
Learning Search-Space Specific Heuristics Using Neural Network

Liu Yu, Ryo Kuroiwa,1 Alex Fukunaga,2
1Department of Mechanical and Industrial Engineering, University of Toronto

2Graduate School of Arts and Sciences, The University of Tokyo
liuyu.ai@outlook.com, mhgeoe@gmail.com, fukunaga@idea.c.u-tokyo.ac.jp

Abstract

We propose and evaluate a system which learns a neural-
network heuristic function for forward search-based, satisfic-
ing classical planning. Our system learns distance-to-goal es-
timators from scratch, given a single PDDL training instance.
Training data is generated by backward regression search or
by backward search from given or guessed goal states. In do-
mains such as the 24-puzzle where all instances share the
same search space, such heuristics can also be reused across
all instances in the domain. We show that this relatively sim-
ple system can perform surprisingly well, sometimes compet-
itive with well-known domain-independent heuristics.

1 Introduction
State-space search using heuristic search algorithms such as
GBFS is a state-of-the-art technique for satisficing, domain-
independent planning. Search performance is largely deter-
mined by the heuristic evaluation function used to decide
which state to expand next. Heuristic function effectiveness
for domain-independent planning depends on the domain, as
different heuristics represent different approaches to exploit-
ing available information. Designing heuristics which work
well across many domains is nontrivial, so learning-based
approaches are an active area of research.

In one setting for learning search control knowledge for
planning (exemplified by the Learning Track of the IPC), a
set of training problem instances (and/or a problem instance
generator) is given, and the task is to learn a domain-specific
heuristic for that domain. Previous work on learning heuris-
tics and other search control policies (e.g., selection among
several search strategies) in this setting include (Yoon, Fern,
and Givan 2008; Xu, Fern, and Yoon 2009; de la Rosa et al.
2011; Garrett, Kaelbling, and Lozano-Pérez 2016; Sievers
et al. 2019; Gomoluch, Alrajeh, and Russo 2019). Another
type of setting seeks to learn domain-independent planning
heuristics, which generalize not only to domains used dur-
ing training, but also to unseen domains (Shen, Trevizan,
and Thiébaux 2020; Gomoluch et al. 2017).

Inter-instance speedup learning, or “on-line learning”, is
a setting where only one problem instance (no training in-
stances or problem generator) is given, and the task is to
solve that instance as quickly as possible. Speedup learn-
ing within a single problem solving episode is worthwhile

if the total time spent by the solver (including learning)
is faster than the time required to solve the problem us-
ing other methods. Previous work on on-line learning for
search-based planning includes learning decision rules for
combining heuristics (Domshlak, Karpas, and Markovitch
2010) and macro operator learning (Coles and Smith 2007).

On-line learning can be used to learn an instance-specific
heuristic. Previous work on instance-specific learning in-
cludes bootstrap heuristic learning (Arfaee, Zilles, and Holte
2011), as well as LHFCP, a single-instance neural net-
work heuristic learning system (Geissman 2015). Instance-
specific learning can be generalized to single search space
learning, where many problem instances share a single
search space. For example, all instances of the 15-puzzle
domain share the same search space – different instances
have different initial states, all on the same connected state
space graph. Thus, a learned heuristic function which per-
forms well for one instance of the 15-puzzle can be directly
applied to other instances of the domain.

We propose and evaluate SING, a neural network-based
instance-specific and single search space heuristic learning
system for domain-independent, classical planning. SING is
closely related to LHFCP, an approach to supervised learn-
ing of heuristics which generates training data using back-
ward search (2015). Given a PDDL problem instance I , LH-
FCP learns a heuristic hnn for I . To generate training data for
hnn, LHFCP performs a series of backward searches from a
goal state of I to collect a set of states and their approxi-
mate distances from the goal. After training, hnn is used as
the heuristic function by GBFS to solve I . This does not
require any additional training instances as input, nor pre-
existing heuristics to bootstrap its performance. However,
LHFCP performed comparably to blind search (Geissman
2015), so achieving competitive performance with this ap-
proach remained an open problem.

SING expands upon this basic approach in several ways:
(1) improved backward search space using either (a) explicit
search with inferred inverse operators or (b) regression, (2)
depth-first search (vs. random walk), (3) boolean state rep-
resentation, and (4) relative error loss function. We experi-
mentally evaluate SING for learning domain-specific heuris-
tics for domains where instances share a single state space,
and show performance competitive with the Fast Forward
heuristic (hff) (Hoffmann and Nebel 2001), and the land-

mark count heuristic (hlm) (Hoffmann, Porteous, and Se-
bastia 2004) on several domains. We also evaluate SING
as an instance-specific heuristic learner, and show that the
learned heuristics consistently outperforms blind search on
a broad range of standard IPC benchmark domains, and per-
forms competitively on some domains, even when the learn-
ing times are accounted for within the time limit.

