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ABSTRACT

Anomaly detection (AD) has been widely studied for decades in many real-world
applications, including fraud detection in finance, intrusion detection for cyber-
security, etc. Due to the imbalanced nature between protected and unprotected
groups and the imbalanced distributions of normal examples and anomalies, the
learning objectives of most existing anomaly detection methods tend to solely
concentrate on the dominating unprotected group. Thus, it has been recognized
by many researchers about the significance of ensuring model fairness in anomaly
detection. However, in the imbalanced scenario where the unprotected group is
more abundant than the protected group, the existing fair anomaly detection meth-
ods tend to erroneously label most normal examples from the protected group as
anomalies. This phenomenon is caused by the improper design of learning objec-
tives, which statistically focus on learning the frequent patterns (i.e., the unpro-
tected group) while overlooking the under-represented patterns (i.e., the protected
group). To address these issues, we propose FADIG, a fairness-aware anomaly
detection method targeting the imbalanced scenario. It consists of a fairness-aware
contrastive learning module and a rebalancing autoencoder module to ensure fair-
ness and handle the imbalanced data issue, respectively. Moreover, we provide
the theoretical analysis that shows our proposed contrastive learning regulariza-
tion guarantees group fairness. Empirical studies demonstrate the effectiveness
and efficiency of FADIG across multiple real-world datasets.

1 INTRODUCTION

Anomaly detection (AD), a.k.a. outlier detection, is referred to as the process of detecting data
instances that significantly deviate from the majority of data instances (Chandola et al., 2009).
Anomaly detection finds extensive use in a wide variety of applications including financial fraud
detection (West & Bhattacharya, 2016; Huang et al., 2018), pathology analysis in the medical do-
main (Faust et al., 2018; Shvetsova et al., 2021) and intrusion detection for cybersecurity (Liao et al.,
2013; Ahmad et al., 2021). For example, an anomalous traffic pattern in a computer network sug-
gests that a hacked computer is sending out sensitive data to an unauthorized destination Ahmed
et al. (2016); anomalies in credit card transaction data could indicate credit card or identity theft
(Rezapour, 2019).

Up until now, a large number of deep anomaly detection methods have been introduced, demonstrat-
ing significantly better performance than shallow anomaly detection in addressing complicated de-
tection problems in a variety of real-world applications such as computer vision tasks. For instance,
Sohn et al. (2021); Li et al. (2023) aim to learn a scalar anomaly scoring function in an end-to-end
fashion, while Audibert et al. (2020); Chen et al. (2021); Hou et al. (2021); Yan et al. (2021); Wang
et al. (2023) propose to learn the patterns for the normal examples via a feature extractor.

Recently, there has been widespread recognition within the AI community about the significance
of ensuring model fairness and thus it is highly desirable to establish specific parity or preference
constraints in the context of anomaly detection. Take racial bias in anomaly detection as an ex-
ample. Racial bias has been observed in predictive risk modeling systems to predict the likelihood
of future adverse outcomes in child welfare (Chouldechova et al., 2018). Communities in poverty
or specific racial or ethnic groups may face disadvantages due to the reliance on government ad-
ministrative data. The data collected from these communities, often stemming from their economic

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Recall@1200 and absolute Recall dif-
ference of the existing methods on the MNIST-
USPS dataset.

Methods Unprotected Protected

FairOD 117(984) 35(216)
DCFOD 124(970) 25(230)

FairSVDD 141(741) 44(459)
MCM 238(327) 234(873)

NSNMF 196(294) 267(906)
FADIG(ours) 630(809) 247(391)

Table 1: True anomalies out of identified
anomalies (number in the parentheses) of exist-
ing methods in each group on the MNIST-USPS
dataset.

status and welfare dependence, can inadvertently categorize them as high-risk anomalies, leading
to more frequent investigations to these minority groups. Consequently, disproportionately flagging
minority groups as anomalies not only perpetuates biases but also results in an inefficient allocation
of government resources.

To mitigate potential bias in anomaly detection tasks, numerous researchers (Song et al., 2021;
Zhang & Davidson, 2021; Fioresi et al., 2023) advocate for incorporating fairness constraints into
their proposed methods. However, in an imbalanced data scenario where the unprotected group
is more abundant than the protected group, most of these methods tend to erroneously label most
normal examples from the protected/minority group as anomalies. To better illustrate this issue, we
provide a toy example on the MNIST-USPS dataset (Zhang & Davidson, 2021) where the size of
the unprotected group is four times that of the protected group, and approximately 10% of the total
samples are anomalies. Figure 1 and Table 1 show the performance of anomaly detection methods
evaluated on this dataset, where Recall Diff refers to the absolute value of recall difference between
the protected group and the unprotected group. Note that in such an imbalanced scenario, metrics
such as accuracy difference (Zafar et al., 2017) are not proper choices. We observe that existing
methods either compromise performance for fairness (i.e., low recall rate and low recall difference)
or exhibit unfair behavior (i.e., high recall difference). The problem of misclassification arises from
models focusing on learning frequent patterns in the more abundant unprotected group, potentially
overlooking under-represented patterns in the protected group. The issue of group imbalance results
in higher errors for protected groups, thus causing misclassifications. Following Hashimoto et al.
(2018), we refer to this phenomenon as representation disparity.

To address these issues, we face the following two major challenges. C1: Handling imbalanced
data. Due to the imbalanced nature between the protected and unprotected groups and the im-
balanced distributions of normal examples and anomalies, the learning objectives of most existing
anomaly detection methods tend to solely concentrate on the unprotected group. C2: Mitigating the
representation disparity. Traditional anomaly detection methods encounter difficulties in dealing
with representation disparity issues, which may worsen in the imbalanced data scenario as protected
groups are typically fewer than unprotected groups.

To tackle these challenges, in this paper, we propose FADIG, a fairness-aware contrastive learning-
based anomaly detection method for the imbalanced group scenario. FADIG mainly consists of
two modules: (1) the fairness-aware contrastive learning module; (2) the re-balancing autoencoder
module. Specifically, the fairness-aware contrastive learning module aims to maximize the similarity
between the protected and unprotected groups to ensure fairness and address C2. In addition, we
encourage the uniformity of representations for examples within each group, as ensuring uniformity
in contrastive learning can be beneficial for the imbalanced group scenario (Jiang et al., 2021).
To further address the negative impact of imbalanced data (i.e., C1), we propose the re-balancing
autoencoder module utilizing the learnable weight to reweigh the importance of both the protected
and unprotected groups. Combining the two modules, we design a simple yet efficient method
FADIG with a theoretical guarantee of fairness. Our contributions are summarized below.

• A fairness-aware anomaly detection method FADIG addressing the representation dispar-
ity and imbalanced data issues in the anomaly detection task.
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• Theoretical analysis showing that our proposed fair contrastive regularization term guaran-
tees group fairness.

• The re-balancing autoencoder equipped with the learnable weight alleviating the negative
impact of the imbalanced groups.

• Empirical studies demonstrating the effectiveness and efficiency of FADIG across multiple
real-world datasets.

The rest of this paper is organized as follows. We first provide the preliminaries in Section 2 and
then introduce our proposed fair anomaly detection method in Section 3, followed by the theoretical
fairness analysis in Section 4. Then, we systematically evaluate the effectiveness and efficiency of
FADIG in Section 5. We finally conclude the paper in Section 6.

2 PRELIMINARIES

In this paper, we explore the fairness issue in the unsupervised anomaly detection task. Among the
various fairness definitions proposed, there is no consensus about the best one to use. In this work,
we focus on the group fairness notion which usually pursues the equity of certain metrics among the
groups. Without loss of generality, we consider the groups here to be the protected group and the
unprotected group (e.g., Black and Non-Black in race). We are given a dataset D = P ∪ U , where
P = {xP

i , y
P
i }ni=1 are examples from the protected group, U = {xU

i , y
U
i }mi=1 from the unprotected

group, and xP
i , x

U
i are sampled i.i.d from distributions PP ,PU over the input space Rd respectively.

The ground-truth labels yPi , y
U
i ∈ Y = {0, 1} represent whether the example is an anomaly (y = 1)

or not, which are given by deterministic labeling functions aP , aU : Rd → Y , respectively. Note
that we do not have access to the labels during training as we focus on the unsupervised anomaly
detection setting.

