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Abstract001

With the rapid development of large language002
models (LLMs) in math reasoning, the accu-003
racy of models on existing math benchmarks004
has gradually approached 90% or even higher.005
More challenging math benchmarks are hence006
urgently in need to satisfy the increasing eval-007
uation demands. To bridge this gap, we pro-008
pose HighMATH. Problems in HighMATH are009
collected according to 3 criteria: problem com-010
plexity, knowledge domain diversity and fine-011
grained annotations. We collect 5,293 prob-012
lems from Chinese senior high school math-013
ematics exams published in 2024, covering 8014
subjects and 7 levels of difficulty, with each015
problem involving an average of more than016
2.4 knowledge points. We conduct a thorough017
evaluation of latest LLMs on the curated High-018
MATH, including o1-like models. Evaluation019
results demonstrate that the accuracy of ad-020
vanced LLMs on HighMATH is significantly021
lower than that on previous math reasoning022
benchmarks. Even with the use of majority023
voting and a Python executor, the highest ac-024
curacy does not exceed 62% on HighMATH.025
Our results also suggest that properly trained026
smaller LLMs may have great potential in math027
reasoning.028

1 Introduction029

LLMs have achieved significant progress in math030

reasoning (Li et al., 2024). When the challenging031

MATH (Hendrycks et al., 2021b) benchmark was032

initially proposed for evaluation, the accuracy of033

LLMs did not reach 20%. However, in just three034

years, LLMs are capable of achieving over 60%035

accuracy (Yang et al., 2024). Recently, with the036

emergence and application of techniques such as037

automatic process supervision (Wang et al., 2024),038

test-time scaling (Qi et al., 2024; Chen et al., 2024),039

and reinforcement learning (Rafailov et al., 2023;040

Ouyang et al., 2022), many models even achieve041

or exceed 90% accuracy on MATH (DeepSeek-AI042
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Figure 1: Comparison of HighMATH vs MATH. We
count the number of knowledge points in each problem,
subject, and difficulty level in the problems sampled
from HighMATH and MATH. It can be seen that High-
MATH contains a higher average number of knowledge
points than MATH.

et al., 2025). This rapid development of LLMs in 043

math reasoning indicates that existing math bench- 044

marks are no longer sufficient to evaluate and dif- 045

ferentiate latest LLMs. 046

Particularly, commonly used benchmarks, such 047

as GSM8K (Cobbe et al., 2021), MATH 048

(Hendrycks et al., 2021b), CMATH (Wei et al., 049

2023), and GAOKAO (Zhang et al., 2023), all suf- 050

fer from these limitations. GSM8K and CMATH, 051

which originate from elementary school math, 052

present problems that are simple and do not al- 053

low for complex reasoning, making it difficult to 054

deeply evaluate advanced LLMs. MATH, sourced 055

from American high school math competitions, 056

is quite challenging but typically presents prob- 057

lems with limited knowledge points, thus lacking 058

the ability to evaluate LLMs in integrating multi- 059

ple mathematical subjects. GAOKAO, C-EVAL 060

(Huang et al., 2023), M3KE (Liu et al., 2023), and 061

other comprehensive benchmarks (Hendrycks et al., 062

2021a; Zhong et al., 2024) are designed for mul- 063

tidisciplinary evaluation, where math is only one 064

of these subjects, featuring fewer problems and 065
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Benchmarks MATH GAOKAO C-EVAL M3KE Ours
Language En Zh Zh Zh Zh
Size 5,000 936 669 796 5,293

Problem Type
MCQ

MWP Fill-in-the-Blank MCQ MCQ MWP
MWP

Question Len. 191.13 185.92 76.28 46.24 158.63
Solution Len. 519.96 305.86 - - 603.16
Subject/Level Label

Table 1: Comparison of our benchmark against previous math benchmarks. MWP: Math Word Problem, MCQ:
Multi-choice Questions. Question Len. and Solution Len. are the average character lengths we count.