2 Preliminaries and Background
We consider domain-independent classical planning prob-
lems which can be defined as follows. A SAS+ plan-
ning task (Bäckström and Nebel 1995) is a 4-tuple, Π =
〈V,O, I,G, 〉, where V = x1, ..., xn is a set of state vari-
ables, each with an associated finite domain Dom(xi); A
state s is a complete assignment of values to variables. S
is the set of all states. O is a set of actions, where each
action a ∈ O is a tuple (pre(a), eff (a)), where pre(a)
and eff (a) are sets of partial state variable assignments
xi = v, v ∈ Dom(xi); I ∈ S is the initial state, and G
is a partial assignment of state variables defining a goal con-
dition (s ∈ S is a goal state if G ⊂ s). A plan for Π is
a sequence of applicable actions which when applied to I
results in a state which satisfies all goal conditions. Search-
based planners seek a path from the start state to a goal state
using a search algorithm such as best-first search guided by
a heuristic state evaluation function.

A natural approach to learn heuristic functions for search-
based planning is a supervised learning framework consist-
ing of the following stages: (1) Training Sample Genera-
tion: generate many state/distance pairs which will be used
as training data. (2) Training: Train a heuristic function h
which predicts distances from a given state to a goal. (3)
Search: Use h as the heuristic evaluation function in a stan-
dard heuristic search algorithm such as GBFS. This paper
focuses mostly on stage (1), training data generation.

Ferber et al. (2020) investigated an approach where the
training data was generated using forward search from the
start states of training instances. They perform random
walks (200 steps) from the initial state, and from each step
visited in the random walk, they perform a forward search
(a “teacher search” using a heuristic such as hff) to a goal
in order to find the distance to the goal. If the teacher
search finds a path to the goal, the states on the path as
well as the distance-to-goal for the states on the path are
added to the training data. This approach can be practical
for shared search space heuristic learning, where the costs
of the teacher searches can be amortized among many in-
stances on the same search space. However, this is not prac-
tical for satisficing, single instance heuristic learning where
there is only one problem solving episode, as requiring for-
ward search to the goal in order to gather training data obvi-
ates the need to learn a heuristic for that particular instance.

An alternative approach to generating training data uses
backward search from the goal. A backward search starting
at a goal state (provided in or guessed/derived from the prob-
lem specification) is performed, storing encountered states
and their (estimated) distances from thoe goal as the training
data. Arfaee, Zilles, and Holte (2011) used this approach in
a bootstrap system for heuristic learning, which starts with

a weak neural net heuristic h0 and generates increasingly
more powerful heuristics by using the current heuristic to
solve problem instances, using states generated during the
search as training data for the next heuristic improvement
step. If h0 is too weak to solve training set problems, they
generate training data by random walks from the goal state
to generate easy problem instances that can be solved by h0.
Lelis et al. (2016) proposed BiSS-h, an improvement which
uses a solution cost estimator instead of search for training
data generation. Arfaee et al. and Lelis et al. evaluated their
work on domain-specific solvers for the 24-puzzle, pancake
puzzle, and the Rubik’s cube.

Geissmann (2015) investigated a backward-search ap-
proach to training data generation for domain-independent
classical planning. His system, LHFCP, uses backward
search to generate training data for learning a neural network
heuristic function which estimates the distance from a state
to a goal. To generate training data, LHFCP performs back-
ward search (random walk) in an explicit search space. It
generates the start state for backward search by generating a
state which satisfies the goal conditions, with values unspec-
ified by the goal condition filled in randomly. LHFCP relies
on the operators in the original (forward) problem to per-
form backward search. Search using the heuristics learned
by LHFCP across a wide range of IPC domains performed
comparably to blind search (Geissman 2015). Geissmann
also investigated a variation of LHFCP which applied BiSS-
h to classical planning but reported poor results, attributed
to difficulties in efficiently implementing BiSS for classi-
cal planning. Thus, a successful backward-search based ap-
proach to training data generation for domain-independent
classical planning remained an open problem.

3 SING: An Improved, Backward-Search
Based Heuristic Learning System

We describe SIngle search space Neural heuristic Generator
(SING), a system which learns single-search space heuris-
tics for domain-independent planning. SING learns a heuris-
tic function hnn(s), which takes as input a vector represen-
tation of a state s, and returns a heuristic estimate of the
distance from s to a closest goal. SING is implemented on
top of the Fast Downward planner (FD) (Helmert 2006).

SING uses backward search to generate training data,
similar to LHFCP, but incorporates several significant dif-
ferences in the state representation, backward search space
formulation, and backward search strategy. Below, we de-
scribe each of these in details:

3.1 State Representation
The input to hnn is a vector representation of a state. LHFCP
used a multivalued SAS+ vector representation of the state,
which is a natural representation to use, as FD uses the SAS+
representation internally.

Another natural representation for the vector input to hnn
is based on the STRIPS propositional representation of the
problem. A STRIPS planning task (Fikes and Nilsson 1971)
is a 4-tuple, Π = 〈F, I,G,A, 〉 where F is a set of propo-
sitional facts, I ∈ 2F is the initial state, G ∈ 2F is a set of

goal facts, and A is a set of actions. Each action a ∈ A has
preconditions pre(a), add effects add(a), and delete effects
del(a), which are sets of facts. A state s ∈ 2F is set of facts,
and s is a goal state if G ⊆ s. Given a state s ∈ 2F , a is
applicable iff pre(s) ⊆ s. After applying a in s, s transi-
tions to s ∪ add(a) \ del(a). A plan for Π is a sequence of
applicable actions which make I transition to a goal state.

