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ABSTRACT

Saliency methods provide visual explainability for deep image processing mod-
els by highlighting informative regions in the input images based on feature-wise
(pixels) importance scores. These methods have been adopted to the time series
domain, aiming to highlight important temporal regions in a sequence. This pa-
per identifies, for the first time, the systematic failure of such methods in the time
series domain when underlying patterns (e.g., dominant frequency or trend) are
based on latent information rather than temporal regions. The latent feature im-
portance postulation is highly relevant for the medical domain as many medical
signals, such as EEG signals or sensor data for gate analysis, are commonly as-
sumed to be related to the frequency domain. To the best of our knowledge, no ex-
isting post-hoc explainability method can highlight influential latent information
for a classification problem. Hence, in this paper, we frame and analyze the prob-
lem of latent feature saliency detection. We first assess the explainability quality
of multiple state-of-the-art saliency methods (Integrated Gradients, DeepLift, Ker-
nel SHAP, Lime) on top of various classification methods (LSTM, CNN, LSTM
and CNN trained via saliency-guided training) using simulated time series data
with underlying temporal or latent space patterns. In conclusion, we identify that
Integrated Gradients and DeepLift, if redesigned, could be potential candidates
for latent saliency scores.

1 INTRODUCTION

Saliency methods aim to explain the predictions of deep learning models by highlighting important
input features. These methods often assign scores to individual inputs (Guidotti et al., 2018; Ismail
et al., 2020), collectively resulting in the detection of class-distinctive patterns. For image data, this
means assigning scores to positional information, namely pixels. Such a strategy suits image data, as
the label is often associated with specific input regions. Recently, image saliency methods have been
adopted for time series data Loeffler et al. (2022); Schlegel et al. (2020). They similarly assign im-
portance scores to the pixel counterparts, namely “time points”. These methods suit the time series
problem when a temporal pattern is indicative of the class. In some time series problems, however,
the label may depend on latent features such as dominant frequency, state-space model parameters,
or the overall trend of a non-stationary time series. In these cases, even though the classifier might
successfully capture the latent space, the positional scores extracted from the classifier will not di-
rectly explain the importance of the underlying latent features. Hence, the generated saliency maps
will not be directly interpretable and thus fail to fulfill their purpose.

The goal of this paper is to introduce, formulate and analyze the problem of latent feature saliency
in deep time series classification problems, focusing on the fundamental Fourier series latent model.
By extension, our study is replicable for other latent models. We summarize our main contributions
below:

∗Authors contributed equally

1



Published as a conference paper at ICLR 2023

1. We draw attention to the problem of latent feature saliency detection in time series data.
We formulate the shapelet- vs. latent-based pattern in time series classification and propose
a definition for an ideal latent feature saliency method (Section 2).

2. We provide a comprehensive study of popular time series saliency methods, including Inte-
grated Gradients, DeepLift, Kernel SHAP and Lime (Section3,Section 4) on top of multiple
classification methods (LSTM, CNN, LSTM and CNN trained via saliency guided train-
ing).

3. We identify effective methods that can be extended to potentially tackle the problem of
latent space saliency (Section 5).

2 PROBLEM FORMULATION

Let D = (X,Y ) with a univariate time series X ∈ X and the binary label Y ∈ {0, 1} formulate a
time series classification data set. Furthermore, let the mapping fXY : X 7→ {0, 1} represent a deep
learning-based classifier. In latent-representation learning, we assume a latent space Z , a mapping
from feature to latent space fXZ : X 7→ Z and a latent space to label mapping fZY : Z 7→ {0, 1},
such that the classifier fXY can be learned via the feature-to-latent and latent-to-label mappings.This
view has been adopted by several time series classifiers such as hidden Markov models (HMM) and
recurrent neural networks (RNN). The learned latent representation, exhibits properties shown to
be significant in terms of explainability Mikolov et al. (2013); Charte et al. (2020). Instead of
estimating fXZ as a black-box model, a parametric latent model (such as Fourier series models,
state space models, linear and switching dynamical systems, or additive and multiplicative models)
can be estimated via a neural network. These models are motivated by prior knowledge about the
underlying data generation mechanism; thus, their parameters often are interpretable. A saliency
method applied to this solution assigns scores to latent features in the Z space. In contrast, methods
used for the black-box models usually lack explainability for the latent features.