coarser granularity.066

To mitigate these challenges, we propose new067

Chinese math benchmark HighMATH. Our dataset068

offers a more comprehensive and challenging as-069

sessment of LLMs in math reasoning by meticu-070

lously integrating a wide range of mathematical071

concepts, and knowledge into math problems with072

multiple reasoning steps. It contains 5,293 math073

problems, with each problem containing an aver-074

age of more than 2.4 knowledge points, as shown075

in Figure 1. It covers all major areas of high school076

mathematics, including 8 domains, i.e., Function077

Derivatives, Counting Principles, Trigonometric078

Functions and Triangle Solutions, Plane Analytic079

Geometry, Sequences, Solid Geometry, Statistics080

and Probability, and others (Logic, Sets, Inequal-081

ities, Complex Numbers reasoning). In addition082

to subject annotation, we categorize problems into083

difficulty levels from 1 to 7. We also collect prob-084

lems with multiple sub-questions into a subset085

called HighMATH-HARD. The average number086

of characters of problems and their solutions in087

HighMATH-HARD are 249 and 1,201 respectively,088

posing great challenges to LLMs in math reason-089

ing.090

We evaluate 14 LLMs (including both open- and091

closed-source models) on HighMATH. Compared092

to MATH, all models exhibit a significant drop in093

accuracy on HighMath, with even the latest rea-094

soning language model, o1-mini, achieving only095

52.53% accuracy. The o1-like model, DeepSeek-096

R1-distill-Qwen-32B, achieves only 31.22%. We097

also evaluate LLMs under the majority voting,098

pass@N settings, and with the assistance of a099

Python executor. However, these can only improve100

reasoning performance to a certain extent, indicat-101

ing the difficulty of our benchmark.102

Our contributions are summarized as follows.103

• We propose a new challenging bechmark for 104

evaluating LLMs in math reasoning. The 105

dataset covers a wide range of mathemati- 106

cal concepts and typically examines multiple 107

mathematical knowledge points in a single 108

problem. Additionally, it has a sufficient num- 109

ber of problems, requires complex reasoning, 110

and is finely annotated. 111

• We conduct thorough evaluations of the lat- 112

est LLMs, including both o1-like models and 113

those specifically trained for mathematical rea- 114

soning. 115

• We carry out an in-depth analysis of the evalu- 116

ation results. The results show that the poten- 117

tial of small LLMs for mathematical reason- 118

ing is enormous. The pass@8 accuracy of the 119

1.5B model even surpasses that of many 7B 120

models. 121

2 Related Work 122

Mathematical Reasoning Benchmarks. Our 123

work is most closely related to MATH. We carefully 124

analyze data in MATH (Hendrycks et al., 2021b) 125

and find that, although it originates from American 126

high school math competitions, it includes simple 127

questions as well, such as those from the AMC10 128

competition, which contains ninth-grade mathemat- 129

ics. In terms of subject division, algebra content is 130

categorized into prealgebra, intermediate algebra, 131

and algebra, making up three of the seven cate- 132

gories. Additionally, almost all current LLMs use 133

MATH training dataset to train their models. Pre- 134

vious analyses on contaminated samples discover 135

that some existing training datasets, including the 136

MATH training dataset, contain a significant num- 137

ber of problems that are highly similar in concept 138

or structure to those in the test datasets (Yang et al., 139
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2024). We speculate that these limitations may140