The STRIPS representation corresponds directly to the
classical planning subset of the standard PDDL domain de-
scription language, as PDDL uses boolean facts to repre-
sent the world state. In the SAS+ representation used by
FD, each possible value of a variable represents a mutu-
ally exclusive set of facts in the underlying propositional
problem. Each variable-value pair in FD represents a fact,
negation of a fact, or negation of all facts represented by
other values in the variable. Preconditions and effects of ac-
tions are also represented as the set of variable-value pairs.
Since the variable/value naming conventions used in the
SAS+ generated by the FD PDDL-to-SAS+ translator, con-
version between the SAS+ finite-domain representation and
the STRIPS propositional state representation is easy. Thus,
hnn can use either the boolean (STRIPS) or multivalued
(SAS+) state vector representation as input during training
and search.

Since each input bit corresponds to a fact in the boolean
encoding, it may enable a more accurate hnn state evalua-
tion function to be learned than the SAS+ multi-valued en-
coding. On the other hand, SAS+ encodings are more com-
pact, which can significantly reduce the dimensionality of
the state representation, which can result in faster NN eval-
uation, speeding up the search process. Thus, the choice of
state vector representation poses a tradeoff between hnn eval-
uation accuracy and hnn evaluation speed, and SING can
use either the multivalued SAS+ vector representation or the
STRIPS boolean vector representation.

3.2 Search Space and Operators for Training
Sample Generation

The task of training sample generation is to collect a train-
ing set T = {(s1, e1), ..., (sr, er)} a set of r states and their
(estimated) distance to a goal. The basic idea is to repeat-
edly start at a goal g and generate a sequence of states head-
ing away from it (using a directed search or random walk),
adding such states to the training data.

In some search problems such as the sliding tiles puz-
zle, backward search is relatively straightforward as the goal
state is given explicitly as input to the problem, and the op-
erators available for the forward problem are sufficient to
solve the backward problem.

In domain-independent planning, backward search based
training sample generation poses several issues. First, a goal
condition, possibly satisfied by many goal states, is given in-
stead of an explicit, unique goal state, so in general, it is not
possible to simply “search backward from the goal state”.
Second, in general, the operators for the forward problem
are not sufficient for backward search. LHFCP generates a
start state for backward search by generating a state which
satisfies the goal conditions, with values unspecified by the

goal condition filled in randomly. It relies on the operators in
the original (forward) problem to perform backward search.

SING incorporates two approaches to backward search
for training sample generation: (1) backward explicit search
using derived inverse operators, and (2) regression.

Explicit Backward Search with Derived Inverse Oper-
ators As in LHFCP, a candidate start state for backward
search is generated by first generating a partial state which
satisfies all conditions in the goal condition, and then ran-
domly assigning values to variables whose values are un-
specified in the goal condition. Such a randomly generated
candidate start state s might be invalid and unexpandable,
i.e., no backward operators (see below) can be applied to
s. In that case, we simply generate another candidate state.
This random initialization is performed for each backward
sampling search.

For the search operators, one simple approach is to use
the same set of actions as for forward search, as in LHFCP
(Geissman 2015). However, this fails in domains where ac-
tions are not invertible such as visitall.

Thus, operators for the backward search must be derived
from the forward operators. Since preconditions and effects
are represented as a set of variable-value pairs in FD, one
naive method to generate inverse actions is to swap values
of variables which appear in both preconditions and effects.
Other variable-value pairs in preconditions and effects are
treated as preconditions in the inverse action, because they
must hold after application of the action. However, the in-
verse action does not change values of variables which ap-
pear in the original effects but not in the original precon-
ditions. To address this issue, we use information available
in the STRIPS formulation of the problem (as explained
in Section 3.1, conversion among the PDDL problem de-
scription, its STRIPS formulation and the SAS+ formula-
tion used internally by Fast Downward is straightforward).
For action a, we generate an inverse action a′ such that
pre(a′) = (pre(a) ∪ add(a)) \ del(a), add(a′) = del(a),
and del(a′) = add(a). We identify variable-value pairs
which represent propositions as add effects, and pairs which
represent negation of facts as delete effects.

Regression Another approach to backward search is re-
gression. In backward search using regression, we use the
modified SAS+ representation by Alcázar et al. (2013). An
action a is applicable to a state s if add(a)∩s 6= ∅∧del(a)∩
s = ∅. If an action a is applied to a state s, s transitions to
a state s′ = (s \ add(a)) ∪ pre(a). Normally, SAS+ vari-
ables represent mutex groups of the corresponding STRIPS
propositions. In regression planning with SAS+, each vari-
able has an additional, undefined value. The starting node in
regression space is the goal state, where variables unspeci-
fied by the goal condition have undefined values. When an
action a is applied to a state s, if a variable v is included in
add(a) but not in pre(a), v is set to undefined.

When generating training data, a bit vector representation
of states needs to be generated (Section 3.1). When convert-
ing the SAS+-based representation used by Fast Downward
into a bit vector, unlike the other possible state values in the
mutex group, undefined values are not explicitly represented

in the bit vector. For example, suppose a state variable x in
regression search has 2 possible actual values, v1 and v2, as
well as ”undefined”. In the bit vector representation output
for use as training data, x is represented by 2-bits, where the
first bit represents x1, and the second bit represents x2, and
there is no explicit third bit for the undefined value.

