
Learning to Iteratively Solve Routing Problems with
Dual-Aspect Collaborative Transformer

Yining Ma1, Jingwen Li1, Zhiguang Cao2,∗, Wen Song3,∗, Le Zhang4 ,
Zhenghua Chen5, Jing Tang6

1National University of Singapore
2Singapore Institute of Manufacturing Technology, A*STAR

3Institute of Marine Science and Technology, Shandong University
4University of Electronic Science and Technology of China

5Institute for Infocomm Research, A*STAR
6The Hong Kong University of Science and Technology

{yiningma, lijingwen}@u.nus.edu, zhiguangcao@outlook.com,
wensong@email.sdu.edu.cn, zhangleuestc@gmail.com,

chen0832@e.ntu.edu.sg, jingtang@ust.hk

Abstract

Recently, Transformer has become a prevailing deep architecture for solving vehicle
routing problems (VRPs). However, it is less effective in learning improvement
models for VRP because its positional encoding (PE) method is not suitable in
representing VRP solutions. This paper presents a novel Dual-Aspect Collaborative
Transformer (DACT) to learn embeddings for the node and positional features
separately, instead of fusing them together as done in existing ones, so as to avoid
potential noises and incompatible correlations. Moreover, the positional features
are embedded through a novel cyclic positional encoding (CPE) method to allow
Transformer to effectively capture the circularity and symmetry of VRP solutions
(i.e., cyclic sequences). We train DACT using Proximal Policy Optimization and
design a curriculum learning strategy for better sample efficiency. We apply DACT
to solve the traveling salesman problem (TSP) and capacitated vehicle routing
problem (CVRP). Results show that our DACT outperforms existing Transformer
based improvement models, and exhibits much better generalization performance
across different problem sizes on synthetic and benchmark instances, respectively.

1 Introduction

Vehicle Routing problems (VRPs), such as the Traveling Salesman Problem (TSP) and the Capacitated
Vehicle Routing Problem (CVRP) which consider finding the optimal route for a single or fleet of
vehicles to serve a set of customers, have ubiquitous real-world applications [1, 2]. Despite being
intensively studied in the Operations Research (OR) community, VRPs still remain challenging due
to their NP-hard nature [3]. Recent studies on learning neural heuristics are gathering attention as
promising extensions to traditional hand-crafted ones (e.g., [4–14]), where reinforcement learning
(RL) [15] is usually exploited to train a deep neural network as an efficient solver without hand-crafted
rules. A salient motivation is that deep neural networks may learn better heuristics by identifying
useful patterns in an end-to-end and data-driven fashion.

Solutions to VRPs, i.e., routes, are sequences of nodes (customer and depot locations). Naturally,
deep models for Natural Language Processing (NLP), which deal with sequence data as well, are ideal

∗Zhiguang Cao and Wen Song are the corresponding authors.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

mailto:jingtang@ust.hk
mailto:zhangleuestc@gmail.com
mailto:zhiguangcao@outlook.com
mailto:lijingwen}@u.nus.edu

1 2

3 4

Enhanced NFE Enhanced PFE

1 2

3 4

Aspect 1 Aspect 2

0 2 3 1 4 0

0 2 1 3 4 0𝒂𝒕 0

0

Aspect 1 Aspect 2

0 2 3 1 4 0

DAC Encoder

DAC Decoder

×𝑳

Decoder

Enhanced
Node Embedding

Encoder

(𝑎) (𝑏)

𝒂𝒕
1 2

3 4
0

1 2

3 4
0

×𝑳

Node Embedding PE Vector

+

Node Feature
Embedding (NFE)

Positional Feature
Embedding (PFE)

1 2

3 4

Enhanced NFE Enhanced PFE

1 2

3 4

Aspect 1 Aspect 2

0 2 3 1 4 0

0 2 1 3 4 0𝒂𝒕 0

0

Aspect 1 Aspect 2

0 2 3 1 4 0

DAC Encoder

DAC Decoder

×𝑳

Decoder

Enhanced
Node Embedding

Encoder

(𝑎) (𝑏)

𝒂𝒕
1 2

3 4
0

1 2

3 4
0

×𝑳

Node Embedding PE Vector

+

Node Feature
Embedding (NFE)

Positional Feature
Embedding (PFE)

(a) (b)

Figure 1: Transformer frameworks for VRPs. (a) Wu et al. [11] (the original one); (b) DACT (ours).

choices for encoding VRP solutions. Given its remarkable performance in NLP tasks, Transformer
[16] is standing at the forefront in the learning based methods for VRPs (e.g., [5, 7, 8, 11–13, 17]). The
original Transformer encodes a sentence, i.e., a sequence of words, into a unified set of embeddings
by injecting word positional information into its word embeddings through positional encoding (PE).
When it comes to VRPs, while is not required in construction models, positional information is
critical for deep models that learn improvement heuristics since the input are solutions to be improved.

Although some success has been achieved, learning improvement heuristics for VRPs based on the
original Transformer encoder is yet lacking from our perspective. Firstly, directly applying addition
operation on PE vectors and the embeddings in absolute PE method (i.e., Figure 1(a)) could limit the
representation of the model [18], as the mixed correlations2 existing in the self-attention can bring
unreasonable noises and random biases to the encoder (details in Appendix A). Secondly, existing
PE methods tend to fuse the node and positional information into one unified representation. NLP
tasks such as translation may benefit from this owing to the deterministic and instructive nature of
the positional information. However, such design may not be optimal for routing tasks because the
positional information therein can be non-deterministic and sometimes even random. This may cause
disharmony or disturbance in the encoder and may thus deteriorate the performance. Finally, most
VRPs seek the shortest loop of the nodes, making their solutions to be cyclic sequences. However,
existing PE methods are only designated to encode linear sequences3, which may fail to identify such
circular input. As will be shown in our experiments, this could severely damage the generalization
performance, since the cyclic feature of VRP solutions is not correctly reflected by the encoder.

