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In this article, we present two models to jointly and automatically generate the head, facial and gaze movements of a virtual
agent from acoustic speech features. Two architectures are explored: a Generative Adversarial Network and an Adversarial
Encoder-Decoder. Head movements and gaze orientation are generated as 3D coordinates, while facial expressions are
generated using action units based on the facial action coding system. A large corpus of almost 4 hours of videos, involving
89 different speakers is used to train our models. We extract the speech and visual features automatically from these videos
using existing tools. The evaluation of these models is conducted objectively with measures such as density evaluation and a
visualisation from PCA reduction, as well as subjectively through a users perceptive study. Our proposed methodology shows
that on 15 seconds sequences, encoder-decoder architecture drastically improves the perception of generated behaviours in
two criteria: the coordination with speech and the naturalness. Our code can be found in : https://github.com/aldelb/non-
verbal-behaviours-generation.
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1 INTRODUCTION
Behaviour generation is an active and recent research area. Virtual agents are becoming essential in many
applications such as games or virtual environments. To communicate and fully engage humans in the interaction,
the non-verbal behaviour of the embodied conversational agent is essential. In human-human interaction, Munhall
et al. [28] showed that the rhythmic beat of head movements increases speech intelligibility. Studies have also
demonstrated that head movements could increase the level of warmth, competence and improve the way a
virtual agent is perceived in general [2, 22]. In the same way, Tinwell et al. [38] showed that "uncanniness” is
increased for a character with a perceived lack of facial expressions.

Traditionally, the generation of an agent’s body movements and facial expressions requires the intervention
of an animator who designs manually believable movements. This work is costly and time-consuming. The
approaches based on motion capture remain limited given the costly hardware and the time-consuming post-
processing. Automatic generation tools would allow to automate this process and decrease the cost of animation.
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Seminal works have shown a strong correlation between individual’s speech and her/his non-verbal behaviour
[5, 17, 24]. Based on these research works, some systems for generating behaviours from speech began to emerge
[13, 18, 36, 42]. These models generate behaviours from certain acoustic or textual features extracting from the
speech. However, this generation task presents many difficulties. The real challenge is to represent the diversity
of the facial and head movements. Indeed, many similar gestures and expressions can plausibly be associated with
the same input speech. In a human-human interaction, the perception of a speech expressed by raising the right
eyebrow will be perceived in an extremely similar way to the same speech expressed by raising the left eyebrow.

In this paper, we focus on the generation of non-verbal behaviours from acoustic speech features without
considering other elements that may influence the behaviour (e.g. social attitudes such as persuasion, personality,
communicative style, etc.). As a first step, we do not consider the speech content.We concentrate on the objective to
generate believable face, head and gaze movements considering the acoustic features of the speech. Our approach
generates automatically and simultaneously head movements, gaze orientation and facial expressions. We propose
to explore the performances of two different models for this specific task of behaviour generation: a Generative
Adversarial Network (GAN), and an Adversarial Encoder-Decoder (AED). For the sake of reproducibility, all
the tools used are open-source, all our code is available on github1 (with a detailed procedure) and the survey
completed by the participants for the subjective evaluation is available online2.

The paper is organised as follows. After formulating the learning problem (Section 2), we review existing
works (Section 3). Then, in Section 4, we present the corpus used and the post-processing performed on the data.
In section 5, we present the trained models and in Section 6, we introduce our evaluation method and our results.

2 PROBLEM FORMULATION
Our goal is to generate believable non-verbal behaviours of a virtual agent automatically from the acoustic features
of the speech given as input. Considering the measures of performance, we aim at identifying a good balance
between the accuracy of the model, coverage and diversity of the generated behaviour. It implies generating a set
of behaviours as close as possible to the set of possible and diverse human behaviours.

Fig. 1. Behaviour generation process

The problem can be formulated as follows: given a sequence of acoustic speech features 𝐹𝑠𝑝𝑒𝑒𝑐ℎ [0 : 𝑇 ] extracted
from a segment of audio input at regular intervals 𝑡 , the task is to generate the sequence of corresponding
movements and expressions 𝜃𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 [0 : 𝑇 ] that a virtual agent should play while speaking. 𝜃𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 [0 : 𝑇 ]
groups 𝜃ℎ𝑒𝑎𝑑 [0 : 𝑇 ], 𝜃𝑔𝑎𝑧𝑒 [0 : 𝑇 ] and 𝜃𝐴𝑈 [0 : 𝑇 ], respectively head movements, gaze orientation and facial
expressions. The head movements 𝜃ℎ𝑒𝑎𝑑 [0 : 𝑇 ] and gaze orientation 𝜃𝑔𝑎𝑧𝑒 [0 : 𝑇 ] are expressed in 3D coordinates,
while the facial expressions 𝜃𝐴𝑈 [0 : 𝑇 ] are described by action units (AUs) based on the Facial Action Coding

1https://github.com/aldelb/non-verbal-behaviours-generation
2https://forms.gle/RHcupwN69Po892rJ6
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System (FACS) [8]. The notations presented above will be used throughout this article. The figure 1 illustrates
this behaviour generation process.

3 STATE OF THE ART
The research works on behaviour generation can be described by different characteristics: the approach (rules-
based or data-driven), the generation task (types of generated gesture), the characteristics of the corpus, the
inputs and outputs of the model, etc. In order to structure the state of art, in the section 3.1, we present examples
of rules-based models; in Section 3.2, we describe data-driven models including machine learning models; in
Section 3.3, we discuss the outputs representation of the models, and in Section 3.4, we detail the type of corpus
considered in previous works. Finally, we summarise selected very recent works in Table 1 to have an overview
and compared our work to the characteristics of existing models.

3.1 Rules-based systems
The first approach explored for the automatic generation of virtual character’s behaviour was based on sets of
rules. The rules described the mapping of words or speech features to a facial expression or movements. Cassell
[4] and Cao et al. [3] showed that body movements and facial expressions can be synchronised with audio using
a set of predefined rules. Marsella et al. [23] and Lhommet et al. [20] developed rules-based systems to generate
body movements by analysing the content of the audio input. These approaches limit the generated expressions
and movements to a dictionary. However, facial expressions and head movements are based on much more than
a limited set of rules. Consequently, after a while, the movements of the virtual character may appear repetitive.
Furthermore, this approach is time-consuming to implement because of the temporal synchronisation between
speech and gestures to specify in the system. Finally, such methods rely on language-specific rules and do not
easily handle multiple languages or multiple speech styles. To overcome these problems, data-driven approaches
have been explored more recently.