gradually render the MATH dataset inadequate for141

meeting the evaluation needs of LLMs. Detailed142

comparison of our benchmark to MATH is pre-143

sented in Figure 1 and Table 1.144

Datasets for evaluating mathematical reasoning145

in Chinese context are usually integrated into mul-146

tidisciplinary or knowledge evaluation benchmarks147

or suites, such as the GAOKAO benchmark (Zhang148

et al., 2023). The GAOKAO benchmark collects149

questions from past college entrance examination150

papers, gathering 936 questions by the year 2024.151

The questions are categorized into multiple-choice152

questions, fill-in-the-blank questions, and math153

word problems. Other benchmarks, like C-EVAL154

(Huang et al., 2023), M3KE (Liu et al., 2023), etc.,155

broadly include various levels of math questions,156

such as elementary and advanced mathematics.157

These mathematical reasoning evaluation datasets158

suffer from three issues. First, the scale is relatively159

small; the number of problems is usually fewer160

than 1K. Second, the evaluation data are not metic-161

ulously categorized and divided, making the evalu-162

ation results less useful for understanding different163

mathematical reasoning abilities and levels. Third,164

unlike the MATH dataset, where all questions are165

math word problems, the above datasets mainly166

consist of single-choice and fill-in-the-blank ques-167

tions, with a limited number of math word prob-168

lems. We conduct a statistical analysis on the char-169

acter length of problems and solutions in the above170

datasets. Results are shown in Table 1. The datasets171

that contain only multi-choice questions, such as C-172

EVAL and M3KE, have the shortest average ques-173

tion length. The average length of solutions in174

HighMATH is about twice that of GAOKAO, in-175

dicating that the problems in our dataset are more176

complex and require more reasoning steps.177

Transformed Datasets. Currently, mathemat-178

ical reasoning evaluations often use static bench-179

marks, which are prone to data contamination. To180

prevent or bypass this issue, efforts have been ded-181

icated into (1) new datasets in different formats,182

(2) dynamic benchmarks and (3) synthetic datasets.183

MathVista collects multimodal math problems (Lu184

et al., 2024). Work (Zhu et al., 2023) attempt to185

develop dynamic test sets. However, unlike elemen-186

tary mathematics, more challenging math problems187

are difficult to implement in dynamic evaluations.188

Other efforts (Mirzadeh et al., 2024; Gulati et al.,189

2024; Wei et al., 2023) modify the original infor-190

mation in the questions of the GSM8K or other191

datasets, such as variable names or numeric values, 192

using templates to generate variants of the original 193

problems for evaluation. Among these methods, 194

adding information unrelated to the questions can 195

cause model performance to drop by as much as 196

65%. Our dataset shows that even with pure text, 197

without data synthesis, LLMs still face challenges 198

when performing mathematical reasoning. 199

3 Benchmark Curation 200

3.1 Motivation 201

Our work is motivated by the limitations of existing 202

math benchmarks. Therefore, our design aims to 203

create a dataset with appropriate difficulty, broad 204

coverage of mathematical knowledge points, and 205

fine-grained annotations. To this end, we decide to 206

focus on math exams related to the Chinese college 207

entrance, i.e., senior high school math exams. 208

Compared to elementary and middle school 209

math, senior high school math covers knowledge 210

about different mathematical concepts and presents 211

a certain level of difficulty. We specifically col- 212

lect questions that test Chinese high school senior 213

students’ mastery of comprehensive mathematical 214

knowledge. These questions are often examining a 215

variety of knowledge points within a single prob- 216

lem. Additionally, we choose math word problems 217

as the test format. Although multiple-choice ques- 218

tions are easy to standardize and convenient for 219

evaluation, the probability of selecting the correct 220

answer is relatively high. Evaluation results hence 221

may not accurately reflect the true reasoning ca- 222

pability of models. Therefore, during data collec- 223

tion, besides the original math word problems, we 224

also convert valuable multiple-choice and fill-in- 225

the-blank questions into math word problems for 226

evaluation. 227

3.2 Data Collection 228

Subject Division. Based on the 2019 Chinese col- 229

lege entrance examination mathematics syllabus, 230

we organize the collected data into eight subjects, 231

which basically cover all the outlined knowledge 232

points in the syllabus. The specific subjects and 233

their corresponding mathematical contents are pre- 234

sented in Table 2. 235

Data Sources. HighMATH collects data from 236

various sources, mainly from joint provincial exam- 237

inations and mock exam papers from educational 238

institutions published between January and May 239

2024. Both of the selected papers are designed to 240
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Subject Category Category Content Size

Counting Principle Permutations, combinations, binomial theorem, etc. 194

Logic Set Inequality
Complex

Includes common operations, basic set operations, inductive proofs, linear programming,
and proofs of inequalities, etc.