In this paper, we address the above issues and contribute to the line of using RL to learn neural
improvement heuristics for VRPs. We introduce the Dual-Aspect Collaborative Transformer (DACT),
where we revisit the solution representations and propose to learn separated groups of embeddings
for the node and positional features of a VRP solution as shown in Figure 1(b). Our DACT follows
the encoder-decoder structure. In the encoder, each set of embeddings encodes the solution mainly
from its own aspect, and at the same time exploits a cross-aspect referential attention mechanism for
better perceiving the consistence and differentiation with respect to the other aspect. The decoder
then collects action distribution proposals from the two aspects and synthesizes them to output the
final one. Meanwhile, we design a novel cyclic positional encoding (CPE) method to capture the
circularity and symmetry of VRP solutions, which allows Transformer to encode cyclic inputs, and
also boost the generalization performance for solving VRPs. As the last contribution, we design a
simple yet effective curriculum learning strategy to improve the sample efficiency. This further leads
to faster and more stable convergence of RL training. Extensive experiments show that our DACT
can outperform existing Transformer based improvement models with fewer parameters, and also
generalizes well across different sizes of synthetic and benchmark instances, respectively.

2The term correlation refers to the dot product between Query and Key in the self-attention module. The
term mixed correlation refers to the case where Query and Key are projected from different types of embeddings.

3The relative PE method seems to help, however, it is found to be even worse than the absolute PE method
for VRPs in Wu et al. [11], partly due to the disharmony issue caused by learning the unified representation.

2

2 Related work

2.1 Positional encoding (PE) in Transformer.

The original Transformer adopted the absolute PE method to describe the absolute position of
elements in the sequence [16], especially for NLP. As formulated in Eq. (1), each generated positional
embedding pi ∈Rd is added together with the i-th word embedding xi in the first layer of the encoder,

αAbs 1
= √ ((xi + pi)W Q)((xj + pj)W K)T . (1) i,j

d
The relative PE method was further proposed in Shaw et al. [19] to better capture the relative order
information. On the basis of absolute PE, it introduces an inductive bias to the attention as follows,

αRel 1
= √ ((xi + pi)W Q)((xj + pj)W K + aj−i)

T , (2) i,j
d

where aj−i ∈Rd is learnable parameters for encoding the relative position j −i. To avoid the mixed
and noisy correlations between word semantics and positional information in the above two PEs, the
Transformer with United Positional Encoding (TUPE) [18] was proposed for NLP which utilizes
separated projection metrics Wx and Wp for each information as follows,

αTUPE 1 1
= √ (xiW Q)(xj W K)T + √ (piW Q)(pj W K)T + bj−i. (3) i,j x x p p

2d 2d
However, as mentioned previously, existing PE methods are less effective for VRPs since they simply
fuse the node and positional information into one unified set of embeddings during or after the
calculation of the attention correlation αi,j . Meanwhile, they are also unable to properly encode and
handle cyclic input sequences as in VRP solutions.

2.2 Deep models for VRP.

Various deep architectures such as Recurrent Neural Network (RNN), Graph Neural Network (GNN),
and Transformer have been employed in solving VRPs.

RNN based models. As the pioneering work of neural VRP solvers, Pointer Network adopted RNN
and supervised learning to solve TSP [20] (extended to RL in Bello et al. [21] and CVRP in Nazari
et al. [22]). While the models in [20–23] learn construction heuristics, NeuRewriter [4] learns
improvement heuristic for CVRP using LSTM to encode the positional information of a solution.
In Hottung et al. [13], the conditional variational autoencoder was adopted to learn a continuous and
latent search space for VRP, where high-quality solutions were taken as input and encoded by RNNs.
However, recurrence structures in RNN are less efficient in both representation and computation [5].

GNN based models. In Dai et al. [24], GNN was combined with Q-learning for solving TSP. Based
on supervised learning, Joshi et al. [6] used GNN to learn heatmaps that prescribe the probability of
each edge appearing in the optimal TSP tour. This idea was extended in Fu et al. [25] with additional
components such as graph sampling and heatmap merging to enable generalization to larger TSP
instances. These models often require post-processing to construct feasible solutions from heatmaps
(e.g., beam search [6], Monte-Carlo tree search [25], and dynamic programming [26]).

Transformer based models. The Attention Model (AM) by Kool et al. [5] was recognized as the
first success of Transformer based models for VRPs. Based on AM, Xin et al. [7] proposed a Multi-
Decoder AM that learns multiple diverse policies for better performance. In Kwon et al. [8], the
RL algorithm of AM was improved which leaded to a new solver, i.e., POMO (Policy Optimization
with Multiple Optima), and achieved the state-of-the-art performance. However, POMO is still
lacking in generalization. Besides these construction models, Transformer was also explored to learn
improvement heuristics. Hottung and Tierney [27] learned first neural large neighborhood search
algorithm for VRPs. Lu et al. [12] proposed the L2I model that learns to select local search operators
from a pool of traditional ones. Both methods used a Transformer-style encoder, but the positional
information is captured in the node features (information of previous and next nodes) instead of
using PE methods. Though L2I was shown to outperform LKH3 [28], it is limited to CVRP and the
required time is considerably long. Wu et al. [11] proposed a Transformer model which learns to
pick node pair in each step to perform a pairwise local operator (e.g., 2-opt). However, it suffers from
the inaccurate representation of positional information given the original Transformer encoder.

3

𝑥! 𝑥" 𝑥#…

𝑔! 𝑔" 𝑔#…Linear Projection

𝑔!
(#$!)𝑔&

(#$!) 𝑔'
(#$!)…

𝑔"
(%) 𝑔#

(%)…𝑔!
(%)

Dual-Aspect Collaborative Attention

Add & Norm Add & Norm

Feed Forward Feed Forward

Add & Norm Add & Norm

(using CPE)

NFEs PFEs

DAC Encoder

Max Pooling Max Pooling

#ℎ! #ℎ" #ℎ#… %𝑔! %𝑔" %𝑔#…

Multi-head
Compatibility

Multi-head
Compatibility

Feed Forward

Mask & Softmax

DAC Decoder

L×

… …

Linear Linear Linear Linear

Matmul & Scale

Softmax

Matmul Matmul

𝑊"
#

Concat & Linear Projection

Linear Linear Linear Linear

Matmul & Scale

Softmax

Matmul Matmul

Concat & Linear Projection

Multi-Head DAC-Att

Cross-Aspect Referential Attention

ℎ!
(#$!)ℎ&

(#$!) ℎ'
(#$!)…

ℎ"
(%) ℎ#

(%)…ℎ!
(%)

ℎ!
(#$!)ℎ&

(#$!) ℎ'
(#$!) 𝑔!

