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Abstract
Dynamic pricing with resource constraints is a critical challenge in online learning,
requiring a delicate balance between exploring unknown demand patterns and
exploiting known information to maximize revenue. We propose three tailored
algorithms to address this problem across varying levels of prior knowledge: (1) a
Boundary Attracted Re-solve Method for the full information setting, achieving
O(log T ) regret without imposing additional conditions; (2) an online learning
algorithm for the no information setting, delivering an optimal O(

√
T ) regret; and

(3) an estimate-then-select re-solve algorithm for the informed price setting, lever-
aging machine-learned prices with known error bounds to bridge the gap between
full and no information scenarios. Moreover, through numerical experiments, we
demonstrate the robustness and practical applicability of our approaches. This
work advances dynamic pricing by offering scalable solutions that adapt to diverse
informational contexts while relaxing classical assumptions.

1 Introduction
Dynamic pricing is a classical problem in online learning and decision-making. With the growth of
e-commerce, there has been an increasing focus on the development of efficient dynamic pricing
policies in the recent literature, see for example Amin et al. [2014], Javanmard and Nazerzadeh
[2019], Shah et al. [2019], Cohen et al. [2020], Xu and Wang [2021], Bu et al. [2022], Xu and Wang
[2022], Xu et al. [2025].

Dynamic pricing is challenging due to the unknown relationship between the posted price and the
corresponding demand. Usually, one can model the dynamic pricing problem as a bandit problem to
balance the exploration of the price-demand relationship and the exploitation of setting the optimal
price, where the price option is regarded as an arm and the corresponding revenue (demand multiplied
price) is regarded as the reward for the arm. However, different from the classical multi-arm-bandit
model where there is a finite number of arms, the price option can be infinite and continuous, which
brings significant challenge to the learning part.

Another challenge to dynamic pricing is the existence of resource constraints. In practice, a product
usually enjoys a fixed initial inventory to be sold during the horizon and the pricing decision is made
to balance the demand such that the total revenue is maximized subject to the resource constraints.
Note that the existence of resource constraints will significantly complicate the problem because the
optimal decision is no longer to maximize the revenue but to balance the revenue versus resource
consumption in an optimal way. Past work on dynamic pricing mainly focuses on dealing with the
learning challenge, but ignores the challenge of resource allocation (e.g. Keskin and Zeevi [2014]).
In our paper, we address this fundamental issue by developing near-optimal learning policies for
dynamic pricing problems with resource constraints.

1.1 Preliminaries
To study this problem, we consider a setting with m resources and n products over a horizon of T
periods. At each period t, the decision-maker (DM) sets a price vector pt ∈ [L,U ]n, observes a
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stochastic demand dt ∈ Rn
+, and then updates the remaining capacities according to

ct+1 = ct − Adt ,

where A ∈ Rm×n
+ is a known consumption matrix and c0 is the initial resource capacity vector. The

objective is to choose a pricing policy that maximizes the total expected revenue

E
[ T∑

t=1

(pt)⊤dt
]
,

while never violating the resource constraints (i.e., not serving demand that exceeds the remaining
capacity).

Rather than compare to the intractable stochastic optimum of this problem, we evaluate any policy π
via its regret relative to an idealized fluid benchmark. The fluid benchmark replaces random demand
by its expectation and computes the optimal solution of the resulting deterministic problem. In
particular, assuming a known demand function f(p) = E[d | p], the fluid optimal value is given by
the solution of

V Fluid(c0) = max
p∈[L,U ]n

{T · p⊤f(p) | Af(p) ≤ c0/T } , (1)

which is a deterministic program. To ensure the problem is well-posed, we make the following
assumptions:
Assumption 1.1 (Linear demand model). We assume the true demand function is linear. That is,
there exist parameters α = (α1, . . . ,αn)

⊤ ∈ Rn and B ∈ Rn×n such that

f(p) = α+B p

for any price vector p in the feasible domain.

Although we focus on a linear demand model for clarity, our analysis can be extended to more general
parametric demand models under standard regularity conditions (e.g., Lipschitz continuity and
concavity). We also impose a mild condition ensuring the demand slope is strictly negative-definite:
Assumption 1.2 (Negative definiteness). The matrix B is negative definite; namely, λmax(B+B⊤) <
0 where λmax(·) denotes the largest eigenvalue of a matrix. Moreover, we assume that α is large
enough to guarantee f(p) ≥ 0 for any price vector p in the feasible domain.

This condition implies that each price has a strictly decreasing effect on demand and that B is
invertible. (Indeed, if Bp = 0 for some nonzero p, then (p)⊤(B + B⊤)p = 0, contradicting
λmax < 0.) In particular, the revenue function p 7→ (p)⊤f(p) = (p)⊤α+ (p)⊤Bp is concave in p
under this assumption.

To model demand uncertainty, we assume the observed demand includes independent noise. Formally,
at each period t the realized demand is

dt = f(pt) + ϵt ,

where ϵt ∈ Rn is a random noise vector with E[ϵt] = 0 and ϵt ≥ −f(pt). We assume ϵt is sub-
Gaussian with variance parameter σ2, meaning P(|v⊤ϵt| ≥ λ) ≤ 2 exp(−λ2/(2σ2)) for any unit
vector v. The revenue collected at time t is rt = pt⊤dt, and the resource consumption is Adt, so the
capacity updates as ct+1 = ct −Adt. (If fulfilling the demand dt for some product would exhaust a
resource, we assume the sales of that product are curtailed to respect the capacity constraint.) We
define a filtered probability space (Ω,F , {F t}Tt=0,P) where F t represents all information available
up to time t. We have an upper bound on the expected revenue of any admissible policy for the
original stochastic problem .
Proposition 1.3 ([Gallego and Van Ryzin, 1994]). For any policy π,

V Fluid(c0) ≥ E
[ T∑

t=1

(pt)⊤dt
]
.

Thus, V Fluid(c0) is a natural yardstick for performance. We define the regret of a policy π over
horizon T as

RegretT (π) = V Fluid(c0) − E
[ T∑

t=1

(pt)⊤dt
]
.
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1.2 Main Results and Contributions
In this paper, we design algorithms that attain near-optimal performance (low regret) in three different
information settings:

1. Full-information setting. When the demand function f(p) is fully known to the seller,
we propose a Boundary-Attracted Re-solve method (Algorithm 1) that achieves O(log T )
regret. Notably, our approach does not require the restrictive non-degeneracy condition
(unique fluid optimal dual prices) assumed in prior work [Wang and Wang, 2022, Li and Ye,
2022], making it robust even when the fluid LP has multiple optima (a common occurrence
in practice; see Bumpensanti and Wang 2020).

2. No-information setting. When the demand function is initially unknown, we develop an
online learning algorithm (Algorithm 2) that interleaves exploration with re-solving. Our
algorithm attains the optimal O(

√
T ) regret rate, matching the known lower bound for this

problem [Keskin and Zeevi, 2014]. This guarantees effective pricing decisions despite the
initial uncertainty about demand.

3. Informed-price setting. In the intermediate case, the seller has access to an initial “machine-
learned” price-demand data point with a known error bound. We design a novel estimate-
then-select algorithm (Algorithm 3) that adaptively leverages this informed price when
it is reliable and falls back to exploration when it is not. We prove that it achieves a
regret of O(min{

√
T , (ϵ0)2T}+ log T ), where ϵ0 is the known error bound of the initial

estimate. In particular, with a sufficiently accurate initial price estimate, the regret improves
beyond the Ω(

√
T ) rate of uninformed learning, effectively bridging the gap between the

full-information and no-information extremes.

In summary, our work provides a unified framework for dynamic pricing under resource constraints
that relaxes several unrealistic assumptions and incorporates offline information into online learning.
By addressing all three information regimes, we remove prior limitations (such as requiring unique
fluid solutions or having no access to historical data) and develop algorithms that are theoretically
optimal and practically implementable. Finally, we validate the scalability and robustness of our
methods through extensive numerical experiments (see Appendix 5 for details), demonstrating
that they perform well in multi-resource settings and under various levels of noise and model
misspecification.

1.3 Related Literature
Our work connects to four main research streams: (i) bandits with knapsacks; (ii) online resource
allocation with fluid approximations; (iii) dynamic pricing with offline data and parameter estimation;
and (iv) learning-augmented algorithms.

Bandits with knapsacks. The BwK framework, introduced by Agrawal and Devanur [2016], ad-
dresses online decision-making with resource constraints. Two main approaches have been developed.
The first approach selects an optimal randomized policy from a finite policy class [Badanidiyuru et al.,
2014]. Using this method, Agrawal et al. [2016] achieve O(

√
T ) regret, and Liu et al. [2022] extend

the analysis to non-stationary environments. This policy-selection approach leverages contextual
bandit techniques [Dudik et al., 2011, Badanidiyuru et al., 2014] and often relies on a cost-sensitive
classification oracle for efficiency. The second approach tackles BwK via a Lagrangian-dual formula-
tion, transforming the problem into an online convex optimization (OCO) task. For example, Agrawal
and Devanur [2016], Sankararaman and Slivkins [2021], Sivakumar et al. [2022], and Liu and Grigas
[2022] study linear demand settings and combine bandit learning algorithms (for reward and con-
sumption estimation [Abbasi-Yadkori et al., 2011, Auer, 2002, Sivakumar et al., 2020, Elmachtoub
and Grigas, 2022, Kumar and Kleinberg, 2022, Ma et al., 2024, Zhang and Cheung, 2024]) with
OCO methods to guarantee sub-linear regret. More recently, Chen et al. [2024] consider a contextual
knapsack setting and show that under certain conditions one can attain constant (dimension-free)
regret beyond the worst-case scenario. Our work differs by addressing continuous pricing decisions
(versus discrete actions) and developing algorithms across diverse information regimes, including
handling degenerate solutions that arise in resource-constrained settings.

Online resource allocation and fluid approximations. A related line of research examines online
algorithms for resource allocation by comparing to an offline or fluid benchmark [Reiman and
Wang, 2008, Jasin and Kumar, 2012, 2013, Ferreira et al., 2018, Bumpensanti and Wang, 2020,
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Banerjee and Freund, 2020, Vera and Banerjee, 2021, Wang and Wang, 2022, Jiang et al., 2025,
Jaillet et al., 2024, Ao et al., 2024a,b, 2025, Jiang and Zhang, 2025]. The fluid benchmark, originally
introduced by Gallego and Van Ryzin [1994], provides a deterministic relaxation of the stochastic
problem that serves as an upper bound on achievable revenue. For dynamic pricing with resource
constraints, Wang and Wang [2022] prove that a fluid re-solving policy can achieve near-optimal
O(log T ) regret, but their analysis crucially assumes a non-degeneracy condition—requiring unique
optimal dual solutions and isolated optimal bases throughout the horizon. This condition, however,
often fails in practice when resources become scarce or demand patterns create degenerate solutions
[Bumpensanti and Wang, 2020, Jiang et al., 2025]. Our key contribution is eliminating this restrictive
requirement through boundary attraction, which preemptively reserves near-depleted resources to
prevent constraint violations and maintains algorithmic stability even when the fluid solution is
degenerate. Other related approaches include prophet inequality frameworks [Vera and Banerjee,
2021] and various dual-based methods [Banerjee and Freund, 2020, Ao et al., 2024a,b], but none of
their techniques explicitly address the degeneracy challenge that our boundary attraction mechanism
tackles in joint learning and continuous decision-making scenarios.

Dynamic pricing with offline data. Leveraging offline data for online pricing is increasingly impor-
tant. Keskin and Zeevi [2014] pioneered the “incumbent price” setting with one accurate observation
in unconstrained environments. We extend this to resource-constrained settings and provide the first
rigorous analysis of how informed prices exhibit a phase transition with prediction accuracy ε0. Our
parameter estimation is closely related to the regression framework of Simchi-Levi and Xu [2022] and
Xu and Zeevi [2020], who introduced ordinary least squares with forced exploration for contextual
bandits. We extend their approach to handle hard resource constraints through three innovations: (i)
periodic re-solving with estimated fluid models, (ii) rejection mechanisms for near-depleted resources,
and (iii) analysis under strict feasibility requirements. Related work includes model misspecification
[Ferreira et al., 2018] and offline data integration [Bu et al., 2020, Wang et al., 2024, Li et al., 2021],
but without addressing resource constraints or degeneracy.