Regression vs. explicit search spaces The choice of re-
gression vs. explicit spaces depends on the domain. Al-
though regression is in a sense the “correct” way to per-
form backward search, the backward branching factor in re-
gression space is very large in many domains. On the other
hand, while explicit backward spaces sometimes have much
smaller branching factor than regression, goal generation has
risks. First, goal generation might fail to find a goal. Also,
generated goals might not be true goal states reachable from
the start state, and states reachable from such incorrect states
are also unreachable from the start state. Such cliques (un-
reachable from the start state) can cause backward search to
yield few or no states for training data.

However, although the training data may include states
which are unreachable from the start state, these may nev-
ertheless be useful for learning an effective hnn which eval-
uates “real” states during search, somewhat similar to how
synthetic data generated by the adversary during training is
useful for learning networks which correctly classify real
data in GAN learning (Goodfellow et al. 2014).

3.3 Backward Search Strategy
Given a start state for backward search (corresponding to a
goal in the forward search space), we seek a set of training
states T which are relatively far from goal g but with a rea-
sonable estimate of their distance from g for training hnn.
Breadth-first search (BFS) from g could be used to generate
states T for which c(s, g), the exact distances from s ∈ S to
g (assuming unit-cost domains) are known, but would limit
the training data to states which are very close to g. We need
a search algorithm which can go much further from g than
BFS, and for which the number of steps in the (inverted)
path from s ∈ T to g is an approximation of c(s, g).

One natural sampling/search strategy is random walk, as
in LHFCP (Geissman 2015). The number of steps from g
at which s is encountered is used as an estimate of the true
distance from g to s. Although random walk is fast, distance
estimates from random walk may be inaccurate if cycles are
not detected. Loop detection can be implemented easily us-
ing a hash table, but in domains with many cycles, it can be
difficult to sample nodes far from g if the random walk is
restarted whenever a previously visited node is generated.

Therefore, we use depth-first search (DFS) to extend a
path from g, using the depth at which s is encountered is
used as an estimate of the true distance from g to s, and
all generated states are added to T . Random tie-breaking
among s is used to select the nodes among successors of
s, Succ(s), to expand. A hash table is used to prune dupli-
cate nodes and prevent cycles. In domains with many cy-
cles and dead ends, by backtracking (instead of restarting
search) when a duplicate is detected, DFS can potentially
sample more states which are further from g than random

walk. The best choice of sampling search strategy depends
on the domain. In some domains, DFS generates more ac-
curate samples than random walk due to duplicate detection
and backtracking, while in other domains DFS may incur
large overheads due to backtracking and Random walk al-
lows faster searches.

In the experiments below, during training data generation
we perform nsearches backward searches, stopping each
search after nsamples states are collected, i.e., nsearches ×
nsamples states are collected.

3.4 Neural Network Architecture
We use a standard feedforward network for hnn, using the
ReLU activation function. Each layer is fully connected to
the next layer. The input layer takes the state vector repre-
senting a state s as input. As discussed in Section 3.1, the
state vector is either a boolean vector for the STRIPS rep-
resentation of the problem instance, or a multivalued vector
for the SAS+ representation of the instance, so the number
of inputs is the same as the length of the state vector (|F |
for STRIPS propositional representation, |V | for SAS+ mul-
tivalued representation). The output layer is a single node
which returns hnn(s), the heuristic evaluation value of state
s. Since hnn will be called many times as the heuristic evalu-
ation function for best-first search, a small network enabling
fast evaluation is desirable.

PyTorch 1.2.0 is used for training hnn, but for search, we
use the Microsoft ONNX Runtime 0.4.0 to evaluate hnn.
Both training and search use a single CPU core. Due to the
simple network architecture as well as accelerated evalua-
tion using the ONNX Runtime, hnn can be evaluated rela-
tively quickly, significantly faster than hff on most IPC do-
mains, (see node expansion rates in Table 2).

3.5 Loss Function
Previous work on learning neural nets for classical planning
used the standard Mean Square Error (MSE) regression loss
function (Geissman 2015; Ferber, Helmert, and Hoffmann
2020). Instead of MSE, we use a prediction relative error
sum loss function, floss =

∑
i abs(ŷi− yi)/(yi + 1), which

is the sum of the relative error of the predicted (ŷi) values
compared to the training data (yi).

4 Evaluation: Domain-Specific Heuristic
Learning on Shared Search Spaces

In domains where multiple instances share the same space,
it is possible to learn reusable hnn networks that can be used
across many instances, so the cost of learning a heuristic can
be amortized across instances. For example, all instances of
the N -puzzle (for a particular value of N) share the same
search space.