783

Function Derivative Includes derivatives of one-variable functions and their applications, basic elementary
functions and their properties, etc.

955

Solid Geometry Relationships of points, lines, and planes in space, volumes of cylinders, spheres, inscribed
spheres, circumscribed spheres, sectional problems, etc.

548

Trigonometric Func-
tions and Triangle
Solving

Includes trigonometric functions, trigonometric identity transformations, solving triangles,
plane vectors, etc.

787

Plane Analytical Ge-
ometry

Includes conic sections, lines and circles, plane vectors, etc. 1081

Sequences Arithmetic sequences, geometric sequences, etc. 609

Statistics Probability Random variables and their distributions, random events and probabilities, distribution
tables and hypergeometric distributions, data statistical analysis, etc.

336

Table 2: A comprehensive overview of mathematical subjects and their specific contents is provided. The number
of problems each subject contains is listed in the Size column.

assess the senior high school students’ mastery of a241

variety of mathematical knowledge and reasoning242

capabilities. The problems in those papers are care-243

fully selected or created by experienced teachers244

and exam setters to ensure quality. The diverse245

range of sources not only enhances the represen-246

tativeness and challenge of the dataset, but also247

reflects the breadth of the college entrance exami-248

nation. Moreover, to further reduce the risk of data249

contamination, we select papers saved in scanned250

PDF format rather than formats that can be directly251

crawled or parsed.252

Data Processing. After collection, all files un-253

dergo automatic recognition followed by a review254

by a human annotator. Specifically, all the papers255

are first processed by OCR to recognize the prob-256

lem and solution text, then math expressions are257

converted into LaTeX format using Mathpix. After258

that, the LaTeX expressions are compiled into a259

human-readable form. They are manually proof-260

read for accuracy before being organized into the261

final standardized dataset. Annotators are also re-262

sponsible for assigning difficulty levels ranging263

from 1 (easiest) to 7 (most difficult). All annotators264

are college students who have passed the college265

entrance examination and have rich experience and266

intuition with these problems. After the initial stan-267

dardization of the data is completed, the leader of268

the annotators conducts multiple screenings and269

corrections to ensure annotation accuracy and con-270

sistency, thus ensuring the dataset’s quality for effi-271

cient and precise use. The annotated information272

and the final standardized format are illustrated in 273

an example in Table 3. 274

3.3 Data Statistics 275

In order to demonstrate that HighMATH covers a 276

rich variety of mathematical concepts and more 277

knowledge points assessed by a single problem, we 278

sample instances and conduct an analysis for com- 279

parison with MATH. The MATH dataset contains 280

7 categories and 5 difficulty levels, from which we 281

randomly sample 70 problems. The HighMATH 282

dataset includes 8 categories and 7 difficulty lev- 283

els, resulting in 108 sampled problems. Annotators 284

label the core knowledge points assessed by these 285

sampled problems and the number of knowledge 286

points that exist. After labeling, we analyze the re- 287

sults from three perspectives. First, we analyze the 288

average number of knowledge points per problem. 289

The MATH dataset averages 1.59 knowledge points 290

per question, while the HighMATH dataset aver- 291

ages 2.4. Second, we evaluate the average number 292

of knowledge points across subjects and difficulty 293

levels. Results are shown in Figure 1. In both 294

subject categories and difficulty levels, the average 295

number of knowledge points in HighMATH ex- 296

ceeds those in the MATH dataset. Specifically, the 297

average number of knowledge points is 2.07 times 298

that of the MATH dataset for each subject, and 299

the average number of knowledge points is 1.69 300

times that of the MATH dataset for each difficulty 301

level. Additionally, we conduct a manual evalua- 302

tion to compare the breadth of knowledge points 303
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Information Example in Chinese English Translation

Question: 在
(
2x3 − 1

x

)6
的展开式中, x2 项的系数为? In the expansion of

(
2x3 − 1

x

)6
, what is the coeffi-

cient of the x2 term?

