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ABSTRACT

Neural collapse provides an elegant mathematical characterization of learned last
layer representations (a.k.a. features) and classifier weights in deep classification
models. Such results not only provide insights but also motivate new techniques
for improving practical deep models. However, most of the existing empirical and
theoretical studies in neural collapse focus on the case that the number of classes
is small relative to the dimension of the feature space. This paper extends neural
collapse to cases where the number of classes is much larger than the dimension
of feature space, which broadly occurs for language models, retrieval systems,
and face recognition applications. We show that the features and classifier exhibit
a generalized neural collapse phenomenon, where the minimum one-vs-rest mar-
gins is maximized. We provide empirical study to verify the occurrence of gen-
eralized neural collapse in practical deep neural networks. Moreover, we provide
theoretical study to show that the generalized neural collapse provably occurs un-
der unconstrained feature model with spherical constraint, under certain technical
conditions on feature dimension and number of classes.

1 INTRODUCTION

Over the past decade, deep learning algorithms have achieved remarkable progress across numerous
machine learning tasks and have significantly enhanced the state-of-the-art in many practical appli-
cations ranging from computer vision to natural language processing and retrieval systems. Despite
their tremendous success, a comprehensive understanding of the features learned from deep neural
networks (DNNs) is still lacking. The recent work Papyan et al. (2020); Papyan (2020) has empiri-
cally uncovered an intriguing phenomenon regarding the last-layer features and classifier of DNNs,
called Neural Collapse (NC) that can be briefly summarized as the following characteristics:

• Variability Collapse (NC1): Within-class variability of features collapses to zero.
• Convergence to Simplex ETF (NC2): Class-mean features converge to a simplex Equiangular

Tight Frame (ETF), achieving equal lengths, equal pair-wise angles, and maximal distance in the
feature space.

• Self-Duality (NC3): Linear classifiers converge to class-mean features, up to a global rescaling.

Neural collapse provides a mathematically elegant characterization of learned representations or
features in deep learning based classification models, independent of network architectures, dataset
properties, and optimization algorithms. Building on the so-called unconstrained feature model
(Mixon et al., 2020) or the layer-peeled model (Fang et al., 2021), subsequent research (Zhu et al.,
2021; Lu & Steinerberger, 2020; Ji et al., 2021; Yaras et al.; Wojtowytsch et al., 2020; Ji et al.; Zhou
et al.; Han et al.; Tirer & Bruna, 2022; Zhou et al., 2022a; Poggio & Liao, 2020; Thrampoulidis
et al., 2022; Tirer et al., 2023; Nguyen et al., 2022) has provided theoretical evidence for the exis-
tence of the NC phenomenon when using a family of loss functions including cross-entropy (CE)
loss, mean-square-error (MSE) loss and variants of CE loss. Theoretical results regarding NC not
only contribute to a new understanding of the working of DNNs but also provide inspiration for
developing new techniques to enhance their practical performance in various settings, such as im-
balanced learning (Xie et al., 2023; Liu et al., 2023b), transfer learning (Galanti et al., 2022a; Li
et al., 2022; Xie et al., 2022; Galanti et al., 2022b), continual learning (Yu et al., 2022; Yang et al.,
2023), loss and architecture designs (Chan et al., 2022; Yu et al., 2020; Zhu et al., 2021), etc.
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(a) One-vs-rest distance: Case 1 (b) One-vs-rest distance: Case 2 (c) One-vs-one distance

Figure 1: In Generalized Neural Collapse (GNC), the optimal classifier weight {wk} is a Softmax
Code defined from maximizing the one-vs-rest distance (see Definition 2.1). (a, b) Illustration of the
one-vs-rest distance using the example of w1-vs-{w2,w3,w4} distance, under two configurations
of {wk}4k=1 in a two-dimensional space. The distance in Case 1 is larger than that in Case 2. (c)
Illustration of the one-vs-one distance used to define the Tammes problem (see Eq. (11)). We prove
GNC under technical conditions on Softmax Code and Tammes problem (see Section 3).

However, most of the existing empirical and theoretical studies in NC focus on the case that the
number of classes is small relative to the dimension of the feature space. Nevertheless, there are
many cases in practice where the number of classes can be extremely large, such as

• Person identification (Deng et al., 2019), where each identity is regarded as one class.
• Language models (Devlin et al., 2018), where the number of classes equals the vocabulary size1.
• Retrieval systems (Mitra et al., 2018), where each document in the dataset represents one class.
• Contrastive learning (Chen et al., 2020a), where each training data can be regarded as one class.