3.2 Data-driven approaches
Data-driven approaches do not depend on experts in animation and linguistics. These approaches learn the
relationships between speech and movements or facial expressions. Mariooryad and Busso [22] proposed to
replace rules with Dynamic Bayesian Networks (DBN). In Chiu and Marsella [6], a Gaussian Process Latent
Variable Models (GPLVM) has been used to learn a low-dimensional layer and select the most likely movements
given the speech as input. Levine et al. [19] used Hidden Markov Models (HMM) to select the most likely gesture
based on speech. However, these research works are still based on an animation dictionary, limiting the diversity
of the generated movements. Moreover, in these models, there is only one motion sequence for an input audio
signal. It supports the hypothesis that the speech-to-motion correspondence is injective but the correspondence
between acoustic speech features and non-verbal behaviour is a "One-To-Many" problem. For instance, people
can tilt the head to one side or to the other while pronouncing the same speech. Given the importance of the
variability of the virtual character’s non-verbal behaviour, the models of automatic generation should include
this diversity of movements.

More recently, deep neural networks shown their superiority in learning from large datasets by generating a
sequence of images for the non-verbal behaviour. The generation often focused on head movements or body
movements conditioned by a speech input. Manymodels like normalizing-flow have been used for their generation
[15]. Normalizing-flow support only linear operations, limiting the expressiveness of the models [30]. GANs
(Generative Adversarial Network) are among the generative models that made the best progress in the last decade
[12], in particular conditional GANs [26]. These models can convert acoustic speech features into non-verbal
behaviours while preserving the diversity and multiple nature of the generated non-verbal behaviour. Sadoughi
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and Busso [35], Takeuchi et al. [37] and Hasegawa et al. [14] used GANs with recurrent neural networks (RNNs).
RNNs are used to capture temporal dependencies of the input signal. In particular, they use Biderectional Long
Short Term Memory (B-LSTM) to synthesise body movements from speech. Traum et al. [39] used LSTMs to
synthesise head movements from speech. Despite the use of RNNs in previous models, Li et al. [21] shown that
convolutional layers are better in the movements generation task, as it prevents the error accumulation, which is
specific to RNN.

To reduce the effects of the collapse mode, a very common failure that causes the model to generate only
one behaviour, Wu et al. [42] used an Unrolled GAN. If the adversarial training enhances the synchronisation
of behaviour with speech, Kucherenko et al. [18] insisted on the importance of a post-processing to smooth
the behaviour generated. Another type of model gives good results in generation tasks: Kucherenko et al. [18]
proposed an encoder-decoder speech to motion by combining the decoder of a motion auto-encoder, and an
encoder which maps speech to motion representations. Habibie et al. [13] used an Adversarial Encoder-Decoder,
which means an encoder-decoder combined with adversarial learning. Given the performance of GANs in the
area of non-verbal behaviour generation, we choose to adopt a similar approach by exploring and comparing
adversarial models.

Most of the previous works only generate facial animations or head movements. The generation of facial
expressions or head movements presents a different problem. Head movements can be generated in a much more
diverse way depending on the subject than facial expressions. However, facial expressions and head movements
are all connected and synchronised with speech [5]. As far as we know, only the recent research work of Habibie
et al. [13] proposed the automatic generation of facial expressions and head movements jointly from an adversarial
approach. In our study, inspired by Habibie et al. [13], we analyse facial expressions and head movements in a
combined way, while changing the way facial expressions are represented. Indeed, our work differs from Habibie
et al. [13] since we propose to represent facial expressions by explainable features, those are the action units
(Section 3.3), and we explore different architectures in an adversarial approach to compare the performances of
the models.

3.3 Outputs of the models
While body and head movements are always generated with 3D coordinates, facial expressions can be generated
in various ways. They can be generated directly with the 3D coordinates of the face, like Karras et al. [16] who
used LSTM to learn the 3D coordinates of some key points of the face. Another approach consists in describing
these facial expressions using a model, such as Pham et al. [33] who used 3D blendshape face model from the
FaceWarehouse database. In our model, we represent the facial expressions using action units (AUs) based on the
well-known Facial Action Coding System (FACS). This choice is motivated by the objective to obtain interpretable
and explainable results and therefore be able to manipulate the generated facial expressions much more easily
than 3D coordinates. Generating action units instead of 3D coordinates presents the main advantage to give us
the opportunity to manipulate the output of the model, for instance to adapt the generated action units in order
to express particular socio-emotional states like emotions [7, 40]. It’s why we consider as particularly important
to represent facial expressions with action units.

3.4 Corpora
Corpora are required for training and evaluating models with a data-driven approach. In the previous research
works, the size of the considered corpora as well as the number of speakers vary: Sadoughi and Busso [35]
used a 1h06 corpus with a single speaker, Kucherenko et al. [18] used a 1h51 corpus with two speakers, while
Ginosar et al. [11] and Habibie et al. [13] used a 144h corpus with 10 subjects. In these configurations, generated
behaviours depend on the styles of the speakers involves in the corpora. In comparison with the state of the art,
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we propose in our work a multi-individual adversarial model with 89 distinct speakers, from different ethnic
backgrounds.
The table 1 presents a selection of research works presented above that we use as reference. These research

works have been selected given their performance in behaviour generation and their proximity in terms of the
type of task generation.