The task of unsupervised anomaly detection is to find a hypothesis h : Rd → Y which identi-
fies a maximal subset A ⊂ D whose elements deviate significantly from the normal examples in
D. This identification is done without the aid of labeled examples, meaning the algorithm must
rely on the intrinsic properties of the data, such as distribution, density, or distance metrics, to
discern between normal examples and anomalies. The risk of a hypothesis h w.r.t. the true la-
beling function a under distribution D using a loss function ℓ : Y × Y → R+ is defined as:
Rℓ

D(h, a) := Ex∼D [ℓ(h(x), a(x))]. We assume that ℓ satisfies the triangle inequality. For nota-
tion simplicity, we denote Rℓ

P (h) := Rℓ
PP

(h, aP ) and Rℓ
U (h) := Rℓ

PU
(h, aU ). The empirical risks

over the protected group P and the unprotected group U are denoted by R̂ℓ
P and R̂ℓ

U .

One direction of unsupervised AD is reconstruction-based autoencoder, such as An & Cho (2015);
Audibert et al. (2020); Hou et al. (2021). Assuming the anomalies possess different features than the
normal examples, given an autoencoder over the normal examples, it will be hard to compress and
reconstruct the anomalies. The anomaly score can then be defined as the reconstruction loss for each
test example. Formally, the autoencoder consists of two main components: an encoder ge : Rd →
Rr and a decoder gd : Rr → Rd, where r is the dimensionality of the hidden representations. ge(x)
encodes the input x to a hidden representation z that preserves the important aspects of the input.
Then, gd(z) aims to recover x′ ≈ x, a reconstruction of the input from the hidden representation
z. Overall, the autoencoder can be written as G = gd ◦ ge, i.e. G(x) = gd(ge(x)). For a given
autoencoder-based framework, the anomaly score for x is computed using the reconstruction error
as:

s(x) = ∥x−G(x)∥2, (1)

where all norms are ℓ2 unless otherwise specified. Anomalies tend to exhibit large reconstruction
errors because they do not conform to the patterns in the data as coded by the autoencoder. This
scoring function is generic in that it applies to many reconstruction-based AD models, which have
different parameterizations of the reconstruction function G. Next, we will present our method
design based on the autoencoder framework. For quick reference, we summarize the notation used
in the paper in Table 7 in Appendix.
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(a) Failure of AD. (b) Uniformity without
fairness.

(c) FADIG: proper unifor-
mity with fairness.

Figure 2: Illustrations of uniformity. The blue and green circles denote normal examples from the
unprotected group and protected group respectively. The pink and yellow triangles denote anomalies
from the unprotected group and protected group respectively. The three subfigures illustrate three
different projections from the same data set. With projection (a), many existing AD methods overly
flag the examples from the protected groups (green circles) as anomalies (triangles). In projection
(b), traditional contrastive regularization methods encourage uniformity but do not consider group
fairness. In (c), our FADIG ensures group fairness while maintaining proper uniformity.

3 PROPOSED METHOD

Our proposed FADIG mainly consists of two modules: a Fairness-aware Contrastive Learning Mod-
ule and a Re-balancing Autoencoder Module.

3.1 FAIRNESS-AWARE CONTRASTIVE LEARNING

Existing anomaly detection models (Song et al., 2021; Zhang & Davidson, 2021; Fioresi et al., 2023)
statistically focus on learning the frequent patterns (i.e., the unprotected group), while overlooking
the under-represented patterns (i.e., the protected group) within the observed imbalanced data. Due
to the lower contribution of protected groups to the overall learning objective (e.g., minimizing
expected reconstruction loss), examples from the protected groups may experience systematically
higher errors. Thus, they tend to erroneously label most normal examples from the protected group
as anomalies, producing unfair outcomes as shown in Figure 2a.

Recent works (Wang & Isola, 2020; Sohn et al., 2021) have shown that encouraging uniformity
with contrastive learning can alleviate this issue by pushing examples to be uniformly distributed
in the unit hypersphere, as illustrated in Figure 2b. Therefore, one naive solution is to implement
contrastive learning (Chen et al., 2020) to learn representations by distinguishing different views of
one example from other examples as follows:

LSimCLR = −
∑

zj∈P∪U

log
sim(zj , z

+
j )∑

zk∈P∪U sim(zj , zk)
, (2)

where zj = ge(xj) is the hidden representation, U,P are slightly abused to denote the empirical
distributions of the hidden representations of the unprotected and protected groups, z+j is obtained

by an augmentation function to form a positive pair with zj , and sim(a, b) = exp( aT b
|a||b| ). By mini-

mizing LSimCLR, we encourage the uniformity of the representations of the two groups.

However, as shown in Figure 2b, although the protected examples deviate from anomalies after en-
couraging uniformity, group fairness could not be guaranteed by the traditional contrastive learning
loss. To promote fairness between the protected group and the unprotected group, we further pro-
pose to maximize the cosine similarity between the representations of the protected and unprotected
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group, as shown in Figure 2c. Formally, we minimize the following fairness-aware contrastive loss:

LFAC =− log

1
mn

∑
j∈[n]

∑
k∈[m] sim

(
zPj , z

U
k

)
1

m(m−1)

∑
j ̸=k sim

(
zUj , zUk

)
+ 1

n(n−1)

∑
j ̸=k sim

(
zPj , z

P
k

) (3)

=− log

(∑
j

∑
k sim

(
zPj , z

U
k

)
mn

)
︸ ︷︷ ︸

Lfair

+ log

(∑
j ̸=k sim

(
zUj , zUk

)
m(m− 1)

+

∑
j ̸=k sim

(
zPj , z

P
k

)
n(n− 1)

)
︸ ︷︷ ︸

Lunif

Following the interpretation of contrastive loss in Wang & Isola (2020), the numerator (i.e., Lfair)
can be interpreted as ensuring the fairness of two groups by maximizing the representation similarity
between different groups, and the denominator (i.e., Lunif ) can be interpreted as encouraging the
diversity or uniformity of the representations in the unit hypersphere within each group. Besides, we
show that our proposed fair contrastive regularization term guarantees group fairness with theoretical
support in Section 4.

3.2 RE-BALANCING AUTOENCODER

We then introduce the autoencoder-based module of our method. The existing autoencoder-based
AD frameworks (Song et al., 2021; Audibert et al., 2020) aim to optimize the following reconstruc-
tion loss:

LREC =
∑

xi∈P∪U

∥xi −G(xi)∥2 =

n∑
i=1

∥xP
i −G

(
xP
i

)
∥2︸ ︷︷ ︸

LP

+

m∑
i=1

∥xU
i −G

(
xU
i

)
∥2︸ ︷︷ ︸

LU

. (4)

As these AD approaches fail to consider the data imbalance nature of the protected and unprotected
groups, the learning objective in Equation (4) tends to solely concentrate on learning frequent pat-
terns of the unprotected group (i.e., LU ), yielding higher reconstruction errors for the examples
from the protected group. Consequently, existing methods usually overly flag the examples from the
protected group as anomalies, thus having a higher recall difference, as illustrated in Figure 1.

To address the data imbalance issue between the two groups (i.e., C1 in the introduction), we design
a re-balancing autoencoder by minimizing the reweighted reconstruction loss as follows:

LREC = (1− ϵ)LU + ϵLP , (5)
A proper weight ϵ should promote the model fitting on the normal examples in both protected and un-
protected groups. Consider the four subgroups of data samples in the task of fair anomaly detection:
unprotected/protected normal examples (UN/PN) and unprotected/protected anomalies (UA/PA).
Since ideally the model should only fit UN and PN, we assume that the model is capable of fitting
two out of the four subgroups. For the design of ϵ we have the following lemma:
Lemma 3.1. Let Lt

0 denote the loss of the unfitted model on the subgroup t ∈ {UN, PN, UA, PA},
and let Lt

1 denote the loss of the fitted model on the subgroup t. ∆t = Lt
0 − Lt

1 > 0 means the
difference of loss between the fitted model and the unfitted one on the subgroup t. A proper weight
ϵ for model fitting on normal examples in both protected and unprotected groups should be within
the range ∆UA

∆UA+∆PN < ϵ < ∆UN

∆UN+∆PA such that fitting normal samples of both groups leads to a
lower loss compared to fitting abnormal samples from either group.

