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Abstract

With the rapid development of large language
models (LLMs) in math reasoning, the accu-
racy of models on existing math benchmarks
has gradually approached 90% or even higher.
More challenging math benchmarks are hence
urgently in need to satisfy the increasing eval-
uation demands. To bridge this gap, we pro-
pose HighMATH. Problems in HighMATH are
collected according to 3 criteria: problem com-
plexity, knowledge domain diversity and fine-
grained annotations. We collect 5,293 prob-
lems from Chinese senior high school math-
ematics exams published in 2024, covering 8
subjects and 7 levels of difficulty, with each
problem involving an average of more than
2.4 knowledge points. We conduct a thorough
evaluation of latest LLMs on the curated High-
MATH, including o1-like models. Evaluation
results demonstrate that the accuracy of ad-
vanced LLMs on HighMATH is significantly
lower than that on previous math reasoning
benchmarks. Even with the use of majority
voting and a Python executor, the highest ac-
curacy does not exceed 62% on HighMATH.
Our results also suggest that properly trained
smaller LLMs may have great potential in math
reasoning.

1 Introduction

LLMs have achieved significant progress in math
reasoning (Li et al., 2024). When the challenging
MATH (Hendrycks et al., 2021b) benchmark was
initially proposed for evaluation, the accuracy of
LLMs did not reach 20%. However, in just three
years, LLMs are capable of achieving over 60%
accuracy (Yang et al., 2024). Recently, with the
emergence and application of techniques such as
automatic process supervision (Wang et al., 2024),
test-time scaling (Qi et al., 2024; Chen et al., 2024),
and reinforcement learning (Rafailov et al., 2023;
Ouyang et al., 2022), many models even achieve
or exceed 90% accuracy on MATH (DeepSeek-Al
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Figure 1: Comparison of HighMATH vs MATH. We
count the number of knowledge points in each problem,
subject, and difficulty level in the problems sampled
from HighMATH and MATH. It can be seen that High-
MATH contains a higher average number of knowledge
points than MATH.

et al., 2025). This rapid development of LLMs in
math reasoning indicates that existing math bench-
marks are no longer sufficient to evaluate and dif-
ferentiate latest LLMs.

Particularly, commonly used benchmarks, such
as GSM8K (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021b), CMATH (Wei et al.,
2023), and GAOKAO (Zhang et al., 2023), all suf-
fer from these limitations. GSM8K and CMATH,
which originate from elementary school math,
present problems that are simple and do not al-
low for complex reasoning, making it difficult to
deeply evaluate advanced LLMs. MATH, sourced
from American high school math competitions,
is quite challenging but typically presents prob-
lems with limited knowledge points, thus lacking
the ability to evaluate LLMs in integrating multi-
ple mathematical subjects. GAOKAO, C-EVAL
(Huang et al., 2023), M3KE (Liu et al., 2023), and
other comprehensive benchmarks (Hendrycks et al.,
2021a; Zhong et al., 2024) are designed for mul-
tidisciplinary evaluation, where math is only one
of these subjects, featuring fewer problems and



Benchmarks MATH GAOKAO C-EVAL M3KE Ours

Language En Zh Zh Zh Zh

Size 5,000 936 669 796 5,293
MCQ

Problem Type MWP  Fill-in-the-Blank MCQ MCQ MWP
MWP

Question Len. 191.13 185.92 76.28 46.24  158.63

Solution Len. 519.96 305.86 - - 603.16

Subject/Level Label v X X v

Table 1: Comparison of our benchmark against previous math benchmarks. MWP: Math Word Problem, MCQ:
Multi-choice Questions. Question Len. and Solution Len. are the average character lengths we count.

coarser granularity.