Article Habibie et al. [13] Sadoughi and
Busso [35]

Kucherenko et al.
[18]

Wu et al. [42]

Generation task hand movements,
head movements
and facial expres-
sions

head movements body movements upper body
movements

Model Adversarial
Encoder-
Decoder

CGAN Encoder-
Decoder

CGAN

Input signals MFCC (with
derivatives 1𝑠𝑡
and 2𝑛𝑑 )

F0, intensity
(with derivatives
1𝑠𝑡 and 2𝑛𝑑 )

MFCC, F0, energy
(with derivatives
1𝑠𝑡 and 2𝑛𝑑 )

MFCC, F0, inten-
sity (with deriva-
tives 1𝑠𝑡 and 2𝑛𝑑 )

Output signals 3D coordinates 3D rotation 3D coordinates 3D coordinates
Data 144h with 10 sub-

jects
1h06 with 1 sub-
ject

1h51 with 2 sub-
jects

4h57

Evaluation metrics user studies user studies and
density estima-
tion

user studies and
signal compar-
ison in terms
of position and
speed

user studies, den-
sity and speed es-
timation

Table 1. Articles that will serve as references

Compared to the state of art, the contributions of the work presented in this paper are: (1) an action unit-based
behaviour generation to improve the interpretability of the model outputs: our models jointly generate the head
movements, the gaze direction and the facial action units; (2) contrary to existing research works, we propose to
consider numerous speakers to cover a wide range of speech styles; (3) to construct these models, we propose
two original architectures, inspired by the literature, to compare two data-driven models with an adversarial
approach. These models are presented Section 5.

4 PRE-PROCESSING OF THE DATA
The lack and quality of data is a major problem for the behaviour generation task. Some methods exist to collect
data based on multiple cameras and motion capture systems. However, these methods remain expensive and
time-consuming. In this work, we propose to automatically extract the acoustic speech features from an existing
corpus using state-of-the-art tools: Openface [1] and Opensmile [9]. Then, the features are aligned to synchronise
speech and movements.
Openface is a toolkit that detects the head position automatically, gaze orientation and facial action units of

a person on a video. The tool extracts features at the frequency of 30 frames per second (30 fps). In our work,
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we consider the eye gaze direction represented in world coordinates, the eye gaze direction in radians, the
head rotation in radians and the facial action units. We consider the intensity of 17 facial action units from 1 to
53. We obtain a total of 28 features characterising the head, gaze and facial movements. These features, noted
𝜃𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 ∈ R28, are used for the prediction and constitute the output of the generation model. These features
are then the input of the animation platform to visualise the generated behaviours. To simulate the behaviours
generated by our models on an embodied conversational agent, we use the Greta platform [32].

Opensmile is a toolbox that extracts the audio features from a speech. This tool extracts features at a frequency
of 50 fps. In this work, we consider the following vocal features commonly used in vocal signal processing:
frequency F0 (a global measure of the pitch), shimmer, loudness, and six spectral features (Harmonic difference
H1-H2, harmonic difference H1-A3, MFCC 1-4). After features extraction, first and second derivatives of the
data are computed and concatenated with other data [13, 42]. In total, we consider 27 vocal features. The vocal
features extracted from the human speech are noted 𝐹𝑠𝑝𝑒𝑒𝑐ℎ ∈ R27.

Because of the difference of granularity between speech and non-verbal behaviour, a careful alignment of
speech and visual features is essential. We perform a resampling to obtain a common alignment on the lowest of
the extracted frequencies. We obtain our aligned features at 30 fps.

In terms of the corpus, we use the CMU Multimodal Opinion level Sentiment Intensity (CMU-MOSI) corpus
[43]. In this dataset, a speaker discusses a topic in front of the camera, giving her/his opinion about a movie. The
speakers themselves filmed these videos, which means that videos are recorded in different setups, sometimes
with high-tech cameras and microphones, other times with less professional equipment. There is 89 different
speakers from different ethnic backgrounds who expressed themselves in English. In total, we have 92 videos that
represent more than 3h58m of recording. We divide this data into training and test sets (we use the test set to
validate the hyperparameters of our models), approximately 70-30 respectively lengths of 2h40 and 1h18. We do
not check whether the same person appears in both set, although this is unlikely given the number of speakers
and the number of videos.

The most widely tested method for the analysis of human behaviour consists in working on short segments
of videos (thin-slices) over a sliding window varying from a few seconds to several minutes depending on the
socio-emotional phenomena studied [29]. Inspired by this method, the videos in the corpus were cut into 4s
segments over a sliding window of 300ms. We then obtain 2437 segments for the training set and 1397 segments
for the test set.

5 METHODS AND MODELS
Following the research conducted during the state of the art, we implement and compare two different architec-
tures. They both use an adversarial approach. As a result, they are composed of two neural networks: a generator
and a discriminator. The generator generates new data and the discriminator have to distinguish the generated
data from the real data. The essence of adversarial training is a min-max game between the generator and the
discriminator. While the discriminator is optimised to recognise whether an input is generated by the generator
or taken from the real data, the generator tries to fool the discriminator by learning how to generate data that
looks like the real data. In reality, the generator tries to minimise the Jensen-Shannon divergence between the
generated distribution and the real distribution. We recall that the data to be generated are head movements, gaze
orientation, and AUs: 𝜃ℎ𝑒𝑎𝑑 [0 : 𝑇 ], 𝜃𝑔𝑎𝑧𝑒 [0 : 𝑇 ], 𝜃𝐴𝑈 [0 : 𝑇 ]. At the entrance of our models, data are normalised.
At the exit, data are smoothed.

3AU01, AU02, AU04, AU05, AU06, AU07, AU09, AU10, AU12, AU14, AU15, AU17, AU20, AU23, AU25, AU26, AU45.
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Data normalisation
Our two architectures generate a temporal sequence of AUs and movements according to a given speech input.
As described in Section 4, the speech is first processed to extract the acoustic features at each time step 𝑡 . The data
are then normalised between 0 and 1. This normalisation combined with sigmoid activation layers in the output
of our models forces the generated data to be in a range of values determined by our training data. Therefore, the
generated data should be close to the reality and we should not obtain totally unbelievable behaviours despite
the generation of new behaviours.