Although ∆UA

∆UA+∆PN and ∆UN

∆UN+∆PA are unknown, we propose a design of ϵ that provably lies in

this range: ϵ = LU
0 −LU

LU
0 −LU+LP

0 −LP
where LU

0 = LUN
0 + LUA

0 and LP
0 = LPN

0 + LPA
0 . We estimate

LU
0 =

∑
i∈U ∥xi −GU (x)∥2 where GU (x) =

1
|U |
∑

i∈U G(xi), and LP
0 =

∑
i∈P ∥xi −GP (x)∥2

where GP (x) =
1
|P |
∑

i∈P G(xi). The proof of Lemma 3.1 and the justification of our design are
provided in Appendix E.1. Finally, the overall training scheme of FADIG is to minimize:

Loverall = LREC + αLFAC,

where α is a hyperparameter to balance the reconstruction loss and the contrastive loss. During the
inference stage, we rank the reconstruction error of each example and pick the top k examples as
anomalies.
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4 THEORETICAL ANALYSIS

In this section, we show how our proposed method promotes fairness. We focus on the group
fairness notions where the difference in certain performance metrics between the two groups is
considered. We first introduce the definition of f -divergence to help formulate an upper bound on
the performance difference of FADIG:

Definition 4.1. (f -divergence (Ali & Silvey, 1966) ) Let P and Q be two distribution functions
with densities p and q, respectively. Let p be absolutely continuous w.r.t q and both be absolutely
continuous with respect to a base measure dx. Let f : R+ → R be a convex, lower semi-continuous
function that satisfies f(1) = 0. The f -divergence Df is defined as:

Df (P ∥ Q) =

∫
q(x)f

(
p(x)

q(x)

)
dx. (6)

Many popular divergences that are heavily used in machine learning are special cases of f -
divergences, and we include some in Table 8 in Appendix D. Nguyen et al. (2010) derived a general
variational approach for estimating f -divergence from examples by transforming the estimation
problem into a variational optimization problem. They show that any f -divergence can be written
as:

Df (P ∥ Q) ≥ sup
T∈T

Ex∼P [T (x)]− Ex∼Q[f
∗(T (x))] (7)

where f∗ is the (Fenchel) conjugate function of f defined as f∗(y) := supx∈R+
{xy − f(x)},

T : X → dom f∗, and T is the set of all measurable functions.

Given that Df (P ∥ Q) involves the supremum over all measurable functions and does not account
for the hypothesis class, and that it cannot be estimated from finite examples of arbitrary distributions
(Kifer et al., 2004), we further consider a discrepancy which helps relieve these issues based on the
variational characterization of f -divergence in Equation (7):

Definition 4.2. (Df
h,H discrepancy (Acuna et al., 2021)) Let f∗ be the Fenchel conjugate of a con-

vex, lower semi-continuous function f that satisfies f(1) = 0, and let T̂ be a set of measurable
functions such that T̂ = {ℓ(h(x), h′(x)) : h, h′ ∈ H} where ℓ is a loss function and H is the
hypothesis space. We define the discrepancy between the two distributions P and Q as:

Df
h,H(P ∥ Q) := sup

h′∈H
|Ex∼P [ℓ(h(x), h

′(x))]− Ex∼Q[f
∗(ℓ(h(x), h′(x)))]|

From the definition we can easily get Df
h,H(P ∥ Q) ≤ Df (P ∥ Q). Next we introduce a useful

tool, Rademacher complexity (Shalev-Shwartz & Ben-David, 2014) (detailed definition provided in
Appendix C). Recall that we previously defined Rℓ

D(h) := Rℓ
D(h, a) = Ex∼D [ℓ(h(x), a(x))]. We

introduce a commonly used property of Rademacher complexity:

Lemma 4.3. (Property of Rademacher complexity (Mohri et al., 2018)). For any δ ∈ (0, 1), with
probability at least 1 − δ over the draw of an i.i.d. samples D of size |D|, the following inequality
holds for all h ∈ H:

|Rℓ
D(h)− R̂ℓ

D(h)| ≤ 2RD(ℓ ◦ H) +

√
log 1

δ

2|D|
(8)

where RD(ℓ ◦H) is the Rademacher complexity of the function class ℓ ◦H given data D. With this
property, we now show that Df

h,H can be estimated from finite examples:

Lemma 4.4. Suppose ℓ : Y × Y → [0, 1], f∗ is L-Lipschitz continuous, and [0, 1] ⊆ dom f∗. Let
U and P be two empirical distributions corresponding to datasets containing m and n data points
sampled i.i.d. from PU and PP , respectively. Let us denote R as the Rademacher complexity of a
given hypothesis class, and define ℓ ◦ H := {x 7→ ℓ(h(x), h′(x)) : h, h′ ∈ H}. For any δ ∈ (0, 1),
with probability at least 1− δ, we have:

|Df
h,H(PU∥PP )−Df

h,H(U∥P )| ≤ 2RPU (ℓ ◦ H) + 2LRPP (ℓ ◦ H) +

√
log 1

δ

2n
+

√
log 1

δ

2m
(9)
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Table 2: Characteristics of datasets.

Datasets Unprotected Group Protected Group #Features Sensitive Attribute Anomaly Definition#Instances #Anomaly #Instances #Anomaly

MNIST-USPS 7,785 882 1,876 323 1,024 Source of the digits Digit 0 or not

MNIST-Invert 7,344 441 408 38 1,024 Color of the digits Digit 0 or not

COMPAS 1,839 325 299 39 8 Race Reoffending or not

CelebA 41,919 4,008 7,300 1,142 39 Gender Attractive or not

Lemma 4.4 shows that the empirical discrepancy Df
h,H converges to the true discrepancy, and the

gap is bounded by the complexity of the hypothesis class and the number of examples.

4.1 FAIRNESS BOUNDS

We now provide a fairness bound to estimate the performance difference between the protected and
unprotected groups using the previously defined Df

h,H divergence.

Theorem 4.5. Let h∗ be the ideal joint hypothesis, i.e., h∗ = argminh∈H Rℓ
U (h) + Rℓ

P (h). The
risk difference between the two groups is upper bounded by:

Rℓ
P (h)−Rℓ

U (h) ≤ Df
h,H(PU∥PP ) +Rℓ

U (h
∗) +Rℓ

P (h
∗). (10)

For the upper bound on the RHS, the first term corresponds to the discrepancy between the marginal
distributions, and the remaining two terms measure the risk of the ideal joint hypothesis. If H is
expressive enough and the labeling functions of the protected and unprotected groups are similar,
the last two terms could be reduced to a small value.
Theorem 4.6. (Fairness with Rademacher Complexity) Under the same conditions as in Lemma
4.4, for any δ ∈ (0, 1), with probability at least 1− δ, we have:

Rℓ
P (h)−Rℓ

U (h) ≤ Df (U∥P ) + R̂ℓ
U (h

∗) + R̂ℓ
P (h

∗)

+ 4RU (ℓ ◦ H) + 2(L+ 1)RP (ℓ ◦ H) + 2

√
log 1

δ

2m
+ 2

√
log 1

δ

2n

(11)

Under the assumption of an ideal joint hypothesis, fairness (i.e., the risk difference between the pro-
tected and unprotected groups) can be improved by minimizing the discrepancy between the hidden
representation of the samples from two groups and regularizing the model to limit the complexity
of the hypothesis class. The detailed proofs of the lemma and the theorems are in Appendix E.2
and E.3. We further motivate why minimizing the objective LFAC leads to small Df (U ||P ) for total
variation in Appendix E.4.

5 EXPERIMENTS

In this section, we experimentally analyze and compare our proposed FADIG with other anomaly
detection methods. We try to answer the following research questions:

• RQ1: How does FADIG compare with other baselines on imbalanced datasets?
• RQ2: How does FADIG perform with different ratios of the two groups?
• RQ3: How does each module contribute to FADIG?

5.1 EXPERIMENTAL SETUP

Datasets: We conduct experiments on two image datasets, MNIST-USPS and MNIST-Invert (Zhang
& Davidson, 2021), and two tabular datasets, COMPAS (Angwin et al., 2022) and CelebA (Liu et al.,
2015). The characteristics of the datasets are presented in Table 2.

Baseline Methods: In our experiments, we compare our proposed framework FADIG with the
following fairness-aware anomaly detection baselines: (1) FairOD (Shekhar et al., 2021), a fair

7
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Table 3: Performance on image datasets. The best score is marked in bold.