Learning-augmented algorithms. Our informed-price setting aligns with the emerging framework
of learning-augmented algorithms [Lykouris and Vassilvitskii, 2021, Mitzenmacher and Vassilvitskii,
2022, Purohit et al., 2018, Lyu et al., 2025], which studies how to leverage potentially inaccurate
predictions to improve online decisions while maintaining worst-case guarantees [Wei and Zhang,
2020]. Similar to recent work on online linear optimization with hints [Bhaskara et al., 2020,
2021, 2023], our Algorithm 3 follows the consistency-robustness paradigm: achieving near-optimal
performance when predictions are accurate (ε0 small) while preserving O(

√
T ) worst-case regret

guarantees when they are not. Our regret bound O(min{ρ
√
T , (ε0)

2T + log T}) exhibits the typical
phase transition behavior characteristic of learning-augmented algorithms—when predictions are
sufficiently accurate, the algorithm “trusts” them and achieves logarithmic regret; otherwise, it falls
back to robust worst-case guarantees. However, our setting differs from standard learning-augmented
frameworks in three critical ways. First, we face hard resource constraints requiring strict feasibility
at every step, not soft constraints handled via Lagrangian relaxation. Second, we must address
degeneracy in optimal solutions that emerges from resource scarcity, necessitating our boundary
attraction mechanism. Third, resource consumption is irreversible—poor early decisions permanently
constrain future feasibility, unlike settings where decisions can be revised. To our knowledge, we
provide the first learning-augmented algorithm for resource-constrained pricing that addresses all
three challenges simultaneously.

Notation. For a real number x, we use ⌈x⌉ to denote the smallest integer ≥ x and ⌊x⌋ for the largest
integer ≤ x. We write x+ = max{x, 0}. For a set S, let |S| be its cardinality. We denote by

dmax = max
p∈[L,U ]n

∥f(p)∥2

the maximum ℓ2-norm of any feasible demand vector under the true demand function f .

2 Algorithm and Logarithmic Regret with Full Information
In the full information setting, the demand function f(p) = α+Bp is known to the decision-maker
(DM). Despite this knowledge, resource constraints complicate the pricing decisions, as the DM
must balance revenue maximization with resource depletion. Prior work, such as Jasin [2014],
achieves logarithmic regret but relies on the non-degeneracy condition, which assumes: Unique
optimal dual solution: The dual LP has a unique optimal vertex λ∗ (not just a unique optimal face);
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Algorithm 1 Boundary Attracted Re-solve Method

1: Input: c1 = C, A, f(p) = α+Bp, rounding threshold ζ.
2: for t = 1, . . . , T do
3: Solve fluid model (2) for (pπ,t,dπ,t)

4: Apply Boundary Attraction: Set d̃ti = dπ,ti if dπ,ti ≥ ζ(T − t+ 1)−1/2, else 0

5: Set pt s.t. f(pt) = d̃t

6: Observe demand d̂t, update ct+1 = ct −Ad̂t

7: end for

Isolated optimal basis: Small perturbations in the constraint right-hand side c/T do not change
which constraints are binding at optimality. More recently, Wang and Wang [2022] replaces this with
assumption c0 ̸= Td∗,T , (where d∗,T is the fluid optimal demands of (1)), which means the system
is either overloaded or underloaded. Moreover, its regret bound relies in order Ω(

∥∥c0/T − d∗,T
∥∥)

on the gap. However, degeneracy is common in practice [Bumpensanti and Wang, 2020], motivating
the need for more robust algorithms.

To address this, we introduce the Boundary Attracted Re-solve Method (Algorithm 1), which
resolves the fluid model at each step and incorporates a boundary attraction technique to handle
potential degeneracy. This method adjusts the pricing strategy by setting demand to zero when it
falls below a dynamic threshold, effectively pushing prices toward the upper bound U and ensuring
sufficient exploration of the price space.

2.1 Algorithm Design
At each period t, the DM observes the remaining capacities ct and solves the fluid model:

V Fluid
t (ct) = max

p∈[L,U ]n
p⊤d

s.t. d = α+Bp,

Ad ≤ ct

T − t+ 1
,

(2)

yielding an optimal solution (pπ,t,dπ,t). To mitigate the risk of degeneracy, we define a targeted
demand d̃t by rounding small demand components to zero:

d̃ti =

{
dπ,ti if dπ,ti ≥ ζ(T − t+ 1)−1/2,

0 otherwise,

where ζ is a rounding parameter. The price pt is then set such that f(pt) = d̃t, ensuring that the
expected demand aligns with the adjusted target. When a resource i is fully depleted (i.e., cti = 0),
we reject all future demand for products requiring that resource. We leave detailed intuition on how
Algorithm 1 works well in Appendix

Why Prior Methods Fail Under Degeneracy. When dπ,tj ≈ 0, the dual variable λi (Lagrange
multiplier for some resource i) can become arbitrarily large, and the gradient∇2L grows unboundedly
as dπ,tj → 0, making the system ill-conditioned. Prior methods cannot control “moderate probability
events” where small noise either exceeds remaining resources (causing irreversible infeasibility)
or leads to under-allocation (wasting resources). Our boundary attraction mechanism avoids this
problematic region entirely by rounding to zero, incurring a controlled total loss of

T∑
t=1

∥dπ,t − d̃t∥22 = O(ζ2 log T ) when ζ = O(1).

This rounding cost is acceptable as it represents the price of eliminating degeneracy-related instabili-
ties.

2.2 Regret Analysis
We now present the regret guarantee for Algorithm 1.
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Theorem 2.1. For Algorithm 1 with ζ ≥ 4σ2, the regret is bounded by:

RegretT
(
π
)
= O

(
ζ2n2∥B−1∥2 log T

)
.

The proof, detailed in Appendix C, involves decomposing the regret using a hybrid policy that
follows Algorithm 1 up to time t and then optimally resolves the remaining periods without noise.
By analyzing single-step differences and leveraging the boundary attraction to hedge against noise,
we achieve the logarithmic regret bound without assuming non-degeneracy.

Theoretical Improvement. This result improves upon prior work by Jasin [2014] and Wang and
Wang [2022], which require non-degeneracy for similar guarantees. Our approach avoids first-order
corrections and instead uses a novel single-step difference technique inspired by Vera and Banerjee
[2021], making it more robust and widely applicable.

3 Algorithm and Regret with No Information
In the no information setting, the demand function f(p) = α+Bp is unknown to the decision-maker
(DM), who must learn it online while simultaneously making pricing decisions. This scenario presents
a classic exploration-exploitation trade-off: the DM needs to gather information about the demand
parameters to improve future decisions while maximizing revenue under resource constraints. Since
the state-action space is continuous and high-dimensional, reinforcement learning algorithms fail in
general.

To tackle this challenge, we propose an online learning algorithm that combines parameter estimation
with the boundary attracted re-solve method and perturbations. Our approach ensures adequate
exploration via controlled price perturbations, while leveraging the learned parameters to make
near-optimal pricing decisions. We assume that we’re able to reject the demands after observation.

3.1 Algorithm Design
At each time period t, the learning task can be summarized as learning the parameters α and B. The
most natural way is to adopt linear regression to learn the parameters. To be more specific, at each
period t, given the data points (p1,d1), . . . , (pt−1,dt−1), we define

Dt
j :=

t−1∑
s=1

[dsj ; d
s
j · ps]⊤, ∀j ∈ [n],

P t :=

[
t− 1

∑t−1
s=1(p

s)⊤∑t−1
s=1 p

s
∑t−1

s=1 p
s(ps)⊤

]
.

(3)

Then, the linear regression can be done by computing[
α̂t
j

β̂t
j

]
= (P t)†Dt

j

=
[
αj
βj

]
+ (P t)†

[ ∑t−1
s=1 ϵ

s
j∑t−1

s=1 ϵ
s
j · ps

]
, ∀j ∈ [n],

(4)

where (P t)† represents the pseudo-inverse of the matrix P t. As we can see from (4), the estimation
error (the gap between (α̂t, B̂t) and (α, B)) scales linearly in the smallest eigenvalue of the matrix
P t, which can be lower bounded by the variance of the historical prices p1, . . . ,pt−1. Indeed,
motivated by Keskin and Zeevi [2014], denoting pt = t−1

∑t
s=1 p

s, one can show that

λmin(P
t) (5)

≥ 1

n(1 + 2U2)

n⌊t/n⌋∑
s=1

(1− 1

s
)
∥∥ps − ps−1 −X⌈s/n⌉∥∥2

2
(6)

for some fixed anchor Xk, k = 0, 1, . . . , such that ps − ps−1 −Xk, s = kn+ 1, . . . , kn+ n form
an orthogonal basis of Rn. Therefore, in order to reduce the estimation error and guarantee sufficient
exploration, instead of directly using the optimal solution of the fluid model V Fluid, we add some
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Algorithm 2 Periodic-Review Re-solve with Parameter Learning

1: Input: Initial capacity c1 = C, constraint matrix A, perturbation scale σ0, threshold ζ.
2: for t = 1, . . . , n do
3: Sample pt uniformly from [L,U ]n to initialize exploration.
4: end for
5: Compute initial average price pn = 1

n

∑n
t=1 p

t.
6: for t = n+ 1, . . . , T do
7: if mod (t, n) = 1 then
8: Set block index k = ⌊(t− 1)/n⌋.
9: Estimate α̂kn+1 and B̂kn+1 using regression on historical data.

10: Solve the estimated fluid model with current capacity ckn+1 to obtain p̃k.
11: end if
12: Set price pt = pt−1 + (p̃k − pkn) + σ0t

−1/4et−kn.
13: Compute predicted demand d̃t = α̂kn+1 + B̂kn+1pt.
14: Define rejection set Itr = {i ∈ [n] : d̃ti ≤ ζ((T − t+ 1)−1/4 + t−1/4)}.
15: Observe actual demand d̂t = f(pt) + ϵt, and reject demands in Itr.
16: Update capacity ct+1 = ct −Ad̂t.
17: Update average price pt = t−1

t pt−1 + 1
tp

t.
18: end for

perturbation on the pricing strategy pt to get a higher variance. Specifically, at time t, we can do this
by setting the desired price as

p̃t = pt−1 + (p̃k − pkn) + σ0t
−1/4et−kn

for k = ⌊(t− 1)/n⌋ and p̃k is the solution to (2) by replacing the parameters with estimated ones
α̂kn+1, B̂kn+1 and inventory level ckn+1. As a result, the term (p̃k−pkn) performs as a momemtum
forward to the re-solve solution and an anchor for time steps kn+1, . . . , kn+n, hence balancing the
exploitation and the exploration. More intuitions on the Algorithm design are left in Appendix A.2.

The boundary attraction mechanism, akin to the full information setting, nullifies demand for com-
ponents falling below a dynamic threshold. This enhances robustness against estimation errors and
stochastic noise.

3.2 Regret Analysis
We now provide a regret guarantee for Algorithm 2.
Theorem 3.1. For Algorithm 2, with threshold ζ ≥ Cn5/4 log3/2 nσ0

√
σ log T for some constant C,

the regret is bounded by:

RegretT
(
π
)
= O

(
(ζ2 + ∥B−1∥2)

√
T
)
.