The Architectures
1𝑒𝑟 model - DCGAN: the first architecture is inspired by Wu et al. [42]. We implement a DCGAN (Deep
Conditional Generative Adversarial Net). The generator generates data by sampling from a noise distribution (z)
and acoustic speech features 𝐹𝑠𝑝𝑒𝑒𝑐ℎ [0...𝑇 ]. This architecture keeps the randomness of the generated movements.
𝐹𝑠𝑝𝑒𝑒𝑐ℎ [0...𝑇 ] plays the role of the condition in the generation. The generator generates a movement conditioned
by the audio condition it receives as input. This condition is added to both the generator and the discriminator
input. The discriminator measures if the movements look natural, but also if the movements look natural with
respect to these audio features and if the temporal alignment is respected. The generator consists of four 1D layers
(Conv-BN-ReLU) with kernels of size 3 and MaxPool after every second block. These 1D layers are framed by
linear layers and then a sigmoid activation layer. We also add dropout layers after the 1D layers. In a symmetrical
way, the discriminator is also made of four 1D layers (Conv-BN-ReLU), linear layers and a sigmoid activation
layer. Figure 2 illustrates this architecture.

Fig. 2. Architecture of the first model

The collapse mode is a very common failure when training GANs. Once the generator identifies a sample to
fool the discriminator, it tends to generate only that sample, regardless of the noise and condition it receives
as input. To prevent this failure during training, we implement an unrolled GAN. In GAN, the cost function
is computed and then backpropagation is performed to adjust the parameters of the discriminator D and the
generator G. In unrolled GAN, the discriminator is trained in the same exact way as the GAN. However to
optimise the generator, the model unroll k steps to learn how the discriminator optimise itself for a specific
generator. We unroll 10 steps. The unrolling is used by the generator to predict the behaviour, but is not used in
the optimisation of the discriminator. We only use the first step to update the discriminator. For the generator,
we backpropagate the gradient on all 10 steps [25].
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Training details: we use Adam for training, with a learning rate of 10−5 for the generator and the discriminator
and a batch size of 32. We train during 1000 epochs. The following equation is for optimising the generator G and
the discriminator D.

𝐿 = min
𝐺

max
𝐷
E𝐹𝑠𝑝𝑒𝑒𝑐ℎ [𝑙𝑜𝑔(1 − 𝐷 (𝐹𝑠𝑝𝑒𝑒𝑐ℎ,𝐺 (𝑧, 𝐹𝑠𝑝𝑒𝑒𝑐ℎ)] + E𝐹𝑠𝑝𝑒𝑒𝑐ℎ,𝜃𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 [𝑙𝑜𝑔𝐷 (𝐹𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 , 𝜃𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 )]

The proposed model is inspired by Wu et al. [42]. However, the final architecture differs from Wu et al. [42].
Indeed, we did not use LSTMs but 1D convolution layers. This choice is motivated by the fact that Li et al. [21]
have shown that convolutional layers are better in the movements generation task, as it prevents the error
accumulation, which is specific to RNN. Moreover, our outputs are not as Wu et al. [42] who use only the 3D
coordinates of the upper body movements. In this work, we consider the facial expressions expressed in action
units, the head movements and the gaze direction expressed in 3D coordinates.

2𝑛𝑑 - Adversarial Encoder-Decoder: the second architecture is inspired by Habibie et al. [13]. The generator
takes the form of a 1D encoder-decoder. It is an adaptation of the U-Net implementation [34] originally created
for 2D image segmentation. This architecture is created to take advantage of the correlation between head
movements, gaze orientation and facial expressions. The encoder consists of ten 1D blocks (Conv-BN-ReLU)
with size 3 kernels and MaxPool after every second block. Then, three decoders are created symmetrically to
generate believable behaviours. Each decoder is associated to a data type with different value intervals: a decoder
for head movements, a decoder for eye movements and a decoder for AUs. They consist of seven 1D blocks
(conv-BN-ReLU) with kernels of size 3 and UpSampling after every second block. As the decoders are symmetric
with the encoder, it uses skip-connectivity with the corresponding layers of the encoder. Figures 3 and 4 illustrate
this architecture.

Fig. 3. Generator architecture of the second model
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Fig. 4. Discriminator architecture of the second model

As explained in Ginosar et al. [11], to avoid convergence towards the average, ensure believable and expressive
behaviours and enhance the synchronisation between behaviours and speech, a discriminator is added to this
encoder-decoder to implement adversarial training. As in our previous model, the discriminator must predict
whether the generated samples are real or fake. It consists of eight 1D layers (Conv-BN-Relu) with a kernel
of size 3 and MaxPool after each second block. Then a linear and sigmoid activation layer. As in the previous
architecture, we do not only use the generated behaviours as input, but also the acoustic speech features. We also
add dropout layers after the 1D layers.

The authors were inspired by U-Net architecture with a modification of the number of layers and their size.
We keep the number of layers and size of the U-Net architecture, transforming the 2D convolution layers into 1D
convolution layers. Habibie et al. [13] generated facial expressions and movements in 3D coordinates, unlike
them we generate facial expressions using action units.

Training details: we use Adam for training, with a learning rate of 10−3 for the generator and 10−5 for
the discriminator and a mini batch of 32. We train during 1000 epochs. We supervise our generator𝐺 with the
following loss function:

L𝐺 = L𝑔𝑎𝑧𝑒 + Lℎ𝑒𝑎𝑑 + L𝐴𝑈

L𝑔𝑎𝑧𝑒 , Lℎ𝑒𝑎𝑑 and L𝐴𝑈 are the root mean square errors (RMSEs) of the gaze orientation, head movement, and
AUs features.

L𝑔𝑎𝑧𝑒 =

𝑇−1∑︁
𝑡=0

(𝜃𝑔𝑎𝑧𝑒 [𝑡] − 𝜃𝑔𝑎𝑧𝑒 [𝑡])2

Lℎ𝑒𝑎𝑑 =

𝑇−1∑︁
𝑡=0

(𝜃ℎ𝑒𝑎𝑑 [𝑡] − 𝜃ℎ𝑒𝑎𝑑 [𝑡])2

L𝐴𝑈 =

𝑇−1∑︁
𝑡=0

(𝜃𝐴𝑈 [𝑡] − 𝜃𝐴𝑈 [𝑡])2

we pose the adversarial loss function with the discriminator D:

𝐿𝑎𝑑𝑣 (𝐺, 𝐷) = E𝐹𝑠𝑝𝑒𝑒𝑐ℎ [𝑙𝑜𝑔(1 − 𝐷 (𝐹𝑠𝑝𝑒𝑒𝑐ℎ,𝐺 (𝐹𝑠𝑝𝑒𝑒𝑐ℎ)] + E𝐹𝑠𝑝𝑒𝑒𝑐ℎ,𝜃𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 [𝑙𝑜𝑔𝐷 (𝐹𝑠𝑝𝑒𝑒𝑐ℎ, 𝜃𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 )]

Combining this adversarial loss with the direct supervisory loss, we get:

L = L𝐺 +𝑤.min
𝐺

max
𝐷

L𝑎𝑑𝑣 (𝐺,𝐷)

With w set to 0.1 to ensure that each term is equally weighted. In order to compare the results of an encoder-
decoder without discriminator, we also analyse𝑤 = 0 in the section 6.
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Smoothing of data
Visualisation of several generated behaviours played on a virtual agent allowed us to observe that the speed of
the generated behaviours, especially those of the head, eyes, eyebrows and mouth, is higher than real behaviours.
This phenomenon is observed in particular by Kucherenko et al. [18], our intuition tells us that the number of
speakers in our dataset increases it. We therefore perform a post-processing of data, with the Savitzky-Golay
algorithm used in signal processing, to smooth our behaviour curves by convolutions, with a polynomial as
interpolation function. The parameters of this smoothing are the degree of the polynomial and the number
of points to consider. Head movements, gaze direction, mouth and eyebrows are not smoothed with the same
parameters. We use a polynomial of degree 7 with a window of 71 points for head movements, a window of 31
points for gaze direction, a window of 21 points for the AUs corresponding to the eyebrows, and finally a window
of 11 points for the AUs corresponding to the mouth. To determine these parameters, we empirically and visually
evaluate the resulting behaviours on a set of generated videos played on the virtual agent.

The AU corresponding to eyes blink is treated differently. Intermediate values for this AU are not realistic (e.g.
an eye half open over several seconds). We assign the maximum value when the model predicts a value higher
than the average of the range of possible values and we assign the minimum value when the model predicts a
value lower than the average of this range.

Due to the crucial role of smoothing and post-processing, for the final user study we considered only smoothed
gestures.

6 EVALUATION AND RESULTS
In order to determine the best configurations for our models, we train various models by varying the corpus
used (the corpus POM [10] and the corpus MOSI [43]), the considered input features, the normalisation intervals,
the loss functions, the type of layers, the dropout, the size of the convolution kernels, the activation functions,
the batch size, the learning rates, the number of unrolled step in the Unrolled GAN, or even the parameters of
the smoothing function. Then, we evaluate these models using several metrics on the test set to determine the
generative models that create the most believable behaviours.

The quality of a behavioural generation model can be assessed using objective measures and/or subjective
measures. The objective measures are based on algorithmic approaches and return quantitative values reflecting
the performance of the model. The subjective measures are generally based on the evaluation of human observers.
Note that since we do not have the same task generation as previous research works, we cannot evaluate our
model by comparing our performances to existing models.

Objective evaluation
First, we define objective metrics. We consider loss functions, usually used in deep learning, and kernel density
estimation, used for example by Sadoughi and Busso [35] for the task of behaviour generation. In this paper,
we, moreover, propose to explore another objective measure: a visualisation from principal component analysis
(PCA) reduction to make an initial assessment of the efficiency of our models.

The loss function: during training, by computing the loss on the training set and the test set, we verify that
there is no overfitting. Nevertheless, as explained in Wu et al. [42], we cannot select models whose loss function
tend to 0. Indeed, this method is not suitable for the task of behaviour generation. In fact, the behaviours may be
believable without matching the behaviours in the initial test set. If the initial video raises the right eyebrow, the
same effect can be produced by raising the left eyebrow, yet the loss function will result in a high value. This
evaluation method also tends to ignore small deviations in behaviour whereas these deviations may have a strong
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impact on human perception: for instance, if suddenly the agent brutally balances the head backwards with no
apparent reason. This measure should therefore be complemented by other evaluation methods.

The kernel density estimation : this evaluation consists of fitting a distribution to the generated examples
and finding the likelihood of the initial examples to belong to this distribution. We use the test set to generate
behaviours from the audio features. These generations are then used to perform kernel-based density estimation.
In this evaluation, each image is considered as a different sample. Finally, we compute the mean and standard
deviation of the likelihood that the initial samples belong to this generated distribution. This measure gives a
good indication of the reliability of our models, but cannot be used alone to evaluate them. One deviation may be
greater than another and yet give more believable movements and expressions when they are visualised. We
select models whose mean and standard deviation of likelihood is less than the average of all our evaluations.

The visualisation from PCA reduction: PCA reduces the visual dimensions of our samples, then we project
onto a two-dimensional space several images from our initial test set as well as several images from our generated
test set. A good distribution does not guarantee believable results, but a bad distribution generally reflects bad
results. The 3 most frequent cases are : (1) distribution of generated data close to the distribution of real data; (2)
distribution of generated data spatially shifted in comparison to the distribution of real data; (3) distribution of
generated data centred on the distribution of real data, but reduced.
Based on the objective metrics described above, we select for each of our models a good architecture and

combination of hyperparameters. Our first CGAN model is identified as "𝑚1", our second AED model is identified
as "𝑚2" and finally this second model without its discriminator (corresponds to 𝑤 = 0 in the loss function) as
"𝑚2𝑤/𝑜𝐷". We first select models with the kernel density estimation whose mean and standard deviation of
likelihood is less than the average of all our evaluations. Then, we keep those whose visualisation from PCA
reduction showed the best distribution of generated data compared to the distribution of real data. For the best
models, we obtain in terms of log-likelihood : mean -46.76, std 93.77 for𝑚1; mean -51.36, std 101.692 for𝑚2, and
mean -51.35 std 97.24 for𝑚2𝑤/𝑜𝐷 .
These three objective metrics, considered together, give an indication of the believability of the generated

behaviours. However, they remain insufficient. For example, they do not measure the coherence of the behaviours
with the speech or do not evaluate the adequacy of the behaviour speed. In general, objective measures are
necessary, but not sufficient to determine which models give the best results [41]. Subjective evaluations are
therefore crucial since the objective measures cannot assess all the complexity of the social communication.
However, these studies are long and complex to implement, hence the use of objective metrics to pre-select
models.