Methods MNIST-USPS (K=1200) MNIST-Invert (K=500)

Recall@K ROCAUC Rec Diff Time(s) Recall@K ROCAUC Rec Diff Time(s)

FairOD 12.35±1.13 50.00±0.28 11.56±0.64 29.57 7.52±0.74 50.40±0.20 8.26±1.27 20.25

DCFOD 12.63±0.33 50.09±0.27 8.99±0.83 710.33 6.95±0.91 50.54±0.54 7.23±2.02 1277.31

FairSVDD 15.62±1.52 58.33±1.18 13.75±2.56 768.79 12.41±0.76 49.67±3.98 12.46±2.12 843.12

MCM 39.75±0.23 78.80±1.02 55.81±0.80 417.09 25.35±0.56 80.96±0.49 80.13±1.41 752.36

NSNMF 39.16±0.84 65.38±0.58 62.90±3.84 28.53 51.79±0.61 74.21±0.34 51.07±1.79 18.97

Recontrast 64.29±3.18 83.46±3.77 41.16±5.63 116.75 64.22±1.60 85.13±5.19 56.50±11.23 117.15

FADIG 67.19±0.33 91.28±0.46 3.77±2.18 121.97 71.82±0.63 97.99±0.07 9.78±3.10 60.42

Table 4: Performance on tabular datasets. The best score is marked in bold.

Methods COMPAS (K=350) CelebA (K=5000)

Recall@K ROCAUC Rec Diff Time(s) Recall@K ROCAUC Rec Diff Time(s)

FairOD 16.56±2.12 50.09±1.28 7.97±1.23 4.18 8.93±0.14 49.94±0.12 0.68±0.56 78.92

DCFOD 16.08±1.94 49.55±1.21 9.81±1.76 115.86 9.66±0.69 49.92±0.14 7.83±1.26 2517.68

FairSVDD 15.33±2.10 52.68±5.29 11.57±4.06 6.81 10.19±0.50 58.40±1.02 10.95±1.93 243.17

MCM 21.10±0.54 50.97±0.43 6.29±2.66 38.12 11.03±0.38 46.23±3.46 26.15±9.31 640.12

NSNMF 22.92±0.32 57.97±0.66 36.78±1.71 7.69 10.91±0.54 50.45±0.30 8.04±1.33 1927.55

FADIG 34.38±0.36 61.45±0.47 5.97±4.34 19.88 11.96±0.49 59.43±0.42 4.72±1.26 48.93

AD method which incorporates various group fairness criteria including flag rate parity, statistical
parity and group fidelity into its training; (2) DCFOD (Song et al., 2021), a fair deep clustering-
based method, which leverages deep clustering to discover the intrinsic cluster structure and out-
of-structure instances; (3) FairSVDD (Zhang & Davidson, 2021), an adversarial network to de-
correlate the relationships between sensitive attributes and the learned representations. We also
compare with the following fairness-agnostic AD baselines: (4) MCM (Yin et al., 2024), a masked
modeling method to address AD by capturing intrinsic correlations between features in the training
set; (5) NSNMF (Ahmed et al., 2021), a non-negative matrix factorization method, which incorpo-
rates the neighborhood structural similarity information to improve the anomaly detection perfor-
mance; (6) ReContrast (Guo et al., 2023), a reconstructive contrastive learning-based method for
domain-specific anomaly detection. Notice that as ReContrast is designed for image data, we only
evaluate it on MNIST-USPS and MNIST-Invert datasets.

Metrics: To measure the model performance and group fairness, we choose three widely-used
metrics (Shekhar et al., 2021; Zhang & Davidson, 2021; Ahmed et al., 2021): (1) Recall@K, which
measures the proportion of anomalies found in the top-k recommendations; (2) ROCAUC, which
computes the area under the receiver operating characteristic curve; (3) Rec Diff, which measures
the absolute value of the recall difference between two groups.

Training details: For the COMPAS dataset, we use a two-layer MLP with hidden units of [32,
32]. For all the other datasets, we use MLP with one hidden layer of dimension 128. We set the
hyperparameter α = 4 across all the data sets. For ϵ =

LU
0 −LU

LU
0 −LU+LP

0 −LP
, we estimate LU

0 =∑
i∈U ∥xi −GU (x)∥2 where GU (x) =

1
|U |
∑

i∈U G(xi), and LP
0 =

∑
i∈P ∥xi −GP (x)∥2 where

GP (x) =
1
|P |
∑

i∈P G(xi). We include the results with different choices of α in Appendix F.4 and
different designs of LU

0 and LP
0 for ϵ in Appendix E.1. All our experiments were executed using

one Tesla V100 SXM2 GPUs, supported by a 12-core CPU operating at 2.2GHz. We provide more
implementation details in Appendix F.1.

5.2 EFFECTIVENESS AND EFFICIENCY OF FADIG (RQ1)

We first evaluate the effectiveness and efficiency of FADIG through comparison with baselines
across four datasets by four independent runs. The task performance (i.e., Recall@K and RO-
CAUC), group fairness measure (i.e., Rec Diff), and their average training time are presented in
Tables 3 and 4 (see Appendix F.2 for results with different K). We can observe that the fair AD
baselines (FairOD, DCFOD, and FairSVDD) typically exhibit low discrepancies in recall. However,
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Table 5: Performance on MNIST-USPS with different ratios. The best score is marked in bold.

Methods |U | : |P | = 1 : 1 (K=650) |U | : |P | = 2 : 1 (K=1000) |U | : |P | = 4 : 1 (K=1200)

Recall@K ROCAUC Rec Diff Recall@K ROCAUC Rec Diff Recall@K ROCAUC Rec Diff

FairOD 17.52±1.17 50.13±0.64 2.14±0.62 17.30±1.24 49.73±0.74 5.11±0.55 13.61±0.22 50.22±0.13 10.58±1.01

DCFOD 17.08±0.50 50.09±0.30 3.25±0.94 16.92±0.81 49.54±0.42 2.76±0.51 14.14±1.03 50.44±0.60 7.11±0.83

FairSVDD 24.56±2.95 54.87±3.36 14.24±7.90 18.09±3.46 52.77±1.72 4.85±3.75 21.10±2.79 63.46±9.56 18.38±4.91

MCM 52.22±1.35 74.62±1.24 17.13±2.73 53.63±1.76 76.80±1.04 8.17±6.36 41.99±4.06 74.09±0.45 22.85±4.60

NSNMF 48.71±0.39 68.96±0.24 40.25±2.17 41.07±2.77 64.08±1.67 54.18±3.11 38.87±1.09 64.71±0.63 62.98±1.47

Recontrast 45.92±1.85 80.17±3.08 42.52±3.31 51.39±1.75 83.13±2.94 26.16±1.79 57.69±2.36 79.17±4.09 20.69±3.57

FADIG 65.58±0.47 85.38±0.37 0.93±0.87 66.84±0.83 89.17±0.09 2.32±1.08 66.63±0.72 90.15±0.22 1.84±0.68

Table 6: Performance on COMPAS dataset with different ratios. The best score is marked in bold.

Methods |U | : |P | = 1 : 1 (K=80) |U | : |P | = 2 : 1 (K=120) |U | : |P | = 5 : 1 (K=240)

Recall@K ROCAUC Rec Diff Recall@K ROCAUC Rec Diff Recall@K ROCAUC Rec Diff

FairOD 13.68±2.67 50.10±0.85 11.97±1.48 13.11±0.50 50.11±0.74 6.60±0.97 12.54±1.37 49.58±0.87 7.68±0.72

DCFOD 11.54±4.62 48.50±2.69 7.69±4.445 15.95±3.00 53.28±0.75 10.68±2.67 12.96±2.02 49.76±1.16 6.36±0.70

FairSVDD 16.24±2.18 52.34±1.38 6.84±3.20 14.53±1.84 51.69±2.15 7.69±3.77 14.10±4.53 50.04±4.98 14.87±7.54

MCM 18.38±0.60 40.77±0.25 7.69±3.63 16.24±0.01 40.42±0.12 10.26±4.80 18.81±0.60 44.04±0.15 5.76±2.31

NSNMF 20.08±0.74 53.86±0.42 14.53±10.36 19.09±1.31 53.28±0.75 10.68±2.67 20.09±2.22 53.86±1.28 10.77±5.40

FADIG 29.91±0.74 61.87±1.89 3.42±1.48 28.42±0.43 57.39±2.84 1.92±1.72 29.77±1.31 58.05±1.34 4.83±0.78

they also tend to suffer from reduced recall rates and ROCAUC scores, suggesting a compromise in
overall task performance to enhance fairness. On the other hand, the baselines that do not account
for fairness, including MCM, NSNMF, and ReContrast, demonstrate high recall rates and ROCAUC
scores but often at the expense of fairness, as evidenced by significant disparities across groups (i.e.,
a higher Rec Diff). Our FADIG instead addresses the challenge of imbalance between the groups
and the imbalanced distributions of normal examples and anomalies. Remarkably, FADIG not only
excels in task performance but also elevates the level of fairness, underscoring the effectiveness of
our design in harmonizing fairness with anomaly detection in scenarios characterized by data im-
balance. On the other hand, the training time of FADIG is always among the top 4 fastest methods
across different datasets, showing the efficiency of our method.