To mitigate these challenges, we propose new
Chinese math benchmark HighMATH. Our dataset
offers a more comprehensive and challenging as-
sessment of LLMs in math reasoning by meticu-
lously integrating a wide range of mathematical
concepts, and knowledge into math problems with
multiple reasoning steps. It contains 5,293 math
problems, with each problem containing an aver-
age of more than 2.4 knowledge points, as shown
in Figure 1. It covers all major areas of high school
mathematics, including 8 domains, i.e., Function
Derivatives, Counting Principles, Trigonometric
Functions and Triangle Solutions, Plane Analytic
Geometry, Sequences, Solid Geometry, Statistics
and Probability, and others (Logic, Sets, Inequal-
ities, Complex Numbers reasoning). In addition
to subject annotation, we categorize problems into
difficulty levels from 1 to 7. We also collect prob-
lems with multiple sub-questions into a subset
called HighMATH-HARD. The average number
of characters of problems and their solutions in
HighMATH-HARD are 249 and 1,201 respectively,
posing great challenges to LLMs in math reason-
ing.

We evaluate 14 LLMs (including both open- and
closed-source models) on HighMATH. Compared
to MATH, all models exhibit a significant drop in
accuracy on HighMath, with even the latest rea-
soning language model, ol-mini, achieving only
52.53% accuracy. The ol-like model, DeepSeek-
R1-distill-Qwen-32B, achieves only 31.22%. We
also evaluate LLMs under the majority voting,
pass@N settings, and with the assistance of a
Python executor. However, these can only improve
reasoning performance to a certain extent, indicat-
ing the difficulty of our benchmark.

Our contributions are summarized as follows.

* We propose a new challenging bechmark for
evaluating LLMs in math reasoning. The
dataset covers a wide range of mathemati-
cal concepts and typically examines multiple
mathematical knowledge points in a single
problem. Additionally, it has a sufficient num-
ber of problems, requires complex reasoning,
and is finely annotated.

* We conduct thorough evaluations of the lat-
est LL.Ms, including both ol-like models and
those specifically trained for mathematical rea-
soning.

* We carry out an in-depth analysis of the evalu-
ation results. The results show that the poten-
tial of small LL.Ms for mathematical reason-
ing is enormous. The pass@8 accuracy of the
1.5B model even surpasses that of many 7B
models.

2 Related Work

Mathematical Reasoning Benchmarks. Our
work is most closely related to MATH. We carefully
analyze data in MATH (Hendrycks et al., 2021b)
and find that, although it originates from American
high school math competitions, it includes simple
questions as well, such as those from the AMC10
competition, which contains ninth-grade mathemat-
ics. In terms of subject division, algebra content is
categorized into prealgebra, intermediate algebra,
and algebra, making up three of the seven cate-
gories. Additionally, almost all current LLMs use
MATH training dataset to train their models. Pre-
vious analyses on contaminated samples discover
that some existing training datasets, including the
MATH training dataset, contain a significant num-
ber of problems that are highly similar in concept
or structure to those in the test datasets (Yang et al.,



2024). We speculate that these limitations may
gradually render the MATH dataset inadequate for
meeting the evaluation needs of LLMs. Detailed
comparison of our benchmark to MATH is pre-
sented in Figure 1 and Table 1.

Datasets for evaluating mathematical reasoning
in Chinese context are usually integrated into mul-
tidisciplinary or knowledge evaluation benchmarks
or suites, such as the GAOKAO benchmark (Zhang
et al., 2023). The GAOKAO benchmark collects
questions from past college entrance examination
papers, gathering 936 questions by the year 2024.
The questions are categorized into multiple-choice
questions, fill-in-the-blank questions, and math
word problems. Other benchmarks, like C-EVAL
(Huang et al., 2023), M3KE (Liu et al., 2023), etc.,
broadly include various levels of math questions,
such as elementary and advanced mathematics.
These mathematical reasoning evaluation datasets
suffer from three issues. First, the scale is relatively
small; the number of problems is usually fewer
than 1K. Second, the evaluation data are not metic-
ulously categorized and divided, making the evalu-
ation results less useful for understanding different
mathematical reasoning abilities and levels. Third,
unlike the MATH dataset, where all questions are
math word problems, the above datasets mainly
consist of single-choice and fill-in-the-blank ques-
tions, with a limited number of math word prob-
lems. We conduct a statistical analysis on the char-
acter length of problems and solutions in the above
datasets. Results are shown in Table 1. The datasets
that contain only multi-choice questions, such as C-
EVAL and M3KE, have the shortest average ques-
tion length. The average length of solutions in
HighMATH is about twice that of GAOKAO, in-
dicating that the problems in our dataset are more
complex and require more reasoning steps.