(#$!)𝑔&
(#$!) 𝑔'

(#$!)

𝑊"
% 𝑊"

& 𝑊"
#'() 𝑊*

#'() 𝑊*& 𝑊*
% 𝑊*#

𝑌!!" 𝑌!#"

𝑌#!" 𝑌##"

𝑌!!
$ 𝑌!#

$

𝑌#!
$ 𝑌##

$

…

𝑃!! 𝑃!#

𝑃#! 𝑃##…

…

…

…

…

…

… ……
…

…

… ……

NFEs PFEs

𝑝! 𝑝" 𝑝#…

Figure 3: Architecture of our policy network, dual-aspect collaborative Transformer (DACT).

3 Problem formulation

We define a VRP instance as a group of N nodes to visit, where the node feature xi of node i contains
2-dim coordinates and other problem-specific features (e.g., customer demand). A solution δ consists
of a sequence of nodes visited in order where we denote pi to be the position (indices) of node i in
the solution which is deemed as the positional feature of node i. The objective is to minimize the
total travel distance D(δ) under certain problem-specific constraints.

0 2 3 1 4 0

0 1 3 2 4 0

2-𝑜𝑝𝑡

0 2 3 1 4 0

0 3 1 2 4 0

𝑖𝑛𝑠𝑒𝑟𝑡

0 2 3 1 4 0

0 1 3 2 4 0

𝑠𝑤𝑎𝑝

Figure 2: Illustration examples of three pairwise
operators for routing problems when node pair
(i = 2, j = 1) is specified for operating. From
left to right: 2-opt, insert, and swap.

Starting with an initial yet complete solution, our
neural RL policy tries to improve the solution it-
eratively. At each step, the policy automatically
selects a pair of nodes and locally adjusts the solu-
tion using a preset pairwise operator such as 2-opt,
insert, or swap. As illustrated in Figure 2, given a
node pair (i, j), the 2-opt operator adjusts a solu-
tion by reversing the segment between node i and
node j; the insert operator adjusts a solution by
placing node i after node j; and the swap operator
adjusts a solution by exchanging the position of node i and node j. Such operation is repeated until
reaching the step limit T and we model it in the form of Markov Decision Process (MDP) as follows.

State. For an instance withN nodes, a state describes current solution δt using its node and positional
features of each node, i.e., st = Ψ(δt) = {xt1, ..., xtN , pt1, ..., ptN}.
Action. The action at = (i, j) specifies a node pair (i,j) for the pairwise operator.
Reward. The reward function is defined as, rt =D(δ*

t)−min
[
D(δt+1), D(δ*

t)
]

where δ*
t is the

best incumbent solution found until time t. It refers to the immediate reduced cost at each step
with respects to the best incumbent solution, which ensures the cumulative reward equal to the total
reduced cost over the initial solution. Hence the reward rt>0 if and only if a better solution is found.
Policy. The policy πθ is parameterized by the proposed DACT model with parameters θ. At each time
step, the action (i, j) is obtained by sampling the stochastic policy for both training and inference.
Transition. The next state st+1 is originated from st by performing the preset pairwise operator on
the given node pair (action). Our state transient is deterministic, in the sense that it always accepts the
next solution as the next state (infeasible solutions will be masked), regardless of its objective value.
With such simple rule, the RL agent is expected to automatically learn how to combine multiple steps
of simple local movements to achieve better solutions, even if some of them may worsen the current
solution. Note that the step limit T can be any user-specified value according to the allowed time
budget. Hence, our MDP can have infinite horizon and we consider the reward discount factor γ<1.

4 Dual-aspect collaborative Transformer model

We now present the details of our Dual-Aspect Collaborative Transformer (DACT). The concrete
architecture of DACT is presented in Figure 3, where we take the TSP with N nodes as an illustration

4

��� ������ ���

0 16 32 48 64

PE

0
5

10
15

20 0 16 32 48 64

CPE (Ours)

0
5

10
15

20
0 5 10 15

PE

0
5

10
15

20
0 5 10 15

CPE (Ours)

0
5

10
15

20
4 2 0 2 4

PE

3

2

1

0

1

2

3

4

1 23
4

5

6

7

8
9

1011
12

13

14

15

16

17
181920

4 2 0 2 4

CPE (Ours)

4

2

0

2

4

1
2

3
4

567
8

9
10

11

12
13

14
15 16 17

18
19

20

0 16 32 48 64

PE

0
5

10
15

20 0 16 32 48 64

CPE (Ours)

0
5

10
15

20
0 5 10 15 20

PE

0
5

10
15

20
0 5 10 15 20

CPE (Ours)

0
5

10
15

20
4 2 0 2 4

PE

3

2

1

0

1

2

3

4

1 23
4

5

6

7

8
9

1011
12

13

14

15

16

17
181920

4 2 0 2 4

CPE (Ours)

4

2

0

2

4

1
2

3
4

567
8

9
10

11

12
13

14
15 16 17

18
19

20

0 16 32 48 64

PE

0
5

10
15

20 0 16 32 48 64

CPE (Ours)

0
5

10
15

20
0 5 10 15

PE

0
5

10
15

20
0 5 10 15

CPE (Ours)

0
5

10
15

20
4 2 0 2 4

PE

3

2

1

0

1

2

3

4

1 23
4

5

6

7

8
9

1011
12

13

14

15

16

17
181920

4 2 0 2 4

CPE (Ours)

4

2

0

2

4

1
2

3
4

567
8

9
10

11

12
13

14
15 16 17

18
19

20

(a) (b) (c)

Figure 5: Comparison of our CPE method with absolute PE method on a TSP instance with 20 nodes.
(a) the embedding vectors, (b) the correlations (dot products) between every two embeddings, and (c)
the top two principal components after PCA (principal component analysis) projection.

example. Our DACT leverages separate aspects of embeddings to encode a VRP solution. In the DAC
encoder, the self-attention correlations are computed individually for each aspect, and a cross-aspect
referential attention mechanism is proposed to enable one aspect to effectively exploit attention
correlations from the other aspect as optional references. The DAC decoder then collects action
distribution proposals from both aspects and synthesize them to the final one.