5.3 DATA IMBALANCE STUDY (RQ2)

To further study the performance of FADIG in handling imbalanced data, we vary the levels of group
imbalance within the image dataset MNIST-USPS and the tabular dataset COMPAS. We report the
average results of four independent runs in Tables 5 and 6. The tables demonstrate that FADIG
consistently outperforms the baselines in terms of both task efficacy and fairness across different
group ratios. The advantages of using FADIG become more pronounced with increasing level
of group imbalance. For instance, while the performance of fair AD baselines drops with higher
imbalance ratios on the MNIST-USPS dataset, FADIG adeptly sustains superior task performance
alongside enhanced fairness levels, showcasing its robustness against data imbalance.

5.4 ABLATION STUDY (RQ3)

To validate the necessity of each module in FADIG, we conduct an ablation study to demonstrate
the necessity of each component of FADIG on the MNIST-USPS and COMPAS datasets. The
experimental results are presented in Figures 3 and 4, where (a) and (b) show the recall rate and re-
call difference, respectively. Specifically, FADIG-R refers to a variant of our method replacing the
re-balancing autoencoder with LREC in Equation (4); FADIG-N and FADIG-D remove Lfair and
Lunif in Equation (3), respectively; FADIG-C substitutes the proposed fair contrastive loss with
the traditional contrastive loss (i.e., LSimCLR). We have the following observations: (1) FADIG
greatly outperforms FADIG-N and FADIG-D, which suggests that Lfair and Lunif are two essen-
tial components in our designed method. (2) FADIG-C sometimes has the competitive performance
as FADIG with respect to the recall rate, but it always has a large recall difference. This suggests
that without proper regularization for representation similarity between the two groups, the model
will exhibit unfair behaviors. Different from FADIG-C, FADIG achieves a much lower recall dif-
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(a) Recall@1200 (b) Recall Difference

Figure 3: Ablation Study on MNIST-USPS dataset.

(a) Recall@350 (b) Recall Difference

Figure 4: Ablation Study on COMPAS dataset.

ference, which verifies our theoretical analysis that our proposed method could guarantee group
fairness. (3) Compared with FADIG, FADIG-R has a lower recall rate and a higher recall differ-
ence. This indicates that replacing the re-balancing autoencoder with classical LREC in Equation (4)
results in worse performance, which verifies our conjecture that the traditional learning objective
tends to mainly focus on learning the frequent patterns of the unprotected group while ignoring the
protected group.

We include the parameter analysis in Appendix F.4 and find that FADIG is robust to the choice of
α. We compare our method with other reweighting heuristics in Appendix F.3, test it on different
anomaly types in Appendix F.5, and compare with more baselines (Appendix F.6) on more tasks
(Appendix F.7).

6 CONCLUSION

In this paper, we introduce FADIG, a fairness-aware anomaly detection method, designed for han-
dling the imbalanced data scenario in the context of anomaly detection. Specifically, FADIG max-
imizes the similarity between the protected and unprotected groups to ensure fairness through the
fairness-aware contrastive learning based module. To address the negative impact of imbalanced
data, the re-balancing autoencoder module is proposed to automatically reweight the importance of
both the protected and unprotected groups with the learnable weight. Theoretically, we provide the
upper bound with Rademacher complexity for the discrepancy between two groups and ensure group
fairness through the proposed contrastive learning regularization. Empirical studies demonstrate the
effectiveness and efficiency of FADIG across multiple real-world datasets.

REFERENCES

David Acuna, Guojun Zhang, Marc T Law, and Sanja Fidler. f-domain adversarial learning: Theory
and algorithms. In International Conference on Machine Learning, pp. 66–75. PMLR, 2021.

Zeeshan Ahmad, Adnan Shahid Khan, Cheah Wai Shiang, Johari Abdullah, and Farhan Ahmad.
Network intrusion detection system: A systematic study of machine learning and deep learning
approaches. Trans. Emerg. Telecommun. Technol., 32(1), 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Imtiaz Ahmed, Xia Ben Hu, Mithun P. Acharya, and Yu Ding. Neighborhood structure assisted non-
negative matrix factorization and its application in unsupervised point-wise anomaly detection. J.
Mach. Learn. Res., 22:34:1–34:32, 2021.

Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey of network anomaly detec-
tion techniques. Journal of Network and Computer Applications, 60:19–31, 2016.

Syed Mumtaz Ali and Samuel D Silvey. A general class of coefficients of divergence of one distri-
bution from another. Journal of the Royal Statistical Society: Series B (Methodological), 28(1):
131–142, 1966.

Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using reconstruc-
tion probability. Special lecture on IE, 2(1):1–18, 2015.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. In Ethics of data and
analytics, pp. 254–264. Auerbach Publications, 2022.

Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A. Zuluaga. USAD:
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A NOTATIONS

Table 7: Notation Table.

Symbol Description
x input feature

PP Protected group’s distribution

PU Unprotected group’s distribution

P Protected group’s empirical distribution

U Unprotected group’s empirical distribution

n/m Size of protected/unprotected group

aP /aU labeling functions on protected/unprotected group

ℓ Loss function

Rℓ
D(h) Risk of hypothesis h over data D

R̂ℓ
D(h) Empirical risk of hypothesis h over data D

s(x) Anomaly score of example x

RD(F) Rademacher complexity of F given data D

Df (P ∥ Q) f-divergence between distributions P and Q

B RELATED WORK

Unsupervised Anomaly Detection. Anomaly detection has been widely studied for decades in
many real-world applications, including fraud detection in the finance domain (West & Bhat-
tacharya, 2016; Huang et al., 2018), pathology analysis in the medical domain (Faust et al., 2018;
Shvetsova et al., 2021), intrusion detection for cyber-security (Liao et al., 2013; Ahmad et al., 2021),
and fault detection in safety-critical systems (Ju et al., 2021), etc. Given various types of anoma-
lies (Breunig et al., 2000; Kriegel et al., 2009; Bouman et al., 2024), the authors of Pang et al.
(2022) divide the existing anomaly detection methods into two major branches. The methods (Au-
dibert et al., 2020; Chen et al., 2021; Hou et al., 2021; Yan et al., 2021; Wang et al., 2023) in the
first branch aim to learn the patterns for the normal samples by a feature extractor. For instance,
Audibert et al. (2020) is an encoder-decoder anomaly detection method, which learns how to am-
plify the reconstruction error of anomalies with adversarial training; Chen et al. (2021) proposes a
GAN-based autoencoder model to learn the normal pattern of multivariate time series, and detect
anomalies by selecting the samples with the higher reconstruction error. Our work also uses the
autoencoder model. Compared with the works in the first branch, we design an auto-reweighted
training of the reconstruction errors, and mitigate the representation disparity between groups with
contrastive learning-based regularization. The second branch aims at learning scalar anomaly scores
in an end-to-end fashion (Sohn et al., 2021; Li et al., 2023; Jiang et al., 2022). Notably, the authors
of Sohn et al. (2021) combine distribution-augmented contrastive regularization with a one-class
classifier to detect anomalies. While Sohn et al. (2021) uses image augmentations, such as rota-
tions, to form positive pairs and negative pairs for contrastive learning, we use existing examples for
contrastive learning and thus our method is applicable to various types of data, not limited to image
data. To be more specific, we design a fairness-aware contrastive learning loss which minimizes the
representation disparity of the groups for fairness, and encourages the uniformity within each group
for better anomaly detection.