We sketch the proof for Theorem 3.1 here, while the details are left in Appendix D. WLOG we
assume T = nT ′ for some integer T ′ > 0. The first step is similar to the proof of Theorem 2.1: we
split the regret as

RegretT
(
π
)
= E

 T ′∑
k=1

RT (Hybridk,FT )−RT (Hybridk+1,FT )

 ,

where RT (Hybridk,FT ) denotes the total revenue of the hybrid policy defined as using Algorithm 2
up to time kn and getting the remain revenue by solving (2) directly without noise. Now different
from the proof of Theorem 2.1, we donot have the accurate parameters as well as the fluid optimal
solutions. As a result, we need to give bound to the estimation error of α̂kn+1, B̂kn+1 with respect
to the true parameters α, B, as well as the corresponding estimated solutions pt, f(pt). To achieve
this target, we briefly introduce the continuity property in strongly convex constrained optimization
problem in objective function.
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Lemma 3.2 (Prop 4.32, Bonnans and Shapiro [2013]). Suppose the constrained optimization problem
(2) satisfies the second-order growth condition p⊤d− (pπ,t)⊤dπ,t ≥ −κDist

(
d, Dπ,t

)2
for some

constant κ > 0 and feasible solution pπ,t)⊤dπ,t to (2), where Dπ,t = {dπ,t : dπ,t,pπ,t solve (2)}.
Then we have Dist

(
d̂, Dπ,t

)
≤ Cκ−1(

∥∥∥B − B̂
∥∥∥
2
+ ∥α− α̂∥2) for some constant C > 0, where

B̂, α̂ lies in some neighbor of B,α depending on λmin(B + B⊤) and d̂ is the solution to (2) by
replacing α, B with α̂, B̂.

Now by applying the above lemma, we can bound the estimation error of solution pt, f(pt) based
on estimation error of the parameters α̂kn+1, B̂kn+1, which is achievable by (5). By combining the
estimation error and the error caused by noises as in the proof of Theorem 2.1, we can get the final
bound in Theorem 3.1.

Even in the unconstrained case, it is well-known that a
√
T lower bound of worst-case regret is

inevitable [Keskin and Zeevi, 2014, Chen et al., 2022]. Formally, we have
Lemma 3.3 (Keskin and Zeevi 2014). There exists a finite positive constant c > 0 such that
RegretT

(
π
)
≥ c
√
T for any online policy π.

Therefore, we know that the regret bound presented in Theorem 3.1 is of optimal order.

4 Improvement with machine-learned informed price
In many practical scenarios, decision-makers leverage offline data or machine-learned models to
obtain initial estimates of the demand function. We refer to this intermediate case as the informed-
price setting, which lies between the extremes of full information and no information. Specifically,
we assume access to an initial price-demand sample (p0,d0), where d0 is an estimate of the true
demand f(p0), and the estimation error is bounded by a known constant ϵ0 (i.e., ∥d0−f(p0)∥2 ≤ ϵ0).
This setup reflects real-world practice: firms often start with a price informed by historical data or
expert knowledge and observe the resulting demand. The benefit of this informed starting point,
however, hinges on the accuracy of (p0,d0) and on the firm’s ability to quantify the error ϵ0. This
informed scenario is common in practice but has not been thoroughly studied in theory under resource
constraints. In this section, we investigate how to optimally exploit the informed price when ϵ0 is
known.

4.1 Challenges and Lower Bounds
A crucial insight is that knowing the error bound ϵ0 is necessary to improve beyond the no-information
baseline. Without this knowledge, even an informed initial sample cannot guarantee better worst-case
regret than O(

√
T ). The following proposition formalizes this limitation:

Proposition 4.1. There exist parameter sets (α,B) and (α′, B′) such that, for any policy π lacking
knowledge of ϵ0, if π achieves regret O(T γ) for some γ ∈ (0, 1) on (α,B), it incurs regret Ω(T 1−γ)
on (α′, B′).

In other words, without a known error bound, a policy that is tuned to perform better than
√
T on one

demand instance will necessarily perform worse (in fact, no better than Ω(
√
T )) on another instance.

This result implies that, absent knowledge of ϵ0, the worst-case regret remains Θ(
√
T ), which is the

same order as in the uninformed case. Consequently, to effectively leverage the informed price, the
decision-maker must know ϵ0 and incorporate this knowledge into the policy design.

4.2 Algorithm Design
We introduce the Estimate-then-Select Re-solve Algorithm (Algorithm 3), which adaptively utilizes
the informed price based on the magnitude of ϵ0. The algorithm evaluates the condition (ϵ0)2T >

ρ
√
T , where ρ is a tolerance parameter. If this holds, it reverts to the no-information strategy

(Algorithm 2). Otherwise, it capitalizes on the informed pair to refine parameter estimation and
decision-making.

The algorithm anchors its regression on the pair (p0,d0), estimating the demand parameter B as
follows:

B̂t =

(
t−1∑
s=1

(ps − p0)(ps − p0)⊤

)† t−1∑
s=1

(ds − d0)(ps − p0)⊤.
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Algorithm 3 Estimate-then-Select Re-solve with Parameter Learning

1: Input: Initial capacity c1 = C, matrix A, error bound ϵ0, tolerance ρ, perturbation scale σ0,
threshold ζ.

2: if (ϵ0)2T > ρ
√
T then

3: Switch to Algorithm 2 (no-information setting).
4: end if
5: for t = 1, . . . , T do
6: Compute B̂t using regression anchored at (p0,d0).
7: Solve the estimated fluid model V̂ Fluid

t (ct) with B̂t and ct.
8: Perturb the solution: p̃t ← p̃t + σ0sgn(p̃t − p0)t−1/4e mod (t,n).
9: Compute predicted demand d̃t = d0 + B̂t(p̃t − p0).

10: Define rejection set Itr = {i ∈ [n] : d̃ti ≤ ζ((T − t+ 1)−1/2 + t−1/2)}.
11: Observe d̂t = f(p̃t) + ϵt, reject demands in Itr, and update ct+1 = ct −Ad̂t.
12: end for

By using p0 as a reference, this approach enhances estimation precision when ϵ0 is small, thereby
improving pricing decisions.

The perturbation term facilitates ongoing exploration, while a boundary attraction mechanism miti-
gates errors from estimation and noise, ensuring robust performance across iterations. See Appendix
A.2 for more intuition.

4.3 Regret Analysis
The performance of Algorithm 3 is quantified in Theorem 4.2.
Theorem 4.2. For Algorithm 3, the regret is bounded by:

RegretT
(
π
)
= O

(
min

{
ρ
√
T , (ϵ0)2T + C ′ log T

})
,

where C ′ = σ0dmax∥B−1∥2 + n2σ2∥B−1∥2 + ζ2.

This bound highlights a key trade-off: when ϵ0 is small, indicating high accuracy in the informed
price, the regret approaches O(log T ), aligning with full-information performance. Conversely, when
ϵ0 is large, the regret gracefully transitions to O(

√
T ), matching the no-information setting. This

adaptability makes the algorithm highly practical for scenarios with varying data quality.

Additionally, Proposition 4.3 confirms the tightness of this bound, showing that no algorithm can
consistently achieve better worst-case regret without further assumptions.
Proposition 4.3. There exist instances where any policy without knowledge of ϵ0 incurs regret
Ω(max{ρ

√
T , (ϵ0)2T}), matching the upper bound in Theorem 4.2.

Thus, Algorithm 3 optimally exploits the informed price when ϵ0 is known, effectively bridging the
gap between full and no-information paradigms.

5 Numerical Experiments
In this section, we present numerical experiments to validate our theoretical findings and demonstrate
the scalability and robustness of the proposed algorithms. We consider a simulated dynamic pricing
problem with m = 10 resources and n = 20 products, and we evaluate our three algorithms (full-
information, no-information, and informed-price) in various scenarios. We only present the validation
of our theoretical results here, while more experiments are left in Appendix B.1

Simulation setup. We generate a random instance of the pricing problem as follows. The entries
of the consumption matrix A ∈ R10×20

+ are drawn i.i.d. from Uniform[0, 1]. We sample the true
linear demand model by drawing α ∈ R20 with each αi ∼ Uniform[5, 10] and a slope matrix
B ∈ R20×20 with each Bij ∼ Uniform[−1, 0]. To ensure B satisfies Assumption 1.2, we subtract
the largest eigenvalue of (B + B⊤)/2 from each diagonal entry of B (this shifts the eigenvalues
of the symmetric part to be negative). We then set the initial capacities c0 = Ad∗, where d∗ =

1All the experiments in our paper are run on a Macbook pro 14 with m2 silicon chip
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argmaxd≥0 d⊤B−1(d−α) is the optimal demand vector for the unconstrained revenue maximization
problem. This choice of c0 ensures that, under the optimal pricing policy, the resource constraints will
be actively limiting sales (creating a non-trivial constrained problem). We introduce i.i.d. observation
noise with a Gaussian distribution N (0, σ2) and specify σ0 = 1 for the perturbation scale in all
algorithms. Unless stated otherwise, we fix the threshold parameter ζ = 1 and (for the informed
setting) the initial error ϵ0 = 0.1, and we vary these parameters in dedicated experiments to study
their effects.

Validation of theoretical results. We first examine how the regret scales with the time hori-
zon T , to verify the theoretical rates in each information regime. In this experiment, we set
σ = 1 and choose ϵ0 = T−1/2 in the informed setting (simulating a scenario where the prior
estimate improves as T grows). Figure 1 illustrates the regret achieved by our algorithms for
T ∈ {50, 100, 200, 400, 800, 1600}. Each point is the average of 100 simulation runs, and the
shaded region shows the 95% confidence interval. As expected, in the full-information case (Fig-
ure 1a) the regret remains nearly constant (indicating the O(log T ) growth is very mild), while in the
no-information case (Figure 1b) the regret grows on the order of

√
T . The informed-price algorithm

(Figure 1c) also exhibits an almost flat regret curve, similar to the full-information case, since ϵ0 was
set to scale favorably with T . These observations empirically confirm our theoretical guarantees for
all three settings, even in scenarios where the fluid problem (2) is degenerate.
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Figure 1: Regret of our algorithms under different time horizons T for (a) full information, (b) no
information, and (c) informed price settings.

6 Conclusions
We have advanced the study of dynamic pricing under resource constraints by proposing three novel
algorithms that effectively balance exploration and exploitation across different information regimes.
Our key contributions can be summarized as follows:

1. Boundary-Attracted Re-solve (Full Information): We develop a pricing algorithm (Algo-
rithm 1) for the full-information setting that achieves logarithmic regret without requiring
the non-degeneracy condition assumed in prior work.

2. Optimal Learning (No Information): For the case with no prior demand information, we
design an online learning algorithm (Algorithm 2) that attains the optimal O(

√
T ) regret,

matching the theoretical lower bound.

3. Leveraging an Informed Price (Partial Information): In the common situation where
an initial price recommendation is available from historical data or a predictive model,
we propose an estimate-then-select re-solving algorithm (Algorithm 3) that exploits this
information when it is reliable. Our algorithm smoothly interpolates between full information
and no information, achieving improved regret bounds when the offline estimate is accurate
(and reverting to O(

√
T ) otherwise).

Looking ahead, there are several interesting directions for future work. One direction is to extend
our framework to nonlinear demand models, relaxing the linearity assumption while maintaining
tractable regret bounds. Another direction is to consider scenarios where the error bound ϵ0 on the
informed price is not given and must be estimated on the fly—developing algorithms that can learn
the reliability of offline data in real time. Additionally, integrating more advanced machine learning
techniques for demand forecasting could further improve performance, paving the way for more
scalable and data-driven pricing strategies in complex, changing market environments.
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8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 5 states that simulations were run on a MacBook Pro (M2 chip, 16GB
RAM), with each run taking approximately 2 hours, totaling 20 hours.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
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didn’t make it into the paper).
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Answer: [Yes]
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no human subjects, sensitive data, or potential misuse.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This theoretical work has no direct societal impacts, though future applications
may, which are beyond the current scope.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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being used as intended and functioning correctly, harms that could arise when the
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from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No data or models with high misuse risk are released, as this is a theoretical
paper.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No existing assets (code, data, models) are used in this theoretical paper.
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service of that source should be provided.
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provided alongside the assets?