Solution: 【分析】由二项式展开式的通项公式写出其通
项公式 Tk+1 = (−1)k × 26−k × Ck

6 × x18−4k,
令 18 − 4k = 2 确定 k 的值, 然后计算 x2 项的
系数即可.【详解】展开式的通项公式 Tk+1 =

Ck
6

(
2x3

)6−k (− 1
x

)k
= (−1)k × 26−k × Ck

6 ×
x18−4k,令 18− 4k = 2可得, k = 4,则 x2 项的系
数为 (−1)4 × 26−4 × C4

6 = 4× 15 = 60.

【Analysis】Using the general term formula of bi-
nomial expansion, write out the general term for-
mula Tk+1 = (−1)k × 26−k × Ck

6 × x18−4k, Set
18 − 4k = 2 to determine the value of k, then cal-
culate the coefficient of the x2 term. 【Detailed
Solution】 The general term formula of the expan-
sion is: Tk+1 = Ck

6

(
2x3

)6−k (− 1
x

)k
= (−1)k ×

26−k × Ck
6 × x18−4k Setting 18− 4k = 2, we get

k = 4 Therefore, the coefficient of the x2 term is:
(−1)4 × 26−4 × C4

6 = 4× 15 = 60.

Subject: 计数原理 Counting Principle

Level: 2

Answer: 60

Table 3: Illustration of annotated math word problems in HighMATH.