Fair Machine Learning. Fair Machine Learning aims to amend the biased machine learning models
to be fair or invariant regarding specific variables. A surge of research in fair machine learning has
been done in the machine learning community (Kobren et al., 2019; Zemel et al., 2013; Bolukbasi
et al., 2016; Hashimoto et al., 2018; Zhang et al., 2018; Park et al., 2022). For example, Zemel et al.
(2013) presents a learning algorithm for fair classification by enforcing group fairness and individual
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fairness in the obtained data representation; Bolukbasi et al. (2016) proposes approaches to quantify
and reduce bias in word embedding vectors that are trained from real-world data; in Hashimoto et al.
(2018), the authors develop a robust optimization framework that minimizes the worst case risk over
all distributions and preserves the minority group in an imbalanced data set; in Zhang et al. (2018),
the authors present an adversarial-learning based framework for mitigating the undesired bias in
modern machine learning models. Park et al. (2022) proposes a fair supervised contrastive loss to
train a fair representation model. However, they rely on target labels and need negative samples
since their method is based on supervised contrastive learning. Instead, our designed fair contrastive
learning loss uses examples from different groups in an unsupervised way to minimize the represen-
tation disparity of the groups and encourage the uniformity within each group. In the field of fair
anomaly detection, Zhang & Davidson (2021) utilizes the adversarial generative nets to ensure group
fairness and use one-class classification to detect the anomalies; Song et al. (2021) introduces fair-
ness adversarial training and proposes a novel dynamic weight to reduce the negative impacts from
outlier points. The existing fair anomaly detection methods (Song et al., 2021; Zhang & Davidson,
2021; Fioresi et al., 2023) tend to suffer from the representation disparity issue in the imbalanced
data scenario. To address this issue, this paper aims to alleviate the issue of representation disparity
in the imbalanced data scenario by introducing the rebalancing autoencoder module and maximizing
the uniformity of the samples in the latent space via contrastive learning regularization.

C RADEMACHER COMPLEXITY

The Rademacher complexity for a function class is:
Definition C.1. (Rademacher Complexity (Shalev-Shwartz & Ben-David, 2014)) Given a space X ,
and a set of i.i.d. examples D = {x1, x2, ..., x|D|} ⊆ X , for a function class F where each function
r : X → R, the empirical Rademacher complexity of F is given by:

RD(F) = Eσ

sup
r∈F

 1

|D|

|D|∑
i=1

σir(zi)

 (12)

Here, σ1, ..., σm are independent random variables uniformly drawn from {−1, 1}.

D DIVERGENCES

We include some popular f -divergences in Table 8.

Table 8: Popular f -divergences and their conjugate functions.

Divergence f(x) Conjugate f∗(t) f ′(1) Activation func.

Kullback-Leibler (KL) x log x exp(t− 1) 1 x
Reverse KL (KL-rev) − log x −1− log(−t) -1 − expx
Jensen-Shannon (JS) −x+ 1 log 1+x

2 + x log x − log(2− et) 0 log 2
1+exp(−x)

Pearson χ2 (x− 1)2 t2

4 + t 0 x
Total Variation (TV) 1

2 |x− 1| 1−1/2≤t≤1/2 [−1/2, 1/2] 1
2 tanhx

E PROOFS

E.1 PROOF OF LEMMA 3.1

Let us divide the data into four types: unprotected normal examples (UN), protected normal exam-
ples (PN), unprotected anomalies (UA), and protected anomalies (PA). For type t ∈ {UN, PN, UA,
PA}, let Lt

0 denote the loss of the unfitted model on t and Lt
1 as the loss of the fitted model on t,

∆t = Lt
0 −Lt

1 > 0. Assuming that the model can only fit two sets of data, to ensure that the model
fits the sets of protected normal examples and unprotected normal examples, we need the following
5 inequalities to hold:
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Table 9: Performance of FADIG with different designs of LU
0 and LP

0 .

Methods MNIST-USPS (K=1200) MNIST-Invert (K=500)

Recall@K ROCAUC Rec Diff Recall@K ROCAUC Rec Diff

loss1 67.16±0.37 91.27±0.49 3.73±2.13 72.37±0.32 98.03±0.01 6.75±0.34

loss2 66.47±1.73 90.60±0.52 4.78±2.36 72.44±0.74 98.04±0.03 7.22±0.21

loss3 66.31±0.65 91.37±0.88 6.32±1.74 71.39±1.96 97.22±1.42 8.95±0.92

loss4 66.56±2.32 90.88±1.67 2.54±2.11 71.92±3.58 97.01±1.85 8.96±3.23

(1− ϵ)(LUN
1 + LUA

0 ) + ϵ(LPN
1 + LPA

0 ) <

1. (1− ϵ)(LUN
0 + LUA

1 ) + ϵ(LPN
1 + LPA

0 ), implied by ∆UN > ∆UA which naturally holds;
2. (1− ϵ)(LUN

1 + LUA
0 ) + ϵ(LPN

0 + LPA
1 ), implied by ∆PN > ∆PA which naturally holds;

3. (1− ϵ)(LUN
0 + LUA

1 ) + ϵ(LPN
0 + LPA

1 ), this case is equivalent to case 1 plus case 2;

4. (1− ϵ)(LUN
1 + LUA

1 ) + ϵ(LPN
0 + LPA

0 ), we need ϵ > ∆UA

∆UA+∆PN ;

5. (1− ϵ)(LUN
0 + LUA

0 ) + ϵ(LPN
1 + LPA

1 ), we need ϵ < ∆UN

∆UN+∆PA .

So we have: ∆UA

∆UA+∆PN < ϵ < ∆UN

∆UN+∆PA . We design ϵ =
LU

0 −LU

LU
0 −LU+LP

0 −LP
, and we discuss the

following three cases:

• If LU = LUN
1 + LUA

0 ,LP = LPN
1 + LPA

0 , then ϵ = ∆UN

∆UN+∆PN , which is within the range;

• If LU = LUN
1 + LUA

1 ,LP = LPN
0 + LPA

0 , then ϵ = 1, it encourages to fit LP ;
• If LU = LUN

0 + LUA
0 ,LP = LPN

1 + LPA
1 , then ϵ = 0, it encourages to fit LU .

We estimate LU
0 =

∑
i∈U ∥xi − G(x)∥2 where G(x) = 1

|U |
∑

i∈U G(xi), and LP
0 =

∑
i∈P ∥xi −

G(x)∥2 where G(x) = 1
|P |
∑

i∈P G(xi). Let us denote this as loss1. We also provide results on
real-world datasets with different designs of estimation in Table 9:

• loss2: LU
0 =

∑
i∈U ∥xi∥2 and LP

0 =
∑

i∈P ∥xi∥2

• loss3: LU
0 =

∑
i∈U ∥G(xi)− x∥2 and LP

0 =
∑

i∈P ∥G(xi)− x∥2

• loss4: LU
0 =

∑
i∈U ∥xi − x∥2 and LP

0 =
∑

i∈P ∥xi − x∥2

And we can see that although the results may vary with different estimation designs, our method
always performs better than the baselines in both task performance and fairness.

E.2 PROOF OF LEMMA 4.4

Df
h,H(PU∥PP )−Df

h,H(U∥P ) = sup
h′∈H

{|Rℓ
U (h, h

′)−Rf∗◦ℓ
P (h, h′)|}

− sup
h′∈H

{|R̂ℓ
U (h, h

′)− R̂f∗◦ℓ
P (h, h′)|}

≤ sup
h′∈H

∥Rℓ
U (h, h

′)−Rf∗◦ℓ
P (h, h′)| − |R̂ℓ

U (h, h
′)− R̂f∗◦ℓ

P (h, h′)∥

≤ sup
h′∈H

|Rℓ
U (h, h

′)−Rf∗◦ℓ
P (h, h′)− R̂ℓ

U (h, h
′) + R̂f∗◦ℓ

P (h, h′)|

= sup
h′∈H

|Rℓ
U (h, h

′)− R̂ℓ
U (h, h

′)|+ |Rf∗◦ℓ
P (h, h′)− R̂f∗◦ℓ

P (h, h′)|

≤ 2RPU
(ℓ ◦ H) +

√
log 1

δ

2m
+ 2RPP

(f∗ ◦ ℓ ◦ H) +

√
log 1

δ

2n

where the last inequality comes from the property of Rademacher complexity. Similarly, by Lemma
5.7 and Definition 3.2 of Mohri et al. (2018) we have: RPP

(f∗ ◦ ℓ ◦ H) ≤ LRPP
(ℓ ◦ H), with

f∗ ◦ ℓ ◦ H := {x 7→ ϕ(ℓ(h(x), h′(x))) : h, h′ ∈ H}.
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E.3 PROOF OF THEOREM 4.5