In such cases, it is usually infeasible to have a feature dimension commensurate with the number of
classes due to computational and memory constraints. Therefore, it is crucial to develop a compre-
hensive understanding of the characteristics of learned features in such cases, particularly with the
increasing use of web-scale datasets that have a vast number of classes.

Contributions. This paper studies the geometric properties of the learned last-layer features and
the classifiers for cases where the number of classes can be arbitrarily large compared to the feature
dimension. Motivated by the use of spherical constraints in learning with a large number of classes,
such as person identification and contrastive learning, we consider networks trained with spherical
constraints on the features and classifiers. Our contributions can be summarized as follows.

• The Arrangement Problem: Generalizing NC to a Large Number of Classes. In Section 2
we introduce the generalized NC (GNC) for characterizing the last-layer features and classifier.
In particular, GNC1 and GNC3 state the same as NC1 and NC3, respectively. GNC2 states
that the classifier weight is a Softmax Code, which generalizes the notion of a simplex ETF and is
defined as the collection of points on the unit hyper-sphere that maximizes the minimum one-vs-all
distance (see Figure 1 (a,b) for an illustration). Empirically, we verify that the GNC approximately
holds in practical DNNs trained with a small temperature in CE loss. Furthermore, we conduct
theoretical study in Section 3 to show that under the unconstrained features model (UFM) (Mixon
et al., 2020; Fang et al., 2021; Zhu et al., 2021) and with a vanishing temperature, the global
solutions satisfy GNC under technical conditions on Softmax Code and solutions to the Tammes
problem (Tammes, 1930), the latter defined as a collection of points on the unit hyper-sphere that
maximizes the minimum one-vs-one distance (see Figure 1(c) for an illustration).

• The Assignment Problem: Implicit Regularization of Class Semantic Similarity. Unlike the
simplex ETF (as in NC2) in which the distance between any pair of vectors is the same, not all
pairs in a Softmax Code (as in GNC2) are of equal distant when the number of classes is greater
than the feature space dimension. This leads to the “assignment” problem, i.e., the correspon-

1Language models are usually trained to classify a token (or a collection of them) that is either masked in
the input (as in BERT (Devlin et al., 2018)), or the next one following the context (as in language modeling),
or a span of masked tokens in the input (as in T5 (Raffel et al., 2020)), etc. In such cases, the number of classes
is equal to the number of all possible tokens, i.e., the vocabulary size.
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dence between the classes and the weights in a Softmax Code. In Section 4, we show empirically
an implicit regularization effect by the semantic similarity of the classes, i.e., conceptually similar
classes (e.g., Cat and Dog) are often assigned to closer classifier weights in Softmax Code, com-
pared to those that are conceptually dissimilar (e.g., Cat and Truck). Moreover, such an implicit
regularization is beneficial, i.e., enforcing other assignments produces inferior model quality.

• Cost Reduction for Practical Network Training/Fine-tuning. The universality of alignment
between classifier weights and class means (i.e., GNC3) implies that training the classifier is
unnecessary and the weight can be simply replaced by the class-mean features. Our experiments in
Section 5 demonstrate that such a strategy achieves comparable performance to classical training
methods, and even better out-of-distribution performance than classical fine-tuning methods with
significantly reduced parameters.

Related work. The recent work Liu et al. (2023a) also introduces a notion of generalized NC for
the case of large number of classes, which predicts equal-spaced features. However, their work
focuses on networks trained with weight decay, for which empirical results in Appendix B.2 and
Yaras et al. (2023) show to not produce equal-length and equal-spaced features for a relatively large
number of classes. Due to limited space, we refer to Appendix B.2 for the detailed comparison
between different geometric properties of the learned features and classifiers for the weight decay
and spherical constraints formulations. Moreover, the work Liu et al. (2023a) relies on a specific
choice of kernel function to describe the uniformity. Instead, we concretely define GNC2 through
the softmax code. When preparing this submission, we notice a concurrent work Gao et al. (2023)
that provides analysis for generalized NC, but again for networks trained with weight decay. In
addition, Gao et al. (2023) analyzes gradient flow for the corresponding UFM with a particular
choice of weight decay, while our work studies the global optimality of the training problem. The
work Zhou et al. (2022a) empirically shows that MSE loss is inferior to the CE loss when K > d+1,
but no formal analysis is provided for CE loss. Finally, the global optimality of the UFM with
spherical constraints has been studied in Lu & Steinerberger (2022); Yaras et al. (2023) but only for
the cases K ≤ d+ 1 or K →∞.