covered in HighMATH and MATH. We asked un-304

dergraduate students majoring in mathematics to305

evaluate the two datasets. The evaluation results306

show that, compared to MATH, HighMATH cov-307

ers a more comprehensive range of knowledge, es-308

sentially encompassing all aspects of high school309

mathematics. Other evaluation opinions are shown310

in Appendix A. All manual annotations will be311

published along with the datasets.312

4 Experiments313

We conducted extensive experiments on High-314

MATH to evaluate 14 latest LLMs, including both315

open- and closed-source models. Among them,316

o1-like models were also evaluated.317

4.1 Models318

We evaluate four types of models: the first319

group of models are closed-source models ac-320

cessed through APIs (OpenAI o1-mini). The321

second group of models includes open-source322

models designed for general purposes (Qwen-2.5-323

Instruct, Llama-3-Instruct); the third type com-324

prises open-source LLMs that are fine-tuned for325

math reasoning (Qwen-2.5-Math, Qwen-2.5-Math-326

Instruct, deepseek-math-instruct, deepseek-math-rl,327

Mathstral-v0.1); Additionally, we evaluated some328

recently released o1-like open-source LLMs specif-329

ically designed for complex reasoning (QwQ-32B-330

Preview, Skywork-o1-Open-Llama-3.1, DeepSeek-331

R1-Distill-Qwen). We evaluated models of differ-332

ent sizes within the same open-source model series333

whenever possible, with model sizes ranging from334

1.5B to 72B parameters. 335

4.2 Evaluation Strategies 336

We employed four evaluation settings to provide a 337

comprehensive analysis of model performance on 338

HighMATH. 339

Zero-shot Evaluation: Zero-shot evaluation 340

refers to the process where the model makes predic- 341

tions on inputs and directly performs the evaluation 342

task without having seen any specific samples be- 343

fore. During the evaluation, we only give the model 344

a system prompt instructing it to write the final an- 345

swer in a box, and directly provide the problem in 346

the user prompt. This method is the most direct 347

and widely used evaluation approach. 348

Majority Vote Mechanism: The majority vote 349

(Wang et al., 2022) mechanism involves selecting 350

the most frequent answer from multiple inference 351

responses (eight in our experiment) as the final de- 352

cision, which is then compared to the ground truth. 353

This approach helps assess the model’s consistency 354

and reliability in providing correct answers over 355

multiple runs. 356

Pass@N: Pass@N is a metric used to evaluate 357

the model’s ability to find at least one correct an- 358

swer within the top N most likely generated an- 359

swers (eight in our experiment). It is commonly 360

used to measure the model’s recall capability and 361

the diversity of generated responses. As an eval- 362

uation standard, Pass@N reveals the model’s per- 363

formance when generating multiple candidate an- 364

swers, emphasizing its ability to cover a wide range 365

of possibilities. 366
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MODEL HighMATH HighMATH-HARD Major Vote Pass@8 Python Executor

Closed-Source LLM

o1-mini 52.53 - - - -

General Purpose Open-Source LLMs

Qwen-2.5-Instruct-7B 21.71 5.87 43.34 57 -

Llama-3-Instruct-8B 6.49 1.34 8.9 20.73 -

Mathematics Open-Source LLMs

Qwen-2.5-Math-Instruct-1.5B 16.05 5.2 48.29 58.11 42.11

Qwen-2.5-Math-7B 9.15 0.42 28.83 42.05 -

Qwen-2.5-Math-Instruct-7B 43.71 18.44 51.76 60.44 46.41

Qwen-2.5-Math-Instruct-72B 51.56 24.48 - - 50.62

deepseek-math-7b-instruct 15.73 3.1 19.22 35.93 -

deepseek-math-7b-rl 8.15 1.93 16.78 24.68 -

Mathstral-7B-v0.1 21.12 5.53 29.73 48.98 -

o1-like Open-Source LLMs

QwQ-32B-Preview 45.41 12.57 54.61 59.9 -

Skywork-o1-Open-Llama-3.1-8B 45.8 17.94 51.2 61.49 -

DeepSeek-R1-Distill-Qwen-7B 29.68 5.53 43.44 45.07 -

DeepSeek-R1-Distill-Qwen-32B 31.22 6.87 45.53 47.24 -

Table 4: Main results.

Solving with Python Executor: This evaluation367

method involves using the Python Executor to en-368

hance the logic and computational accuracy of369

LLM’s responses. During experiments, we evalu-370

ated Qwen models, which provide relevant inter-371

faces using this method. Specifically, after generat-372

ing a response, the model sends the response to a373

relevant agent, which then regenerates and provides374

the final response.375

5 Main Result376

We divided all the problems from HighMATH into377

two categories for evaluation. The first category378

consists of problems that contain only one ques-379

tion, totaling 4,100 problems, and the second in-380

cludes problems with multiple questions, totaling381

1,193 problems (labeled “HighMATH-HARD” in382

Table 4). As shown in the results in Table 4, Ope-383

nAI o1-mini performs best in addressing single-384

question problems, achieving an accuracy rate of385

52.53%. Among all 7B models, Qwen-2.5-Math-386

Instruct performs the best, with an accuracy rate387

multiple times that of other models. In the o1-388

like models, Skywork-o1-Open-Llama-3.1 stands389

out, even surpassing the QWQ model of 32b in390

accuracy. There is also an interesting phenomenon 391

in the comparison of models within the same se- 392

ries. It can be seen that Qwen-2.5-Instruct, Qwen- 393

2.5-Math, and Qwen-2.5-Math-Instruct, which are 394

based on the same 7B base model, show signif- 395

icant differences. Comparing Qwen-2.5-Instruct 396

and Qwen-2.5-Math, it is evident that even though 397

Qwen-2.5-Math has been trained with a substan- 398

tial new mathematical corpus, its performance is 399

greatly influenced by whether the model has un- 400

dergone instruction-following tuning. Qwen-2.5- 401

Math-Instruct, which combines the advantages of 402

the two previous models, achieves the best re- 403

sults, indicating that both factors are important in 404

model training. Additionally, we observed that: 405

for the Qwen-math series models, as model size 406

increases, performance on HighMATH does not 407

improve linearly. Comparing the 7B model with 408

the 72B model, there is only an 8% improvement in 409

single-question problems’ evaluation, which does 410

not align with the expected behavior of the scal- 411

ing law. This also shows that the application of 412

techniques such as test-time scaling, process super- 413

vision, and reinforcement learning to small LLMs 414

is reducing the advantages of large LLMs during 415
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Figure 2: Analysis of question types and difficulty levels.