Transformed Datasets. Currently, mathemat-
ical reasoning evaluations often use static bench-
marks, which are prone to data contamination. To
prevent or bypass this issue, efforts have been ded-
icated into (1) new datasets in different formats,
(2) dynamic benchmarks and (3) synthetic datasets.
MathVista collects multimodal math problems (Lu
et al., 2024). Work (Zhu et al., 2023) attempt to
develop dynamic test sets. However, unlike elemen-
tary mathematics, more challenging math problems
are difficult to implement in dynamic evaluations.
Other efforts (Mirzadeh et al., 2024; Gulati et al.,
2024; Wei et al., 2023) modify the original infor-
mation in the questions of the GSM8K or other

datasets, such as variable names or numeric values,
using templates to generate variants of the original
problems for evaluation. Among these methods,
adding information unrelated to the questions can
cause model performance to drop by as much as
65%. Our dataset shows that even with pure text,
without data synthesis, LLMs still face challenges
when performing mathematical reasoning.

3 Benchmark Curation

3.1 Motivation

Our work is motivated by the limitations of existing
math benchmarks. Therefore, our design aims to
create a dataset with appropriate difficulty, broad
coverage of mathematical knowledge points, and
fine-grained annotations. To this end, we decide to
focus on math exams related to the Chinese college
entrance, i.e., senior high school math exams.

Compared to elementary and middle school
math, senior high school math covers knowledge
about different mathematical concepts and presents
a certain level of difficulty. We specifically col-
lect questions that test Chinese high school senior
students’ mastery of comprehensive mathematical
knowledge. These questions are often examining a
variety of knowledge points within a single prob-
lem. Additionally, we choose math word problems
as the test format. Although multiple-choice ques-
tions are easy to standardize and convenient for
evaluation, the probability of selecting the correct
answer is relatively high. Evaluation results hence
may not accurately reflect the true reasoning ca-
pability of models. Therefore, during data collec-
tion, besides the original math word problems, we
also convert valuable multiple-choice and fill-in-
the-blank questions into math word problems for
evaluation.

3.2 Data Collection

Subject Division. Based on the 2019 Chinese col-
lege entrance examination mathematics syllabus,
we organize the collected data into eight subjects,
which basically cover all the outlined knowledge
points in the syllabus. The specific subjects and
their corresponding mathematical contents are pre-
sented in Table 2.

Data Sources. HighMATH collects data from
various sources, mainly from joint provincial exam-
inations and mock exam papers from educational
institutions published between January and May
2024. Both of the selected papers are designed to



Subject Category Category Content

Size

Counting Principle

Permutations, combinations, binomial theorem, etc. 194

Logic Set Inequality

Complex and proofs of inequalities, etc.

Includes common operations, basic set operations, inductive proofs, linear programming, 783

Function Derivative

Includes derivatives of one-variable functions and their applications, basic elementary 955
functions and their properties, etc.

Solid Geometry

Relationships of points, lines, and planes in space, volumes of cylinders, spheres, inscribed 548

spheres, circumscribed spheres, sectional problems, etc.

Trigonometric Func-

Includes trigonometric functions, trigonometric identity transformations, solving triangles, 787

tions and Triangle plane vectors, etc.

Solving

Plane Analytical Ge- Includes conic sections, lines and circles, plane vectors, etc. 1081
ometry

Sequences Arithmetic sequences, geometric sequences, etc. 609

Statistics Probability

Random variables and their distributions, random events and probabilities, distribution 336

tables and hypergeometric distributions, data statistical analysis, etc.

Table 2: A comprehensive overview of mathematical subjects and their specific contents is provided. The number
of problems each subject contains is listed in the Size column.

assess the senior high school students’ mastery of a
variety of mathematical knowledge and reasoning
capabilities. The problems in those papers are care-
fully selected or created by experienced teachers
and exam setters to ensure quality. The diverse
range of sources not only enhances the represen-
tativeness and challenge of the dataset, but also
reflects the breadth of the college entrance exami-
nation. Moreover, to further reduce the risk of data
contamination, we select papers saved in scanned
PDF format rather than formats that can be directly
crawled or parsed.

