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Abstract

Reasoning encompasses two typical types: de-001
ductive reasoning and inductive reasoning. De-002
spite extensive research into the reasoning ca-003
pabilities of Large Language Models (LLMs),004
most studies have failed to rigorously differenti-005
ate between inductive and deductive reasoning,006
leading to a blending of the two. This raises an007
essential question: In LLM reasoning, which008
poses a greater challenge - deductive or induc-009
tive reasoning? While the deductive reasoning010
capabilities of LLMs, (i.e. their capacity to011
follow instructions in reasoning tasks), have012
received considerable attention, their abilities013
in true inductive reasoning remain largely unex-014
plored. To delve into the true inductive reason-015
ing capabilities of LLMs, we propose a novel016
framework, SolverLearner. This framework017
enables LLMs to learn the underlying function018
(i.e., 𝑦 = 𝑓𝑤 (𝑥)), that maps input data points019
(𝑥) to their corresponding output values (𝑦),020
using only in-context examples. By focusing021
on inductive reasoning and separating it from022
LLM-based deductive reasoning, we can isolate023
and investigate inductive reasoning of LLMs in024
its pure form via SolverLearner. Our observa-025
tions reveal that LLMs demonstrate remarkable026
inductive reasoning capabilities through Solver-027
Learner, achieving near-perfect performance028
with ACC of 1 in most cases. Surprisingly, de-029
spite their strong inductive reasoning abilities,030
LLMs tend to relatively lack deductive reason-031
ing capabilities, particularly in tasks involving032
“counterfactual” reasoning.033

1 Introduction034

Recent years have witnessed notable progress in035

Natural Language Processing (NLP) with the de-036

velopment of Large Language Models (LLMs) like037

GPT-3 (Brown et al., 2020) and ChatGPT (Ope-038

nAI, 2023). While these models exhibit impressive039

reasoning abilities across various tasks, they face040

challenges in certain domains. For example, a re-041

cent study (Wu et al., 2023) has shown that while042

LLMs excel in conventional tasks (e.g., base-10 043

arithmetic), they often experience a notable decline 044

in accuracy when dealing “counterfactual” reason- 045

ing tasks that deviate from the conventional cases 046

seen during pre-training (e.g., base-9 arithmetic). 047

It remains unclear whether they are capable of fun- 048

damental reasoning, or just approximate retrieval. 049

In light of this, our paper seeks to investigate 050

the reasoning capabilities of LLMs. Reasoning 051

can encompasses two types: deductive reasoning 052

and inductive reasoning, as depicted in Fig. 1. De- 053

ductive reasoning starts with a general hypothesis 054

and proceeds to derive specific conclusions about 055

individual instances while inductive reasoning in- 056

volves formulating broad generalizations or princi- 057

ples from a set of instance observations. Despite 058

extensive research into the reasoning capabilities of 059

LLMs, most studies have not clearly differentiated 060

between inductive and deductive reasoning. For in- 061

stance, arithmetic reasoning task primarily focuses 062

on comprehending and applying mathematical con- 063

cepts to solve arithmetic problems, aligning more 064

with deductive reasoning. Yet, when employing 065

in-context learning for arithmetic reasoning tasks, 066

where the model is prompted with a few 〈input, 067

output〉 examples, the observed improvements are 068

often attributed to their inductive reasoning capac- 069

ity. This fusion of reasoning types poses a critical 070

question: Which is the more significant limita- 071

tion in LLM reasoning, deductive or inductive 072

reasoning? 073

To explore this question, it’s crucial to differen- 074

tiate between deductive and inductive reasoning. 075

Current methods that investigate deductive and in- 076

ductive reasoning often rely on disparate datasets, 077

making direct comparisons challenging (Xu et al., 078

2023a; Tang et al., 2023; Dalvi et al., 2021; Han 079

et al., 2022; Sinha et al., 2019; Yu et al., 2020). To 080

overcome this limitation, we have designed a set of 081

comparative experiments that utilize a consistent 082

task across different contexts, each emphasizing 083
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(b) Few-shot IO w/ Mapping Function

Q: Assuming that all numbers are in base-8 where
the digits are "01234567", what is 57+27?
A: The result for 57+27 is 106.
Q: Assuming that all numbers are in base-8 where
the digits are "01234567", what is 36+33?
A:

(Output) The result for 36+33 is 71.