Subjective Evaluation
The ultimate goal of behaviour generation is to generate behaviours that appear believable in comparison to
human behaviours. Since human movements are highly variable, the generated movements may appear believable
without matching the training data. Consequently, the best way to evaluate our models is to conduct user
perceptive studies.
In order to select the appropriate evaluation criteria, we base our subjective evaluation study on previous

research, such as Wolfert et al. [41], Wu et al. [42] and Habibie et al. [13]. We first selected two criteria : the
naturalness and the temporal coordination with speech, to complement our objective measures. These two criteria
are necessary to obtain a believable animation. We evaluate these criteria through direct questions:

o naturalness: is the behaviour natural? Is the behaviour smooth?
o temporal coordination: is the behaviour coherent with the speech? Is the speed of movements and facial
expressions coherent with the speech?

11
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In the conducted subjective evaluation, we randomly select seven videos among all videos of man from our test
set and we choose from each of them a 15 second sequence. In order to simplify the animation process, the used
virtual agent is always the same male character. We start by producing the animation videos of a virtual agent
corresponding to the real videos. To do so, we use the visual features 𝜃ℎ𝑒𝑎𝑑 [0 : 𝑇 ], 𝜃𝑔𝑎𝑧𝑒 [0 : 𝑇 ] and 𝜃𝐴𝑈 [0 : 𝑇 ]
extracted from each of the initial videos with OpenFace and animate the virtual agent on Greta with these features.
The movements of the virtual agent are thus the movements performed by the speaker of the initial video. Note
that, due to the limitation of Openface and of the Greta platform (limited number of AUs), the resulting video is
not exactly a replication of the human’s behaviour. We will therefore call these sequences the simulated ground
truth.
Next, we associate the sound of the initial videos to our animated videos. To avoid the uncanny valley effect

[27], and more particularly to avoid a gap between the realism of the voice and the realism of the virtual character,
the pitch of the voice is modified to look like a synthesised voice4. We also choose to blur the mouth area. In our
preliminary experiments, we noticed that the participants’ evaluations were strongly linked to the accuracy of
the lip movements. However, many tools exist to generate lip movements from speech, so we decide, in this first
work, to direct the participants’ attention to all other generated behaviours.

We repeat the animation process and replace the visual features of the simulated ground truth with those
predicted by each of our models. In total, we animate 7 monologues from the test set, first with the real features
extracted with OpenFace from the real videos5, then with the features generated by our models𝑚16,𝑚27 and
𝑚2𝑤/𝑜𝐷8. We obtain in total 28 videos of 15 seconds each.

Thirty-one persons of French nationality, recruited on social networks, participated to our study (16 males, 14
females and 1 not disclosed). The average age of the participants is 30.13 years with a standard deviation of 11.26.
They viewed each of the videos, in a random order, and rated them on each of the criteria using a five-point
Likert scale, ranging from strongly disagree (1) to strongly agree (5).
Table 2 presents the results of this objective evaluation for our three selected models and for the simulated

ground truth. The values in the table are the means (mean) and standard deviations (std).

Table 2. Results of the perceptive study

Simulated ground truth 𝑚1 𝑚2 𝑚2𝑤/𝑜𝐷
mean std mean std mean std mean std

Coordination 3,08 1,07 2,21 0,99 3,10 0,87 2,98 0,97
Naturalness 2,67 1,03 1.85 0.88 3,16 1,02 3,24 1,05

The average of the scores tends to show that the best model is the𝑚2 model in terms of coordination, and
the𝑚2𝑤/𝑜𝐷 model in terms of naturalness. We also note that for each model, the scores for coordination and
naturalness are different, showing the importance to analyse these two criteria.
To further analyse the results, we perform a statistical analysis to assess the significant differences between

the models. We conduct the Shapiro-Wilk test to assess the normality, which reveals that the data are not from a
4See the section Add synthesised voice on github.
5example: https://youtube.com/shorts/EKVDGSBY_wA?feature=share
6example: https://youtube.com/shorts/ytkPzso6l28?feature=share
7example: https://youtube.com/shorts/zJQrnR2mN4g?feature=share
8example: https://youtube.com/shorts/H9O9-k1pHx4?feature=share
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normally distributed population. The evaluation is therefore performed using a Friedman test based on a repeated
measures ANOVA, with the within-subjects factor being the considered model (ground-truth,𝑚1,𝑚2,𝑚2𝑤/𝑜𝐷).

Once again, the results show the superiority of the auto-encoding architecture (𝑚2 and𝑚2𝑤/𝑜𝐷) which, by
representing the acoustic speech features in a smaller representation and then decoding each of the visual features
independently, allows to obtain results significantly superior to the𝑚1 model in terms of naturalness, 𝑝 < 0.001,
and coordination, 𝑝 < 0.001, but also to the simulated ground truth in terms of naturalness, 𝑝 < 0.001. Secondly,
none of the two criteria differ significantly between the𝑚2 model and the𝑚2𝑤/𝑜𝐷 model. These results are
different from what we expected. Indeed, we expect that the addition of the discriminator improve coordination,
but the lack of significance in the difference between𝑚2 and𝑚2𝑤/𝑂𝑤 models does not allow us to draw such
conclusions. These results may be explained by different reasons: (1) the discriminator avoids convergence
towards the average and increases believable and expressive behaviours, as a result, they are perceived as less
coordinated; (2) user tests performed on very short videos of 15 seconds, and a longer video could lead to different
results revealing repetitive behaviours; (3) the number of participants may not be sufficient to reveal significant
differences between these two models. Consequently, in the next evaluation, we aim at evaluating video with
longer duration and on a larger set of participants.

7 CONCLUSIONS AND PERSPECTIVES
We present two models that jointly generate head movements, gaze orientation and facial expressions based on
action units (AUs) automatically from speech, a Generative Adversarial Network and an Adversarial Encoder-
Decoder. As far as we know, these models are the first attempt to generate jointly these non-verbal behaviours.