Data Processing. After collection, all files un-
dergo automatic recognition followed by a review
by a human annotator. Specifically, all the papers
are first processed by OCR to recognize the prob-
lem and solution text, then math expressions are
converted into LaTeX format using Mathpix. After
that, the LaTeX expressions are compiled into a
human-readable form. They are manually proof-
read for accuracy before being organized into the
final standardized dataset. Annotators are also re-
sponsible for assigning difficulty levels ranging
from 1 (easiest) to 7 (most difficult). All annotators
are college students who have passed the college
entrance examination and have rich experience and
intuition with these problems. After the initial stan-
dardization of the data is completed, the leader of
the annotators conducts multiple screenings and
corrections to ensure annotation accuracy and con-
sistency, thus ensuring the dataset’s quality for effi-
cient and precise use. The annotated information

and the final standardized format are illustrated in
an example in Table 3.

3.3 Data Statistics

In order to demonstrate that HighMATH covers a
rich variety of mathematical concepts and more
knowledge points assessed by a single problem, we
sample instances and conduct an analysis for com-
parison with MATH. The MATH dataset contains
7 categories and 5 difficulty levels, from which we
randomly sample 70 problems. The HighMATH
dataset includes 8 categories and 7 difficulty lev-
els, resulting in 108 sampled problems. Annotators
label the core knowledge points assessed by these
sampled problems and the number of knowledge
points that exist. After labeling, we analyze the re-
sults from three perspectives. First, we analyze the
average number of knowledge points per problem.
The MATH dataset averages 1.59 knowledge points
per question, while the HighMATH dataset aver-
ages 2.4. Second, we evaluate the average number
of knowledge points across subjects and difficulty
levels. Results are shown in Figure 1. In both
subject categories and difficulty levels, the average
number of knowledge points in HighMATH ex-
ceeds those in the MATH dataset. Specifically, the
average number of knowledge points is 2.07 times
that of the MATH dataset for each subject, and
the average number of knowledge points is 1.69
times that of the MATH dataset for each difficulty
level. Additionally, we conduct a manual evalua-
tion to compare the breadth of knowledge points



Information Example in Chinese

English Translation

Question: 7E (22° — %)6 FIEH =, o2 TR RECH? In the expansion of (2z° — %)6, what is the coeffi-
cient of the 22 term?
Solution: (7] WA B ARXE B HiE  [Analysis] Using the general term formula of bi-
WMAR Thpr = (1) x 267F x CF x 2%, nomial expansion, write out the general term for-
418 — 4k = 2 WHE k MME, RETE 2® TH  mula Ther = (—1)F x 257% x CF x 2'87%F, Set
ZEBIT]. [¥fE] BASXAETIARN Thyr = 18 — 4k = 2 to determine the value of k, then cal-
ck (2$3)6_k (_l)k’ = (—1)% x 25% x ¢k x  culate the coefficient of the z? term.  [Detailed
2120 2 15— g — 2 W, b = 40 o2 iggR  Seiution] The generl term formula of the expan-
B (1) x 257 x Cf =4 x 15 = 60. sionis: Ti1 = C§ (22°)7 " (—1)" = (=1)* x
26—k 5 CF x 28 *F Setting 18 — 4k = 2, we get
k = 4 Therefore, the coefficient of the 22 term is:
(—1)* x 267" x C§ =4 x 15 = 60.
Subject: TR Counting Principle
Level: 2
Answer: 60

Table 3: Illustration of annotated math word problems in HighMATH.

covered in HighMATH and MATH. We asked un-
dergraduate students majoring in mathematics to
evaluate the two datasets. The evaluation results
show that, compared to MATH, HighMATH cov-
ers a more comprehensive range of knowledge, es-
sentially encompassing all aspects of high school
mathematics. Other evaluation opinions are shown
in Appendix A. All manual annotations will be
published along with the datasets.

4 Experiments

We conducted extensive experiments on High-
MATH to evaluate 14 latest LLLMs, including both
open- and closed-source models. Among them,
ol-like models were also evaluated.