Answer: [NA]

Justification: No new assets (e.g., datasets, models) are introduced in this paper.
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• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper involves no crowdsourcing or human subjects research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
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should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Extended Intuitions
A.1 Boundary Attracted Re-solve Method
Boundary attraction provides three critical advantages:

1. Operational Safety: Prevents noise-induced resource constraint violations by creating a
buffer zone when resources near depletion. This “stop-selling-when-almost-sold-out” rule is
operationally intuitive and mirrors practical inventory management;

2. Theoretical Tractability: Enables single-step difference analysis without requiring non-
degeneracy conditions. We can bound the regret at each period independently as in Appendix
C by avoiding the near-zero instability region.

3. Robustness to Estimation: Creates safety margin absorbing both stochastic noise (in full
information) and parameter estimation errors (in learning settings).

A.2 Variance Perturbation and Anchoring
In line 12 of Algorithm 2, we add controlled exploration noise to the price:

pt = pt−1 + (p̃k − pkn) + σ0t
−1/4et−kn (7)

where et−kn ∼ N (0, In) is a standard Gaussian vector. This perturbation serves two purposes:

1. Exploration: ensures all products are priced with sufficient variation to enable accurate
parameter estimation via regression.

2. Variance control: the t−1/4 decay rate balances exploration early (when estimation error
∥B̂kn+1 −B∥ is large) against exploitation later (when estimates become accurate).

This forced exploration technique follows standard approaches in contextual bandits [Abbasi-Yadkori
et al., 2011], adapted to our periodic re-solving structure.

Anchoring regression with informed prices. When an informed price-demand pair (p0, d0) with
known error bound ϵ0 is available, we employ an anchoring regression approach that leverages
this prior knowledge while adapting to newly observed data. Specifically, at time t, we solve the
constrained least squares problem:

min
α,B

t−1∑
s=1

∥ds − (α+Bps)∥22

subject to ∥d0 − (α+Bp0)∥22 ≤ ϵ20.

(8)

The idea is closely related to the unconstrained regression in Xu and Zeevi [2020] and Simchi-Levi
and Xu [2022]. Moreover, this extends naturally to multiple informed prices by solving

min
α,B

t−1∑
s=1

∥ds − (α+Bps)∥22

subject to ∥d0,i − (α+Bp0,i)∥22 ≤ ϵ20,i, ∀(p0,i, d0,i).

Why not estimate ϵ0 online One might wonder whether ϵ0 could be learned adaptively during the
selling horizon, rather than assuming it is known. However, this approach faces fundamental chal-
lenges in our setting. Actually, testing the informed price multiple times to estimate ϵ0 permanently
depletes capacity, preventing future corrections. Unlike unconstrained settings, exploration here has
permanent costs. Such payoff, as suggested in Proposition 4.3, may lead to worse performance than
using algorithms without the informed prices.

B Additional Experiments
Phase transition with respect to error bound. Next, we investigate the effect of the prior error ϵ0
on the performance of the informed-price algorithm. In Figure 2, we plot the regret of Algorithm 3
(with tolerance ρ = 0.1) as a function of T for different values of the misspecification error ϵ0. We
observe a clear phase transition: when ϵ0 is very small, the regret grows in an O((ϵ0)2T ) fashion
(nearly constant in this plot, since (ϵ0)2T is kept low), but as ϵ0 increases beyond a threshold,
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the regret growth shifts to the O(
√
T ) regime. This behavior is consistent with Theorem 4.2 and

Proposition 4.3, and it quantifies how the value of the informed price degrades as the prior becomes
less accurate.

Robustness to demand noise. We evaluate the robustness of our algorithms under different levels
of demand noise. Figure 3 shows the regret in each information setting for noise standard deviation
σ ∈ {0.1, 0.2, 0.5, 1, 2, 5} (keeping ζ = 1 and ϵ0 = 0.1 fixed). The performance of all three
algorithms remains relatively stable even as the noise increases by orders of magnitude. In particular,
comparing the cases σ = 0.1 and σ = 5, we see only a modest increase in regret. This suggests
that our methods degrade gracefully in the presence of larger demand uncertainty, underscoring their
practical robustness.

Effect of threshold parameter ζ. Finally, we study how the choice of the threshold parameter ζ
(used in the boundary-attraction step of our algorithms) impacts performance. Figure 4 plots the
regret for ζ ∈ {0, 1, 2, 5, 10}, with σ = 1 and ϵ0 = 0.1 fixed. Moreover, when ζ = 0, it serves as
the classical re-solve baseline algorithm. We find that setting ζ = 0 (i.e. no demand thresholding)
significantly worsens performance, likely because the algorithms can get stuck at degenerate solutions
when small-demand products are never filtered out. On the other hand, an overly large ζ (e.g. 10)
also leads to higher regret, since aggressively filtering out demand can hurt revenue. A moderate
value of ζ achieves the lowest regret. These results validate the importance of the boundary-attraction
mechanism and indicate that tuning ζ within a reasonable range is important for best performance.

In summary, our simulation results corroborate the theoretical regret bounds in all three information
settings and demonstrate the scalability and resilience of the proposed algorithms. The methods
perform well with multiple resources and complex demand interactions, and they maintain strong
performance even under substantial noise and model misspecification. Furthermore, the experiments
highlight how incorporating a good prior (small ϵ0) and appropriately tuning parameters like ζ can
yield significant practical gains.

0 500 1000 1500 2000 2500 3000
T

0

2000

4000

6000

8000

10000

12000

Re
gr

et

Regret vs T for Different eps0 Values (Informed)
eps0=0
eps0=0.1
eps0=0.2
eps0=0.5
eps0=1
eps0=2
eps0=5
eps0=10

Figure 2: Regret of our algorithms under different time horizons T and misspecification error ϵ0.
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Figure 3: Regret of our algorithms under different noise scales for (a) full information, (b) no
information, and (c) informed price settings.

Large-Scale Experimental Validation To demonstrate the scalability and practical applicability of
our algorithms, we conducted comprehensive experiments at large-scale problem sizes. We consider
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Figure 4: Regret of our algorithms under different thresholding parameters ζ for (a) full information,
(b) no information, and (c) informed price settings.

instances with m = 100 resources and n = 200 products, which align with the scale of real-world
dynamic pricing systems in online advertising, cloud computing, and e-commerce platforms.

We generate random problem instances following the procedure described in Section 5, scaled to
m = 100 and n = 200. The consumption matrix A ∈ R100×200

+ has entries drawn i.i.d. from
Uniform[0, 1]. The demand model parameters are αi ∼ Uniform[5, 10] and Bij ∼ Uniform[−1, 0],
with B adjusted to satisfy Assumption 1.2. Initial capacities are set to c1 = Ad∗ where d∗ is the
unconstrained optimal demand, ensuring that resource constraints are binding. We fix noise standard
deviation σ = 1, perturbation scale σ0 = 1, and (for the informed setting) misspecification error
ϵ0 = T−1/2. Each data point represents the average over 100 independent replications, with 95%
confidence intervals computed via bootstrap.

Table 1 presents the regret achieved by our algorithms and the baseline across three information
settings and five time horizons. The results provide compelling evidence for the effectiveness of
boundary attraction.

1. Scalability confirmed: Our algorithms perform effectively at realistic problem dimensions,
with computational overhead remaining tractable even for m = 100 resources and n = 200
products. This validates the practical applicability of our approach to real-world systems.

2. Consistent improvement: Boundary attraction provides substantial regret reduction across
all three information settings—30% to 45% improvement in the full-information case, 32%
to 39% in learning, and 27% to 45% in the informed-price setting. Notably, the benefits
persist across the entire range of time horizons tested.

3. Statistical significance: The non-overlapping confidence intervals between our method and
the baseline confirm that all improvements are statistically significant at the 95% confidence
level. This robustness is critical for deployment in production systems where reliability
matters.

4. Enhanced stability: Our method consistently exhibits tighter confidence intervals than the
baseline (e.g., ±201 vs. ±655 for full information at T = 1000), indicating substantially
more stable performance across different demand realizations. This reduced variance stems
from the boundary attraction mechanism preventing catastrophic constraint violations that
cause large swings in regret.

5. Growing long-term benefit: The absolute performance gap widens as the time horizon
increases. For instance, in the learning setting, the gap grows from 4,513 at T = 200 to
35,415 at T = 1000. This demonstrates that boundary attraction provides compounding
benefits over extended planning horizons—a crucial property for practical applications
operating over days, weeks, or months.

6. Effectiveness across information regimes: The boundary attraction mechanism delivers
value in all three settings, confirming that degeneracy is a fundamental challenge indepen-
dent of whether demand parameters are known, learned online, or partially informed by
predictions. This universality underscores the importance of our contribution.

These large-scale experiments provide strong empirical validation of our theoretical contributions,
demonstrating that the boundary attraction mechanism successfully addresses the degeneracy chal-
lenge at scales relevant to real-world applications.
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Table 1: Large-scale experimental results: m = 100 resources, n = 200 products. Mean regret ±
95% confidence interval over 100 replications.

Scenario T Baseline (ζ = 0) Our Method (ζ = 1)

Full Information

200 5,173± 259 3,582± 107
400 7,646± 382 4,554± 137
600 9,363± 468 5,569± 167
800 11,454± 573 6,234± 187

1,000 13,100± 655 6,689± 201

Learning

200 29,548± 1,477 25,035± 751
400 50,282± 2,514 36,327± 1,090
600 66,223± 3,311 45,081± 1,352
800 76,251± 3,813 50,855± 1,526

1,000 91,578± 4,579 56,163± 1,685

Informed

200 25,661± 1,283 18,585± 558
400 38,288± 1,914 25,001± 750
600 50,748± 2,537 30,868± 926
800 64,406± 3,220 34,756± 1,043

1,000 71,133± 3,557 39,246± 1,177

C Proof of Theorem 2.1

Proof Roadmap We prove the O(ζ2n2∥B−1∥2 log T ) regret bound through the following steps:

1. Hybrid Policy Construction: Define a sequence of hybrid policies {Hybridt}T+1
t=1 that inter-

polate between the offline optimal solution and our online algorithm, enabling a telescoping
decomposition of regret.

2. Single-Step Difference Analysis: Decompose the total regret into a sum of single-step
differencesRT (Hybridt,FT )−RT (Hybridt+1,FT ) and analyze each term independently.
Our hybrid policy decomposition is inspired by the compensated coupling technique of
Vera and Banerjee [2021], but differs in two key aspects: (1) we handle continuous pricing
decisions rather than discrete accept/reject choices, where the most critical “correct / incor-
rect decision" analysis in their setting no longer holds; (2) our novel boundary attraction
mechanism explicitly prevents degeneracy, whereas other previous dynamics pricing paper
assumes non-degeneracy throughout.

3. Case-by-Case Bounding via Boundary Attraction: For each time period, classify into
three cases based on the magnitude of estimated demands relative to the rounding threshold
ζ:

• Case I: All demands large (no rounding) — control revenue loss via noise concentration

• Case II: All demands small (full rounding) — show rounding cost is negligible

• Case III: Mixed demands — combine techniques from Cases I and II

4. Concentration Inequalities: Apply sub-Gaussian tail bounds to control the probability that
noise causes constraint violations or significant deviations from the fluid benchmark.

5. Summation and Final Bound: Sum the per-period bounds over all T periods, showing that
the dominant term scales as O(ζ2 log T ) from Case II contributions, while Cases I and III
contribute lower-order terms.