The latent space assumption is relevant in many time series problems. Sound signals are often
differentiated by amplitude and frequency; thus, the decision process behind audio classification is
likely to be better explained by the Fourier latent space than by spatial importance scores. Vibration
signal classification, as in earthquake or production line failure prediction, is likely to also depend
on frequency or amplitude. Financial time series classification often revolves around modeling
trends and seasonality of the time series. Many signals in the medical domain, such as EEG or
sensor data from wearable technologies for gait analysis for neurological disease progression, pain
recognition, or medication level adjustment, are further strongly related to amplitude and frequency.
These examples show that achieving time series explainability is heavily related to latent space
assumptions.

2.1 LATENT FEATURES VS. SHAPELETS

Ye & Keogh (2009) define shapelets as variable-length subsequences of time series which are max-
imally representative of a class. We define a feature-to-shapelet mapping fXS : X 7→ [0, 1]k. Sam-
ples in S are normalized score vectors, determining which shapelet appears in a sample. Subse-
quently, shapelet-based classifiers predict the label based on an existing pattern in the time domain.
These models are coordinated with saliency methods, which in this case, are visually explainable
since time points are directly expressive of both saliency scores and shapelets. The presence of in-
formative shapelets does not contradict the assumption of a latent model. On the contrary, shapelets
may appear as a proxy for latent information (see Figure 2). Nevertheless, from the explainability
point of view, there is a notable difference between latent features and shapelets. As an exam-
ple, a label correlated with the damping ratio of a vibration signal can be potentially predicted by
shapelet-based classifiers; however, a conventional saliency method applied to this problem will only
highlight a proxy of the informative latent feature, namely the existing fluctuations and oscillations
of the time series. In conclusion, time series classification problems may be characterized by class
differences in features that belong to the time domain as shapelets or to a latent domain. Current
saliency methods can provide explainability for shapelets but not directly for latent models.
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Figure 1: Time series classification schematic over the space X×Y with latent space representations
Z(i), associated with saliency function m(Z(i)) and resulting saliency map M (i). Current methods
mT measure saliency of the feature space, yielding the map MT .

2.2 DEFINING A DESIRABLE SALIENCY METHOD FOR TIME SERIES

Figure 1 illustrates the setup of a time series classification problem with multiple possible interme-
diate latent spaces, enumerated with i, and denoted as Z(i). A time series X ∈ X can be mapped
to Z(i) by the i-th chosen latent model f (i)

XZ . Without loss of generality, we assume that there is
only one latent feature Z∗ which provides the best explanation for the classification task. The latent
space that contains Z∗ is denoted as Z(∗).

We define a saliency method as “reliable” if it assigns the highest score to Z∗ above all other features
throughout all latent spaces. To formulate the reliability definition, we consider a latent-aware

saliency method m : Z(i) 7→ R|Z(i)|
+ , which produces a saliency map M (i) for Z(i). The reliability

condition is then formulated as

∀i ̸= ∗, maxM (∗) > maxM (i).

Note that during implementation, we have to define the possible set of latent models manually.

The fundamental problem of existing saliency methods is that they only estimate the saliency map
for the time domain and therefore lack appropriate output for features in other domains. Hence none
of the existing saliency methods meet the criteria for reliability. However, we argue that there might
exist some promising failing methods, which require only minor adjustments to serve as desired
saliency methods for time series. We define a saliency method mT : X 7→ R|X|

+ as promising if the
produced map MT ∈ RT

+ bears enough information to infer M (i),∀i (possibly via a simple mapping
function, depicted as a purple arrow in Figure 1). In other words, mT can capture information about

Figure 2: Toy examples of multiple label-making scenarios. Influential time steps (regions with
high saliency scores) are shaded in grey for frequency (peaks), amplitude (highest peaks), trend (a
window enough for inferring about the trend), and shapelet (presence of the informative pattern).
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Figure 3: Examples of well-performing explainability methods (top row) providing to some extend
interpretable explanations and completely uninterpretable saliency results (bottom row). Saliency
scores are visualized as a background heat map.

latent saliency, even though it cannot directly explain it. In this case, an extension of the promising
method, representing the mapping from MT to M (∗), establishes a desired latent saliency method.