4.1 Dual-aspect solution representation

Specifically, we propose to learn two sets of embeddings, i.e., the node feature embeddings (NFEs)
for node representation and the positional feature embeddings (PFEs) for positional representation.

NFEs. Following [5, 11], the NFE hi of node i
is initialized as the linear projection of its node
feature xi with output dimension4 dim = 64.

PFEs. The PFE gi of the positional feature pi
is initialized as a real-valued vector (dim = 64)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

𝑁1

𝑑=1

𝑑=2

𝑑=3
𝑑=4

1 0 0 1Base symmetry pattern: (Gray code) (Ours)

Node index:

Di
gi
ts

by applying our cyclic positional encoding (CPE), Figure 4: An example of cyclic Gray code where
which is designed based on cyclic Gray codes [29]. 4 digits are used to encode N =16 nodes. The
As illustrated in Figure 4, the cyclic Gray codes top left shows the base symmetry pattern ‘1001’
present a cyclic property (‘1110’ in the last column in Gray code, and the top right plots its repre-
is adjacent to ‘1111’ in the first column) and an ad- sentation in our method.
jacency similarity property (any codes in adjacent
columns only differ in one digit), both of which are desirable for cyclic sequences. To preserve
these properties in designing our CPE, we follow two observed patterns: 1) each numerical digit
contains a periodic cycle with reflectional symmetry, e.g., the ‘10|01’ in the lowest digit; and 2) the
higher the numerical digit, the longer the period. Accordingly, we create similar patterns based on
the sinusoidal functions in Eq. (4), where a periodic function with period 4π (induced by modulus) is ωd

used to generate one base symmetry pattern (the top right in Figure 4), ⎧ ⎨sin(ωd · (z(i) mod 4π) − 2π), if d is even − (d) ωd → gi := ωd (4) ⎩cos(ωd · (z(i) mod 4π) − 2π), if d is odd ωd ωd l m
i−1 2π N+1 where z(i) = is to make N nodes linearly spaced in the generated pattern; the N ωd 2π/ωd

angular frequency ωd is decreasing along the dimension to make the wavelength longer within the
1

range [N bdim/2c , N] (see Appendix B for details). In Figure 5, we visualize the comparison between
the absolute PE and our CPE for encoding a TSP instance of 20 nodes. Figure 5(a) demonstrates
that our real-valued base symmetry pattern has a longer cyclic period as the digit grows. Figure 5(b)
indicates that our method (blue) is able to correctly reflect the adjacency between the head and tail of
the cyclic sequence whereas the PE method (red) fails to do so. Figure 5(c) verifies that our CPE
vectors are well distributed in space with desired cyclic and adjacency similarity properties.

4Different from Wu et al. [11], we reduce the dimension of the embeddings from 128 to 64.

5

4.2 The encoder

The encoder consists of L =3 stacked DAC encoders. In each DAC encoder, we retain relatively
independent encoding stream for NFEs and PFEs as in Eq. (5) and Eq. (6), respectively, each of which
consists of a shared Dual-Aspect Collaborative Attention (DAC-Att) sub-layer and an independent
feed-forward network (FFN) sub-layer. DAC-Att takes both sets of embeddings as input and then
outputs their respective enhanced embeddings, i.e., NFEs {h̃}N and PFEs {g̃}iN

=1. Each sub-layer i=1
is followed by skip connection [30] and layer normalization [31] as same as the original Transformer. � � � �

(l) (l−1) (l)
h =LN h0 i + FFN(l)

(h0 i) , hi
0 =LN h + h̃ , (5) i h i i � � � �

(l) 0 0 0 (l−1) (l)
g = LN gi + FFN(l)(gi) , gi =LN g + g̃ . (6) i g i i

DAC-Att. The DAC-Att sub-layer enhances each set of embedding from its own aspect, while
leveraging attention correlations from the other aspect to achieve the synergy. Given the two sets of
embeddings5, {hi}N and {gi}iN

=1, we first compute the self-attention correlation from both aspects, i=1

1 � � � �T 1 � � � �T
αh αg
i,j = √ hiWh

Q hj Wh
K , i,j = √ giWg

Q gj Wg
K , (7)

dk dk

Q ∈ Rdim×dk where independent matrices W ,Wh
K ,Wg

Q and Wg
K are used to calculate queries and h

keys. The obtained correlations are further normalized to α̃h and α̃g via Softmax. Note that the i,j i,j
correlations are computed from their own aspect, which eliminates possible noises and conduces to
correctly describe the incompatible node pair relationships in different aspects of VRP solutions.

We then exploit a cross-aspect referential attention mechanism, which allows computed correlations
to be shared between each other, as additional references for both contradistinction and collaboration, ⎡ ⎤

N N � � ⎣X
αh

�
hj W V

� X
αg Vref ⎦ outhi = Concat ˜i,j h , ˜ hj W , (8) i,j h

j=1 j=1 ⎡ ⎤
N N X � � X � �

gj W Vref outg =Concat⎣ α̃g gj W V , α̃h ⎦ , (9) i i,j g i,j g
j=1 j=1

∈ Rdim×dv where Wh
V ,Wg

V are trainable parameter matrices for formulating values in each aspect;
Vref,W Vref ∈ Rdim×dv and Wh g are parameter matrices for each aspect to generate referential values.

We finally use the multi-head attention to get NFEs h̃
i and PFEs g̃i as follows, � �

h̃
i, g̃i = DAC-Att W Q , W K ,W V ,W Vref ,W O , h i � � (10)

h̃
i = Concat headhi,1, ..., headi,m

h Wh
O , g̃i = Concat headi,

g
1, ..., headi,m

g Wg
O ,

g ∈ R2mdv ×dim where headh = outh = out ,W O are trainable parameter i,k i,k, headgi,k i,k, and Wh
O

g

matrices. In our model, we adopt m = 4 and dk = dv = 16.

FFN. Our FFN sub-layer has only one hidden layer with 64 hidden unites and adopts the ReLU
activation function. The parameters of FFNh and FFNg are different for each group of embeddings.