(a) Zero-shot

Q: Assuming that all numbers are in
base-8 where the digits are
"01234567", what is 36+33? 
A:

(Output) 71

Deductive Reasoning Inductive Reasoning
General Principle Specific Conclusion

The result for 36+33 is 71.

General ➔ Specific

Deductive
Reasoning

(c) Few-shot IO w/o Mapping Function

Q: You are asked to add two numbers, the
base of which is unknown, what is 57+27?
A: The result for 57+27 is 106.
Q: You are asked to add two numbers, the
base of which is unknown, what is 36+33?
A:

(Output) The result for 36+33 is 71.

(d) SolverLearner
Q: You are asked to add two numbers, the base of which is unknown, what is 57+27?
A: The result for 57+27 is 106.
Q: What is the function to map the input to the output?
A:
(Output) def solver(n1: str, n2: str) -> str:\n # Let's analyze the given examples to find
the base\n # 57 + 27 = 106\n # It seems like the base is 8 (octal)\n\n # Convert the
input strings to integers in base 8\n num1 = int(n1, 8)\n num2 = int(n2, 8)\n\n #
Calculate the sum\n result = num1 + num2\n\n # Convert the result back to a string in
base 8\n return oct(result)[2:]

Addition in base 8
Begin from the rightmost digit, perform the addition. If the sum
exceeds 8, subtract 8, record the remainder, and carry over 1
to the next column. Repeat this process from right to left for
each column, and your final result will be the sum in base 8.

The result for 71+44 is 135.
The result for 42+70 is 132.
The result for 50+45 is 115.
The result for 61+55 is 136.
The result for 63+22 is 105.

Specific ➔ Specific Specific ➔ GeneralGeneral + Specific ➔ Specific

Specific Observation General Principle
Addition in base 8

Begin from the rightmost digit, perform the addition. If the sum
exceeds 8, subtract 8, record the remainder, and carry over 1
to the next column. Repeat this process from right to left for
each column, and your final result will be the sum in base 8.

Inductive
Reasoning

Integrate the deductive reasoning with few-shot
examples

Traditional IO prompting for inductive
reasoning 

Completely decouple inductive reasoning from deductive reasoningDeductive Reasoning

Deductive Setting (mapping function is provided) Inductive Setting (mapping function is not provided)

Figure 1: We have designed a set of comparative experiments that utilize a consistent task across different contexts, each
emphasizing either deductive (i.e., methods (a) and (b)) or inductive reasoning (i.e., methods (c) and (d)). As we move from left
to right across the figure, the methods gradually transition their primary focus from deductive reasoning to inductive reasoning.
Specifically, method (a) is designed to demonstrate the LLMs’ deductive reasoning in its pure form. Conversely, method (c)
utilizes Input-Output (IO) prompting strategies, which are prevalent for probing the inductive reasoning skills of LLMs. However,
we can observe that methods (c) cannot fully disentangle inductive reasoning from deductive reasoning as their learning process
directly moves from observations to specific instances, blurring the lines between the two. To exclusively focus on and examine
inductive reasoning, we introduce a novel framework called SolverLearner, positioned at the far right of the spectrum.