Key Innovation: Unlike prior work requiring non-degeneracy assumptions, our boundary attraction
mechanism (rounding small demands to zero) prevents the algorithm from entering degenerate regions
while maintaining logarithmic regret. This is formalized through careful analysis of the three cases
above.
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To begin with, we restate the re-solve constrained programming problem:

max
p∈P

r = p⊤d

s.t. d = α+Bp,

Ad ≤ ct

T − t+ 1
,

(9)

where ct is the inventory level at the beginning of time t. We denote (pπ,t,dπ,t) as the optimal
solution to (9). For notational convenience, we use p(d) := B−1(d − α), r(d) := p(d)⊤d to
represent the unnoised maps of demand to price and demand to revenue, respectively. Moreover, we
use r(d, ϵ) := r(d) + p(d)⊤ϵ to represent the revenue with noised demand. Throughout the proof,
we use π to denote our online policy given in Algorithm 1. Given filtration FT and policy π′, we use
RT (π′,FT ) to represent the total revenue under policy π′ and realized sample path FT . Now we
introduce the following concept of Hybrid policy, which is crucial in our proof.
Definition C.1. For 1 ≤ t ≤ T + 1, we define Hybridt as the policy that applies online policy π in
time 1, . . . , t− 1 and dπ,t, while for the periods [t+ 1, T ], there are no noises of demand. Moreover,
define Hybrid1 as the fluid optimal policy given in (??) without noises and HybridT+1 = π as the
online policy π throughout the process.

By definition, we have

RT (Hybridt,FT ) =

t−1∑
s=1

r(dπ,s, ϵs) + (T − t+ 1)r(dπ,t).

Therefore, it holds that E
[
RT (Hybridt,FT )

]
≥ E

[
f(Hybridt+1,FT )

]
, 0 ≤ t ≤ T − 1 by the

convexity of (9). The regret can then be decomposed as follows:

RegretT
(
π
)
= E

[
T∑

t=1

RT (Hybridt,FT )−RT (Hybridt+1,FT )

]

=

T∑
t=1

E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

]
. (10)

We now focus on how to give bound to the term E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

]
for

0 ≤ t ≤ T − 1.

By definition, the realized demand at time t is given by dt = dπ,t + ϵt and we have

r(dπ,t, ϵt) = r(dπ,t) + (ϵt)⊤pπ,t,

r(d′) = r(d) + (d′ − d)⊤B−1(d′ − d) + (2d−α)⊤B−1(d′ − d), ∀d, d′ ∈ Rn
+

(11)

The single-step difference can then be rewritten as:

RT (Hybridt,FT )−RT (Hybridt+1,FT ) = (T − t+ 1)r(dπ,t)− r(dπ,t, ϵt)− (T − t)r(dπ,t+1)
(12)

Now we proceed with the following three cases: case (I) mini d
π,t
i ≥ ζ(T − t + 1)−1/2; case (II)

maxi d
π,t ≤ ζ(T − t+ 1)−1/2; (III) mini d

π,t
i ≤ ζ(T − t+ 1)−1/2 ≤ maxi d

π,t
i .

Case (I) mini d
π,t
i > ζ(T − t + 1)−1/2. For convenience, we omit the notation for conditional

expectation / probability of the event {dπ,t > ζ(T − t + 1)−1/2}. Denote Eti as the event dπ,ti ≥
ϵti

T−t ,∀i ∈ [n] and Et = ∩ni=1Eti . We now split the (12) according to

E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

∣∣F t−1
]

= P(Et)E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

∣∣Et,F t
]

+ P((Et)c)E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

∣∣(Et)c,F t−1
]
.

(13)
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For the first term in (13), condition on Et, by definition we have

E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

∣∣Et,F t−1
]

= E
[
(T − t+ 1)r(dπ,t)− r(dπ,t, ϵt)− (T − t)r(dπ,t+1)

∣∣Et,F t−1
]

≤ E
[
(T − t+ 1)r(dπ,t)− r(dπ,t, ϵt)− (T − t)r(dπ,t − ϵt

T − t
)
∣∣Et,F t−1

]
(a)
= E

[
−(ϵt)⊤pπ,t + (T − t)

(ϵt)⊤

T − t
B−1 ϵt

T − t
+ (T − t)(2dπ,t −α)⊤B−1 ϵt

T − t
|Et,F t−1

]
(b)
= E

[
(dπ,t)⊤B−1ϵt +

1

T − t
(ϵt)⊤B−1ϵt|Et,F t−1

]
,

(14)
where (a) follows from a similar argument in (11) and (b) follows from the definition: pπ,t =
B−1(dπ,t −α). We then have

P(Et)E
[
(dπ,t)⊤B−1ϵt|Et,F t−1

]
= E

[
(dπ,t)⊤B−1ϵt

]
− P((Et)c)E

[
(dπ,t)⊤B−1ϵt|(Et)c,F t−1

]
= −E

[
(dπ,t)⊤B−1ϵt1{(E)c}|F t−1

]
(a)

≤
∥∥B−1

∥∥
2
dmaxP((E)c|F t−1)1/2E

[∥∥ϵt∥∥2
2
|F t−1

]2
=
∥∥B−1

∥∥
2
dmaxP((E)c|F t−1)1/2E

[∥∥ϵt∥∥2
2

]1/2
(15)

where we applied Cauchy-Schwarz inequality in (a). Similarly, we have

P(Et)E
[
− (ϵt)⊤B−1ϵt

T − t

∣∣Et,F t−1

]
≤
∥∥B−1

∥∥
2

T − t
E
[
(ϵt)2

]
. (16)

On the other hand, with a similar argument, we can give bound to the term

P((Et)c)E
[
f(Hybridt−1)− f(Hybridt)

∣∣(Et)c]
≤ P((Et)c)E

[
(T − t)r(dπ,d)t)r(dπ,t)− (ϵt)⊤pπ,t|(Et)c

]
≤ P((Et)c)

(
(T − t)rmax − E

[
(ϵt)⊤pπ,t|(Et)c

])
≤ (T − t)rmaxP((Et)c) +

√
nUE

[
(ϵt)2

]1/2 P((Et)c)1/2,
(17)

where we again use Cauchy-Schwarz inequality in the last line.

Now combining (13) (14) (15) (16) (17), we get

E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

]
≤ σ(

∥∥B−1
∥∥
2
dmax +

√
nU)P((Et)c)1/2 + (T − t)rmaxP((Et)c) +

σ2
∥∥B−1

∥∥
2

T − t
, (18)

Now in order to give bound to P((Et)c), we introduce the following concentration inequality. This
standard concentration inequality controls the probability that the maximum of sub-Gaussian random
variables exceeds a threshold. We use it to bound the probability that demand noise ϵt violates
resource constraints, ensuring that boundary attraction successfully prevents infeasibility with high
probability.
Lemma C.2 (Wainwright 2019). Let X1, . . . , Xn be σ2-sub-Gaussian random variables with zero
mean, then for each λ > 0, it holds that

P
(

max
1≤i≤n

Xi ≥ λ

)
≤ n exp(−λ/2σ2)
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By Lemma D.1, we can bound the term P((Et)c) as

P((Et)c) = P(∃i ∈ [n], s.t.dπ,[t,T ]
i <

ϵti
T − t

)

≤ P(
ζ

(T − t+ 1)1/2
< max

i

ϵti
T − t

)

(a)

≤ n exp(−2(T − t) log n)

= exp(−2(T − t)), (19)

where (a) is detived from Lemma D.1 and the fact that mini d
π,t
i ≥ ζ(T − t + 1)−1/2 and ζ ≥

4σ2 log n. Plugging the above inequality into (18) leads to

E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

]
≤ σ(

∥∥B−1
∥∥
2
dmax +

√
nU) exp(−(T − t)) + rmax(T − t) exp(−2(T − t)) +

σ2
∥∥B−1

∥∥
2

T − t
.

(20)

Case (II): maxi d
π,
i ≤ ζ/(T − t+1)−1/2. In this case, we have dπ,[t,T ] = ϵt = 0. Using (12), the

single-step difference in case (II) can be upper bounded by

E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

]
≤ E

[
(T − t+ 1)r(dπ,t)− (T − t)r

(
T − t+ 1

T − t
dπ,t

)]
= E

[
(T − t+ 1)(dπ,t)⊤B−1(dπ,t −α)− (T − t)

T − t+ 1

T − t
(dπ,t)⊤B−1(

T − t+ 1

T − t
dπ,t −α)

]
= E

[
−T − t+ 1

T − t
(dπ,t)⊤B−1dπ,t

]
≤

2n2ζ2
∥∥B−1

∥∥
2

T − t+ 1
(21)

Case (III): mini d
π,t
i < ζ(T − t+1)−1/2 < maxi d

π,t
i . In this case, we can derive upper bound by

following both Case (I) and Case (II). To be more specific, let I = {i ∈ [n] : dπ,ti > ζ(T−t+1)−1/2},
I = [n]\I and EI = ∩i∈IEi. Let ϵtI be the vector that has components ϵti for i ∈ I and 0 otherwise.
We let d̃t be vector with components dπ,ti − ϵt/(T − t), i ∈ I and (T − t+ 1)dπ,ti /(T − t), i ∈ I.
Then the single-step difference can be upper bounded by

E
[
RT (Hybridt,FT −RT (Hybridt+1,FT )

]
≤ E

[
(T − t+ 1)r(dπ,t)− r(dt, ϵt)− (T − t)r(d̃t)

]
= E

[
(pt)⊤ϵt − (dt − dπ,t)⊤B−1(dt − dπ,t)− (2dt,π −α)⊤B−1(dt − dπ,t)

]
− (T − t)E

[
(d̃t − dπ,t)⊤B−1(d̃t − dπ,t) + (2dπ,t −α)⊤B−1(d̃t − dπ,t)

]
. (22)

Note that dti = dπ,ti for i ∈ I and dti = 0 for i ∈ I. Moreover, dπ,ti ≤ ζ(T − t+ 1)−1/2, i ∈ I. We
have

(dt − dπ,t)⊤B−1(dt − dπ,t) ≤ ζ2(n− |I|)
∥∥B−1

∥∥
2
(T − t+ 1)−1. (23)

On the other hand, we have

(d̃t − dπ,t)⊤B−1(d̃t − dπ,t)

=
1

(T − t)2
(dπ,t

I )⊤B−1dπ,t

I −
2

(T − t)2
(dπ,t

I )⊤B−1ϵtI +
1

(T − t)2
(ϵtI)

⊤B−1ϵtI . (24)

Moreover, for the first-order terms, we have

(2dt,π −α)⊤B−1(dt − dπ,t) = −(2dt,π −α)⊤B−1dπ,t

I , (25)
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and

(2dπ,t −α)B−1(d̃t − dπ,t) =
1

T − t
(2dπ,t −α)⊤B−1dπ,t − 1

T − t
(2dπ,t −α)⊤B−1ϵ⊤I .

(26)

Plugging (23), (24), (25) and (26) into (22) yields as similar bound as in Case (I) and Case (II):

E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

]
≤ σ(

∥∥B−1
∥∥
2
dmax +

√
nU) exp(−(T − t)) + rmax(T − t) exp(−2(T − t)) +

2n2ζ2
∥∥B−1

∥∥
2

T − t+ 1
.

(27)

Wrap-up. Combining (20), (21) and (27) leads to

E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT

]
≤

2n2ζ2
∥∥B−1

∥∥
2

T − t+ 1
+ C0 exp(−(T − t)) +

σ2
∥∥B−1

∥∥
2

T − t
,

where C0 = C ′σ(
∥∥B−1

∥∥
2
dmax +

√
nU) + rmax for some absolute constant C ′. Plugging them into

(10) yields

RegretT
(
π
)
=

T∑
t=1

E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

]
= O(2ζ2n2

∥∥B−1
∥∥
2
log(T ) + C0).

D Proof of Theorem 2

Proof Roadmap We establish the O
(
(ζ2 + ∥B−1∥2)

√
T
)

regret bound through the following
steps:

1. Periodic Hybrid Policy Construction: Extend the hybrid policy framework to accom-
modate periodic re-solve updates every n periods, where parameters α̂kn+1, B̂kn+1 are
re-estimated via linear regression.