4.3 The decoder
(L) (L) In the DAC decoder, the two sets of embeddings {h }N and {g }iN

=1 are first passed through a i i=1 i
Max-pooling sub-layer and a multi-head compatibility (MHC) sub-layer to independently generate
diversified node-pair selection proposals from their own aspect, which are then aggregated through a
feed-forward aggregation (FFA) sub-layer for output.

5We omit the encoder index l for better readability.

6

Max-pooling. For each set of embeddings, we adopt the max-pooling sub-layer in Wu et al. [11] to
aggregate the global representation of all N embeddings into each respective one6.

MHC. The compatibility sub-layer computes the attention correlations for each embedding pair,
where the obtained correlations with size N × N will be deemed as a proposal distribution for node
pair selection. Our correlations are computed based on multiple heads for diversity. And we calculate
separated attention score matrices Y h, Y g ∈ RN ×N (of head k) from the two aspects independently. k k
Accordingly, the action distribution proposals would be different due to their aspect-specific focus
and cognitions of the current solution, which will provide the subsequent FFA layer with a rich pool
of proposals and allow our model to be more flexible and robust.

FFA. Once all proposals from two aspects are collected, a FFN with four layers (dimensions are 2m,
32, 32 and 1, respectively) and ReLU activation is used to aggregate them, � �

˜ = FFA Y g , ..., Y g
i,j,1, ...Y h (11) , Y h , Yi,j i,j,1 i,j,m i,j,m

where m = 4 is the number of heads; and the output Ỹi,j is a scalar indicating the likelihood of
selecting node pair (i, j) as an action. Afterwards, we apply Ŷ

ij = C · Tanh(Ỹ
i,j) with C = 6 to

control the entropy, and mask 7 the infeasible node pairs (i0, j0) as Ŷi0j0 =−∞. Lastly, the likelihoods
are normalized using Softmax function to obtain the final action distribution Pi,j .

4.4 Reinforcement learning algorithm

We adopt the proximal policy optimization [32] with n-step return estimation for training (details are
given in Appendix C), and design a curriculum learning (CL) strategy for better sample efficiency.

Curriculum learning strategy. The strategy in Wu et al. [11] sets a maximum of Ttrain steps for
training and estimates future returns by bootstrapping [33]. However, due to the concern of training
cost, Ttrain is usually much smaller than actual T for inference (e.g., 200 v.s. 10k), which may leave
the agent a poor chance of observing high-quality solutions (states) during training. Consequently, it
may cause high variance for bootstrapping because the value function is mostly fitted on low-quality
solutions and may render it less knowledgeable in estimating long-term future returns accurately.
In this paper, we tackle this issue by a simple yet efficient strategy which gradually prescribes
higher-quality solutions as the initial states for training. In doing so, 1) it increases the probability for
the agent to observe better solutions and thus reduce the variance of the value function; 2) it increases
the difficulty of the learning task (higher-quality solutions are harder to improve) in a gradual manner
and achieves better sample efficiency [34]. In practice, those higher-quality solutions can be easily
achieved by improving the randomly generated ones using the current policy for a few Tinit steps,
where Tinit could be slightly increased as the epoch grows.

5 Experiments

We evaluate our DACT model on two representative routing problems, i.e., TSP and CVRP [5, 8, 11].
For each problem, we abide by existing conventions to randomly generate instances on the fly for
three sizes, i.e., N = 20, 50 and 100. Initial experiments with three operators including 2-opt, swap
and insert show that 2-opt performs best for both TSP and CVRP (with insert better than swap), hence
we report results of our method based on 2-opt. Following [4, 11, 27] we use randomly generated
initial solutions for training and the solutions generated by the greedy algorithm for inference. Since
each problem has its own constraints and node features, we adjust the input, feasibility masks, and
problem-dependent hyperparameters for each problem, the details of which are provided in Appendix
D and E. The DACT is trained and tested on a server equipped with TITAN RTX GPU cards and
Intel i9-10940X CPU at 3.30 GHz. Our code in PyTorch are available here8.

h i
6E.g., for ĥ, ĥi = h(L)

W Local +max {h(L)}N W Global, where W Local,W Global ∈R64×64 are parameters. i h i i=1 h h h
7Besides, we also mask all the diagonal elements since they are not meaningful to the pair-wise operators,

and the node pair selected at the last step to forbid possible dead loops [11].
8https://github.com/yining043/VRP-DACT

7

https://github.com/yining043/VRP-DACT

- - - - - -

- - - - - -

Table 1: Comparison with various baselines on TSP and CVRP.

N=20 N=50 N=100 Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

Concorde
LKH
OR-Tools

3.83
3.83
3.86

-
0.00%
0.94%

(3m)
(38s)
(42s)

5.70
5.70
5.85

-
0.00%
2.87%

(10m)
(5m)
(5m)

7.76
7.76
8.06

-
0.00%
3.86%

(1h)
(20m)
(23m)

Neural-2-Opt [23] 3.84‡ 0.00% (15m) 5.70 0.12% (29m) 7.83 0.87% (41m)
Wu et al. [11] (T=5k) 3.83 0.00% (1h) 5.70‡ 0.20% (1.5h) 7.87 1.42% (2h)
DACT (T=1k) 3.83 0.04% {7s}(24s) 5.70 0.14% {16s}(1m) 7.89 1.62% {48s}(4m)
DACT (T=5k) 3.83 0.00% {32s}(2m) 5.70 0.02% {2m}(6m) 7.81 0.61% {4m}(18m)
DACT (T=10k) 3.83 0.00% {1m}(5m) 5.70 0.01% {3m}(13m) 7.79 0.37% {8m}(40m)
DACT×4 augment 3.83 0.00% {3m}(10m) 5.70 0.00% {10m}(1h) 7.77 0.09% {29m}(2.5h)

GCN-BS [6] 3.84‡ 0.01% (12m) 5.70 0.01% (18m) 7.87 1.39% (40m)
AM-sampling [5] 3.84‡ 0.08% (5m) 5.73 0.52% (24m) 7.94 2.26% (1h)
MDAM-BS [7] 3.84‡ 0.00% (3m) 5.70 0.03% (14m) 7.79 0.38% (44m)
POMO [8] 3.83 0.04% (1s) 5.70‡ 0.21% (2s) 7.80 0.46% (11s)
POMO×8 augment [8] 3.83 0.00% (3s) 5.69‡ 0.03% (16s) 7.78 0.15% (1m)