either deductive (i.e., methods (a) and (b)) or induc-084

tive reasoning (i.e., methods (c) and (d)), as depicted085

in Fig 1. For instance, in an arithmetic task, the pro-086

ficiency of a LLM in deductive reasoning depends087

on its ability to apply a given input-output mapping088

function to solve problems when this function is089

explicitly provided. Conversely, an LLM’s skill090

in inductive reasoning is measured by its ability091

to infer these input-output mapping functions (i.e.,092

𝑦 = 𝑓𝑤 (𝑥)), that maps input data points (𝑥) to their093

corresponding output values (𝑦), based solely on094

in-context examples. The base system often serves095

as the input-output mapping function in an arith-096

metic task. In line with the aforementioned setup,097

we employ four methods to delve into the reason-098

ing capacity of LLMs. As we move from left to099

right across Fig. 1, the methods gradually transition100

their primary focus from deductive reasoning to101

inductive reasoning. Method (a), at the far left of102

the figure, aims to explore the deductive reasoning103

capabilities of LLMs in its pure form, where no in-104

context-learning examples are provided (zero-shot105

settings). While exploring deductive reasoning in106

its pure form appears relatively straightforward in107

zero-shot settings, untangling inductive reasoning108

poses more significant challenges. Recent studies109

have investigated the inductive reasoning abilities110

of LLMs (Yang et al., 2022; Gendron et al., 2023;111

Xu et al., 2023b), they have primarily used Input-112

Output (IO) prompting (Mirchandani et al., 2023),113

which involves providing models with a few 〈in-114

put, output〉 as demonstrations without providing115

the underlying mapping function. The models 116

are then evaluated based on their ability to han- 117

dle unseen examples, as illustrated in method (c). 118

These studies often find LLMs facing difficulties 119

with inductive reasoning. Our research suggests 120

that the use of IO prompting might not effectively 121

separate LLMs’ deductive reasoning skills from 122

their inductive reasoning abilities. This is because 123

the approach moves directly from observations to 124

specific instances, obscuring the inductive reason- 125

ing steps. Consequently, the underperformance in 126

the context of inductive reasoning tasks may be 127

attributed to poor deductive reasoning capabilities, 128

i.e., the ability of LLMs to execute tasks, rather than 129

being solely indicative of their inductive reasoning 130

capability. 131

To disentangle inductive reasoning from deduc- 132

tive reasoning, we propose a novel model, referred 133

to as SolverLearner. Given our primary focus on in- 134

ductive reasoning, SolverLearner follows a two-step 135

process to segregate the learning of input-output 136

mapping functions from the application of these 137

functions for inference. Specifically, functions are 138

applied through external interpreters, such as code 139

interpreters, to avoid incorporating LLM-based 140

deductive reasoning. 141

We evaluate the performance of several LLMs 142

across various tasks. LLMs consistently demon- 143

strate remarkable inductive reasoning capabilities 144

through SolverLearner, achieving near-perfect per- 145

formance with ACC of 1 in most cases. Surprisingly, 146

despite their strong inductive reasoning abilities, 147
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LLMs tend to exhibit weaker deductive capabilities,148