2 GENERALIZED NEURAL COLLAPSE FOR A LARGE NUMBER OF CLASSES

In this section, we begin by providing a brief overview of DNNs and introducing notations used in
this study in Section 2.1. We will also introduce the concept of the UFM which is used in theoretical
study of the subsequent section. Next, we introduce the notion of Softmax Code for describing
the distribution of a collection of points on the unit sphere, which prepares us to present a formal
definition of Generalized Neural Collapse and empirical verification of its validity in Section 2.2.

2.1 BASICS CONCEPTS OF DNNS

A DNN classifier aims to learn a feature mapping ϕθ(·) : RD → Rd with learnable parameters θ
that maps from input x ∈ RD to a deep representation called the feature ϕθ(x) ∈ Rd, and a linear
classifier W = [w1 w2 · · · wK ] ∈ Rd×K such that the output (also known as the logits)
ΨΘ(x) = W⊤ϕθ (x) ∈ RK can make a correct prediction. Here, Θ = {θ,W } represents all the
learnable parameters of the DNN.2

Given a balanced training set {(xk,i,yk)}i∈[n],k∈[K] ⊆ RD × RK , where xk,i is the i-th sample in
the k-th class and yk is the corresponding one-hot label with all zero entries except for unity in the
k-th entry, the network parameters Θ are typically optimized by minimizing the following CE loss

min
Θ

1

nK

K∑
k=1

n∑
i=1

LCE (ΨΘ (xk,i) ,yk, τ) , LCE (z,yk, τ) = − log
( exp(zk/τ)∑K

j=1 exp(zj/τ)

)
. (1)

In above, we assume that a spherical constraint is imposed on the feature and classifier weights
and that the logit zk is divided by the temperature parameter τ . This is a common practice when

2We ignore the bias term in the linear classifier since (i) the bias term is used to compensate the global
mean of the features and vanishes when the global mean is zero (Papyan et al., 2020; Zhu et al., 2021), (ii) it is
the default setting across a wide range of applications such as person identification (Wang et al., 2018b; Deng
et al., 2019), contrastive learning (Chen et al., 2020a; He et al., 2020), etc.
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dealing with a large number of classes (Wang et al., 2018b; Chang et al., 2019; Chen et al., 2020a).
Specifically, we enforce {wk, ϕΘ(xk,i)} ⊆ Sd−1 := {a ∈ Rd : ∥a∥2 = 1} for all i ∈ [n] and
k ∈ [K]. An alternative regularization is weight decay on the model parameters Θ, the effect of
which we study in Appendix B.

To simplify the notation, we denote the oblique manifold embedded in Euclidean space by
OB(d,K) :=

{
W ∈ Rd×K | wk ∈ Sd−1, ∀k ∈ [K]

}
. In addition, we denote the last-layer fea-

tures by hk,i := ϕθ(xk,i). We rewrite all the features in a matrix form as

H := [H1 H2 · · · HK ] ∈ Rd×nK ,with Hk := [hk,1 · · · hk,n] ∈ Rd×n.

Also we denote by hk := 1
n

∑n
i=1 hk,i the class-mean feature for each class.

Unconstrained Features Model (UFM). The UFM (Mixon et al., 2020) or layer-peeled model
(Fang et al., 2021), wherein the last-layer features are treated as free optimization variables, are
widely used for theoretically understanding the NC phenomena. In this paper, we will consider the
following UFM with a spherical constraint on classifier weights W and unconstrained features H:

min
W ,H

1

nK

K∑
k=1

n∑
i=1

LCE
(
W⊤hk,i,yk, τ

)
s.t. W ∈ OB(d,K), H ∈ OB(d, nK). (2)

2.2 GENERALIZED NEURAL COLLAPSE

We start by introducing the notion of softmax code which will be used for describing GNC.
Definition 2.1 (Softmax Code). Given positive integers d and K, a softmax code is an arrangement
of K points on a unit sphere of Rd that maximizes the minimal distance between one point and the
convex hull of the others:

max
W∈OB(d,K)

ρone-vs-rest(W ), where ρone-vs-rest(W )
.
= min

k
dist

(
wk, {wj}j∈[K]\k

)
. (3)

In above, the distance between a point v and a setW is defined as dist(v,W) = infw∈conv(W){∥v−
w∥}, where conv(·) denotes the convex hull of a set.