4.1 Models

We evaluate four types of models: the first
group of models are closed-source models ac-
cessed through APIs (OpenAl ol-mini). The
second group of models includes open-source
models designed for general purposes (Qwen-2.5-
Instruct, Llama-3-Instruct); the third type com-
prises open-source LL.Ms that are fine-tuned for
math reasoning (Qwen-2.5-Math, Qwen-2.5-Math-
Instruct, deepseek-math-instruct, deepseek-math-rl,
Mathstral-v0.1); Additionally, we evaluated some
recently released ol-like open-source LLMs specif-
ically designed for complex reasoning (QwQ-32B-
Preview, Skywork-o1-Open-Llama-3.1, DeepSeek-
R1-Distill-Qwen). We evaluated models of differ-
ent sizes within the same open-source model series
whenever possible, with model sizes ranging from

1.5B to 72B parameters.

4.2 Evaluation Strategies

We employed four evaluation settings to provide a
comprehensive analysis of model performance on
HighMATH.

Zero-shot Evaluation: Zero-shot evaluation
refers to the process where the model makes predic-
tions on inputs and directly performs the evaluation
task without having seen any specific samples be-
fore. During the evaluation, we only give the model
a system prompt instructing it to write the final an-
swer in a box, and directly provide the problem in
the user prompt. This method is the most direct
and widely used evaluation approach.

Majority Vote Mechanism: The majority vote
(Wang et al., 2022) mechanism involves selecting
the most frequent answer from multiple inference
responses (eight in our experiment) as the final de-
cision, which is then compared to the ground truth.
This approach helps assess the model’s consistency
and reliability in providing correct answers over
multiple runs.

Pass@N: Pass@N is a metric used to evaluate
the model’s ability to find at least one correct an-
swer within the top N most likely generated an-
swers (eight in our experiment). It is commonly
used to measure the model’s recall capability and
the diversity of generated responses. As an eval-
uation standard, Pass@N reveals the model’s per-
formance when generating multiple candidate an-
swers, emphasizing its ability to cover a wide range
of possibilities.



MODEL HighMATH HighMATH-HARD Major Vote Pass@8 Python Executor

| Closed-Source LLM
ol-mini | 52.53 - - - -

\ General Purpose Open-Source LLMs
Qwen-2.5-Instruct-7B \ 21.71 5.87 43.34 57 -
Llama-3-Instruct-8B \ 6.49 1.34 8.9 20.73 -

‘ Mathematics Open-Source LLMs
Qwen-2.5-Math-Instruct-1.5B \ 16.05 5.2 48.29 58.11 42.11
Qwen-2.5-Math-7B | 9.15 0.42 28.83 42.05 -
Qwen-2.5-Math-Instruct-7B | 43.71 18.44 51.76 60.44 46.41
Qwen-2.5-Math-Instruct-72B \ 51.56 24.48 - - 50.62
deepseek-math-7b-instruct \ 15.73 3.1 19.22 35.93 -
deepseek-math-7b-rl \ 8.15 1.93 16.78 24.68 -
Mathstral-7B-v0.1 | 21.12 5.53 29.73 48.98 -

| ol-like Open-Source LLMs
QwQ-32B-Preview | 4541 12.57 54.61 59.9 -
Skywork-01-Open-Llama-3.1-8B \ 45.8 17.94 51.2 61.49 -
DeepSeek-R1-Distill-Qwen-7B | 29.68 5.53 43.44 45.07 -
DeepSeek-R1-Distill-Qwen-32B | 31.22 6.87 45.53 47.24 -

Table 4: Main results.

Solving with Python Executor: This evaluation
method involves using the Python Executor to en-
hance the logic and computational accuracy of
LLM’s responses. During experiments, we evalu-
ated Qwen models, which provide relevant inter-
faces using this method. Specifically, after generat-
ing a response, the model sends the response to a
relevant agent, which then regenerates and provides
the final response.