We evaluated SING as a shared search space, single model
learner on the following PDDL domains:

• 24-puzzle: PDDL encodings of the standard 50-
instance benchmark set from (Korf and Felner 2002)

• 35-puzzle: 50 randomly generated instances

name state backward rev. inversion NN # of NN nodes samples #
vector space search hidden hidden

C2 boolean regression DFS yes 1 16 105

C3 SAS+ explicit rand. walk yes 1 16 105

C4 boolean explicit DFS yes 4 64 105

C5 boolean explicit DFS yes 1 16 4× 105

SING/L SAS+ explicit rand. walk no 1 16 105

Table 1: SING configurations used in experiments. “state
vector”: vector representation of states. “backward space”:
search space for training data generation backward search.
“rev. search” : search strategy for Training data generation
backward search. “NN # of hidden”: # of hidden nodes in
hnn. “NN nodes hidden”: # of nodes per hidden layer. “sam-
ples #” : # of sample states collected in the training data
collection phase using the sampling search. C2, C3 and C4
perform 500 searches, with a limit of 200 samples/search
(105 samples). C5 performs 800 searches, with a limit of
500 samples/search (4× 105 samples).

• blocks25: 100 blocks instances with 25 blocks gener-
ated using the generator from (Hoffmann 2002)

• pancake: 100 randomly generated instances with 14 pan-
cakes.

For each domain above, we ran the learning phase (train-
ing data generation and hnn training) once to learn a heuristic
hnn for the domain. For 24-puzzle, we used the C4 config-
uration (Table 1 shows configuration details), and training
data generation took 7 seconds and training took 61 seconds.
For blocks25, we used the C5 configuration, training data
generation took 502 seconds and training took 228 seconds.
For pancake, we used the C4 configuration, training data
generation took 21 seconds and training took 377 seconds.

Note that for these 3 domains, we tried several SING con-
figurations (i.e., manual tuning) and report the results for the
best configuration. We are currently investigating automated
tuning (hyperparameter optimization) to optimize the best
configuration for a given domain.

Table 2 and Figures 1-2 compare the coverage, node ex-
pansions, and runtime (on solved instances) of GBFS using
hnn, hff, hlm with a 30 min time limit per instance and 8GB
RAM limit using an Intel(R) Xeon(R) CPU E5-2680 v2.

hnn had or tied for the highest coverage on all 4 domains.
On blocks25 and pancake, hnn had the highest cover-
age. On 24-puzzle, 35-puzzle and pancake, hnn had the
lowest median run time. Thus, hnn achieved competitive per-
formance on all of these domains compared to both hff and
hlm in this shared search space evaluation setting. Note that
while hnn and hff expanded a comparable number of nodes,
hnn had a significantly higher median node expansion rate
than hff resulting in faster runtimes.

Figure 3 compares heuristic accuracy (h-value minus true
distance) for a set of 4400 states for hnn, hff, hlm, and hgc
(goal count). For states with true distance ≤ 30 from the
goal state, hnn is fairly accurate. This accuracy and the fast
evaluation speed due to the simple neural network enables
efficient, fast search.

5 Evaluation: Instance-Specific Learning
In Section 4, we evaluated SING for learning domain-
specific heuristics which could be reused on many instances
sharing the same search space, so the evaluation focused on
search time, assuming that the time spent learning hnn can
be amortized across multiple instances.

Next, we evaluate SING as an instance-specific learner
in an IPC Satisficing track setting, where SING is given 30
minutes total for all phases, including learning (including
training data collection and training) and search. Each run
of SING starts from scratch – nothing is reused across in-
stances, learning costs are not amortized, and the heuristic
is learned specifically for solving a given instance once.

We evaluate SING on a large set of standard benchmarks
from the IPC, all with unit-cost actions. All runs were given
a total 30 minutes for time limit both learning and search
(i.e., includes training data collection, training, and search
using hnn) and 8GB RAM per instance. We evaluated the
SING configurations in Table 1. As baselines for compari-
son, we also evaluated blind search, the goal count heuristic
(hgc), the Fast Forward heuristic (hff) (Hoffmann and Nebel
2001), and the landmark count heuristic (hlm) (Hoffmann,
Porteous, and Sebastia 2004). As an additional baseline we
also evaluate SING/L, a configuration of SING which is very
similar to LHFCP (Geissman 2015) (see Table 1. This con-
figuration is the same as C3, except that instead of the de-
rived inverse operators (Section 3.2), SING/L uses only the
actions available in the forward model.

Table 3 shows the coverage results (# of instances solved).
SING configurations C2, C3, C4, C5 significantly outper-
form blind search, showing that SING successfully learned
some useful heuristic information.

The SING/L (LHFCP) configuration performed compara-
bly to blind search, consistent with the results in (Geissman
2015). Configuration C3, which differs from SING/L only
in that action inversion is used, has much higher coverage
than SING/L, showing the effectiveness of action inversion.

C2 outperforms hff on 5 domains and outperforms hlm
on 2 domains. C3 outperforms hff on 5 domains and hlm
on 1 domains. C4 outperforms hff on 4 domains, and C5
outperforms hff on 3 domains. Thus although none of the
SING configurations are competitive with hff and hlm with
respect to overall coverage, these results indicate that there
are some domains where competitive performance can be
obtained with a 30 minute limit, including the time to learn
an instance-specific heuristic function entirely from scratch
without a teacher.