particularly in terms of “counterfactual” reasoning.149

This finding, though unexpected, aligns with the150

previous research (Wu et al., 2023). In a zero-shot151

scenario, the ability of an LLM to correctly exe-152

cute tasks by applying principles (i.e. deductive153

reasoning) heavily relies on the frequency with154

which the model was exposed to the tasks during155

its pre-training phase.156

2 Task Definition157

Our research is focused on a relatively unexplored158

question: Which presents a greater challenge to159

LLMs - deductive reasoning or inductive reasoning?160

To explore this, we designed a set of comparative161

experiments that apply a uniform task across var-162

ious contexts, each emphasizing either deductive163

or inductive reasoning. The primary distinction164

between the deductive and inductive settings is165

whether we explicitly present input-output map-166

pings to the models. Informally, we can describe167

these mappings as a function 𝑓𝑤 : 𝑋 → 𝑌 , where168

an input 𝑥 ∈ 𝑋 is transformed into an output 𝑦 ∈ 𝑌 .169

We distinguish between the deductive and inductive170

settings as follows:171

• Deductive setting: we provide the models with172

direct input-output mappings (i.e., 𝑓𝑤).173

• Inductive setting: we offer the models a few174

examples (i.e., (𝑥, 𝑦) pairs) while intentionally175

leaving out input-output mappings (i.e., 𝑓𝑤).176

For example, consider arithmetic tasks, where the177

base system is the input-output mapping function.178

The two approaches on the left side of Fig. 1 (i.e.,179

method (a) and (b)) follow the deductive setting,180

illustrating the case where the arithmetic base is181

explicitly provided. In contrast, the two methods182

(i.e., method (c) and (d)) on right side of Fig. 1183

adhere to the inductive setting, depicting the sce-184

nario characterized by the absence of a specified185

arithmetic base, while a few input-output examples186

are provided for guidance.187

3 Our Framework for Inductive188

Reasoning: SolverLearner189

While recent studies have explored the inductive190

reasoning abilities of LLMs (Yang et al., 2022; Gen-191

dron et al., 2023; Xu et al., 2023b), they have primar-192

ily relied on Input-Output (IO) prompting (Mirchan-193

dani et al., 2023). This method involves providing194

models with a few 〈input, output〉 demonstrations 195

and then evaluating their performance on unseen 196

examples, as depicted in method (c) in Fig. 1. Our 197

research suggests that the use of IO prompting and 198

directly evaluating the final instance performance 199

might not effectively separate LLMs’ deductive 200

reasoning skills from their inductive reasoning abil- 201

ities. This is because the approach moves directly 202

from observations to specific instances, obscuring 203

the inductive reasoning steps. To better disentangle 204

inductive reasoning, we propose a novel framework, 205

SolverLearner. This framework enables LLMs to 206

learn the function (i.e., 𝑦 = 𝑓𝑤 (𝑥)), that maps in- 207

put data points (𝑥) to their corresponding output 208

values (𝑦), using only in-context examples. By 209

focusing on inductive reasoning and setting aside 210

LLM-based deductive reasoning, we can isolate and 211

investigate inductive reasoning of LLMs in its pure 212

form via SolverLearner. SolverLearner includes 213

two-stages as illustrated in Fig. 2: 214

• Function Proposal: In this initial phase, we 215

propose a function, that could be used to map 216

input data points (𝑥) to their corresponding output 217

values (𝑦). This is corresponding to the inductive 218

reasoning process. 219

• Function Execution: In the second phase, the 220

proposed function is applied through external 221

code interpreters to solve the test queries for 222

evaluation purposes. This phase ensures that 223

the LLM is fully prevented from engaging in 224

deductive reasoning. 225

3.1 Framework 226

In this subsection, we will take the arithmetic task 227

as a case study to demonstrate the entire process. 228

Function Proposal: Given the in-context ex- 229

amples, the primary goal of LLMs is to learn a 230

function that can map input data points (𝑥) to their 231

corresponding output values (𝑦). This process of 232

learning the mapping between inputs and outputs 233

is akin to inductive reasoning, while employing 234

the learned function to address unseen queries 235

aligns with deductive reasoning. In order to sepa- 236

rate inductive reasoning from deductive reasoning, 237

the execution of the learned function should be 238

completely detached from LLMs. To achieve this 239

separation, external tools such as code interpreters 240

serve as efficient way to execute these functions in- 241

dependently. By encapsulating the learned function 242

within Python code, we can effectively detach the 243

duty of deductive reasoning from LLMs, assigning 244
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The result for 71+44 is 135.
The result for 42+70 is 132.
The result for 50+45 is 115.
The result for 61+55 is 136.
The result for 63+22 is 105.
The result for 72+62 is 154.
The result for 57+27 is 106.
The result for 52+76 is 150.

8 Shot Examples
Python Function 14+57

44+45
...

61+23
22+77

Test Queries

② Function 
Execution

① Function
Proposal

Figure 2: An overview of our framework SolverLearner for inductive reasoning. SolverLearner follows a two-step process to
segregate the learning of input-output mapping functions from the application of these functions for inference. Specifically,
functions are applied through external code interpreters, to avoid incorporating LLM-based deductive reasoning.