C
V

R
P

T
SP

DPDP (100k) [26] 7.77‡ 0.00% (3h)
CVAE-Opt-DE [13] - 0.00%# 11m# - 0.02%# 22m# - 0.34%# 55m#

LKH
OR-Tools

6.14
6.46

0.00%
5.68%

1h
2m

10.38
11.27

0.00%
8.61%

4h
13m

15.68
17.12

0.00%
9.54%

8h
46m

NeuRewriter [4] 6.15# - 6m# 10.51# - 11m# 16.10# - 17m#

NLNS [27] 6.19# - 6m# 10.54# - 11m# 15.99# - 16m#

Wu et al. [11] (T=5k) 6.12‡ 0.39% (2h) 10.45 0.70% (4h) 16.03‡ 2.47% (5h)
DACT (T=1k) 6.15 0.28% {16s}(33s) 10.61 2.13% {43s}(2m) 16.17 3.18% {2m}(5m)
DACT (T=5k) 6.13 -0.00% {1m}(3m) 10.48 1.01% {3m}(8m) 15.92 1.55% {8m}(23m)
DACT (T=10k) 6.13 -0.04% {2m}(6m) 10.46 0.79% {6m}(16m) 15.85 1.12% {16m}(45m)
DACT×6 augment 6.13 -0.08% {11m}(35m) 10.39 0.14% {32m}(1.5h) 15.71 0.19% {1.5h}(4.5h)

AM-sampling [5] 6.25 1.87% (6m) 10.62 2.40% (28m) 16.23‡ 3.72% (2h)
MDAM-BS [7] 6.14 0.18% (5m) 10.48 0.98% (15m) 15.99‡ 2.23% (1h)
POMO [8] 6.17‡ 0.82% (1s) 10.49 1.14% (4s) 15.83 0.98% (19s)
POMO×8 augment [8] 6.14‡ 0.21% (5s) 10.42 0.45% (26s) 15.73 0.32% (2m)

DPDP (100k) [26] 15.69‡ 0.31% (6h)
CVAE-Opt-DE [13] 6.14# - 21m# 10.40# - 41m# 15.75# - 1.5h#

the obj. values, gaps or time are obtained based on 2,000 instances in their original papers, and not directly comparable to ours.
‡ the obj. values obtained by Concorde or LKH may be slightly different from ours since the 10,000 instances are randomly generated. E.g., for
TSP50, the optimal values according to our running of Concorde is 5.70, while 5.69 in POMO and Wu et al.. We thus focus more on gaps.

5.1 Comparison studies

In Table 1, we compare our DACT with, (1) learning based improvement methods, including Wu
et al. [11], Neural-2-Opt [23] (TSP only), NeuRewriter [4] (CVRP only), NLNS [27] (CVRP
only), (2) learning based construction methods, including AM-sampling [5], GCN-BS [6] (TSP
only), MDAM-BS [7], POMO [8], (3) conventional optimization algorithms equipped with learning
based component(s), including DPDP [26], CVAE-Opt-DE [13], and (4) strong conventional solvers
including Concorde [35], LKH [28, 36], and OR-Tools [37]. Though L2I [12] can outstrip LKH
on CVRP, we do not inlude it as a baseline since it requires a prohibitively longer inference time
than others9. All results are averaged over 10,000 randomly generated instances unless specified
otherwise (e.g., the ones marked with # only infer 2,000 instances), and we report the metrics of
objective values, (optimality) gaps and run time. Regarding baselines, we follow the results reported
in their original papers, which may not include all the three metrics. For TSP, Concorde is adopted
to get the optimal solutions, based on which the optimality gaps of other methods are calculated.
CVRP is harder to be solved optimally, and the gaps are calculated based on solutions of LKH. Note
that even for the baselines which infer 10,000 random instances, their objective values might be
slightly different from ours (e.g., the ones marked with ‡), therefore we focus more on gaps for fair
comparison. The run time is also hard to compare due to various factors (e.g., GPU/CPU models,
batch sizes, Python v.s. C++). For DACT, we report the time for inferring all 10,000 instances with
multiple GPU cards in “()", and a small batch (512 instances) with one single GPU card in “{}".

Pertaining to TSP, our DACT with inference step limit of 5,000 (T=5k) outperforms the traditional
solver OR-Tools and all improvement models in terms of optimality gap, including Wu et al. [11]
which directly adopted the original Transformer encoder. It also outstrips construction methods

9L2I needs 167 days for 10,000 CVRP100 instances, as estimated from 24min/instance in its original paper.

8

Table 2: Generalization performance. (a) DACT v.s. baselines on benchmark datasets (up to 200
customers, see Appendix E.4 for detailed results and discussion); (b) PE v.s. CPE on different sizes.

Method

OR-Tools [37]

TSPLIB

3.34%

CVRPLIB

8.06%
Method N=20

Obj. Gap
N=100

Obj. Gap

AM-sampling [5] 22.83% 26.66% DACT-PE (T=5k) 3.84 0.21% 8.38 7.93%
POMO [8] 10.06% 6.10% DACT-CPE (T=5k) 3.83 0.10% 7.99 2.98%

Wu et al. [11]
DACT

4.17%
2.07%

5.20%
3.41%

Wu et al. [11] (T=5k)
OR-Tools [37]

3.91
3.83

2.14%
0.00%

9.03
8.06

16.37%
3.87%

(a) (b)

Table 3: Dual v.s. single aspect representation

Steps Method # Params N=50 N=100

SA-T 0.37M 0.35% (1m) 3.49% (3m) T=1k DACT 0.29M 0.14% (1m) 1.62% (4m)