6 Ablation Study
To understand the relative impact of each of the new com-
ponents of SING compared to LHFCP, we performed an ab-
lation study comparing the following configurations:

(1) C5’: Configuration C5 (Table 1) with fewer training
samples (100k instead of 400k), (2) C5’/rw : same as C5’,
except using random walk instead of DFS, (3) C5’/sas : same
as C5’, except using SAS+ instead of boolean state repre-
sentation, (4) C5’/reg : same as C5’, except using regression
instead of explicit search state, (5) C5’/orig : same as C5’,

coverage rate median #expansions median #exp. per second median runtime
hnn hff hlm hnn hff hlm hnn hff hlm hnn hff hlm

24-puzzle 100.0 100.0 100.0 5,514 9,232 67,859 10,649 3,862 39,633 0.52 2.31 1.59
35-puzzle 100.0 100.0 100.0 122,463 57,045 1,650,552 9,313 3,749 74,487 12.95 15.20 21.86
blocks 84.0 73.0 83.0 353,856 332,974 33,658 14,926 2,830 24,054 26.07 126.14 1.56
pancake 100.0 48.0 100.0 74,873 324,925 1,620,030 25,261 912 134,248 2.93 347.55 10.60
Average 96.0 80.2 95.8 139,177 181,044 843,025 15,038 2,838 68,106 10.61 122.80 8.90

Table 2: Domain-specific heuristics: Reusing a single learned model across many instances of the same shared search space
domain. The (sampling, training) times were (28s, 210s) for 24-puzzle, (276s, 764s) for 35-puzzle, (502s, 228s) for
blocks25, and (21s, 377s) for pancake.

10 1 100 unsolved

hff

10 1

100

unsolved

h n
n

run time

10 1 100 unsolved

hlm

10 1

100

unsolved

h n
n

run time

(a) 24-puzzle (50 instances)

100 101 unsolved

hff

100

101

unsolved

h n
n

run time

100 101 unsolved

hlm

100

101

unsolved

h n
n

run time

(b) 35-puzzle (50 instances)

101 102 unsolved

hff

101

102

unsolved

h n
n

run time

100 101 unsolved

hlm

100

101

unsolved

h n
n

run time

(c) blocks25 (25 blocks, 100 instances)

Figure 1: Runtime (seconds) for 24-puzzle, 35-puzzle, and blocks25. hnn vs. hff and hlm.

10 1 101 unsolved
hff

10 1

101

unsolved

h n
n

run time

10 2 100 unsolved

hlm

10 2

100

unsolved

h n
n

run time

Figure 2: Runtime (seconds) for pancake (14 pancakes, 100
instances). hnn vs. hff and hlm.

10 20 30 40 50 60
exact distance from goal state

50

25

0

25

50

75

100

125

he
ur

ist
ic

va
lu

e
- e

xa
ct

 d
ist

an
ce

hnn

hff

hlm

hgc

Figure 3: 24-puzzle Heuristic accuracy: hnn, hgc, hff, hlm

except using original operators only (no action inversion),
and (6) C5’/mse : same as C5’, except using MSE instead of
the relative error sum loss function for NN training.

All configurations were run with a 30min, 2GB limit on
the same IPC instances used in the above experiment. The
coverages of the configurations were 604 for C5’, 563 for
C5’/rw, 481 for C5’/sas, 651 for C5’/reg, 420 for C5’/orig,
and 559 for C5’/mse. This shows that the use of DFS in
backward search, the use of boolean state representation, the
use of action inversion, and the use of relative error sum
loss function all have a significant positive impact on per-

formance.
On the other hand, the effect of using regression vs ex-

plicit state search for the backward search during training
data generation is highly domain-dependent, with regres-
sion performing better on some domains and explicit search
on others, as can be seen by comparing configurations C2
(which is the same as C5’/reg) vs. C5 in Table 3.

7 Related Work
A broad survey of learning for domain-independent plan-
ning is (Celorrio et al. 2012). Satzger and Kramer (2013)
developed a neural network based, domain-specific heuris-
tic for classical planning. They used random problem gen-
erators to create instances for training the neural network.
Their training process also relies on the use of an oracle (the
FD planner with an admissible heuristic) to provide true dis-
tance from a state to a goal.

Shen et al. (2020) proposed an approach to learning
domain-independent (as well as domain-dependent) heuris-
tics using Hypergraph Networks. They showed that it was
possible to successfully learn domain-independent heuris-
tics which performed well even on domains which were not
in the training data. As this approach uses a hypergraph
based on the delete relaxation of the original planning in-
stance, it is quite different from the minimalist approach
taken in SING, which does not use any such derived features
and uses only the raw state vector. The training data genera-
tion method is forward search based, similar to the forward
approach of Ferber et al. described in Section 2 (Ferber,
Helmert, and Hoffmann 2020). In addition, while their work
focuses on generalization capability and search efficiency
(node expansions) across domains, with runtime competi-
tiveness left as future work, our work seeks to achieve run-
time competitiveness using a simple NN architecture.

Random-walk sampling of the search space of determin-

istic planning problems for the purpose of learning a control
policy for a reactive agent was proposed in (Fern, Yoon, and
Givan 2004). This differs from SING in that SING learns a
heuristic function which estimates distances to a goal state
and and guide search (GBFS), instead of a reactive policy.

There is also a rapidly growing body of work on learning
neural network based policies for probabilistic domains (c.f.,
(Toyer et al. 2018; Issakkimuthu, Fern, and Tadepalli 2018;
Groshev et al. 2018; Bajpai, Garg, and Mausam 2018; Garg,
Bajpai, and Mausam 2019)), which is also related to learning
heuristic evaluation functions for deterministic domains.