5 Main Result

We divided all the problems from HighMATH into
two categories for evaluation. The first category
consists of problems that contain only one ques-
tion, totaling 4,100 problems, and the second in-
cludes problems with multiple questions, totaling
1,193 problems (labeled “HighMATH-HARD” in
Table 4). As shown in the results in Table 4, Ope-
nAl ol-mini performs best in addressing single-
question problems, achieving an accuracy rate of
52.53%. Among all 7B models, Qwen-2.5-Math-
Instruct performs the best, with an accuracy rate
multiple times that of other models. In the ol-
like models, Skywork-01-Open-Llama-3.1 stands
out, even surpassing the QWQ model of 32b in

accuracy. There is also an interesting phenomenon
in the comparison of models within the same se-
ries. It can be seen that Qwen-2.5-Instruct, Qwen-
2.5-Math, and Qwen-2.5-Math-Instruct, which are
based on the same 7B base model, show signif-
icant differences. Comparing Qwen-2.5-Instruct
and Qwen-2.5-Math, it is evident that even though
Qwen-2.5-Math has been trained with a substan-
tial new mathematical corpus, its performance is
greatly influenced by whether the model has un-
dergone instruction-following tuning. Qwen-2.5-
Math-Instruct, which combines the advantages of
the two previous models, achieves the best re-
sults, indicating that both factors are important in
model training. Additionally, we observed that:
for the Qwen-math series models, as model size
increases, performance on HighMATH does not
improve linearly. Comparing the 7B model with
the 72B model, there is only an 8% improvement in
single-question problems’ evaluation, which does
not align with the expected behavior of the scal-
ing law. This also shows that the application of
techniques such as test-time scaling, process super-
vision, and reinforcement learning to small LLMs
is reducing the advantages of large LLMs during
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Figure 2: Analysis of question types and difficulty levels.

training.

The accuracy of all models drastically decreases
in the evaluation of multi-question problems. The
best-performing model, Qwen-2.5-Math-Instruct,
has an accuracy in multi-question problems that
is less than half of its accuracy in single-question
problems. Models that perform poorly on single-
question problems tend to perform even worse
on multi-question problems. Among the ol-like
models, the accuracy of QWQ-32B-Preview on
multi-question problems is surprisingly 5.87%
lower than that of Qwen-2.5-Math-Instruct 7B. Be-
sides Skywork-o1-Open-Llama-3.1-8B, other o1-
like models also fail to meet the expected results,
which may indicate that a more complex reasoning
process does not necessarily improve accuracy.

The majority vote and pass@8 evaluation set-
tings significantly improve the accuracy of each
model in reasoning on single-question problems,
although the degree of improvement varies. The
most noticeable increases occur in models that orig-
inally have lower accuracies. For example, the
pass@8 accuracy of the Qwen 1.5B model even
surpasses that of many 7B models. These results
may indicate that these smaller LLMs already pos-
sess strong mathematical reasoning abilities, but
the responses they generate in a single pass are very
unstable, leading to poor accuracy performance.
Using a Python executor can effectively mitigate
this issue. However, it is worth noting that there
is an upper limit to the accuracy achievable with

majority vote, pass@8§, or using a Python executor
on HighMATH. The highest accuracy is achieved
by Skywork-01-Open-Llama-3.1 under the pass@8
evaluation setting, reaching only 61.49%.

6 Analysis of Problem Subjects and
Difficulty Levels

We conducted an analysis of performance across
problem subjects and difficulty levels between
ol-mini, QWQ-32B-Preview, Qwen-2.5-Math-
Instruct-72B, Skywork-o1-Open-Llama-3.1-8B,
and the Meta-Llama-3-8B-Instruct model. All com-
parisons are conducted under the evaluation results
of single-question problems.

6.1 Problem Subjects

The left radargrame in Figure 2 shows that the
compared models generally perform consistently
across different categories of math problems. Ope-
nAl ol-mini not only outperforms other models in
overall accuracy on HighMATH but also performs
best in five subjects of math problems, though it is
slightly inferior in two categories. This indicates
that OpenAl ol-mini is still demonstrates compet-
itiveness in the current evaluation tasks. Clearly,
compared to the Meta-Llama-3-8B-Instruct model,
the Skywork-o1-Open-Llama-3.1-8B model shows
significant improvements in accuracy across all cat-
egories. This finding again highlights that, with
effective training and optimization strategies, even
relatively smaller models can exhibit reasoning



Dataset | MATH MATH500
Qwen-2.5-Math-Instruct-7B | 76.6 75

Table 5: Evaluate Qwen-2.5-Math-Instruct-7b on
MATH and MATHS500.