We now extend NC to the Generalized Neural Collapse (GNC) that captures the properties of the
features and classifiers at the terminal phase of training. With a vanishing temperature (i.e., τ → 0),
the last-layer features and classifier exhibit the following GNC phenomenon:

• Variability Collapse (GNC1). All features of the same class collapse to the corresponding class
mean. Formally, as used in Papyan et al. (2020), the quantity GNC1

.
= 1

K tr
(
ΣWΣ†

B

)
→ 0,

where ΣB := 1
K

∑K
k=1 hkh

⊤
k and ΣW := 1

nK

∑k
k=1

∑n
i=1

(
hk,i − hk

) (
hk,i − hk

)⊤
denote

the between-class and within-class covariance matrices, respectively.
• Softmax Codes (GNC2). Classifier weights converge to the softmax code in definition 2.1. This

property may be measured by GNC2
.
= ρone-vs-rest(W )→ maxW∈OB(d,K) ρone-vs-rest(W ).

• Self-Duality (GNC3). Linear classifiers converge to the class-mean features. Formally, this align-
ment can be measured by GNC3

.
= 1

K

∑K
k=1

(
1−w⊤

k hk

)
→ 0.

Figure 2: Illustration of GNC and test accuracy across different temperatures τ in training a
ResNet18 on CIFAR100 with d = 10 and K = 100. “Optimal” in the second left figure refers to
maxW∈OB(d,K) ρone-vs-rest(W ).

The main difference between GNC and NC lies in GNC2 / NC2, which describe the configuration
of the classifier weight W . In NC2, the classifier weights corresponding to different classes are
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described as a simplex ETF, which is a configuration of vectors that have equal pair-wise distance
and that distance is maximized. Such a configuration does not exist in general when the number of
classes is large, i.e., K > d + 1. GNC2 introduces a new configuration described by the notion of
softmax code. By Definition 2.1, a softmax code is a configuration where each vector is maximally
separated from all the other points, measured by its distance to their convex hull. Such a definition
is motivated from theoretical analysis (see Section 3). In particular, it reduces to simplex ETF when
K ≤ d+ 1 (see Theorem 3.3).

Interpretation of Softmax Code. Softmax Code abides a max-distance interpretation. Specifi-
cally, consider the features {hk,i}k∈[K],i∈[n] from n classes. In multi-class classification, one com-
monly used distance (or margin) measurement is the one-vs-rest (also called one-vs-all or one-vs-
other) distance (Murphy, 2022), i.e., the distance of class k vis-a-vis other classes. Noting that
the distance between two classes is equivalent to the distance between the convex hulls of the
data from each class (Murphy, 2022), the distance of class k vis-a-vis other classes is given by
dist({hk,i}i∈[n], {hk′,i}k′∈[K]\k,i∈[n]). From GNC1 and GNC3 we can rewrite the distance as

dist
(
{hk,i}i∈[n], {hk′,i}k′∈[K]\k,i∈[n]

)
= dist

(
hk, {hk′}k′∈[K]\k

)
= dist

(
wk, {wk′}k′∈[K]\k

)
.

(4)
By noticing that the rightmost term is minimized in a Softmax Code, it follows from GNC2 that
the learned features satisfy that their one-vs-rest distance minimized over all classes k ∈ [K] is
maximized. In other words, measured by one-vs-rest distance, the learned features are are maximally
separated. Finally, we mention that the separation of classes may be characterized by other measures
of distance as well, such as the one-vs-one distance (also known as the sample margin in Cao et al.
(2019); Zhou et al. (2022b)) which leads to the well-known Tammes problem, or the distances
captured in the Thomson problems Thomson (1904); Hars. We will discuss this in Section 3.2.

Experimental Verification of GNC. We verify the occurence of GNC by training a ResNet18 (He
et al., 2016) for image classification on the CIFAR100 dataset (Krizhevsky, 2009), and report the
results in Figure 2. To simulate the case of K > d + 1, we use a modified ResNet18 where the
feature dimension is 10. From Figure 2, we can observe that both GNC1 and GNC3 converge to 0,
and GNC2 converges towards the spherical code with relatively small temperature τ . Additionally,
selecting a small τ is not only necessary for achieving GNC, but also for attaining high testing
performance. Due to limited space, we present experimental details and other experiments with
different architectures and datasets in Appendix B. In the next section, we provide a theoretical
justification for GNC under UFM in (2).