8 Conclusion
We investigated a supervised learning approach to learning
a heuristic evaluation for search-based, domain-independent
classical planning, where the training data is generated us-
ing backward search. Although LHFCP, a previous system,
followed the same basic approach, it was performed com-
parably to blind search. SING pushes this approach much
further using (1) backward search for training data gener-
ation using regression, as well as derived inverse operator
for explicit space search, (2) DFS-based backward search
for training data generation, (3) a propositional input vector
representation, and (4) a relative error loss function.

We showed that SING can achieve performance compet-
itive with hff and hlm on several domains, both in shared
search space scenarios where heuristics can be reused across
domains, as well as single-instance learning where both
learning and search using the learned heuristic must be per-
formed within a given time limit.

SING is a relatively simple, minimalist system. SING
uses only a PDDL description of a single problem instance
as input. No additional problem generators or training in-
stances are used. Learning is from scratch, and unlike the
forward search based training data generation approach in-
vestigated by (Ferber, Helmert, and Hoffmann 2020), SING
does not use any standard heuristics during training data
generation. It uses a very simple feedforward neural net-
work architecture, with no feature engineering. The only
“features” used by SING are the raw state vectors. SING
does not exploit any structures used by standard classical
planning heuristics such as delete relaxations and causal
graphs in either the learning or the search phases. Pre-
vious work used features derived/extracted from human-
developed heuristics such as hff and explored how learn-
ing could be used to exploit such features in new ways
(Yoon, Fern, and Givan 2008; Xu, Fern, and Yoon 2009;
de la Rosa et al. 2011; Garrett, Kaelbling, and Lozano-Pérez
2016; Shen, Trevizan, and Thiébaux 2020). By pushing the
performance envelope for a more minimal approach our re-
sults provide a baseline for future work on heuristic learning
using more sophisticated features and methods.

As discussed in Section 3.2, explicit backward search (as
opposed to regression) for training data generation can gen-
erate states which are not reachable from the start state. Nev-
ertheless, our results show that SING configurations which
use explicit backward search perform quite well on some
domains. In future work, we will investigate in detail how
unreachable states in the training data affect the quality of

the learned heuristic and the performance of the (forward)
search using the learned heuristic.

References
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R.
2013. Revisiting Regression in Planning. In Proc. IJCAI,
2254–2260.

Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learn-
ing heuristic functions for large state spaces. Artif. Intell.
175(16-17): 2075–2098.

Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence 11: 625–656.

Bajpai, A. N.; Garg, S.; and Mausam. 2018. Transfer of
Deep Reactive Policies for MDP Planning. In Proc. ICAPS,
10988–10998.

Celorrio, S. J.; de la Rosa, T.; Fernández, S.; Fernández-
Rebollo, F.; and Borrajo, D. 2012. A review of machine
learning for automated planning. Knowledge Eng. Review
27(4): 433–467.

Coles, A.; and Smith, A. 2007. Marvin: A Heuristic Search
Planner with Online Macro-Action Learning. J. Artif. Intell.
Res. 28: 119–156. doi:10.1613/jair.2077.

de la Rosa, T.; Celorrio, S. J.; Fuentetaja, R.; and Borrajo,
D. 2011. Scaling up Heuristic Planning with Relational De-
cision Trees. J. Artif. Intell. Res. 40: 767–813.

Domshlak, C.; Karpas, E.; and Markovitch, S. 2010. To Max
or Not to Max: Online Learning for Speeding Up Optimal
Planning. In Proc. AAAI.

Ferber, P.; Helmert, M.; and Hoffmann, J. 2020. Neural Net-
work Heuristics for Classical Planning: A Study of the Hy-
perparameter Space. In Proc. ECAI.

Fern, A.; Yoon, S. W.; and Givan, R. 2004. Learning
Domain-Specific Control Knowledge from Random Walks.
In Proc. ICAPS, 191–199.

Fikes, R.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artif. Intell. 2(3/4): 189–208.

Garg, S.; Bajpai, A.; and Mausam. 2019. Size Independent
Neural Transfer for RDDL Planning. In Proc. ICAPS, 631–
636.

Garrett, C. R.; Kaelbling, L. P.; and Lozano-Pérez, T. 2016.
Learning to Rank for Synthesizing Planning Heuristics.
CoRR abs/1608.01302.

Geissman, C. 2015. Learning Heuristic Functions in Clas-
sical Planning. Master’s thesis, University of Basel.

Gomoluch, P.; Alrajeh, D.; and Russo, A. 2019. Learning
Classical Planning Strategies with Policy Gradient. In Proc.
ICAPS, 637–645.

Gomoluch, P.; Alrajeh, D.; Russo, A.; and Bucchiarone,
A. 2017. Towards learning domain-independent planning
heuristics. CoRR abs/1707.06895.

Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A. C.; and Bengio,
Y. 2014. Generative Adversarial Nets. In Ghahramani, Z.;
Welling, M.; Cortes, C.; Lawrence, N. D.; and Weinberger,
K. Q., eds., Proc. NIPS, 2672–2680.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Policies
Using Deep Neural Networks. In Proc. ICAPS, 408–416.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR 26(1): 191–246. ISSN 1076-9757.
Hoffmann, J. 2002. FF Domain Collection.
https://fai.cs.uni-saarland.de/hoffmann/ff-domains.html.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation through Heuristic Search. J. Artif. In-
tell. Res.(JAIR) 14: 253–302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. J. Artif. Intell. Res. 22: 215–278.
doi:10.1613/jair.1492.
Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training
Deep Reactive Policies for Probabilistic Planning Problems.
In Proc. ICAPS, 422–430.
Korf, R. E.; and Felner, A. 2002. Disjoint pattern database
heuristics. Artif. Intell. 134(1-2): 9–22.
Lelis, L. H. S.; Stern, R.; Arfaee, S. J.; Zilles, S.; Felner, A.;
and Holte, R. C. 2016. Predicting optimal solution costs with
bidirectional stratified sampling in regular search spaces. Ar-
tif. Intell. 230: 51–73.
Satzger, B.; and Kramer, O. 2013. Goal distance estimation
for automated planning using neural networks and support
vector machines. Natural Computing 12(1): 87–100.
Shen, W.; Trevizan, F. W.; and Thiébaux, S. 2020. Learning
Domain-Independent Planning Heuristics with Hypergraph
Networks 574–584.
Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and Fer-
ber, P. 2019. Deep Learning for Cost-Optimal Planning:
Task-Dependent Planner Selection. In Proc. AAAI, 7715–
7723.
Toyer, S.; Trevizan, F. W.; Thiébaux, S.; and Xie, L. 2018.
Action Schema Networks: Generalised Policies With Deep
Learning. In Proc. AAAI, 6294–6301.
Xu, Y.; Fern, A.; and Yoon, S. W. 2009. Learning Lin-
ear Ranking Functions for Beam Search with Application
to Planning. J. Mach. Learn. Res. 10: 1571–1610.
Yoon, S. W.; Fern, A.; and Givan, R. 2008. Learning Control
Knowledge for Forward Search Planning. J. Mach. Learn.
Res. 9: 683–718.

bl
in

d

gc hf
f

hl
m

SI
N

G
/L

(l
hf

cp
)

c2 c3 c4 c5

agricola 0 0 10 16 1 13 12 11 9
airport 23 35 36 33 1 21 13 14 17
barman 0 0 12 20 0 0 0 0 0
blocks 18 35 35 35 21 33 27 35 35
childsnack 0 0 1 0 0 0 0 0 0
data-network 0 1 5 2 0 0 0 0 0
depot 4 14 18 18 6 5 5 15 13
driverlog 7 19 18 18 8 12 13 15 14
elevators 0 5 20 7 0 0 0 0 0
floortile 0 0 2 1 0 0 0 0 0
freecell 20 46 79 80 18 80 23 61 57
ged 0 20 20 20 0 20 0 0 0
grid 1 3 4 5 0 3 0 3 4
gripper 8 20 20 20 8 20 10 20 20
hiking 2 3 20 20 2 7 5 3 3
logistics 2 7 29 15 2 2 3 6 5
maintenance 0 14 11 14 0 0 0 0 0
miconic 55 150 150 150 71 150 146 150 150
movie 30 30 30 30 30 30 30 30 30
mprime 20 21 32 22 5 18 13 18 17
mystery 15 15 17 14 9 6 12 10 9
openstacks 0 0 2 20 0 1 8 2 5
organic-synthesis 3 3 2 3 3 3 3 3 2
parcprinter 0 12 20 18 0 0 1 0 0
parking 0 0 7 0 0 0 0 0 0
pathways 4 5 10 8 4 4 4 4 4
pegsol 17 20 20 20 18 20 20 20 20
pipesworld 12 22 23 27 12 13 15 20 17
psr 49 50 50 50 50 50 50 50 50
rovers 6 21 26 25 6 14 16 16 16
satellite 6 15 27 12 7 15 8 8 9
scanalyzer 4 20 18 20 5 18 11 20 18
snake 3 4 5 7 4 3 3 7 6
sokoban 6 13 19 10 8 11 12 10 9
spider 1 12 9 19 0 5 7 5 9
storage 14 18 19 19 17 15 19 18 19
termes 0 10 14 15 3 4 2 7 3
tetris 0 20 9 20 2 11 19 2 18
thoughtful 5 5 8 14 5 12 5 5 5
tidybot 3 19 16 20 0 1 7 8 2
tpp 6 13 23 29 6 15 10 14 15
transport 0 5 0 16 0 0 0 0 0
trucks 6 9 15 9 6 6 7 7 7
visitall 0 20 0 20 0 0 9 0 0
woodworking 1 1 2 4 1 1 1 1 1
zenotravel 8 20 20 20 7 9 9 13 14
SUM 359 775 933 965 346 651 558 631 632
>hgc 4 6 4 6 7
>hff 2 5 5 4 3
>hlm 0 2 1 0 0

Table 3: Instance-Specific Learning: IPC Benchmark In-
stances, 8GB, 30min total limit (including training data gen-
eration, training hnn, and search using hnn) per instance:
Coverage Results. In the bottom 3 rows, “>hheuristic” in-
dicates the count # of domains with higher coverage than
hheuristic.