2. Error Decomposition: Decompose the demand estimation error ∆t = dt − dπ,t into three
components:

• ∆t
I : Parameter estimation error (from regression on historical data)

• ∆t
II : Mean price drift (from averaging over periods)

• ∆t
III : Exploration perturbation (deliberate noise for sufficient data variance)

3. Parameter Estimation Analysis: Bound ∥∆t
I∥2 using:

• Fisher information lower bounds on data variance (Lemma from Keskin and Zeevi
[2014])

• Lipschitz continuity of constrained optimization solutions (Lemma D.2)

• Second-order growth conditions (Lemma D.3)

Establish E[∥∆t
I∥22] = O(n5/

√
k) where k = ⌊t/n⌋.

4. Single-Period Regret Bounds: For each period k ∈ [T ′], analyze the n-step regret
RT (Hybridkn+1,FT )−RT (Hybrid(k+1)n+1,FT ) through the same three-case framework
as in Appendix C, but with:

• Modified rounding thresholds: ζ[(T − t+1)−1/4 + t−1/4] (vs. (T − t+1)−1/2 in full
info)

• Additional terms from estimation errors ∆t
I , ∆t

II , ∆t
III
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5. Aggregation Over Periods: Sum bounds over all T ′ = T/n re-solve epochs. The key
terms are:

• Estimation error:
∑T ′

k=1 O(1/
√
k) = O(

√
T )

• Noise accumulation: O(
√
T ) from concentration inequalities

• Exploration cost: O(σ0

√
T ) from perturbations

Connection to Prior Work: Our parameter estimation technique builds on the regression framework
of Keskin and Zeevi [2014], Xu and Zeevi [2020], Simchi-Levi and Xu [2022], but extends it to
handle resource constraints through:

• Boundary attraction mechanism (preventing infeasibility)

• Periodic re-optimization (balancing exploration vs. exploitation)

• Careful perturbation design (ensuring sufficient data variance for accurate estimation)

The detailed proof follows below.

In this section, we follow a similar streamline in Appendix C. To begin with, recall our re-solve
constrained programming problem:

max
p∈P

r = p⊤d

s.t. d = α+Bp,

Ad ≤ ct

T − t+ 1
,

(28)

where ct is the inventory level at the beginning of time t. For time t and k = ⌊(t− 1)/n⌋, we use
the linear regression (4) to fit the coefficients α̂kn+1, B̂kn+1 and then substitute them into (28) with
inventory level ckn+1 to calculate price p̂k. WLOG we assume that T = T ′n for some integer T ′.
Since we’re now using a periodic-review re-solve policy, we proceed by modifying the single-step
difference in (10):

RegretT
(
π
)
= E

 T ′∑
k=1

RT (Hybridkn+1,FT )−RT (Hybrid(k+1)n+1,FT )


=

T ′∑
k=1

E
[
RT (Hybridkn+1,FT )−RT (Hybrid(k+1)n+1,FT )

]
. (29)

For brevity, we use k, k + 1 to replace the superscript kn + 1, (k + 1)n + 1, re-
spectively when the context is clear. We now focus on how ot give bound to term
E
[
RT (Hybridk,FT )−RT (Hybridk+1,FT )

]
,∀k ∈ [T ′].

Recall that for t ∈ [T ] and k = ⌊(t − 1)/n⌋, pt,dt := f(pt) are the prices and demands at time
t by Algorithm 2. We use ∆t = dt − dπ,k to denote the difference between the targeted demand
and the accurate fluid optimal demands by solving (2) with inventory level ckn+1. Then ∆t can be
decomposed into two parts of errors as

∆t = (d̃k − dπ,nk+1)︸ ︷︷ ︸
:=∆t

I

+ d
t−1 − d

kn︸ ︷︷ ︸
:=∆t

II

+ σ0t
−1/4Bet−kn︸ ︷︷ ︸
:=∆t

III

. (30)
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Here ∆t
I is the estimation error, ∆t

II is the shift of mean price and ∆t
III is the perturbation error.

With triangular inequality, for ∆t
II we have∥∥∆t

II

∥∥
2
=
∥∥∥dt−1 − d

kn
∥∥∥
2

≤ t− 1− kn

(t− 1)

∥∥∥dkn
∥∥∥
2
+

1

t− 1

∥∥∥∥∥
t−1∑

s=kn+1

ds

∥∥∥∥∥
2

≤ n

t− 1
dmax +

n

t− 1
dmax

=
2n

t− 1
dmax. (31)

For ∆t
III , it directly follows from the definition that∥∥∆t

III

∥∥
2
≤ σ0 ∥B∥2 t

−1/4. (32)

Now we proceed by giving bound to the term ∆t
I . We define a quantity J t that is crucial for deriving

tail bound for the estimation error. Formally, we let

Jk := n−1
nk∑
s=1

(1− s−1)
∥∥ps − ps−1 − (p̃k − pkn)

∥∥2
2

= n−1
k∑

l=1

n∑
i=1

(
1− 1

n(l − 1) + i

)
σ2
0(kn+ i)−1/2

≥ σ2
0

√
kn

8n
, ∀t = 1, 2, . . . . (33)

Now we introduce the following lemma for giving bound to the parameter error. This lemma provides
exponential concentration for parameter estimation error ∥B̂kn+1−B∥2 around its mean, conditional
on sufficient data variance Jk. The exponential decay rate depends on both the estimation error
magnitude λ and the accumulated information Jk, ensuring that with enough exploration (large Jk),
our parameter estimates become accurate with high probability.
Lemma D.1 (Keskin and Zeevi 2014). Under the our choice of pt, there exists constant C1, σ1 such
that

P
(∥∥α̂kn+1 −α

∥∥
2
+
∥∥∥B̂kn+1 −B

∥∥∥
2
> λ, Jk ≥ λ′

)
≤ C1(kn)

n2+n−1 exp(−σ1(λ ∧ λ2)λ′),∀λ, λ′ > 0.

As a result, by combining (33) and Lemma D.1, we get the following bound:

P(
∥∥α̂kn+1 −α

∥∥
2
+
∥∥∥B̂kn+1 −B

∥∥∥
2
> λ) ≤ C1(kn)

n2+n−1 exp

(
−σ2

0σ1

√
kn

8n
(λ ∧ λ2)

)
.

(34)

Now with a similar argument as in the Proof of Theorem 6 in Keskin and Zeevi 2014, we arrive at

E
[
(
∥∥α̂kn+1 −α

∥∥
2
+
∥∥∥B̂kn+1 −B

∥∥∥
2
)2
]
≤ 20C1n

5 log(kn+ 1)

σ1

√
kn

. (35)

In order to use the parameter error to bound the solution error ∆t
I , we introduce the following

Lemma concerning the continuity of constrained strongly convex optimization problems. This lemma
establishes Lipschitz continuity of the constrained optimization problem: small errors in estimated
parameters B̂, α̂ translate to small errors in the optimal solution d̂. Combined with the second-order
growth condition (Lemma D.3), it allows us to convert parameter estimation bounds into solution
quality bounds, which is crucial for analyzing the regret of learning-based algorithms.
Lemma D.2 (Prop 4.32, Bonnans and Shapiro [2013]). Suppose the constraint optimization problem

max
p∈P

r(d) = p⊤d

s.t. d = α+Bp,

Ad ≤ ct

T − t+ 1
d ≥ 0,
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satisfies second-order growth condition r(d) ≤ r(dπ,t)−κ(Dist
(
d, Dπ,t

)
)2 for any d in the feasible

set and the optimal solution set Dπ,t. Then for any optimal solution d̂ to the quadratic programming

max
p∈P

p⊤d

s.t. d = α̂+ B̂p,

Ad ≤ ct

T − t+ 1
d ≥ 0,

there exists constant C2 such that

Dist
(
d̂, Dπ,t

)
≤ C2κ

−1
∥∥∥B − B̂

∥∥∥
2

holds for optimal solution d̂ of the second constrained programming problem and all B̂ such that∥∥∥B − B̂
∥∥∥
2
< δ, where δ > 0 depends on λmin(B +B⊤), the minimal eigenvalue of B +B⊤.

Note that, by Lemma D.2, we only need to show that, there exists κ > 0 such that r(d) ≤ r(dπ,t) +
κ(Dist

(
d, Dπ,t

)
)2 for any d in the feasible set. Fortunately, the following lemma gives the existence

of such constant. This lemma verifies the second-order growth condition required by Lemma D.2. It
shows that our revenue function r(d) is strongly concave around the optimal solution dπ,t, with the
growth rate characterized by the minimum eigenvalue λmin(B +B⊤). This strong concavity is what
allows parameter estimation errors to translate into bounded solution errors.
Lemma D.3. For any d in the feasible set, we have r(d)− r(dπ,t) ≥ 1

4λmin(B+B⊤)Dist
(
d,dπ,t

)
.

By combining Lemma D.2 and D.3, we now have∥∥∥d̃k − dπ,kn+1
∥∥∥
2
≤ 4C2λ

−1
min(B +B⊤)

∥∥∥B̂kn+1 −B
∥∥∥
2
, (36)

By setting λ = δ in (34), we get

P(
∥∥∥b̂kn+1 −B

∥∥∥
2
> δ) ≤ C1(kn)

n2+n−1 exp

(
−σ2

0σ1

√
kn

8n
(δ ∧ δ2)

)
.

With a similar argument as above and in the proof of Theorem 6 in Keskin and Zeevi 2014, we can
get:

E
[∥∥∥d̃k − dπ,kn+1

∥∥∥2
2

]
≤ C3n

5λ−1
min(B +B⊤)max{δ−1, δ−2}

σ1

√
kn

,

where C3 is some constant determined by C1, C2. It follows that

E
[∥∥∆t

I

∥∥2
2

]
= E

[∥∥∥d̃k − dπ,kn+1
∥∥∥2
2

]
≤ C4n

5λ−2
min(B +B⊤)max{δ−1, δ−2}

σ1

√
kn

(37)

for some constant C4. Plugging (31), (32) and (37) into (30) yields:

E
[∥∥∆t

∥∥2
2

]
≤ 3

(∥∥∆t
I

∥∥2
2
+
∥∥∆t

II

∥∥2
2
+
∥∥∆t

III

∥∥2
2

)
≤ 3

(
4n2d2max

(t− 1)
+

σ2
0 ∥B∥

2
2√

t
+

C3n
5λ−1

min(B +B⊤)max{δ−1, δ−2}
σ1

√
kn

)

≤ C5√
k
, (38)

where C5 = 12max{4n2d2max, σ
2
0 ∥B∥

2
2 , C3σ

−1
1 n9/2λ−1

min(B +B⊤)max{δ−2, δ−1}.
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Now we proceed the argument of (29). With a similar argument of (12), we can get

RT (Hybridk,FT )−RT (Hybridk+1,FT )

= (T − kn)r(dπ,k)−
k+1∑

t=kn+1

r(dt, ϵt)− (T − (k + 1)n)r(dπ,(k+1)n). (39)

Now we proceed with the following three cases as similar as in Appendix C: Case (I)
mini d̃

t
i ≥ ζ

[
(T − t+ 1)−1/4 + t−1/4

]
, ∀kn + 1 ≤ t ≤ (k + 1)n; Case (II): maxi d̃

t
i <

ζ
[
(T − t+ 1)−1/4 + t−1/4

]
,∀kn + 1 ≤ t ≤ (k + 1)n, ∀kn + 1 ≤ t ≤ (k + 1)n; Case (III):

others.

Case (I): mini p̃
t
i ≥ ζ

[
(T − t+ 1)−1/4 + t−1/4

]
, ∀kn + 1 ≤ t ≤ (k + 1)n. We follow the

streamline in Appendix C, except we have different rounding threshold as well as the estimation error.
We define Eti = {dπ,ti ≥ ϵti+∆t

i

T−t }. and Ek = ∩ni=1 ∩
(k+1)n
t=kn+1 Eti .