it solely to these external executors. For instance,245

in function proposal stage for an arithmetic task,246

we have:247

“You are an expert mathematician and program-248

mer. You are asked to add two numbers, the base249

of which is unknown. Below are some provided250

examples: The result for 76+76 is 174.251

Please identify the underlying pattern to determine252

the base being used and implement a solver() func-253

tion to achieve the goal.254

def solver(n1: str, n2: str) -> str:255

# Let’s write a Python program step by step256

# Each input is a number represented as a string.257

# The function computes the sum of these numbers258

and returns it as a string. ”259

Function Execution: In the second phase, func-260

tions are executed through external code interpreters261

to solve the test cases for evaluation purposes. These262

code interpreters act as “oracle” deductive reason-263

ers, fully preventing the LLM from involving deduc-264

tive reasoning. This ensures that the final results265

reflect only the inductive reasoning capability of the266

LLM. To further decouple the LLM’s influence in267

this phase, test cases are generated using a template268

without involving the LLM. More details can be269

found in Appendix A.1.3.270

4 Tasks271

In this section, we provide a brief overview of the272

tasks under consideration. Our focus is on inves-273

tigating the reasoning abilities of LLMs in both274

deductive and inductive reasoning scenarios. To275

ensure a robust evaluation, we carefully select tasks276

that lend themselves well to comparison. Firstly, to277

prevent LLMs from reciting tasks seen frequently278

during pre-training, which could artificially inflate279

performance in deductive reasoning, a significant280

portion of the tasks falls into the category of “coun-281

terfactual reasoning” tasks. Secondly, in the context 282

of inductive reasoning, where only a few in-context 283

examples are available without the mapping func- 284

tion, our objective is to learn the function that 285

maps inputs to outputs based on this restricted 286

dataset. To achieve this, we choose tasks that are 287

well-constrained, ensuring the existence of a single, 288

unique function capable of fitting this limited data. 289

Detailed descriptions of each task and the prompts 290

used can be found in Appendix A.1 and A.2. 291

Arithmetic In this study, we focus on the two- 292

digit addition task previously explored in the work 293

of Wu et al. (2023). We investigate multiple 294

numerical bases, specifically base-8, 9, 10, 11, and 295

16 where base 10 corresponds to the commonly 296

observed case during pretraining. In the context of 297

deductive reasoning, the base is explicitly provided 298

without any accompanying in-context examples, 299

and the LLM is expected to perform the addition 300

computation by relying on its inherent deductive 301

reasoning abilities. Conversely, in the context of 302

inductive reasoning, instead of explicitly providing 303

the base information to LLMs, we provide LLMs 304

solely with few-shot examples and require them 305

to induce the base through these examples and 306

subsequently generate a function to solve arithmetic 307

problems. 308

Basic Syntactic Reasoning In this setting, we 309

concentrate on tasks related to syntactic recognition 310

previously explored by Wu et al. (2023). Our 311

objective is to evaluate LLMs using artificially 312

constructed English sentences that vary from the 313

conventional subject-verb-object (SVO) word order. 314

For deductive reasoning, we directly provide the 315

new word order to LLMs without any contextual 316

examples, challenging them to identify the subject, 317

verb, and object within this artificial language. In 318

contrast, for inductive reasoning, we do not give 319
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explicit instructions on the changes in word order.320