Dataset | 1000-Zh 1000-En
Qwen-2.5-Math-Instruct-7B \ 40.7 38.6

Table 6: The impact of language on mathematical eval-
uation.

abilities on par with larger models.

We also observe that the models perform well in
subjects such as Counting Principle, Sequences,
and Statistics. We speculate that mathematical
problems in these fields often exhibit strong struc-
tural characteristics, including clear rules and logic.
The models can leverage a large number of math-
ematical formulas, derivation processes, and rules
to perform calculations, making accurate reason-
ing more achievable. Furthermore, the richness
of the training data and the standardized nature of
the problems make these areas particularly advan-
tageous for complex reasoning models to demon-
strate their strengths. However, models perform
poorly in subjects such as Solid Geometry and
Plane Analytic Geometry. We believe that these
subjects require the models to possess strong spa-
tial imagination, complex geometric reasoning abil-
ities, and a deep understanding of geometric trans-
formations and shapes.

6.2 Difficulty Level

The accuracy of all models decreases as the diffi-
culty level increases. OpenAl ol-mini surpasses
other models in accuracy for problems at Level 4
and above, demonstrating its advantage in complex
mathematical reasoning. Overall, performance dif-
ferences below Level 3 are not significant. How-
ever, for more difficult problems, performance
aligns with the scaling law principle. As model size
increases (e.g., Qwen QWQ-32B-Preview, Qwen-
2.5-Math-72B-Instruct), larger models progres-
sively outperform smaller ones in high-difficulty
problems, indicating a positive correlation between
model size and performance on challenging tasks.

7 Ablation Study

To demonstrate the effectiveness of our dataset, we
conducted identical tests on the Qwen-2.5-Math

model using both MATH and MATH-500. As
shown in Table 5, both MATH and MATH-500
achieve a 75% accuracy under the zero-shot evalu-
ation setting. Under the same settings, HighMATH
achieves an accuracy of 43.71%, showing a signif-
icant difference of 31.29 percentage points com-
pared to the other datasets. This difference validate
the effectiveness of using HighMATH for evalua-
tion.

To test whether language affects mathematical
reasoning, we extracted 1,000 questions propor-
tionally from the eight subjects of HighMATH
and translated them into English using GPT-4-
0613 for testing the Qwen-2.5-Math-Instruct-7B.
Experimental results, shown in Table 6, indicate
that the accuracy slightly decreases with the trans-
lated questions, but the change is not significant.
Therefore, although HighMATH is based on a Chi-
nese context, it remains relevant for testing models
trained in other languages.

8 Conclusion

We propose a new mathematical reasoning dataset,
HighMATH, for LLM evaluations. HighMATH
features a comprehensive inclusion of different
subjects of mathematical concepts, with multiple
knowledge points integrated into each problem. Ad-
ditionally, HighMATH includes fine-grained anno-
tations, divided into 8 categories and 7 difficulty
levels, totaling 5,293 problems. Based on High-
MATH, we have conducted a comprehensive evalu-
ation of the most recent popular LLMs. The evalua-
tion results confirm the effectiveness of our dataset,
with the best model achieving an accuracy of 62%.

Limitations

While our benchmark provides a comprehensive
evaluation of LLMs’ math reasoning abilities at the
high school level, it has some limitations. First, it
does not cover university-level mathematics or ad-
vanced Olympiad problems, focusing instead only
on high school content. Additionally, considering
the current progress in reasoning capabilities of
models like o1 and DeepSeek-R1, we believe that
it is equally crucial to evaluate each reasoning step
generated by the model, not just focusing on the
final answer. This may help to more accurately
measure the model’s performance in complex logi-
cal reasoning processes.
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9 Appendices

A Human Evaluation Opinions on
HighMATH and MATH

* Problems in MATH are simpler and more di-
rect, lacking integration of knowledge points,
which means they do not combine two or more
knowledge points for examination.

* Problems in HighMATH are more obscure,
requiring people to engage in logical thinking
to understand the meaning of the questions.

* The HighMATH dataset covers a more com-
prehensive range of knowledge, essentially
encompassing all aspects of high school math-
ematics.
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