Figure 2 schematically depicts the output of a good failing method when the label is associated with
either the frequency or amplitude of a Fourier model, the trend of an additive model, or shapelets.
In particular, highlighted regions are sufficient to infer the latent parameter (or equally shapelet).
Putting the experiment into practice, Figure 3 presents heat maps of importance scores resulting
from two exemplary failing methods.

3 EXPERIMENTAL FRAMEWORK

As a preliminary step for presenting the results of the empirical study, this section introduces the
examined time series saliency methods, data sets and the implementation details.

Our study focuses on post-hoc saliency methods designed to explain single classification instances
of trained models. Here, we investigate the following state-of-the-art saliency methods and group
them into three families.

(1) Gradient-based feature attribution (FA) methods infer input feature importance based on the
magnitude of the gradient of the output with respect to the input features. The attribution method
Saliency Simonyan et al. (2014) directly employs gradients to generate saliency maps. Extensions of
this basic method are Gradient × Input Shrikumar et al. (2016), DeCovNet Zeiler & Fergus (2014),
Guided Backpropagation Springenberg et al. (2015) and SmoothGrad Smilkov et al. (2017). Deep-
Lift Shrikumar et al. (2017) utilizes a neuron attribution-based difference-from-reference approach
to assigning scores. Integrated Gradients (IG) Sundararajan et al. (2017) calculates the path integral
from a non-informative baseline input to the respective input feature, tackling the problem of gradi-
ent saturation Bastings & Filippova (2020). Relevance-based methods, e.g., Layer-wise Relevance
Propagation (LRP) Bach et al. (2015) and Deep Taylor Decomposition Montavon et al. (2017), cal-
culate attribution scores by propagating relevance scores from the output back through the network
via designed propagation rules.

(2) Model-agnostic FA methods can be applied to any black-box classifier without access to the
models’ parameters Carrillo et al. (2021); Petsiuk et al. (2018). Methods such as Occlusion Zeiler
& Fergus (2014), Meaningful Perturbations Fong & Vedaldi (2017) and RISE Petsiuk et al. (2018)
assign saliency scores relative to the change in output when the respective feature is perturbed.
LIME Ribeiro et al. (2016) fits local interpretable surrogate models to the classifier in the neigh-
borhood of the target sample and calculates the saliency based on these models’ parameters. Other
methods are inspired by theorems from the field of game theory Datta et al. (2016); Lipovetsky
& Conklin (2001); Štrumbelj & Kononenko (2014). In particular, the application of the Shapley
Value Shapley (1953) has achieved great popularity. Lundberg & Lee (2017) introduce the SHAP
values method to measure feature importance by the Shapley value of a conditional expectation
function of the to-be-explained model.
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(3) A different class of post-hoc methods generates counterfactual explanations (CF) as
LASTS Guidotti et al. (2020), time series tweaking Karlsson et al. (2020), LatentCF++ Wang et al.
(2021), CoMTE Ates et al. (2021) and Native Guide Delaney et al. (2021). These methods identify
counter-samples to provide explainability by estimating the required variation in individual input
features to change the classification outcome. Since our experiments focus on saliency maps, we
exclude CF methods from our investigations in this paper.

For our study, we selected four candidate methods from different classes of post-hoc methods: In-
tegrated Gradients (IG), Deep-Lift (DL), LIME and Kernel SHAP (SHAP). As for the classifiers,
we utilize long-short term memory networks (LSTM) Hochreiter & Schmidhuber (1997) and con-
volutional neural networks (CNN) Le Cun et al. (1989). Since the experiments focus on saliency
detection, we also train the LSTM and CNN networks via a saliency-guided training procedure
(SGT) Ismail et al. (2021). This procedure allows networks to produce more consistent saliency
scores, as the saliency feedback is used for training the network.