First, notice that by definition, f∗(t) = supx∈domf (xt− f(x)) ≥ t− f(1) = t. Then we can prove:

Rℓ
P (h, aP ) ≤ Rℓ

P (h, h
∗) +Rℓ

P (h
∗, aP ) (triangle inequality ℓ)

= Rℓ
P (h, h

∗) +Rℓ
P (h

∗, aP )−Rℓ
U (h, h

∗) +Rℓ
U (h, h

∗)

≤ Rf∗◦ℓ
P (h, h∗)−Rℓ

U (h, h
∗) +Rℓ

U (h, h
∗) +Rℓ

P (h
∗, aP )

≤ |Rf∗◦ℓ
P (h, h∗)−Rℓ

U (h, h
∗)|+Rℓ

U (h, h
∗) +Rℓ

P (h
∗, aP )

≤ Df
h,H(PU∥PP ) +Rℓ

U (h, h
∗) +Rℓ

P (h
∗, aP )

≤ Df
h,H(PU∥PP ) +Rℓ

U (h, aU ) +Rℓ
U (h

∗, aU ) +Rℓ
P (h

∗, aP )

= Df
h,H(PU∥PP ) +Rℓ

U (h) +Rℓ
U (h

∗) +Rℓ
P (h

∗)

E.4 PROOF OF THEOREM 4.6 AND THE BENEFIT OF OUR DESIGN

Combining Theorem 4.5, Lemma 4.4 and the property of Rademacher Complexity, we can easily
get:

Rl
P (h)−Rl

U (h) ≤ Df
h,H(U∥P )

+ R̂l
U (h

∗) + 4RU (ℓ ◦ H) + 2

√
log 1

δ

2m

+ R̂l
P (h

∗) + 2(L+ 1)RP (ℓ ◦ H) + 2

√
log 1

δ

2n

Since by definition we have Df
h,H(U∥P ) ≤ Df (U∥P ), and for Df (U∥P ) = TV(U∥P ), we have:

Rl
P (h)−Rl

U (h) ≤ TV(U∥P )

+ R̂l
U (h

∗) + 4RU (ℓ ◦ H) + 2

√
log 1

δ

2m

+ R̂l
P (h

∗) + 2(L+ 1)RP (ℓ ◦ H) + 2

√
log 1

δ

2n
.

(13)

Now we motivate why minimizing the objective LFAC leads to small TV(U∥P ). Let U,P be
the empirical distributions over the common measurable space X := {zUj }nj=1 ∪ {zPk }mk=1 with
densities p̂U , p̂P that are cU , cP -Lipschitz with respect to ℓ2-norm, respectively. Let x∗ :=
argminx∈X |p̂U (x)− p̂P (x)|, δ := |p̂U (x∗)− p̂P (x

∗)|, and

σ :=
∑
x∈X

∥x− x∗∥ =
∑
x∈X

√
2− 2 log sim(x, x∗),

where the equality is due to law of cosine (and that sim normalizes zj). We first show how TV(U∥P )
is related to δ and σ.

Lemma E.1.

TV (U∥P ) ≤ 1

2
(|X |δ + (cU + cP )σ) .
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Proof.

TV (U∥P ) :=
1

2

∑
x∈X

|p̂U (x)− p̂P (x)|

≤ 1

2

∑
x∈X

|p̂U (x)− p̂U (x
∗)|+ |p̂U (x∗)− p̂P (x

∗)|+ |p̂P (x∗)− p̂P (x)| (triangle inequality)

=
1

2

(
|X |δ +

∑
x∈X

|p̂U (x)− p̂U (x
∗)|+ |p̂P (x)− p̂P (x

∗)|

)

≤ 1

2

(
|X |δ + (cU + cP )

∑
x∈X

∥x− x∗∥

)
(Lipschitz conditions)

=
1

2
(|X |δ + (cU + cP )σ) .

Next we motivate why minimizing our objective LFAC leads to small δ and σ simultaneously, hence
small TV(U∥P ). Recall that our fairness-aware contrastive loss is

LFAC := Lfair + Lunif ,

where

Lfair := − log

∑
j∈[n]

∑
k∈[m]

sim
(
zUj , zPk

) ,

Lunif := log

∑
j ̸=k

sim
(
zUj , zUk

)
+
∑
j ̸=k

sim
(
zPj , z

P
k

) .

Intuitively, minimizing LFAC leads to small Lfair and Lunif simultaneously, which correspond to
large sim(zUj , zPk ) and small sim(zUj , zUk ), sim(zPj , z

P
k ), which in turn correspond to small ∥zUj −

zPk ∥ and large ∥zUj − zUk ∥, ∥zPj − zPk ∥. Hence it is natural to consider the following surrogate losses

L′
fair :=

∑
j,k∈[n]

∥zUj − zPk ∥,

L′
unif := −(

∑
j ̸=k

∥zUj − zUk ∥+ ∥zPj − zPk ∥).

Then it follows immediately that σ ≤ L′
fair, explaining why minimizing our objective LFAC (hence

L′
fair) leads to small σ.

To see that δ := |p̂U (x∗) − p̂P (x
∗)| cannot be too large, first consider the extreme case where

{zUj }nj=1 ∩ {zPk }nk=1 = ∅. Without loss of generality let ∥zU1 − zP1 ∥ = maxj,k∈[n]∥zUj − zPk ∥.
Then adjusting zU1 , zP1 to be the unit vector on their angle bisector clearly decreases L′

fair without
affecting L′

unif by much due to high uniformity within {zUj }nj=1 and {zPk }nk=1 respectively. Hence
we may assume without loss of generality that zU1 = zP1 = x∗. Next consider the extreme case
where p̂U (x

∗) = 1
n and p̂P (x

∗) = 1. Then adjusting zP2 = argmaxx ̸=x∗
∑

j∈[n]∥x − zUj ∥ clearly
decreases L′

unif without affecting L′
fair by much due to high uniformity within {zUj }nj=1. Hence

minimizing our objecive LFAC leads to small δ := |p̂U (x∗)− p̂P (x
∗)|.

F ADDITIONAL EXPERIMENTS

F.1 TRAINING DETAILS AND EXPERIMENTAL SETUP

For the COMPAS dataset, we use a two-layer MLP with hidden units of [32, 32]. For all the other
datasets, we use MLP with one hidden layer of dimension 128. For FADIG, we set the hyperpa-
rameter α = 4 across all the data sets and use the Adam optimizer. For the baselines, we use the
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suggested hyperparameter settings in their original papers. For the four independent runs, we choose
random seeds in [40, 41, 42, 3407]. All our experiments were executed using one Tesla V100 SXM2
GPUs, supported by a 12-core CPU operating at 2.2GHz.

For evaluation, since the task is unsupervised, the train and test sets are the same. Following Shekhar
et al. (2021); Zhang & Davidson (2021); Ahmed et al. (2021), to evaluate task performance, we
use Recall@K and ROCAUC. For fairness evaluation, considering the imbalance between normal
examples and anomalies, we focus on Recall Parity in anomaly detection. Given our score-based
anomaly detection framework, we would like to state the mathematical formulation of Recall Parity
fairness in anomaly detection as: Let anomaly score for example x be s(x) and let tK be the anomaly
score threshold for top-K selection. Then, the predicted normal examples are the ones with s(x) <
tK , and the predicted anomalies are those with s(x) ≥ tK . The recall parity in anomaly detection
requires that P (s(x) ≥ tK |x ∈ U, y = 1) = P (s(x) ≥ tK |x ∈ P, y = 1). We use the absolute
value of their difference, i.e., Recall Diff, to evaluate the fairness level.

F.2 MORE EFFECTIVENESS VALIDATION OF FADIG UNDER DIFFERENT K

We also conduct experiments on the four datasets with different choices of K, and the results are in
Table 10 and Table 11. The AUCROC scores are the same as in the main paper. We can also tell
from the tables that accuracy difference is inadequate for measuring group fairness in the imbalanced
setting.

Table 10: Performance on Image Datasets.