SA-T 0.37M 0.05% (5m) 1.55% (16m) T=5k DACT 0.29M 0.02% (6m) 0.61% (18m)

including AM-sampling and GCN-BS on TSP100. With larger step limit T=10k, our DACT further
boosts the solution qualities and outperforms other construction methods including MDAM-BS (beam
search), and POMO (the current state-of-the-art). To further reduce the gaps, we also leverage the
data augmentation technique in POMO (which considers flipping node coordinates without changing
the optimal solution) to solve same instances multiple times in different ways. Although the inference
time increases (we run data augmentation in serial on the same GPUs), our DACT with 4 augments
not only outstrips POMO with 8 augments but also achieves the lowest objective values and gaps
among all purely learning based models. In particular, our method almost optimally solved TSP20
and TSP50 with gap lower than 0.005%, and 0.09% on TSP100, which is superior to most of the
recent neural solvers. Pertaining to CVRP, our DACT with T=5k produces lower gaps than that of
improvement models including NeuRewriter and NLNS. It also performs much better than Wu et al.
[11] except on CVRP50. With T=10k and 6 augments10, our DACT exhibits even better performance
than the highly specialized heuristic solver LKH on CVRP20 and delivers the smallest gap of 0.19%
on CVRP100 against other neural solvers including POMO with 8 augments. Besides, our DACT
is also competitive to DPDP which leverages learnt heatmap and dynamic programming to search
solutions. Though DPDP (100k) can solve TSP100 instances almost optimally, our DACT is more
efficient than DPDP on CVRP100. Compared with CVAE-Opt-DE, despite that it is averaged over
fewer instances and integrated with differential evolution, our objective values are still lower.

In terms of the inference time, our DACT is highly competitive against all neural solvers except
POMO which learns a construction model by sampling diverse trajectories. However, when it comes
to the generalization performance on benchmark datasets, i.e., TSPLIB [38] and CVRPLIB [39] in
Table 2(a), DACT produces significantly lower average gaps than the POMO with 8 augments, which
indicates that our DACT is more advantageous in practice despite its longer inference time. On the
other hand, it is possible to adopt a similar diverse rollout strategy for DACT to find better solutions
earlier, or explore other model compression techniques such as the knowledge distillation [40] to
learn a lighter DACT model for faster inference. Since our focus is to ameliorate Transformer for
neural improvement solvers, we will investigate these possibilities in the future.

5.2 Ablation studies

Dual-aspect representation. In Table 3, we evaluate the effectiveness of our dual-aspect represen-
tation against the single-aspect one (SA-T) on TSP50 and TSP100, where SA-T mainly follows the
Transformer in Wu et al. [11] but equipped with the CPE, multi-head attentions and CL strategy for
fair comparison. We observe that our DACT with fewer parameters consistently outperforms SA-T,
which verifies the effectiveness of the dual-aspect representation.

10The gap will further decrease to 0.09% if we adopt 8 augments, with run time of about 7h.

9

0 5 10 15 20

TSP20 Policy tested
on TSP20 (PE)

0
5

10
15

20 0 10 20 30 40 50

TSP20 Policy tested
on TSP50 (PE)

0
10

20
30

40
50 0 5 10 15 20

TSP20 Policy tested
on TSP20 (CPE)

0
5

10
15

20 0 10 20 30 40 50

TSP20 Policy tested
on TSP50 (CPE)

0
10

20
30

40
500 5 10 15 20

TSP20 Policy tested
on TSP20 (PE)

0
5

10
15

20 0 10 20 30 40 50

TSP20 Policy tested
on TSP50 (PE)

0
10

20
30

40
50 0 5 10 15 20

TSP20 Policy tested
on TSP20 (CPE)

0
5

10
15

20 0 10 20 30 40 50

TSP20 Policy tested
on TSP50 (CPE)

0
10

20
30

40
50

(a) (b)

Figure 6: Visualization of the attention scores for the encoder when a trained model is used to solve
instances with a larger size. (a) using PE method; (b) using CPE method (ours).

Cyclic positional encoding. Here we show that CPE
significantly improves the generalization performance
across different problem sizes. In Table 2(b), we record
the results of our DACT with PE and CPE, and Wu
et al. [11], when the model trained on TSP50 is di-
rectly used to solve instances from TSP20 and TSP100
with T=5k. We see that even with PE, our DACT out-
performs Wu et al. [11]. Further equipped with CPE,
DACT outstrips DACT-PE and OR-Tools on TSP100.
We continue to compare the two DACT variants by
visualizing their attention scores. As depicted in Fig-
ure 6(a), although the absolute PE is designed for linear
sequences, it did attempt to capture the circularity of
VRP solutions (as highlighted in the green boxes) after training. However, the ability to perceive such
properties significantly drops when generalizing over different problem size, which instead engenders
random attention scores when generalizing to larger size (see right side of Figure 6(a)). In contrast,
our DACT with CPE is able to capture the circularity as depicted in Figure 6(b), which verifies the
effectiveness of CPE in representing cyclic sequences (i.e., VRP solutions).

Curriculum learning (CL) strategy. In Figure 7, we plot the training curves of PPO algorithm
with and without our CL strategy, where the results are averaged over 5 independent runs with 90%
confidence intervals. It shows that our CL strategy significantly improves the sample efficiency while
reducing the variance of training, which aligns with our analysis in Section 4.4.

6 Conclusions and future work

In this paper, we present a novel DACT model for routing problems. It learns separate groups of
embeddings for the node and positional features, and is equipped with cyclic positional encoding
(CPE) to capture the circularity and symmetry of VRP solutions. A curriculum learning (CL) strategy
is also exploited to improve the RL training efficiency. Extensive experiments on both synthetic and
benchmark datasets justified the effectiveness of DACT in terms of both inference and generalization.
A potential limitation is that DACT is more useful for learning improvement models at present. In
the future, we will investigate how to extend DACT to construction models, and how to speed up the
DACT through diverse rollouts or model compression techniques. It is also interesting to apply the
proposed CPE to develop Transformer based model for other tasks where the cyclic property is also
important, e.g., encoding circular DNA/RNA structures in computational biology [41, 42].

Acknowledgments and Disclosure of Funding

This work was supported in part by the National Natural Science Foundation of China under Grant
61803104 and Grant 62102228, in part by the Young Scholar Future Plan of Shandong University
under Grant 62420089964188, and in part by the A*STAR CyberPhysical Production System (CPPS)
- Towards Contextual and Intelligent Response Research Program, under the RIE2020 IAF-PP Grant
A19C1a0018, and Model Factory@SIMTech.