3.1 DATA SET GENERATION

To demonstrate our findings, we designed a simulation study in which time-series data is gener-
ated based on the Fourier series model. The Fourier series is a well-known latent model for many
natural scenarios Geweke & Singleton (1981); Bracewell (2000) and it is proven that any given uni-
variate time series can be reconstructed from its Fourier latent space using a Fourier transformation
function. The Fourier latent space can be defined as a matrix with three rows representing frequen-
cies, amplitudes and phase shifts. In our experiments, the Fourier latent space is a matrix of 3x10
parameters.

We generated a total of ten experiments to understand the response of different saliency methods to
different patterns. Our ten experiments include four experiments with temporal shapelet patterns,
two with latent amplitude patterns, two with latent frequency patterns, and two with latent phase
shift patterns. In each experiment, we build a data set containing 2560 time series samples of equal
length divided into two equally sized classes. For the shapelet experiments, each sample in the
data set is generated by first randomly sampling from the latent space and then applying a Fourier
transformation to reconstruct its temporal signal from the latent space matrix. Afterward, the time
series samples in class 1 were superimposed with a dominant shapelet pattern positioned either at a
random location (experiment 1), the end (experiment 2), middle (experiment 3) or start (experiment
4) of the time series. For the latent feature experiments, the latent space matrices for class 0 were
sampled from a latent space different than the latent space for class 1. The difference was defined
in terms of sampling intervals for frequency, amplitude or phase shift. A detailed description of the
sampling distributions per experiment is presented in Table 3 in Appendix A.2. For each experiment,
the training, validation and testing sets were generated by random sampling without replacement
with a ratio of 80%, 10% and 10%, respectively.

For assigning the labels to the data samples, we induced a simple linear relation between the latent
or temporal patterns and the class labels. In the latent scenarios, two classes are distinguishable
using a single decision boundary defined as Z∗ = const., meaning that only one latent feature
is class-distinctive. Likewise, in shapelet-related scenarios, the presence or absence of a specific
shapelet decides the label of the data. This allows us to study the latent features individually and
in a controlled manner. In such settings, potential poor results can be confidently attributed to the
intrinsic weakness of the saliency methods rather than inappropriate classifiers. The data generation
mechanism and the resulting data sets are presented and described in detail in Appendix A.1 and A.2,
respectively.

3.2 IMPLEMENTATION DETAILS

In this paper, we investigate the performance of both the classifiers and the saliency methods with
a particular focus on the interpretability of saliency methods. To ensure uniform power between
all classifiers, they were designed as simple one-layer networks with no dropouts or other forms
of additional regularization. The performance of saliency methods is strongly correlated with the
classification performance, which is typically increased through more sophisticated and deeper net-
works. Therefore, by keeping the architecture simple, we intended to objectively evaluate and com-
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pare the explainability methods without the influence of optional variations, preventing overfitting
or performance boosting.

All algorithms were implemented in the Python programming language. The classifiers were im-
plemented using the deep learning library PyTorch Paszke et al. (2019) with the help of the wrapper
PyTorch Lightning Falcon (2019). Hyper-parameter optimization was performed through the library
Optuna Akiba et al. (2019). For the feature attribution techniques, the implementations from the
PyTorch-based model interpretability library Captum Kokhlikyan et al. (2020) were employed.

4 RESULTS

Table 1 reports the average accuracy and F1 scores of the chosen classifiers across our ten data sets
grouped by the type of experiments. The results show that overall the CNN trained via saliency-
guided training achieves the highest classification performance.

Table 1: Average classification performance on test data across all synthetic data sets.

Shapelet Frequency Phase shift Amplitude
Classifier Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1
LSTM 0.8535 0.8466 0.9749 0.9470 0.5157 0.4914 0.9981 0.9981
LSTM + SGT 0.8242 0.8417 0.9082 0.9117 0.5352 0.4145 0.9160 0.9230
CNN 0.6221 0.7439 0.9610 0.9633 0.9629 0.9625 0.9981 0.9981
CNN + SGT 0.8721 0.9138 0.9610 0.9633 0.9649 0.9634 1.0000 1.0000

It appears that the LSTM classifier is seriously challenged during phase-shift experiments. This
could be due to the vanishing gradient problem of LSTMs, which hinders proper classification if
informative patterns are placed in the early time points. Surprisingly, the LSTM with the saliency-
guided training procedure performs slightly worse than the LSTM. Unlike the LSTM, the CNN
largely benefits from the saliency-guided training procedure, especially in the shapelet experiments.