We implement a multi-step evaluation, first objectively with kernel density estimation and visualisation from
PCA reduction, then subjectively through users subjective study, on two criteria: coordination with speech and
naturalness. This evaluation shows the superiority of the model with an encoder-decoder. These results should,
of course, be taken with caution, as a change in the length of the videos considered could for example change the
participants’ perception of certain criteria.

The proposed objective evaluation metrics allow us to differentiate models that generate completely unrealistic
behaviours from those that generate more believable behaviours. To improve this evaluation phase, it is necessary
to integrate new metrics able to compute the speed and coherence of behaviours with speech. Nevertheless,
subjective evaluations are crucial in our field, mainly because social communication is much more complex than
what objective measures are able to evaluate.

We implement during the subjective study a five-point Likert scale, which participants used to evaluate certain
criteria such as the naturalness and temporal coordination of the virtual agent. In our next subjective studies, we
could try to use pairwise comparisons. Participants will be asked to indicate which video between two proposed
matches the evaluated criteria the most. We also would like to use longer generated videos and conduct the study
with a larger number of participants. There are many other ways to improve this study, for example by using an
eye tracker to assess participants’ attention.

Despite the various experiments performed, there are still many possibilities to explore that would probably
lead to a generation of more believable behaviours. We can add a regularisation term for the loss function or
simply adapt the number of convolution layers of our models. The generated behaviours also strongly depend
on the considered corpora. Our corpus lacks, among other things, of moments of "silence", so that our models
cannot learn the behaviours to adopt when there is a pause in speech. In addition, the use of automatic extraction
tools to extract behavioural characteristics add considerable noise to our dataset. Finally, the large number of
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speakers in our dataset adds a difficulty to the learning process, we plan to replicate our experiments with a
dataset containing a single speaker.

In our future work, several directions are possible. Firstly, we aim at generating behaviours conditioned by
a social attitude. We are particularly interested in the persuasion. A possible metric in this context will be to
use a generative model as a feature extractor, and then evaluate through a linear model its performance on the
classification of the persuasive attitude [31]. Secondly, we aim at integrating the dyadic interaction environment,
rather than just a monologue. An approach to simulate socio-emotional behaviour and to integrate the interaction
would be to mix rule-based systems and data-driven approaches. This would allow us to take advantage of the
benefits of both approaches simultaneously. Finally, instead of using human speech to generate the non-verbal
behaviours, we could try to achieve this generation from a synthesised speech. The synthesised speech will
probably have to present the same variations of these acoustic features as the human speech to obtain satisfactory
results.

REFERENCES
[1] Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency. 2016. Openface: an open source facial behavior analysis toolkit. In 2016

IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 1–10.
[2] Carlos Busso, Zhigang Deng, Michael Grimm, Ulrich Neumann, and Shrikanth Narayanan. 2007. Rigid head motion in expressive speech

animation: Analysis and synthesis. IEEE transactions on audio, speech, and language processing 15, 3 (2007), 1075–1086.
[3] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2017. Realtime multi-person 2d pose estimation using part affinity fields. In

Proceedings of the IEEE conference on computer vision and pattern recognition. 7291–7299.
[4] Justine Cassell. 2000. Embodied conversational interface agents. Commun. ACM 43, 4 (2000), 70–78.
[5] Justine Cassell, Catherine Pelachaud, Norman Badler, Mark Steedman, Brett Achorn, Tripp Becket, Brett Douville, Scott Prevost, and

Matthew Stone. 1994. Animated conversation: rule-based generation of facial expression, gesture & spoken intonation for multiple
conversational agents. In Proceedings of the 21st annual conference on Computer graphics and interactive techniques. 413–420.

[6] Chung-Cheng Chiu and Stacy Marsella. 2014. Gesture generation with low-dimensional embeddings. In Proceedings of the 2014
international conference on Autonomous agents and multi-agent systems. 781–788.

[7] Paul Ekman. 2002. Facial action coding system (FACS). A Human Face, Salt Lake City (2002).
[8] Paul Ekman and Wallace V Friesen. 1978. Facial action coding system. Environmental Psychology & Nonverbal Behavior (1978).
[9] Florian Eyben, Martin Wöllmer, and Björn Schuller. 2010. Opensmile: the munich versatile and fast open-source audio feature extractor.

In Proceedings of the 18th ACM international conference on Multimedia. 1459–1462.
[10] Alexandre Garcia, Slim Essid, Florence d’Alché Buc, and Chloé Clavel. 2019. A multimodal movie review corpus for fine-grained opinion

mining. arXiv preprint arXiv:1902.10102 (2019).
[11] Shiry Ginosar, Amir Bar, Gefen Kohavi, Caroline Chan, Andrew Owens, and Jitendra Malik. 2019. Learning individual styles of

conversational gesture. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3497–3506.
[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.

2014. Generative adversarial nets. Advances in neural information processing systems 27 (2014).
[13] Ikhsanul Habibie, Weipeng Xu, Dushyant Mehta, Lingjie Liu, Hans-Peter Seidel, Gerard Pons-Moll, Mohamed Elgharib, and Christian

Theobalt. 2021. Learning speech-driven 3d conversational gestures from video. In Proceedings of the 21st ACM International Conference
on Intelligent Virtual Agents. 101–108.

[14] Dai Hasegawa, Naoshi Kaneko, Shinichi Shirakawa, Hiroshi Sakuta, and Kazuhiko Sumi. 2018. Evaluation of speech-to-gesture generation
using bi-directional LSTM network. In Proceedings of the 18th International Conference on Intelligent Virtual Agents. 79–86.

[15] Patrik Jonell, Taras Kucherenko, Gustav Eje Henter, and Jonas Beskow. 2020. Let’s Face It: Probabilistic Multi-modal Interlocutor-aware
Generation of Facial Gestures in Dyadic Settings. In Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents.
1–8.

[16] Tero Karras, Timo Aila, Samuli Laine, Antti Herva, and Jaakko Lehtinen. 2017. Audio-driven facial animation by joint end-to-end
learning of pose and emotion. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–12.

[17] Adam Kendon. 2004. Gesture: Visible action as utterance. Cambridge University Press.
[18] Taras Kucherenko, Dai Hasegawa, Naoshi Kaneko, Gustav Eje Henter, and Hedvig Kjellström. 2021. Moving fast and slow: Analysis

of representations and post-processing in speech-driven automatic gesture generation. International Journal of Human–Computer
Interaction 37, 14 (2021), 1300–1316.