Recall the decomposition:

E
[
RT (Hybridkn,FT )−RT (Hybridk+1,FT )

]
= P(Et)E

[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

∣∣Et]
+ P((Et)c)E

[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

∣∣(Et)c] (40)

With a similar argument of deriving (14),we have

E
[
RT (Hybridkn,FT )RT (Hybrid(k+1)n,FT )|Ek

]
= E

(T − kn)r(dπ,k)−
(k+1)n∑
t=kn+1

r(dt, ϵt)− (T − (k + 1)n)r(dπ,k+1)|Ek


≤ E

− (k+1)n∑
t=kn+1

(ϵt)⊤pt −
(k+1)n∑
t=kn+1

[
(∆t)⊤B−1∆t + (2dπ,k −α)⊤B−1∆t

]
|Ek


+ (T − (k + 1)n)E

[
(
∑(k+1)n

t=kn+1 ϵ
t +∆t)⊤

T − (k + 1)n
B−1

∑(k+1)n
t=kn+1(ϵ

t +∆t)

T − (k + 1)n
+ (2dπ,k −α)⊤B−1

∑(k+1)n
t=kn+1 ∆

t + ϵt

T − (k + 1)n
|Ek
]

= E

(dπ,k)⊤B−1

(k+1)n∑
t=kn+1

ϵt −
(k+1)n∑
t=kn+1

(ϵt)⊤B−1∆t|Ek
+

1

T − (k + 1)n
E

( (k+1)n∑
t=kn+1

ϵt +∆t)⊤B−1(

(k+1)n∑
t=kn+1

ϵt +∆t)|Ek
 .

(41)

Note that ϵt is independent of ∆t. We have E
[
ϵtB−1∆t

]
= 0. Note that ∆t ≤ dmax. Following the

proof of (15) and (16) leads to

P(Ek)E

(dπ,k)⊤B−1

(k+1)n∑
t=kn+1

ϵt −
(k+1)n∑
t=kn+1

(ϵt)⊤B−1∆t|Ek


≤ 2
∥∥B−1

∥∥
2
dmaxP((Ek)c)1/2E

 (k+1)n∑
t=kn+1

∥∥ϵt∥∥2
2

1/2

≤ 2σ
∥∥B−1

∥∥
2
dmaxP((Ek)c)1/2 (42)
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and

P(Ek)E

( (k+1)n∑
t=kn+1

ϵt +∆t)⊤B−1(

(k+1)n∑
t=kn+1

ϵt +∆t)|Ek


≤
2n
∥∥B−1

∥∥
2

T − (k + 1)n

(k+1)n∑
t=kn+1

E
[∥∥ϵt∥∥2

2
+
∥∥∆t

∥∥2
2

]
(a)

≤
2n
∥∥B−1

∥∥
2

T − (k + 1)n

(k+1)n∑
t=kn+1

(
σ2 + C5k

−1/2
)

=
2n2

∥∥B−1
∥∥
2

T − (k + 1)n

(
σ2 + C5k

−1/2
)
, (43)

where we apply (38) in (a).

Now following the deduction in (17), we get
P((Et)c)E

[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

∣∣(Et)c]
≤ (T − kn)rmaxP((Ek)c) +

√
nσP((Ek)c)1/2. (44)

Now combining (40), (41), (42), (43) and (44), we get
E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

]
2σ
∥∥B−1

∥∥
2
dmaxP((Ek)c)1/2 +

2n2
∥∥B−1

∥∥
2

T − (k + 1)n
(σ2 + C5k

−1/2) + (T − kn)rmaxP((Ek)c) +
√
nσP((Ek)c)1/2.

(45)

Now we give bound to P((Et)c). We consider two events: Iti1 = {ζ((T − t+ 1)−1/4 + t−1/4)/3 ≥
|∆t

i|}; Iti2 = {ζ((T − t+ 1)−1/4 + t−1/4)/3 ≥ ϵti
T−(k+1)n}. Then we have

P((Ek)c) ≤ 1− P(∩ni=1 ∩
(k+1)n
t=kn+1 (I

t
i1 ∩ Iti2))

≤
n∑

i=1

(k+1)n∑
t=kn+1

(P(Iti1) + P(Iti2)).

With (36), (31), (32) and (34), we have
P((Iti1)c)

≤ P
(
4C2λ

−1
min(B +B⊤)

∥∥∥B̂kn+1 −B
∥∥∥
2
+

2n

t− 1
dmax + σ0 ∥B∥2 t

−1/4 > ζ((T − t+ 1)−1/4 + t−1/4)/3

)
≤ P

(
C2λ

−1
min(B +B⊤)

∥∥∥B̂kn+1 −B
∥∥∥
2
> ζ((T − t+ 1)−1/4 + t−1/4)/24

)
≤ C1(kn)

n2+n−1 exp

(
−σ2

0σ1

√
kn

8n
(λ ∧ λ2)

)
≤ C2

5/(n
2T 2) (46)

for some constant C5, where λ = C−1
2 λmin(B +B⊤)ζ((T − t+ 1)−1/4 + t−1/4)/24 and we have

λ2 ∧ λ ≥ 8(n5/2 + n) log3 n log2 T

k−1/2σ2
0σ

by definition of ζ. For the event Ici2, it follows directly from the derivation of (19) that
P((Iti2)c

≤ P
(
ζ((T − t+ 1)−1/4 + t−1/4)/3 <

ϵti
T − (k + 1)n

)
≤ exp

(
−ζ2(T − (k + 1)n)2

36σ2

)
≤ C2

5/(n
2T 2). (47)
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Now combining (46) and (47), we get

P((Ek)c) ≤
n∑

i=1

(k+1)n∑
t=kn+1

(P(Iti1) + P(Iti2))

≤ 2C2
5/T

2.

Plugging the above inequality into (45) yields

E
[
RT (Hybridk,FT )−RT (Hybridk+1,FT )

]
≤ 2C5σ

∥∥B−1
∥∥
2
dmaxT

−1 +
2n2

∥∥B−1
∥∥
2

T − (k + 1)n
(σ2 + C5k

−1/2) + C2
5 (T − kn)rmax/T

2 + C5

√
nσT−1.

(48)

Case (II): maxi d̃
t
i < ζ

[
(T − t+ 1)−1/4 + t−1/4

]
,∀kn + 1 ≤ t ≤ (k + 1)n, ∀kn + 1 ≤ t ≤

(k + 1)n. This case is much simpler, just follow (21):

E
[
RT (Hybridk,FT )−RT (Hybridk+1,FT )

]
≤ E

[
(T − kn)r(dπ,k)− (T − (k + 1)n)r

(
T − kn

T − (k + 1)n
dπ,k

)]
= E

[
(T − kn)(dπ,k)⊤B−1(dπ,t −α)− (T − (k + 1)n)

T − kn

T − (k + 1)n
(dπ,t)⊤B−1(

T − kn

T − (k + 1)n
dπ,t −α)

]
= E

[
− T − kn

T − (k + 1)n
(dπ,t)⊤B−1dπ,t

]
= − T − kn

T − (k + 1)n
E
[
(dπ,t +∆t)⊤B−1(dt +∆)

]
≤ − 2(T − kn)

T − (k + 1)n
E
[
(dkn+1)⊤B−1dkn+1

]
− 2(T − kn)

T − (k + 1)n
E
[
(∆kn+1)⊤B−1∆kn+1

]
≤ 8ζ2

[
(T − kn+ 1)−1/2 + (kn)−1/2

]
+

8C5

∥∥B−1
∥∥
2√

k
. (49)

where we again use (38) in the last line.

Case (III): others. Following the same streamline of the argument in Appendix C and utilizing
(48), (49), we can get

E
[
RT (Hybridk,FT )−RT (Hybridk+1,FT )

]
≤ 8ζ2

[
(T − kn+ 1)−1/2 + (kn)−1/2

]
+

8C5

∥∥B−1
∥∥
2√

k

+ 2C5σ
∥∥B−1

∥∥
2
dmaxT

−1 +
2n2

∥∥B−1
∥∥
2

T − (k + 1)n
(σ2 + C5k

−1/2) + C2
5 (T − kn)rmax/T

2 + C5

√
nσT−1.

(50)

Wrap-up. Combinine (48), (49) and (50) leads to

E
[
RT (Hybridk,FT )−RT (Hybridk+1,FT )

]
≤ 8ζ2

[
(T − kn+ 1)−1/2 + (kn)−1/2

]
+

8C5

∥∥B−1
∥∥
2√

k

+ 2C5σ
∥∥B−1

∥∥
2
dmaxT

−1 +
2n2

∥∥B−1
∥∥
2

T − (k + 1)n
(σ2 + C5k

−1/2) + C2
5 (T − kn)rmax/T

2 + C5

√
nσT−1.
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Plugging this into (40) yields

RegretT
(
π
)
=

T ′∑
k=1

E
[
RT (Hybridk,FT )−RT (Hybridk+1,FT )

]
= O(

[
(ζ2 + C5

∥∥B−1
∥∥
2

]√
T ).

D.1 Proof of Proposition 4.1
Proof roadmap We establish the lower bound Ω(max{ρ

√
T , (ϵ0)2T}) by constructing two adver-

sarial problem instances:

1. Instance Construction: Define two parameter sets (α, B) and (α′, B′) that are:

• Statistically indistinguishable when (ϵ0)2T ≪
√
T

• Require fundamentally different pricing strategies

• Force any algorithm to suffer large regret on at least one instance

2. Information-Theoretic Argument: Use KL divergence bounds to show that any policy
cannot distinguish between the two instances with high confidence when data is limited,
establishing the Ω((ϵ0)2T ) term.

3. Reduction to No-Information Lower Bound: For the Ω(ρ
√
T ) term, reduce to the known

lower bound from Lemma 3.3 by choosing ϵ0 = Θ(T−(1−γ)/2) to match the minimax rate.

Implication: This result directly follows from Proposition 4.1 by appropriate parameter scaling. It
confirms that Theorem 4.2 achieves the optimal rate, and no algorithm can improve upon it without
additional assumptions.

The proof is brief and follows immediately from prior results.

We follow Sec 15.2 Lattimore and Szepesvári [2020] and Cheung and Lyu [2024]. Consider two
demand functions

dθ(p) = 2∆−∆p+ ϵ, dθ′(p) = 3∆− 2∆p+ ϵ,

with ∆ = T−β , where ϵ ∼ N (0, 1).

Assume that both θ, θ′ have the same offline data distribution Poff. Denote P on
π , Qon

π as the online
distribution of the demands under policy π. Additionally, define P,Q as the joint distribution of
(P off, P on

π ) and (P off, Qon
π ), respectively.

Then

Regret
(
π
)
θ = EP

[
T∑

t=1

∆−1(∆pt −∆)2

]
, Regret

(
π
)
θ′ = EQ

[
T∑

t=1

2∆−1
(
∆pt − 3∆

2

)2]
.

For set S ⊂ R, denote NT (S) as the total number of pt such that pt ∈ S. Consider the event

I =
{
NT

(
[ 5∆4 ,∞)

)
> T

2

}
.

Then by Bretagnolle–Huber inequality Lattimore and Szepesvári, 2020, Thm 14.2 we have

Regret
(
π, θ
)
+ Regret

(
π, θ′

)
≥ ∆

16
∗ T
2
∗ P (I) + 2∆

16
∗ T
2
∗Q(IC)

≥ T 1−γ

32
(P (I) +Q(IC))

≥ T 1−γ

32
exp(−KL

(
P ∥Q

)
).
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For Gaussian Pθ(p) = N (2∆−∆p, 1) and Qθ′(p) = N (3∆− 2∆p, 1), we have KL
(
Pθ ∥Pθ′

)
=

(∆−p)2

2 . In order to to further give bound to the term exp(−KL
(
P ∥Q

)
), we introduce the following

lemma in Cheung and Lyu [2024]. This lemma shows that when two problem instances share the same
offline data distribution but differ in their online dynamics, the KL divergence between the full joint
distributions (offline + online) equals the KL divergence of only the online parts. This factorization is
crucial for constructing adversarial instances: it allows us to design two indistinguishable problems
based on offline data that require fundamentally different online strategies, establishing information-
theoretic lower bounds.
Lemma D.4. Consider two instances with onlien distribution P , Q and shared offline dataset with
samples {(p−t,d−t)}Nt=1, then for any admissible policy π, it holds that

exp(−KL
(
P ∥Q

)
) = exp(−EP

[
T∑

t=1

KL
(
Pθ(p

t) ∥Qθ′(pt)
)]

.