3 THEORETICAL ANALYSIS OF GNC

In this section, we provide a theoretical analysis of GNC under the UFM in (2). We first show in
Section 3.1 that under appropriate temperature parameters, the solution to (2) can be approximated
by the solution to a “HardMax” problem, which is of a simpler form amenable for subsequent
analysis. We then provide a theoretical analysis of GNC in Section 3.2, by first proving the optimal
classifier forms a Softmax Code (GNC2), and then establishing GNC1 and GNC3 under technical
conditions on Softmax Code and solutions to the Tammes problem. In addition, we provide insights
for the design of feature dimension d given a number of classes K by analyzing the upper and lower
bound for the one-vs-rest distance of a Softmax Code. All proofs can be found in Appendix C.

3.1 PREPARATION: THE ASYMPTOTIC CE LOSS

Due to the nature of the softmax function which blends the output vector, analyzing the CE loss
can be difficult even for the unconstrained features model. The previous work Yaras et al. (2023)
analyzing the case K ≤ d + 1 relies on the simple structure of the global solutions, where the
classifiers form a simplex ETF. However, this approach cannot be directly applied to the case K >
d+ 1 due to the absence of an informative characterization of the global solution. Motivated by the
fact that the temperature τ is often selected as a small value (τ < 1, e.g., τ = 1/30 in Wang et al.
(2018b)) in practical applications (Wang et al., 2018b; Chen et al., 2020a), we consider the case of
τ → 0 where the CE loss (2) converges to the following “HardMax” problem:

min
W∈OB(d,K)
H∈OB(d,nK)

LHardMax(W ,H), where LHardMax(W ,H)
.
= max

k∈[K]
max
i∈[n]

max
k′ ̸=k
⟨wk′ −wk,hk,i⟩, (5)

5



Under review as a conference paper at ICLR 2024

where ⟨·, ·⟩ denotes the inner-product operator. More precisely, we have the following result.
Lemma 3.1 (Convergence to the HardMax problem). For any positive integers K and n, we have

lim sup
τ→0

 argmin
W∈OB(d,K)
H∈OB(d,nK)

1

nK

K∑
k=1

n∑
i=1

LCE
(
W⊤hk,i,yk, τ

)⊆ argmin
W∈OB(d,K)
H∈OB(d,nK)

LHardMax(W ,H). (6)

Our goal is not to replace CE with the HardMax function in practice. Instead, we will analyze the
HardMax problem in (5) to gain insight into the global solutions and the GNC phenomenon.

3.2 MAIN RESULT: THEORETICAL ANALYSIS OF GNC

GNC2 and Softmax Code. Our main result for GNC2 is the following.
Theorem 3.2 (GNC2). Let (W ⋆,H⋆) be an optimal solution to (5). Then, it holds that W ⋆ is a
Softmax Code, i.e.,

W ⋆ = argmax
W∈OB(d,K)

ρone-vs-rest(W ). (7)

GNC2 is described by the Softmax Code, which is defined from an optimization problem (see Defi-
nition 2.1). This optimization problem may not have a closed form solution in general. Nonetheless,
the one-vs-rest distance that is used to define Softmax Code has a clear geometric meaning, making
an intuitive interpretation of Softmax Code tractable. Specifically, maximizing the one-vs-rest dis-
tance results in the classifier weight vectors {w⋆

k} to be maximally distant. As shown in Figures 1a
and 1b for a simple setting of four classes in a 2D plane, the weight vectors {wk} that are uniformly
distributed (and hence maximally distant) have a larger margin than the non-uniform case.

For certain choices of (d,K) the Softmax Code bears a simple form.
Theorem 3.3. For any positive integers K and d, let W ⋆ ∈ OB(d,K) be a Softmax Code. Then,

• d = 2: {w⋆
k} is uniformly distributed on the unit circle, i.e., {w⋆

k} = {
(
cos( 2πkK +α), sin( 2πkK +

α)
)
} for some α;

• K ≤ d + 1: {w⋆
k} forms a simplex ETF, i.e., W ⋆ =

√
K

K−1P (IK − 1
K 1K1⊤K) for some

orthonomal P ∈ IRd×K;
• d + 1 < K ≤ 2d: ρone-vs-rest(W

⋆) = 1 which can be achieved when {w⋆
k} are a subset of

vertices of a cross-polytope3;

For the cases of K ≤ d+1, the optimal W ⋆ from Theorem 3.3 is the same as that of Lu & Steiner-
berger (2022). However, Theorem 3.3 is an analysis of the HardMax loss while Lu & Steinerberger
(2022) analyzed the CE loss.