Figure 4: Saliency maps by IG, DL, Lime and SHAP for the CNN+SGT on a frequency, amplitude,
phase shift and shapelet experiment, respectively. Explanations by IG and DL clearly focus on
aspects related to the latent feature (peaks and valleys for amplitude and frequency, beginning of time
sequence for phase shift) and the shapelet. Maps of Lime and SHAP are visually uninterpretable.

Next, to investigate the explainability of the saliency methods, we visualize their output via color-
coded heat maps and overlay them onto the original time series (Figure 4). This allows us to assess
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the relevance of the saliency scores and the positional information directly. In the shapelet exper-
iment, we expect the maps to highlight the shapelet itself. In the amplitude and frequency experi-
ments, we expect an oscillating heat map with a focus on the peaks (or valleys) and extreme values
of the time series, respectively. Finally, in the phase shift experiments, we expect an emphasis on
the beginning of the time series. Figure 4 compares the saliency maps of the post-hoc saliency
methods (IG, DL, LIME, and SHAP) plotted for one sample per experiment group (shapelet- and
latent- experiments). Visual explanations provided by IG and DL align with our expectations for all
experiments and are comparatively easy to interpret. For example, in the amplitude experiments, IG
and DL highlight the peaks whose values are the direct proxies for the latent feature. On the other
hand, the heat maps of SHAP and LIME do not yield the expected visual patterns.

Figure 5: Saliency heat map of IG, DL, LIME and SHAP across all samples of the positive class
(occurrence of a shapelet) in the test data set. The IG and DL heat maps show a clear saliency pattern
in the middle of the time series, in which the shapelet occurred. The SHAP and LIME heat maps,
however, resemble a random saliency assignment.

We expected that the four saliency methods perform reasonably, at least for the shapelet experiments.
To investigate this further on the entire data set, we generated Figure 5. These heat maps depict
aggregated scores of the saliency methods for the middle-positioned shapelet experiment. In these
maps, each row represents a test sample and each column a time point. Figure 5 shows that both
SHAP and LIME fail to discover the shapelet pattern across the entire data set. The other two
methods IG and DL, however, performed successfully: their aggregated heat map clearly highlights
the position of the middle shapelet.

5 DISCUSSION

Promised effectiveness of saliency methods for shapelet-related classification The goal of this
paper was to demonstrate the fundamental problem of adopted saliency methods for time series data
in latent-related classification problems. The methods were expected to be effective in case of the
presence of positional information, i.e., shapelets. However, experiments show that some of the
methods performed poorly, even in simple shapelet scenarios. In particular, explanations provided
by different methods mostly did not align. This finding is in accordance with Neely et al. (2021).
Our observation raises caution regarding the use of saliency methods for time series data, previously
pointed out by Loeffler et al. (2022); Parvatharaju et al. (2021); Schlegel & Keim (2021). In our
findings, IG and DL showed reliable performances throughout the experiments when paired with
effective classifiers. Nevertheless, we encourage using various explainability methods as multiple
explanations can coexist Wiegreffe & Pinter (2019).

Need for latent feature saliency methods for time series classification We emphasize the need for
developing latent feature saliency methods for time series classification. Adopted image saliency
methods cannot parse explainable and meaningful saliency scores for time series data with class-
distinctive latent patterns. As discussed in Section 2.2, we proposed a definition for “promising
failing” methods as ones that produce positional scores associated with informative latent parame-
ters. In the case of Fourier series models, this corresponds to highlighting peaks or valleys, highest
peaks, or early time points in case of frequency-, amplitude- and phase-shift-related classification
problems, respectively. Not all SoA methods could exhibit such behavior. We hypothesize that this
was caused by the independence assumption between neighboring data points, which is made by
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the tested approaches. Under this assumption, the model neglects the relative temporal ordering of
input features, leading to the inability to detect temporal dependencies. This finding is also reported
by Lim et al. (2021).