training.416

The accuracy of all models drastically decreases417

in the evaluation of multi-question problems. The418

best-performing model, Qwen-2.5-Math-Instruct,419

has an accuracy in multi-question problems that420

is less than half of its accuracy in single-question421

problems. Models that perform poorly on single-422

question problems tend to perform even worse423

on multi-question problems. Among the o1-like424

models, the accuracy of QWQ-32B-Preview on425

multi-question problems is surprisingly 5.87%426

lower than that of Qwen-2.5-Math-Instruct 7B. Be-427

sides Skywork-o1-Open-Llama-3.1-8B, other o1-428

like models also fail to meet the expected results,429

which may indicate that a more complex reasoning430

process does not necessarily improve accuracy.431

The majority vote and pass@8 evaluation set-432

tings significantly improve the accuracy of each433

model in reasoning on single-question problems,434

although the degree of improvement varies. The435

most noticeable increases occur in models that orig-436

inally have lower accuracies. For example, the437

pass@8 accuracy of the Qwen 1.5B model even438

surpasses that of many 7B models. These results439

may indicate that these smaller LLMs already pos-440

sess strong mathematical reasoning abilities, but441

the responses they generate in a single pass are very442

unstable, leading to poor accuracy performance.443

Using a Python executor can effectively mitigate444

this issue. However, it is worth noting that there445

is an upper limit to the accuracy achievable with446

majority vote, pass@8, or using a Python executor 447

on HighMATH. The highest accuracy is achieved 448

by Skywork-o1-Open-Llama-3.1 under the pass@8 449

evaluation setting, reaching only 61.49%. 450

6 Analysis of Problem Subjects and 451

Difficulty Levels 452

We conducted an analysis of performance across 453

problem subjects and difficulty levels between 454

o1-mini, QWQ-32B-Preview, Qwen-2.5-Math- 455

Instruct-72B, Skywork-o1-Open-Llama-3.1-8B, 456

and the Meta-Llama-3-8B-Instruct model. All com- 457

parisons are conducted under the evaluation results 458

of single-question problems. 459

6.1 Problem Subjects 460

The left radargrame in Figure 2 shows that the 461

compared models generally perform consistently 462

across different categories of math problems. Ope- 463

nAI o1-mini not only outperforms other models in 464

overall accuracy on HighMATH but also performs 465

best in five subjects of math problems, though it is 466

slightly inferior in two categories. This indicates 467

that OpenAI o1-mini is still demonstrates compet- 468

itiveness in the current evaluation tasks. Clearly, 469

compared to the Meta-Llama-3-8B-Instruct model, 470

the Skywork-o1-Open-Llama-3.1-8B model shows 471

significant improvements in accuracy across all cat- 472

egories. This finding again highlights that, with 473

effective training and optimization strategies, even 474

relatively smaller models can exhibit reasoning 475

7



Dataset MATH MATH500

Qwen-2.5-Math-Instruct-7B 76.6 75

Table 5: Evaluate Qwen-2.5-Math-Instruct-7b on
MATH and MATH500.