GNC1 and Within-class Variability Collapse. To establish the within-class variability collapse
property, we require a technical condition associated with the Softmax Code. Recall that Softmax
Codes are those that maximize the minimum one-vs-rest distance over all classes. We introduce
rattlers, which are classes that do not attain such a minimum.
Definition 3.4 (Rattler of Softmax Code). Given positive integers d and K, a rattler associated with
a Softmax Code W SC ∈ OB(d,K) is an index krattler ∈ [K] for which

min
k∈[K]

dist(wSC
k , {wSC

j }j∈[K]\k) ̸= dist(wSC
krattler

, {wSC
j }j∈[K]\krattler). (8)

In other words, rattlers are points in a Softmax Code with no neighbors at the minimum one-to-rest
distance. This notion is borrowed from the literature of the Tammes Problem (Cohn, 2022; Wang,
2009), which we will soon discuss in more detail4.

We are now ready to present the main results for GNC1.
3Indeed, any sphere code W that achieves equality in Rankin’s orthoplex bound (Fickus et al., 2017)

maxk ̸=j⟨wk,wj⟩ ≥ 0 is a softmax code.
4The occurrence of rattlers is rare: Among the 182 pairs of (d,K) for which the solution to Tammes

problem is known, only 31 have rattlers (Cohn, 2022). This has excluded the cases of d = 2 or K ≤ 2d where
there is no rattler. The occurrence of ratter in Softmax Code may be rare as well.
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Theorem 3.5 (GNC1). Let (W ⋆,H⋆) be an optimal solution to (5). For all k that is not a rattler
of W ⋆, it holds that

h
⋆

k
.
= h⋆

k,1 = · · · = h⋆
k,n = PSd−1

(
w⋆

k − P{w⋆
j }j∈[K]\k(w

⋆
k)
)
, (9)

where PW(v)
.
= argminw∈conv(W){∥v −w∥2} denotes the projection of v on conv(W).

The following result shows that the requirement in the Theorem 3.5 that k is not a rattler is satisfied
in certain cases.
Theorem 3.6. If d = 2, or K ≤ d+ 1, Softmax Code has no rattler for all classes.

GNC3 and Self-Duality. To motivate our technical conditions for establishing self-duality, assume
that any optimal solution (W ⋆,H⋆) to (5) satisfies self-duality as well as GNC1. This implies that

argmin
W∈OB(d,K),H∈OB(d,nK)

LHardMax(W ,H) = argmin
W∈OB(d,nK)

max
k∈[K]

max
i∈[n]

max
k′ ̸=k
⟨wk′ −wk,wk⟩. (10)

After simplification we may rewrite the optimization problem on the right hand side equivalently as:

max
W∈OB(d,K)

ρone-vs-one(W ), where ρone-vs-one(W )
.
= min

k∈[K]
min
k′ ̸=k

dist(wk,wk′). (11)

Eq. (11) is the well-known Tammes problem. Geometrically, the problem asks for a distribution
of K points on the unit sphere of IRd so that the minimum distance between any pair of points is
maximized. The Tammes problem is unsolved in general, except for certain pairs of (K, d).

Both the Tammes problem and the Softmax Code are problems of arranging points to be maximally
separated on the unit sphere, with their difference being the specific measures of separation. Com-
paring (11) and (3), the Tammes problem maximizes for all k ∈ [K] the one-vs-one distance, i.e.,
mink′ ̸=k dist(wk,wk′), whereas the Softmax Code maximizes the minimum one-vs-rest distance,
i.e., dist(wk, {wj}j∈[K]\k). Both one-vs-one distance and one-vs-rest distances characterize the
separation of the weight vector wk from {wj}j∈[K]\k. As illustrated in Figure 1, taking k = 1, the
former is the distance between w1 and its closest point in the set {w2,w3,w4}, in this case w2 (see
Figure 1c), whereas the later captures the minimal distance from w1 to the convex hull of the rest
vectors {w1,w2,w3} (see Figure 1b).