We observed that the IG and DL methods consistently performed well for shapelet-related prob-
lems and produced useful saliency maps for latent-related problems. Note that despite calling these
methods “promising“, the need for directly scoring the latent parameters remains. We expect this
problem to exacerbate for latent-related settings whose features contain less legible associations with
the positional information, e.g., rates of changes in state-space models.

Future work To extend the empirical investigations, we suggest considering other time series latent
models. We further encourage the development of methods that can incorporate multiple feature
spaces into the saliency analysis. With this regard, there is a potential for extracting latent saliency
scores directly from positional saliency maps, given that the target latent model is known. Our
findings show that the output of IG and DL are associated with the Fourier latent model. This
approach (i.e., mapping positional scores to latent scores) serves well as a baseline method.

Throughout our study, the evaluation of saliency maps was performed by visual inspection only
since the primary purpose of this paper was to formulate the latent feature saliency problem and
motivate further investigation of this topic through a simple experimental framework. For future
work, we encourage using quantitative evaluation metrics to objectively assess the performance of
different saliency methods. Furthermore, we motivate the extension of our experiments to more
complex real-world data sets.

Our analyses were done on the sample level, i.e., we studied individual saliency maps to infer the
underlying classification mechanism. Intra-class studies of variability and variance of saliency maps
might uncover further information regarding the classification.

6 CONCLUSION

Explainability of time series models is an uprising field of research. Interpretation and explanation
of black-box classifiers are crucial to building trust in AI. Various image saliency methods have
been introduced to time series problems. They focus on positional information of the input features,
providing spatial explanations. In time series data, however, the class label may depend on a la-
tent model instead of positional information. To the best of our knowledge, the performance and
behavior of saliency methods in such settings have not been explored, and neither has a saliency
model accounting for latent features been developed. We demonstrated this problem by empirically
showing that if the class label is associated with latent features of the time series instead of the
presence of a specific shape, common saliency methods do not provide accurate or interpretable
explanations. Finally, we presented an outline for future research to develop extensions for existing
saliency methods providing latent saliency results based on time-step-wise importance scores. Our
work highlights the need for research on latent saliency detection for deep time series classification.
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The synthetic data generation algorithm is described in Appendix A.1. The specific data sets em-
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containing the complete code base can be found at https://github.com/m-schroder/
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A APPENDIX

A.1 SYNTHETIC DATA GENERATION

Based on the Fourier series latent model, a time series xt, t = 1, ..., T is modeled as

xt = a0 +

∞∑
n=1

an cos(ωnt) +

∞∑
n=1

bn sin(ωnt)

= a0 +

∞∑
n=1

An cos(ωnt+ ϕn)

= a0 +

∞∑
n=1

An sin(ωnt+ ϕn +
π

2
).

To simulated data, let ñ represent the number of amplitudes present in the series, i.e. ∀i > ñ, Ai = 0.
For simplicity, we consider centered stationary periodic time series in the data generation process,
i.e. a0 = 0. In this case, the value at every time step t is calculated as

xt =

ñ∑
i=1

Ai sin(ωit+ ϕi +
π

2
). (1)

We refer to the notions amplitude A, frequency ω, phase shift ϕ as concepts. The separate Fourier
coefficients Ai, ωi, ϕi for i = 1, ..., T̃ are referred to as latent features. The latent features frequency
ωi and phase shift ϕi are each sampled from a uniform distribution. The sampling intervals are
chosen with respect to the specific intention in the experiment design. To simulate the amplitude
parameters Ai, a dominant amplitude A1 is sampled. The next amplitudes are calculated considering
an exponential decay with a fixed rate dec:

Ai = A1 exp(−i · dec), i = 1, ..., ñ.

This makes the first frequency i.e. ω1 to be the dominant frequency of the Fourier series. Through-
out the experiments, all time series were generated with an equal length of 300 time steps. i.e.
T = 300.

For assigning class labels to the time series samples, we consider the following two scenarios.