Methods MNIST-USPS (K=1000) MNIST-Invert (K=400)

Recall@K Acc Diff Rec Diff Recall@K Acc Diff Rec Diff

FairOD 10.46±1.16 4.35±0.33 13.21±1.43 6.05±0.21 2.70±0.15 9.99±1.18

DCFOD 10.24±0.82 4.79±1.12 8.40±1.83 5.57±1.70 2.69±0.37 8.78±2.31

FairSVDD 13.75±1.83 5.73±5.64 13.49±2.55 10.57±0.92 5.38±3.12 14.25±2.96

MCM 34.38±0.32 29.81±0.84 52.46±0.94 22.48±0.54 8.32±1.10 64.37±1.66

NSNMF 33.56±0.70 22.26±0.40 65.12±2.36 43.91±0.84 4.54±0.20 55.20±0.92

Recontrast 45.73±2.74 10.59±2.62 29.62±2.40 52.00±4.86 13.81±4.30 54.96±13.77

FADIG 61.60±2.50 6.50±0.89 7.95±5.94 62.28±3.24 1.62±1.32 7.02±4.48

Table 11: Performance on Tabular Datasets

Methods COMPAS (K=300) CelebA (K=4500)

Recall@K Acc Diff Rec Diff Recall@K Acc Diff Rec Diff

FairOD 14.20±1.83 3.92±1.63 10.75±0.90 7.95±0.21 4.94±0.25 2.26±1.06

DCFOD 13.10±1.35 3.57±2.29 7.23±2.82 8.64±0.79 4.98±0.40 9.24±1.12

FairSVDD 13.02±1.66 3.90±2.43 9.45±3.80 8.82±0.61 2.21±0.40 10.22±2.33

MCM 16.87±1.14 4.10±1.98 10.17±1.64 9.26±0.48 7.21±5.98 28.69±12.14

NSNMF 17.29±1.42 3.60±1.93 33.57±1.22 8.90±1.09 5.66±0.54 40.51±1.54

FADIG 19.14±2.29 9.35±3.00 4.75±3.69 10.56±1.11 13.04±0.30 5.10±1.52

F.3 COMPARISON WITH REWEIGHTING HEURISTIC

We compare our design of automatic re-balancing with a simple heuristic of setting ϵ as the scaled
majority group size, and the results on the four datasets are shown in Table 12. We can observe
that compared with the heuristic weight, our designed learnable ϵ can effectively better enhance task
performance and meanwhile promote fairness.
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Table 12: Comparison of our designed rebalancing strategy with group ratio weighting.

Datasets FADIG Group Ratio

Recall@K ROCAUC Rec Diff Time(s) Recall@K ROCAUC Rec Diff Time(s)

MNIST-USPS 67.16±0.37 91.27±0.49 3.73±2.13 122.84 62.35±0.10 87.61±0.47 11.87±3.90 75.28

MNIST-Invert 72.37±0.32 98.03±0.01 6.75±0.34 52.28 68.33±0.24 89.91±0.02 74.22±0.26 146.45

COMPAS 34.43±0.42 61.85±0.52 5.81±4.36 17.94 33.42±1.61 60.49±4.20 5.85±5.75 15.95

CelebA 11.94±0.67 59.41±0.58 4.66±1.72 52.81 12.75±0.62 57.23±0.25 13.54±0.89 48.12

F.4 PARAMETER ANALYSIS

In this section, we conduct the parameter analysis on the four datasets. The experiments are repeated
four times and the mean of the recall rate and recall difference are reported. Figure 5 shows the
parameter analysis for the parameter α on the four datasets, respectively. The parameter α is used
to balance the importance between the reconstruction error and the fair contrastive loss. We can
observe that our method is robust to the choice of α, which may be a benefit from our designed
re-balancing autoencoder.

(a) MNIST-USPS (b) MNIST-Invert (c) COMPAS (d) CelebA

Figure 5: Parameter Analysis of α on four datasets. The x-axis is α and the y-axis is for the values
of recall and recall difference.

F.5 DIFFERENT ANOMALY TYPES

We extend our experimental setup to analyze how our method performs on different types of anoma-
lies. In MNIST-USPS and MNIST-Invert, the normal samples are digit 0 and the anomalies are the
digits 1-9. In COMPAS and CelebA, we use whether the sample is reoffending / attractive or not
to define normal and abnormal samples. Compared with the two image datasets, the anomalies in
the tabular ones are more clustered. Thus, we sample more clustered anomalies on the image data
set MNIST-USPS by selecting only digit 1 as the anomalies with the same anomaly amount. The
results are shown in Table 13. We can observe that our proposed method achieves the best recall rate
and the second-best ROCAUC score, with a relatively low recall difference. Notably, the baselines
with extremely low recall differences are showing ”fake” fairness since their task performances are
very poor.

Table 13: Performance on more clustered anomaly detection.

Methods Recall@K ROCAUC Rec Diff Time(s)

FairOD 12.03±0.42 50.04±0.33 3.99±3.89 39.06

DCFOD 12.40±1.23 49.94±0.72 4.08±6.02 757.88

FairSVDD 18.67±1.73 54.05±9.09 29.72±20.39 212.38

MCM 4.01±0.46 14.28±0.60 3.81±1.57 51.28

NSNMF 4.64±0.11 45.92±0.78 12.46±0.62 71.61

Recontrast 16.34±1.78 51.82±2.26 40.81±18.42 259.77

FADIG 21.04±1.27 53.91±1.22 14.39±0.43 415.17
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F.6 ADDITIONAL COMPARISON WITH DATA IMBALANCE BASELINE

We further compare our method with a classical method handling data imbalance for tabular data,
SMOTE (Chawla et al., 2002). The results on the COMPAS and CelebA data sets are shown in
Table 14. We can see that FADIG outperforms it in both task performance and fairness level.

Table 14: Additional results on tabular datasets. The best score is marked in bold.

Methods COMPAS (K=350) CelebA (K=5000)

Recall@K ROCAUC Rec Diff Time(s) Recall@K ROCAUC Rec Diff Time(s)

FairOD 16.56±2.12 50.09±1.28 7.97±1.23 4.18 8.93±0.14 49.94±0.12 0.68±0.56 78.92

DCFOD 16.08±1.94 49.55±1.21 9.81±1.76 115.86 9.66±0.69 49.92±0.14 7.83±1.26 2517.68

FairSVDD 15.33±2.10 52.68±5.29 11.57±4.06 6.81 10.19±0.50 58.40±1.02 10.95±1.93 243.17

MCM 21.10±0.54 50.97±0.43 6.29±2.66 38.12 11.03±0.38 46.23±3.46 26.15±9.31 640.12

NSNMF 22.92±0.32 57.97±0.66 36.78±1.71 7.69 10.91±0.54 50.45±0.30 8.04±1.33 1927.55

SMOTE 29.92±2.62 60.45±4.18 6.96±5.75 8.91 8.14±0.40 45.39±0.35 5.07±1.43 332.17

FADIG 34.38±0.36 61.45±0.47 5.97±4.34 19.88 11.96±0.49 59.43±0.42 4.72±1.26 48.93

F.7 GRAPH TASKS

We also compare FADIG on graph tasks with two graph anomaly detection baselines, DOMI-
NANT (Ding et al., 2019) and GRADATE (Duan et al., 2023). We adapt our method on the graph
dataset Flickr (Li et al., 2015), replacing the backbone with GCN. The results are shown in Table
15. We can observe that FADIG outperforms DOMINANT in both task performance and fairness.
While GRADATE has better task performance compared with our method, it may be because we
have not optimized our framework specifically for graph data. In addition, our method achieves a
much lower recall difference than both of the baselines.

Table 15: Performance on the graph dataset.

Methods Recall@K ROCAUC Rec Diff

DOMINANT 21.34±0.48 61.72±0.59 20.56±3.32

GRADATE 24.96±0.62 66.54±1.12 35.63±5.34

FADIG 23.10±0.61 63.89±1.12 5.33±1.52

G LIMITATIONS AND BROADER IMPACT

This paper proposes a fairness-aware anomaly detection method, which aims to provide fair results
when the algorithm is applied to detect anomalies. Our method currently focus on the binary group
fairness case. We can naturally extend our framework to the multi-attribute case by encouraging
the similarity among the groups. Incoporating individual fairness notions would be an interesting
future direction. By embedding fairness into anomaly detection algorithms, this work contributes
to reducing bias and discrimination in AI applications, ensuring that technologies serve diverse
populations equitably. In sectors such as finance, healthcare, and law enforcement, where anomaly
detection plays a crucial role in identifying fraud, diseases, and criminal activities, incorporating
fairness principles can prevent the perpetuation of historical biases and protect vulnerable groups
from unjust outcomes. Furthermore, by advancing fairness in AI, this research aligns with global
efforts to promote ethics in technology development, fostering trust between AI systems and their
users.
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