Since the Tammes problem can be derived from the self-duality constraint on the HardMax problem,
it may not be surprising that the Tammes problem can be used to describe a condition for establishing
self-duality. Specifically, we have the following result.
Theorem 3.7 (GNC3). For any K, d such that both Tammes problem and Softmax Code have no
rattler, the following two statements are equivalent:

• Any optimal solution (W ⋆,H⋆) to (5) satisfies h⋆
k,i = w∗

k,∀i ∈ [n],∀k ∈ [K];

• The Tammes problem and the Softmax codes are equivalent, i.e.,

argmax
W∈OB(d,K)

ρone-vs-rest(W ) = argmax
W∈OB(d,K)

ρone-vs-one(W ). (12)

In words, Theorem 3.7 states that GNC3 holds if and only if the Tammes problem in (11) and the
Softmax codes are equivalent. As both the Tammes problem and Softmax Code maximize separation
between one vector and the others, though their notions of separation are different, we conjecture
that they are equivalent and share the same optimal solutions. We prove this conjecture for some
special cases and leave the study for the general case as future work5.
Theorem 3.8. If d = 2, or K ≤ d+1, the Tammes problem and the Softmax codes are equivalent.

3.3 INSIGHTS FOR CHOOSING FEATURE DIMENSION d GIVEN CLASS NUMBER K

Given a class number K, how does the choice of feature dimension d affect the model performance?
Intuitively, smaller d reduces the separability between classes in a Softmax Code. We define this
rigorously by providing bounds for the one-vs-rest distance of a Softmax Code based on d and K.

5We numerically verify the equivalence for all the cases with d ≤ 100 in Table 1 of Cohn & Kumar (2007).
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Theorem 3.9. Assuming K ≥
√
2π
√
ed and letting Γ(·) denote the Gamma function, we have

1

2

[√
π

K

Γ
(
d+1
2

)
Γ
(
d
2 + 1

)] 2
d−1

≤ max
W∈OB(d,K)

ρone-vs-rest(W ) ≤ 2

[
2
√
π

K

Γ
(
d+1
2

)
Γ
(
d
2

) ] 1
d−1

. (13)

Figure 3: Effect of feature dimension d
on (Left y-axis): ρone-vs-rest(W

⋆) and its
upper/lower bounds (in Theorem 3.9),
and (Right y-axis): training and test ac-
curacies for ResNet-50 on ImageNet.

The bounds characterize the separability for K classes
in d-dimensional space. Given the number of classes K
and desired margin ρ, the minimal feature dimension is
roughly an order of log(K2/ρ), showing classes separate
easily in higher dimensions. This also provides a justi-
fication for applications like face classification and self-
supervised learning, where the number of classes (e.g.,
millions of classes) could be significantly larger than the
dimensionality of the features (e.g., d = 512).

By conducting experiments on ResNet-50 with varying
feature dimensions for ImageNet classification, we fur-
ther corroborate the relationship between feature dimen-
sion and network performance in Figure 3. First, we
observe that the curve of the optimal distance is closely
aligned with the curve of testing performance, indicating
a strong correlation between distance and testing accu-
racy. Moreover, both the distance and performance curves exhibit a slow (exponential) decrease as
the feature dimension d decreases, which is consistent with the bounds in Theorem 3.9.

4 THE ASSIGNMENT PROBLEM: AN EMPIRICAL STUDY

Unlike the case d ≥ K − 1 where the optimal classifier (simplex ETF) has equal angles between
any pair of the classifier weights, when d < K − 1, not all pairs of classifier weights are equally
distant with the optimal W (Softmax Code) predicted in Theorem 3.2. Consequently, this leads to
a “class assignment” problem. To illustrate this, we train a ResNet18 network with d = 2 on four
classes {Automobile, Cat, Dog, Truck} from CIFAR10 dataset that are selected due to their clear
semantic similarity and discrepancy. In this case, according to Theorem 3.3, the optimal classifiers
are given by [1, 0], [−1, 0], [0, 1], [0,−1], up to a rotation. Consequently, there are three distinct class
assignments, as illustrated in Figures 4b to 4d.

When doing standard training, the classifier consistently converges to the case where Cat and Dog
are closer together across 5 different trials; Figure 4a shows the learned features (dots) and classifier
weights (arrows) in one of such trials. This demonstrates the implicit algorithmic regularization in
training DNNs, which naturally attracts (semantically) similar classes and separates dissimilar ones.