0 25 50 75 100
Epoch

6.2

6.3

6.4

6.5

6.6

O
bj

ec
tiv

e
V

al
ue

PPO
PPO+CL

Figure 7: Training curves of PPO with and
without CL on CVRP20 (random seeds 1-5).

10

References
[1] Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications. SIAM press, 2014.

[2] Michael Schneider, Andreas Stenger, and Dominik Goeke. The electric vehicle-routing problem with time
windows and recharging stations. Transportation Science, 48(4):500–520, 2014.

[3] Jan Karel Lenstra and AHG Rinnooy Kan. Complexity of vehicle routing and scheduling problems.
Networks, 11(2):221–227, 1981.

[4] Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization. In
Advances in Neural Information Processing Systems, volume 32, pages 6281–6292, 2019.

[5] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2018.

[6] Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arxiv preprint arxiv:1906.01227, ArXiV, 2019.

[7] Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of 35th AAAI Conference on Artificial
Intelligence, pages 12042–12049, 2021.

[8] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min. POMO:
Policy optimization with multiple optima for reinforcement learning. In Advances in Neural Information
Processing Systems, volume 33, pages 21188–21198, 2020.

[9] Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Step-wise deep learning models for solving routing
problems. IEEE Transactions on Industrial Informatics, 17(7):4861–4871, 2020.

[10] Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to dispatch
for job shop scheduling via deep reinforcement learning. In Advances in Neural Information Processing
Systems, volume 33, pages 1621–1632, 2020.

[11] Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics for
solving routing problems. IEEE Transactions on Neural Networks and Learning Systems, 2021.

[12] Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle routing
problems. In International Conference on Learning Representations, 2019.

[13] André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing problems
using variational autoencoders. In International Conference on Learning Representations, 2021.

[14] Jingwen Li, Yining Ma, Ruize Gao, Zhiguang Cao, Andrew Lim, Wen Song, and Jie Zhang. Deep rein-
forcement learning for solving the heterogeneous capacitated vehicle routing problem. IEEE Transactions
on Cybernetics, 2021.

[15] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, volume 30, pages 6000–6010, 2017.

[17] Jingwen Li, Liang Xin, Zhiguang Cao, Andrew Lim, Wen Song, and Jie Zhang. Heterogeneous attentions
for solving pickup and delivery problem via deep reinforcement learning. IEEE Transactions on Intelligent
Transportation Systems, 2021.

[18] Guolin Ke, Di He, and Tie-Yan Liu. Rethinking the positional encoding in language pre-training. In
International Conference on Learning Representations, 2020.

[19] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations. In
North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 464–468, 2018.

[20] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural Information
Processing Systems, volume 28, pages 2692–2700, 2015.

[21] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. In International Conference on Machine Learning (Workshop),
2017.

11

[22] Mohammadreza Nazari, Afshin Oroojlooy, Martin Takáč, and Lawrence V Snyder. Reinforcement learning
for solving the vehicle routing problem. In Advances in Neural Information Processing Systems, pages
9861–9871, 2018.

[23] Paulo R d O Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt heuristics for the
traveling salesman problem via deep reinforcement learning. In Asian Conference on Machine Learning,
pages 465–480, 2020.

[24] Hanjun Dai, Elias B Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. In Advances in Neural Information Processing Systems, pages 6351–6361, 2017.

[25] Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily large
TSP instances. In AAAI Conference on Artificial Intelligence, 2021.

[26] Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic programming
for vehicle routing problems. arXiv preprint arXiv:2102.11756, 2021.

[27] André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle routing
problem. In European Conference on Artificial Intelligence, 2020.

[28] Keld Helsgaun. LKH-3 (version 3.0.6), 2019. URL http://webhotel4.ruc.dk/~keld/research/
LKH-3/.

[29] Wikipedia. Gray code, 2021. URL: https://en.wikipedia.org/wiki/Gray_code. Last visited on
2020/05/19.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[31] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. Corr: abs/1607.06450,
ArXiV, 2016.

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arxiv preprint arxiv:1707.06347, ArXiV, 2017.

[33] Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormushev. Time limits in reinforcement learning.
In International Conference on Machine Learning, pages 4045–4054, 2018.

[34] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
International Conference on Machine Learning, pages 41–48, 2009.

[35] David L Applegate, Robert E Bixby, Vašek Chvátal, and William J Cook. Concorde TSP Solver, 2020.
URL http://www.math.uwaterloo.ca/tsp/concorde/.

[36] Keld Helsgaun. LKH (version 2.0.9), 2018. URL http://webhotel4.ruc.dk/~keld/research/
LKH/.

[37] Laurent Perron and Vincent Furnon. OR-Tools (version 7.2), 2019. URL https://developers.google.
com/optimization/.

[38] Gerhard Reinelt. TSPLIB-A traveling salesman problem library. ORSA journal on computing, 3(4):
376–384, 1991.

[39] Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
New benchmark instances for the capacitated vehicle routing problem. European Journal of Operational
Research, 257(3):845–858, 2017.

[40] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

[41] Chun-Ying Yu, Tung-Cheng Li, Yi-Ying Wu, Chan-Hsien Yeh, Wei Chiang, Ching-Yu Chuang, and
Hung-Chih Kuo. The circular rna circbirc6 participates in the molecular circuitry controlling human
pluripotency. Nature communications, 8(1):1–15, 2017.

[42] Chengyu Liu, Yu-Chen Liu, Hsien-Da Huang, and Wei Wang. Biogenesis mechanisms of circular rna can
be categorized through feature extraction of a machine learning model. Bioinformatics, 35(23):4867–4870,
2019.

[43] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, and
Aleksander Madry. Implementation matters in deep policy gradients: A case study on PPO and TRPO. In
International Conference on Learning Representations, 2020.

12

http://webhotel4.ruc.dk/~keld/research/LKH-3/
http://webhotel4.ruc.dk/~keld/research/LKH-3/
https://en.wikipedia.org/wiki/Gray_code
http://www.math.uwaterloo.ca/tsp/concorde/
http://webhotel4.ruc.dk/~keld/research/LKH/
http://webhotel4.ruc.dk/~keld/research/LKH/
https://developers.google.com/optimization/
https://developers.google.com/optimization/