Scenario 1: Label based on the presence of a shapelet
For assigning shape-based labels to the time series, a shapelet is inserted at a random or fixed position
into all time series X ∈ D belonging to one class. The shapelet is a second simulated Fourier series
of length l ≤ T , where l = window-ratio · T for a chosen window ratio. We define the sampling
intervals for the latent features of the shapelet to be non-intersecting with the sampling intervals of
the latent features of the original time series X . The resulting shapelet replaces the original time
series in the interval [j, j + l], where

j ∼ U(1, T − l).
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Scenario 2: Label based on differences in the latent features
Following the investigation of the effectiveness of explainability methods for latent features, we
introduce a second simulation scenario where the labels depend on a difference in the sampling
distribution of latent features of the time series. This scenario highlights the main focus of this
project and represents our novel view of explainability methods for time series. Similar to the first
scenario, the time series are sampled as discretized Fourier series with latent variables ω,A and ϕ.
The latent dependency is induced as follows:

1. Two normal distributions with different means (based on Table 3) are selected for classes 0
and 1. For positive parameters, the distributions are log-normal.

2. Per each class, N/2 Fourier parameters are sampled from the given distributions.
3. The rest of the parameters are sampled from the same distribution for both classes.
4. Sampled parameters are given to the deterministic Fourier series in Equation 1 to generate

the temporal samples. Rows are then labeled with the associated class, from the corre-
sponding distribution of which the informative parameters are sampled.

A.2 DATA SET DESCRIPTION

Based on the data generation method described above, we design ten different mechanisms for binary
classification of univariate time series. Table 2 lists the parameters and algorithms for assigning
labels to each sample. In table 3 the parameters used for sampling the Fourier series are presented.
The complete simulation code base can be found in the GitHub repository at https://github.
com/m-schroder/TSXplainability.

Table 2: Label-making features per experiment. The overlapping ranges refer to the sampling inter-
vals for frequency and phase shift.

Experiment Label feature Description of shapelet

1 Shapelet Random position, window length of 0.2 ∗ sequence length
2 Shapelet Fixed position, last 0.2 ∗ sequence length time steps
3 Shapelet Fixed position, starting at time step 0.4 ∗ sequence length with

window length 0.2 ∗ sequence length
4 Shapelet Fixed position, first 0.2 ∗ sequence length time steps
5 Frequency Overlapping frequency ranges
6 Frequency Overlapping frequency ranges
7 Phase shift Non-overlapping phase shift ranges
8 Phase shift Non-overlapping phase shift ranges
9 Amplitude Different dominant amplitude

10 Amplitude Different dominant amplitude
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Exp. Number Freq. Freq. Phase Phase Dominant Decay Noise
of sines low high low high amplitude rate ratio

1 10 π
300

π
60

−π
4

π
4 1 0.3 0.1

2 10 π
300

π
20

−π
4

π
4 1 0.3 0.1

3 10 π
300

π
20

−π
4

π
4 1 0.3 0.1

4 10 π
300

π
20

−π
4

π
4 1 0.3 0.1

5 10/10 π
300 / π

100
π
20 /π2

−π
4 /−π

4
π
4 /π4 1 / 1 0.3 / 0.3 0.1 / 0.1

6 1/1 π
300 / π

100
π
20 /π2

−π
4 /−π

4
π
4 /π4 1 / 1 0.3 / 0.3 0.1 / 0.1

7 1/1 π
300 / π

300
π
20 / π

20 0 /−π
4

π
4 /π2 1 / 1 0.3 / 0.3 0.1 / 0.1

8 10/10 π
300 / π

300
π
20 / π

20 0 /−π
4

π
4 /π2 1 / 1 0.3 / 0.3 0.1 / 0.1

9 10/10 π
300 / π

300
π
20 / π

20 0 /−π
4

π
4 /π4 1 / 3 0.3 / 0.3 0.1 / 0.1

10 1/1 π
300 / π

300
π
20 / π

20
−π
4 /−π

4
π
4 /π4 1 / 3 0.3 / 0.3 0.1 / 0.1

Table 3: Overview of simulation parameters of the Fourier series. If two entries are present in
one cell, each the classes were sampled from different distributions. The first entry in each cell
corresponds to the sampling parameter of class 0, the second entry to class 1.
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