Instead, we introduce sentence pairs where one321

sentence follows the standard word order, and the322

other follows a modified sequence. Through this323

setting, LLMs are expected to learn the specific324

changes made to the word order and then apply this325

learned rule to identify the subject, verb, and object326

within new sentences.327

Spatial Reasoning In this task, we delve into the328

spatial reasoning previously investigated by Wu329

et al. (2023). Our specific focus is on modifying330

the direction-unit vector mapping and determining331

the object coordinates in this revised system. We332

explore multiple systems, starting with the com-333

monly observed case during pretraining, where up334

corresponds to north, down to south, left to west,335

and right to east. This is compared to coordinate336

systems with swapped, rotated, and randomly per-337

muted axes. For deductive reasoning, we directly338

provide the direction-unit vector mapping without339

any contextual examples, requiring LLMs to com-340

pute the object coordinates within these systems.341

Conversely, in the context of inductive reasoning, in-342

stead of directly explaining the changes made to the343

direction-unit vector mapping to LLMs, we present344

LLMs with a few example shots and challenge them345

to infer the changes made to the mapping. They346

are then expected to apply this learned function to347

determine the object coordinates in the system.348

Cipher Decryption Under this scenario, we ex-349

plore an innovative task that we have created, con-350

centrating on the decryption of strings encrypted351

using specific cipher systems. We have incorpo-352

rated three particular cipher systems for this ex-353

ploration: the Alphabetically Sorting Cipher the354

Caesar Cipher and the Morse Cipher. For deduc-355

tive reasoning, we directly inform LLMs about the356

cipher system being used, yet we do not offer any357

contextual examples. The objective for LLMs is to358

decode strings according to these cipher systems.359

Conversely, in the inductive reasoning scenario, our360

task involves providing LLMs with several exam-361

ples, each consisting of an encrypted string and362

its decrypted version. The main challenge for the363

models in this scenario is first to identify what ci-364

pher system was used and then to apply that cipher365

system to decrypt an unseen string.366

5 Results367

For each task, we evaluate our proposed Solver-368

Learner for pure LLM inductive reasoning and369

other settings using two different models, gpt-3.5- 370

turbo-1106 and gpt-4-1106-preview, which are de- 371

noted as GPT-3.5 and GPT-4 respectively. Since 372

both methods are closed-source, we do not provide 373

specific information about their size, architecture, 374

and pre-training particulars. Our experiments pri- 375

marily focus on investigating the reasoning abilities 376

of LLMs in both deductive and inductive reasoning 377

scenarios. Therefore, we structure our evaluation 378

across two distinct settings to highlight each type 379

of reasoning. The formal definition of each setting 380

is provided in Sec. 2. For the deductive setting, two 381

methods are proposed for investigation: 382

• Zero-shot evaluates deductive reasoning ability 383

of the LLMs in its pure form. It tests the LLM’s 384

ability to conclude information about specific 385

individuals based solely on instructions, without 386

relying on examples. 387

• 8-IO w/ Mapping Function (MF) follows the 388

deductive setting but enhances LLM reasoning 389

further by incorporating in-context examples. It 390

aligns with the most commonly used prompt 391

methods for enabling LLM reasoning. With the 392

inclusion of in-context examples, this approach 393

can be seen as leveraging inductive reasoning to 394

augment deductive reasoning. 395

For the inductive setting, we propose two methods 396

for evaluation: 397

• 8-IO w/o Mapping Function (MF) aligns with 398

traditional input-output (IO) prompting methods 399

widely used to investigate the inductive reasoning 400

capability of LLMs. However, as this method 401

proceeds directly from a set of observations to 402

specific target instances, it remains intertwined 403

with LLM-based deductive reasoning. 404

• 8-shot SolverLearner corresponds to our pro- 405

posed framework for inductive reasoning, capable 406

of evaluating inductive reasoning ability of the 407

LLMs in its pure form. It segregates the learning 408

of input-output mapping functions from the ap- 409

plication of these functions for inference, thereby 410

preventing the blend of LLM-based deductive 411

reasoning into the process. 412

Besides using 8-shot examples, our study also in- 413

cludes experiments with 16-shot examples to assess 414

how changes in the number of in-context examples 415

impact the results. Experimental results are given 416

in the Appendix A.3. Generally, the results indicate 417
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Figure 3: Comparison of the deductive reasoning abilities of LLMs across various tasks. Different methods are illustrated
through color-coded bars: blue bars indicate the results achieved using Zero-shot, while orange bars show the performance of
8-IO w/ Mapping Function (MF).
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Figure 4: Comparison of the inductive reasoning abilities of LLMs across various tasks. Different methods are illustrated
through color-coded bars: blue bars indicate the results achieved using our proposed SolverLearner, while orange bars show the
performance of 8-IO w/o Mapping Function (MF).
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that an increase in the number of in-context exam-418