We also conduct experiments with the classifier fixed to be one of the three arrangements, and
present the results in Figures 4b to 4d. Among them, we observe that the case where Cat and Dog
are far apart achieves a testing accuracy of 89.95%, lower than the other two cases with accuracies
of 91.90% and 92.13%. This demonstrates the important role of class assignment to the general-
ization of DNNs, and that the implicit bias of the learned classifier is benign, i.e., leads to a more
generalizable solutions. A comprehensive study of this phenomenon is deferred to future work.

(a) Trainable (91.45%) (b) Fixed A1 (91.90%) (c) Fixed A2 (92.13%) (d) Fixed A3 (89.95%)

Figure 4: Assignment of classes to classifier weights for a ResNet18 with 2-dimensional feature
space trained on the 4 classes {Automobile, Cat, Dog, Truck} from CIFAR10. (a) Learned classifier.
(b-d) Classifiers fixed to be three different assignments. Test accuracy is reported in the bracket.
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5 IMPLICATIONS FOR PRACTICAL NETWORK TRAINING/FINE-TUNING

Since the classifier always converges to a simplex ETF when K ≤ d+ 1, prior work proposes to fix
the classifier as a simplex ETF for reducing training cost (Zhu et al., 2021) and handling imbalance
dataset (Yang et al., 2022). When K > d + 1, the optimal classifier is also known to be a Softmax
Code according to GNC2. However, the same method as in prior work may become sub-optimal
due to the class assignment problem (see Section 4). To address this, we introduce the method
of class-mean features (CMF) classifiers, where the classifier weights are set to be the exponential
moving average of the mini-batch class-mean features during the training process. This approach is
motivated from GNC3 which states that the optimal classifier converges to the class-mean features.
We explain the detail of CMF in Appendix B. As in prior work, CMF can reduce trainable parameters
as well. For instance, it can reduce 30.91% of total parameters in a ResNet18 for BUPT-CBFace-
50 dataset (Zhang & Deng, 2020). Here, we compare CMF with the standard training where the
classifier is learned together with the feature mapping, in both training from scratch and fine-tuning.

Training from Scratch. We train a ResNet18 on CIFAR100 by using a learnable classifier or the
CMF classifier. The learning curves in Figure 5 indicate that the approach with CMF classifier
achieves comparable performance to the classical training protocols.

(a) ResNet (b) DenseNet (c) ResNeXt

Figure 5: Comparison of the learning curves (training and testing accuracies) with learned
classifiers vs. CMF classifiers trained with various networks on CIFAR100 dataset and d = 10.

Fine-tuning. To verify the effectiveness of the CMF classifiers on fine-tuning, we follow the setting
in Kumar et al. (2022) to measure the performance of the fine-tuned model on both in-distribution
(ID) task (i.e., CIFAR10 Krizhevsky (2009)) and OOD task (STL10 Coates et al. (2011)). We
compare the standard approach that fine-tunes both the classifier (randomly initialized) and the pre-
trained feature mapping with our approach (using the CMF classifier). Our experiments show that
the approach with CMF classifier achieves slightly better ID accuracy (98.00% VS 97.00%) and
a better OOD performance (90.67% VS 87.42%). The improvement of OOD performance stems
from the ability to align the classifier with the class-means through the entire process, which better
preserves the OOD property of the pre-trained model. Our approach also simplifies the two-stage
approach of linearly probing and subsequent full fine-tuning in Kumar et al. (2022).

6 CONCLUSION

In this work, we have introduced generalized neural collapse (GNC) for characterizing learned last-
layer features and classifiers in DNNs under an arbitrary number of classes and feature dimensions.
We empirically validate the GNC phenomenon on practical DNNs that are trained with a small tem-
perature in the CE loss and subject to spherical constraints on the features and classifiers. Building
upon the unconstrained features model we have proven that GNC holds under certain technical con-
ditions. GNC could offer valuable insights for the design, training, and generalization of DNNs. For
example, the minimal one-vs-rest distance provides implications for designing feature dimensions
when dealing with a large number of classes. Additionally, we have leveraged GNC to enhance
training efficiency and fine-tuning performance by fixing the classifier as class-mean features. Fur-
ther exploration of GNC in other scenarios, such as imbalanced learning, is left for future work. It is
also of interest to further study the problem of optimally assigning classifiers from Softmax Code for
each class, which could shed light on developing techniques for better classification performance.
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