Dataset 1000-Zh 1000-En

Qwen-2.5-Math-Instruct-7B 40.7 38.6

Table 6: The impact of language on mathematical eval-
uation.

abilities on par with larger models.476

We also observe that the models perform well in477

subjects such as Counting Principle, Sequences,478

and Statistics. We speculate that mathematical479

problems in these fields often exhibit strong struc-480

tural characteristics, including clear rules and logic.481

The models can leverage a large number of math-482

ematical formulas, derivation processes, and rules483

to perform calculations, making accurate reason-484

ing more achievable. Furthermore, the richness485

of the training data and the standardized nature of486

the problems make these areas particularly advan-487

tageous for complex reasoning models to demon-488

strate their strengths. However, models perform489

poorly in subjects such as Solid Geometry and490

Plane Analytic Geometry. We believe that these491

subjects require the models to possess strong spa-492

tial imagination, complex geometric reasoning abil-493

ities, and a deep understanding of geometric trans-494

formations and shapes.495

6.2 Difficulty Level496

The accuracy of all models decreases as the diffi-497

culty level increases. OpenAI o1-mini surpasses498

other models in accuracy for problems at Level 4499

and above, demonstrating its advantage in complex500

mathematical reasoning. Overall, performance dif-501

ferences below Level 3 are not significant. How-502

ever, for more difficult problems, performance503

aligns with the scaling law principle. As model size504

increases (e.g., Qwen QWQ-32B-Preview, Qwen-505

2.5-Math-72B-Instruct), larger models progres-506

sively outperform smaller ones in high-difficulty507

problems, indicating a positive correlation between508

model size and performance on challenging tasks.509

7 Ablation Study510

To demonstrate the effectiveness of our dataset, we511

conducted identical tests on the Qwen-2.5-Math512

model using both MATH and MATH-500. As 513

shown in Table 5, both MATH and MATH-500 514

achieve a 75% accuracy under the zero-shot evalu- 515

ation setting. Under the same settings, HighMATH 516

achieves an accuracy of 43.71%, showing a signif- 517

icant difference of 31.29 percentage points com- 518

pared to the other datasets. This difference validate 519

the effectiveness of using HighMATH for evalua- 520

tion. 521

To test whether language affects mathematical 522

reasoning, we extracted 1,000 questions propor- 523

tionally from the eight subjects of HighMATH 524

and translated them into English using GPT-4- 525

0613 for testing the Qwen-2.5-Math-Instruct-7B. 526

Experimental results, shown in Table 6, indicate 527

that the accuracy slightly decreases with the trans- 528

lated questions, but the change is not significant. 529

Therefore, although HighMATH is based on a Chi- 530

nese context, it remains relevant for testing models 531

trained in other languages. 532

8 Conclusion 533

We propose a new mathematical reasoning dataset, 534

HighMATH, for LLM evaluations. HighMATH 535

features a comprehensive inclusion of different 536

subjects of mathematical concepts, with multiple 537

knowledge points integrated into each problem. Ad- 538

ditionally, HighMATH includes fine-grained anno- 539

tations, divided into 8 categories and 7 difficulty 540

levels, totaling 5,293 problems. Based on High- 541

MATH, we have conducted a comprehensive evalu- 542

ation of the most recent popular LLMs. The evalua- 543

tion results confirm the effectiveness of our dataset, 544

with the best model achieving an accuracy of 62%. 545

Limitations 546

While our benchmark provides a comprehensive 547

evaluation of LLMs’ math reasoning abilities at the 548

high school level, it has some limitations. First, it 549

does not cover university-level mathematics or ad- 550

vanced Olympiad problems, focusing instead only 551

on high school content. Additionally, considering 552

the current progress in reasoning capabilities of 553

models like o1 and DeepSeek-R1, we believe that 554

it is equally crucial to evaluate each reasoning step 555

generated by the model, not just focusing on the 556

final answer. This may help to more accurately 557

measure the model’s performance in complex logi- 558

cal reasoning processes. 559
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9 Appendices722

A Human Evaluation Opinions on723

HighMATH and MATH724

• Problems in MATH are simpler and more di-725

rect, lacking integration of knowledge points,726

which means they do not combine two or more727

knowledge points for examination.728

• Problems in HighMATH are more obscure,729

requiring people to engage in logical thinking730

to understand the meaning of the questions.731

• The HighMATH dataset covers a more com-732

prehensive range of knowledge, essentially733

encompassing all aspects of high school math-734

ematics.735
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