14



Non-verbal behaviour generation of a virtual agent ICMI ’22 Companion, November 7–11, 2022, Bengaluru, India

[19] Sergey Levine, Christian Theobalt, and Vladlen Koltun. 2009. Real-time prosody-driven synthesis of body language. In ACM SIGGRAPH
Asia 2009 papers. 1–10.

[20] Margot Lhommet, Yuyu Xu, and Stacy Marsella. 2015. Cerebella: automatic generation of nonverbal behavior for virtual humans. In
Twenty-Ninth AAAI Conference on Artificial Intelligence.

[21] Jing Li, Di Kang, Wenjie Pei, Xuefei Zhe, Ying Zhang, Zhenyu He, and Linchao Bao. 2021. Audio2Gestures: Generating Diverse Gestures
from Speech Audio with Conditional Variational Autoencoders. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 11293–11302.

[22] Soroosh Mariooryad and Carlos Busso. 2012. Generating human-like behaviors using joint, speech-driven models for conversational
agents. IEEE Transactions on Audio, Speech, and Language Processing 20, 8 (2012), 2329–2340.

[23] Stacy Marsella, Yuyu Xu, Margaux Lhommet, Andrew Feng, Stefan Scherer, and Ari Shapiro. 2013. Virtual character performance from
speech. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 25–35.

[24] David McNeill. 2000. Language and gesture. Vol. 2. Cambridge University Press Cambridge.
[25] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. 2016. Unrolled generative adversarial networks. arXiv preprint

arXiv:1611.02163 (2016).
[26] Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).
[27] Masahiro Mori, Karl F MacDorman, and Norri Kageki. 2012. The uncanny valley [from the field]. IEEE Robotics & automation magazine

19, 2 (2012), 98–100.
[28] Kevin G Munhall, Jeffery A Jones, Daniel E Callan, Takaaki Kuratate, and Eric Vatikiotis-Bateson. 2004. Visual prosody and speech

intelligibility: Head movement improves auditory speech perception. Psychological science 15, 2 (2004), 133–137.
[29] Nora A Murphy and Judith A Hall. 2021. Capturing Behavior in Small Doses: A Review of Comparative Research in Evaluating Thin

Slices for Behavioral Measurement. Frontiers in psychology 12 (2021), 667326.
[30] George Papamakarios, Eric T Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshminarayanan. 2021. Normalizing

Flows for Probabilistic Modeling and Inference. J. Mach. Learn. Res. 22, 57 (2021), 1–64.
[31] Sunghyun Park, Han Suk Shim, Moitreya Chatterjee, Kenji Sagae, and Louis-Philippe Morency. 2014. Computational analysis of

persuasiveness in social multimedia: A novel dataset and multimodal prediction approach. In Proceedings of the 16th International
Conference on Multimodal Interaction. 50–57.

[32] Catherine Pelachaud. 2015. Greta: an interactive expressive embodied conversational agent. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems. 5–5.

[33] Hai Xuan Pham, Yuting Wang, and Vladimir Pavlovic. 2018. End-to-end learning for 3d facial animation from speech. In Proceedings of
the 20th ACM International Conference on Multimodal Interaction. 361–365.

[34] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In
International Conference on Medical image computing and computer-assisted intervention. Springer, 234–241.

[35] Najmeh Sadoughi and Carlos Busso. 2018. Novel realizations of speech-driven head movements with generative adversarial networks.
In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 6169–6173.

[36] Najmeh Sadoughi, Yang Liu, and Carlos Busso. 2015. MSP-AVATAR corpus: Motion capture recordings to study the role of discourse
functions in the design of intelligent virtual agents. In 2015 11th IEEE International Conference and Workshops on Automatic Face and
Gesture Recognition (FG), Vol. 7. IEEE, 1–6.

[37] Kenta Takeuchi, Dai Hasegawa, Shinichi Shirakawa, Naoshi Kaneko, Hiroshi Sakuta, and Kazuhiko Sumi. 2017. Speech-to-gesture
generation: A challenge in deep learning approach with bi-directional LSTM. In Proceedings of the 5th International Conference on Human
Agent Interaction. 365–369.

[38] Angela Tinwell, Mark Grimshaw, Debbie Abdel Nabi, and Andrew Williams. 2011. Facial expression of emotion and perception of the
Uncanny Valley in virtual characters. Computers in Human Behavior 27, 2 (2011), 741–749.

[39] David Traum, William Swartout, Peter Khooshabeh, Stefan Kopp, Stefan Scherer, and Anton Leuski. 2016. Intelligent Virtual Agents: 16th
International Conference, IVA 2016, Los Angeles, CA, USA, September 20–23, 2016, Proceedings. Vol. 10011. Springer.

[40] Michel François Valstar and Maja Pantic. 2006. Biologically vs. logic inspired encoding of facial actions and emotions in video. In 2006
IEEE International Conference on Multimedia and Expo. IEEE, 325–328.

[41] Pieter Wolfert, Jeffrey M Girard, Taras Kucherenko, and Tony Belpaeme. 2021. To rate or not to rate: Investigating evaluation methods
for generated co-speech gestures. In Proceedings of the 2021 International Conference on Multimodal Interaction. 494–502.

[42] Bowen Wu, Chaoran Liu, Carlos Toshinori Ishi, and Hiroshi Ishiguro. 2021. Modeling the conditional distribution of co-speech upper
body gesture jointly using conditional-GAN and unrolled-GAN. Electronics 10, 3 (2021), 228.

[43] Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-Philippe Morency. 2016. Mosi: multimodal corpus of sentiment intensity and
subjectivity analysis in online opinion videos. arXiv preprint arXiv:1606.06259 (2016).

15


	Abstract
	1 Introduction
	2 Problem formulation
	3 State of the art
	3.1 Rules-based systems
	3.2 Data-driven approaches
	3.3 Outputs of the models
	3.4 Corpora

	4 Pre-processing of the data
	5 Methods and models
	6 Evaluation and Results
	7 Conclusions and perspectives
	References

