α its dual. Their techniques were subsequently generalized to empirical risk minimization(Lee et al., 2019; Song, 2019;
Qin et al., 2023; Gu et al., 2025), while Song & Yu (2021) reproduced the results of Cohen et al. (2019) using oblivious
sketching matrices instead of non-oblivious sampling. For tall, dense constraint matrices, Brand et al. (2020) obtained a
running time of Õ(nd) + poly(d). There are also works studying linear programming in the streaming setting (Chen et al.,
2023; Song et al., 2023c; Brand et al., 2025).

Semidefinite programming Two principal families of algorithms address semidefinite programming (SDP): second-order
and first-order methods. Second-order methods enjoy logarithmic dependence on the accuracy parameter ϵ, whereas first-
order methods typically have polynomial dependence on 1/ϵ. Among second-order techniques, cutting-plane approaches
such as Lee et al. (2015); Jiang et al. (2020c; 2024) solve SDPs in O(m(mn2 + m2 + nω)) time, where m is the
number of constraints. Interior-point methods based on self-concordant barriers constitute another major line: log-barrier
algorithms (Nesterov & Nemirovski, 1992; Jiang et al., 2020b; Huang et al., 2022c; Liu et al., 2023), hybrid-barrier
variants (Anstreicher, 2000; Huang et al., 2022c; Liu et al., 2023), and those using the Lee–Sidford barrier (Lee & Sidford,
2014; Liu et al., 2023; Gu et al., 2024a). Notably, Jiang et al. (2020b) obtains a running time of O(

√
n(mn2 + nω)), and

Huang et al. (2022c) shows that when m = Ω(n2), an SDP can be solved in O(mω +m2+1/4) time. First-order algorithms
avoid second-order information but pay a higher cost in their dependence on 1/ϵ. Representative results include Arora &
Kale (2007); Jain & Yao (2011); Allen Zhu et al. (2016); Garber & Hazan (2016); Allen-Zhu & Li (2017); Carmon et al.
(2019); Lee & Padmanabhan (2020); Yurtsever et al. (2019); Grigorescu et al. (2022); Song et al. (2023a;c); Chen et al.
(2023); Gu et al. (2024b).

Applications of discrepancy theory in machine learning Matousek (1999a); Karnin & Liberty (2019) introduce the
relationship of discrepancy and concepts in learning theory such as VC dimension and PAC learning. Chen et al. (2018)
introduces a method to learn hash functions via discrepancy minimization. Learning hash functions in content-based
image retrieval optimize binary codes to preserve similarity in high-dimensional feature spaces, enabling faster and more
efficient image search. Wang et al. (2023) leverage discrepancy minimization for unsupervised graph matching by aligning
predictions from classical solvers and neural models. Han et al. (2025) proposed an algorithm for compressing the KV
cache recursively using a geometric correlated sampling process based on discrepancy theory. Nikolov et al. (2013)
investigated the relationship between discrepancy minimization and differential privacy in the context of linear queries
over histograms. Quasi-Monte Carlo methods (Lyu et al., 2020; Lyu, 2023) leverage concepts from discrepancy theory by
employing low-discrepancy sequences to efficiently approximate high-dimensional integrals and expectations.
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