By Lemma D.4, we have

exp(−KL
(
P ∥Q

)
) = exp(−EP

[
T∑

t=1

KL
(
Pθ(p

t) ∥Qθ′(pt)
)]

= exp(−EP

[
T∑

t=1

(∆−∆pt)2

2

]
= exp(−∆Regret

(
π, θ
)
)

≥ exp(−∆CT γ)

= exp(−C).

As a result, we have

Regret
(
π, θ
)
+ Regret

(
π, θ′

)
≥ T 1−γ

32
exp(−C) = Ω(T 1−γ).

Since β ∈ [0, 1
2 ), we know that Regret

(
π, θ′

)
≥ Ω(T 1−γ).

E Proof of Theorem 4.2
Proof Roadmap We prove the regret bound O(min{ρ

√
T , (ϵ0)2T + C ′ log T}) by leveraging the

informed price-demand pair (p0, d0):

1. Estimate-Then-Select Decision: Algorithm 3 first decides whether to use the informed
price based on comparing (ϵ0)2T versus ρ

√
T :

• If (ϵ0)2T > ρ
√
T : Switch to Algorithm 2 (no-information setting)

• If (ϵ0)2T ≤ ρ
√
T : Exploit the informed price with anchored regression

We focus on the second case, as the first case reduces to Theorem 3.1.

2. Anchored Regression Framework: Define the improved data variance quantity:

J t := n−1
t∑

s=1

∥ps − p0∥22 ≥ tn−1δ20

where δ0 = ∥p⋆ − p0∥2 measures distance from informed price to optimal price. This
replaces the O(t−1/2) variance growth in Appendix D with O(t) linear growth, dramatically
improving estimation accuracy.

3. Enhanced Parameter Estimation Bound: Using the anchored regression:

min
α,B

∑
t

∥dt − (α+Bpt)∥2 subject to ∥d0 − (α+Bp0)∥2 ≤ (ϵ0)2

we obtain improved bounds:
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• E[∥α̂t −α∥22 + ∥B̂t −B∥22] = O(log t/
√
t) (vs. O(n5/

√
k) without informed prior)

• Misspecification contributes additive (ϵ0)2 term per period

4. Modified Single-Step Analysis: Follow the three-case framework from Appendix C, but
with:

• Rounding threshold: ζ[(T − t+ 1)−1/2 + t−1/2] (tighter than no-info case)

• Error decomposition: ∆t = ∆t
I +∆t

II (no exploration noise ∆t
III due to anchoring)

• Improved ∆t
I bound from step 3

5. Final Aggregation: Sum over all T periods:

• Estimation error:
∑T

t=1 O(log t/
√
t) = O(log T ) (logarithmic due to linear variance

growth!)

• Misspecification:
∑T

t=1 2(ϵ
0)2 = O((ϵ0)2T )

• Rounding and noise: O(ζ2 log T + σ2∥B−1∥2 log T )
Combining yields O((ϵ0)2T +C ′ log T ) where C ′ = σ0dmax∥B−1∥2+n2σ2∥B−1∥2+ζ2.

Key Insight: The informed price (p0, d0) acts as an anchor that accelerates parameter learning from
Õ(
√
T ) to O(log T ) when ϵ0 is small. The trade-off is explicit: accurate predictions (ϵ0 → 0) yield

near-optimal O(log T ) regret, while poor predictions (ϵ0 large) gracefully degrade to O(
√
T ) regret.

Comparison to Appendix D: The main technical difference is the variance analysis: linear growth
J t ≥ tn−1δ20 (enabled by the informed price) versus sublinear growth J t = O(

√
t) (from exploration

noise alone). This distinction propagates through the entire proof.

The detailed proof follows below.

In this section, we follow a similar streamline as in Appendix D. We only need to consider the case
(ϵ0)2T ≤ ρ

√
T and the informed prices are utilized. To begin with, recall our re-solve constrained

programming problem:
max
p∈P

r = p⊤d

s.t. d = α+Bp,

Ad ≤ ct

T − t+ 1
,

(51)

where ct is the inventory level at the beginning of time t. We use the single-step difference decompo-
sition:

RegretT
(
π
)
= E

[
T∑

t=1

RT (Hybridt,FT )−RT (Hybridt+1,FT )

]

=

T∑
t=1

E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

]
. (52)

We proceed by giving bound to the term E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

]
for 1 ≤

t ≤ T. We define ∆t = dt − dπ,t similarly. Let l = mod (t, n). Then we have

∆t = (d̃t − dt)︸ ︷︷ ︸
:=∆t

I

+ σ0t
−1/2Bel︸ ︷︷ ︸
:=∆t

II

. (53)

It follows directly that ∥∥∆t
II

∥∥
2
≤ σ0t

−1/2 ∥B∥2 . (54)
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In order to give bound to the term ∆t
I , we define the quanity J t as

J t := n−1
t∑

s=1

∥∥ps − p0
∥∥2
2
≥−1

t∑
s=1

∥∥p⋆ − p0
∥∥2
2
= tn−1δ20 . (55)

Now we introduce the following tail bound on the parameter estimation analogous to Lemma D.1.
Similar to Lemma D.1 but for the anchored regression setting with informed price (p0, d0). The key
difference is that the data variance J t now grows linearly in t (rather than

√
t) because the informed

price serves as an anchor point, dramatically improving estimation accuracy. This is the technical
reason why the informed-price algorithm achieves O(log T ) regret when ϵ0 is small.
Lemma E.1 (Keskin and Zeevi 2014). Under our policy and estimation (??), if ϵ0 = 0 (i.e. no
misspecification), then there exist finite positive constants C6, σ2 such that

P(
∥∥∥B̂t −B

∥∥∥
2
> λ, J t ≥ λ′) ≤ C6t

n2−1 exp(−σ2(λ ∧ λ2)J t).

Moreover, we have the following lower bound on the minimal eigenvalue of the matrix P̂ t :=∑t−1
s=1(p

s− p0)(ps− p0)⊤ in (??). This lemma provides a lower bound on the minimal eigenvalue of
the empirical covariance matrix P̂ t =

∑t−1
s=1(p

s−p0)(ps−p0)⊤ in terms of the variance quantity J t.
This ensures that the regression problem is well-conditioned: sufficient price exploration (measured
by J t) guarantees that the Fisher information matrix is invertible, enabling accurate parameter
estimation.
Lemma E.2 (Keskin and Zeevi 2014). Under our policy, we have λmin(P̂

t) ≥ J t.

Note that P̂ t is positive definite by the deduction above. Combining (??), Lemma E.1 and E.2 leads
to

P(
∥∥∥B̂t −B

∥∥∥
2
> λ+ ϵ0 ≤ C7t

n2−1 exp(−σ2(λ ∧ λ2)J t) (56)

for some constant C7 under offline data misspecification ϵ0. Now following a similar argument as in
the proof of (37) (except that we have the J t linear in T , rather than square root order of T in the
previous section, hence we have better bound here), we can get

E
[∥∥∆t

I

∥∥2
2

]
≤ C8n

5λ−1
min(B +B⊤)max{δ−1, δ−2}

σ2t
+ (ϵ0)2. (57)

Plugging (54) and (57) into (53)

E
[∥∥∆t

∥∥2
2

]
≤ 2

(∥∥∆t
I

∥∥2
2
+ ∥∆II∥22

)
≤ 2

(
C8n

5λ−1
min(B +B⊤)max{δ−1, δ−2}

σ2t
+ (ϵ0)2 + σ2

0t
−1 ∥B∥22

)
≤ C9

t
, (58)

where C9 = 8max{C8n
5λ−1

min(B +B⊤)max{δ−1, δ−2}/σ2, σ
2
0 ∥B∥

2
2}.

Now we proceed with almost the same argument as in Appendix D. We consider three cases: Case (I)
mini d̃

t
i ≥ ζ

[
(T − t+ 1)−1/2 + t−1/2

]
; Case (II) maxi d̃

t
i ≤ ζ

[
(T − t+ 1)−1/2 + t−1/2

]
; Case

(III) others.

Case (I). We follow a almost same argument as the derivation of (48) except by replacing the
bound of E

[
∥∆∥22

]
by (58) and the tail bound of (46), (47) with corresponding rounding threshold

ζ
[
(T − t+ 1)−1/2 + t−1/2

]
and J t in (55). We can get

E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

]
4C9σ0

∥∥B−1
∥∥dmaxT

−1 +
4n2

∥∥B−1
∥∥
2

T − t
(σ2 + C9T

−1) + 2C2
9 (T − t+ 1)rmax/T

2 + C0

√
nσT−1 + 2(ϵ0)2.

(59)
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Case (II). With a similar argument of deriving (49) by replacing the rounding threshold with
ζ
[
(T − t+ 1)−1/2 + t−1/2

]
, we can get

E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

]
≤ 8ζ2

[
(T − t+ 1)−1 + t−1

]
+

8C9

∥∥B−1
∥∥
2

t
. (60)

Case (III). With a similar argument of deriving (61), we arrive at

E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

]
≤ 4C9σ0

∥∥B−1
∥∥dmaxT

−1 +
4n2

∥∥B−1
∥∥
2

T − t
(σ2 + C9T

−1) + 2C2
9 (T − t+ 1)rmax/T

2 + C0

√
nσT−1 + 2(ϵ0)2

+ 8ζ2
[
(T − t+ 1)−1 + t−1

]
+

8C9

∥∥B−1
∥∥
2

t
. (61)

Wrap-up. Now combining (59), (60) and (61) yields

E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

]
≤ 4C9σ0

∥∥B−1
∥∥dmaxT

−1 +
4n2

∥∥B−1
∥∥
2

T − t
(σ2 + C9T

−1) + 2C2
9 (T − t+ 1)rmax/T

2 + C0

√
nσT−1 + 2(ϵ0)2

+ 8ζ2
[
(T − t+ 1)−1 + t−1

]
+

8C9

∥∥B−1
∥∥
2

t
.

Now plugging the above inequality into (52) leads to

RegretT
(
π
)
=

T∑
t=1

E
[
RT (Hybridt,FT )−RT (Hybridt+1,FT )

]
= O

(
C10 log T + (ϵ0)2T

)
,

where C10 = 2C0σ0

∥∥B−1
∥∥
2
dmax + 2n2

∥∥B−1
∥∥
2
σ2 + C0

√
nσ + 16ζ2 + 8C9

∥∥B−1
∥∥
2
.

F Proof of Proposition 4.3
This is a direct result following Proposition 4.1. We just need to take ϵ of order T−(1−γ)/2.

G Proof of lemmas
G.1 Proof of Lemma D.3
We rewrite the target as r(d) = d⊤B−1(d − α, which is a quadratic function since B is positive
definite. For optimal solution dπ,t, d− dπ,t is an descending direction for feasible d and it follows
from Boyd and Vandenberghe [2004] that (d⊤ − dπ,t)∇dπ,tr(dπ,t) ≤ 0. Moreover, with direct
calculation, we can get

r(d) = r(dπ,t) + (d− dπ,t)⊤∇dπ,tr(dπ,t) +
1

2
(d− dπ,t)⊤B−1(d− dπ,t).

As a result, we have

r(d) ≤ r(dπ,t) +
1

2
(d− dπ,t)⊤B−1(d− dπ,t)

≤ r(dπ,t) +
1

4
λmin(B

−1 +B−⊤)
∥∥d− dπ,t

∥∥2
2

≤ r(dπ,t) +
1

4
λmin(B

−1 +B−⊤).
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