ples yields only slight improvements across both419

deductive and inductive reasoning scenarios. Fur-420

thermore, we conduct an ablation study concerning421

our proposed SolverLearner in Appendix A.5 for422

deeper insights into its functionality.423

5.1 Main Results424

The results for all tasks are presented from Fig. 3425

through Fig. 5. Specifically, Fig. 3 concentrates on426

comparing performances in the deductive setting,427

while Fig. 4 examines comparisons in the inductive428

setting. Additionally, Fig. 5 focuses on contrasting429

the models’ capabilities across deductive and induc-430

tive setting. For further reference, the prompts used431

for all tasks are included in Appendix A.2, and the432

full numerical results can be found in Appendix A.3.433

LLMs exhibit poor deductive reasoning capa-434

bilities, particularly in “counterfactual” tasks.435

We include two methods in Fig. 3, Zero-shot and436

8-IO w/ Mapping Function (MF), to illustrate the437

deductive reasoning capability of LLMs. Our obser-438

vations reveal that LLMs exhibit relatively weaker439

deductive capabilities, especially in “counterfac-440

tual” tasks, while showing prowers in standard441

tasks like base-10 arithmetic. This aligns with442

findings reported in (Wu et al., 2023). Integration443

of in-context examples notably enhances LLMs’444

performance in various scenarios, suggesting that445

their improvement stems from the acquisition of446

knowledge through inductive reasoning from these447

examples. This further confirms the exceptional448

inductive reasoning abilities of LLMs. This com-449

bined evidence suggests that LLMs face challenges450

in precisely following instructions and executing451

commands, especially when those instructions are452

relate to scenarios rarely encountered during their453

pre-training phase.454

LLMs demonstrate remarkable inductive rea-455

soning capabilities through SolverLearner. We456

include two methods in Fig. 4, SolverLearner (Ours)457

and 8-IO w/o Mapping Function (MF), to illustrate458

the inductive reasoning capability of LLMs. While459

8-IO w/o Mapping Function (MF) struggles with460

inductive reasoning, SolverLearner consistently461

achieves perfect performance with an accuracy of462

1 across all the cases with GPT-4 and succeeds in463

most cases when used with GPT-3.5. This discrep-464

ancy arises because the utilization of IO prompting465

to directly reach conclusions on target instances may466

not effectively distinguish between LLMs’ deduc-467

tive and inductive reasoning skills. By completely 468

disentangling the inductive reasoning of LLMs, 469

our proposed SolverLearner shows the remarkable 470

inductive reasoning capabilities inherent in LLMs. 471

It is also noteworthy that the efficacy of LLMs’ 472

inductive reasoning capability heavily depends on 473

the foundational model, with GPT-4 consistently 474

outperforming GPT-3.5. 475

Deductive reasoning presents a greater chal- 476

lenge than inductive reasoning for LLMs. To 477

compare the challenges of the deductive reasoning 478

capability with the inductive reasoning capability 479

of LLMs, we include two methods in Fig. 1, Solver- 480

Learner and Zero-shot, demonstrating pure induc- 481

tive and deductive reasoning abilities. Since the 482

entire reasoning involves two steps: first, obtaining 483

the input-output function ( 𝑓𝑤), which corresponds 484

to inductive reasoning, and second, applying the 485

function for inference, which corresponds to deduc- 486

tive reasoning. Once both steps are successfully 487

completed, perfect performance is observed, as 488

indicated by the dotted line in the figure. Zero- 489

shot can be seen as replacing the first step with 490

an oracle, with deductive reasoning capability of 491

LLMs to be studied, while SolverLearner can be 492

seen as replacing the second step with an oracle, 493

with inductive reasoning capability of LLMs to be 494

studied. By comparing the gaps of SolverLearner 495

and Zero-shot towards perfect reasoning, we can 496

observe that in most cases, LLMs can complete the 497

inductive step perfectly, while they rarely achieve 498

perfect performance on the deductive step. This in- 499

dicates that in LLM reasoning, deductive reasoning 500

presents a greater challenge. Note that we avoid to 501

phrasing it as directly comparing inductive and de- 502

ductive reasoning capabilities. Instead, we examine 503

whether the gaps mainly come from inductive or 504

inductive reasoning, considering that LLMs could 505

not achieve perfect counterfactual reasoning. 506

5.2 More Results over Additional LLMs 507

To validate the generalizability of our conclusion, 508

we have included results over additional LLMs, 509

claude-3-sonnet-20240229-v1:0, which is denoted 510

as Claude3. Due to space limitations, the full 511

numerical results are provided in Appendix A.4. 512

5.3 Ablation Study 513

We conducted several experiments to gain a deeper 514

understanding of our framework, detailed in the ab- 515

lation studies in Appendix A.5. These experiments 516

include investigating the effects of programs exe- 517
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cuted by a Python interpreter v.s. natural language518

executed by an LLM and examining the impact of519

the number of in-context learning examples.520

6 Related Works521

6.1 In-Context Learning522

GPT-3 (Brown et al., 2020) has demonstrated its523

effectiveness in learning from a few demonstration524

examples and solve previously unseen tasks with-525

out requiring updates to its model parameters (Wei526

et al., 2022a). This remarkable capability is com-527

monly referred to as the “in-context learning ability”528

of language models. It implies that the LLMs can529

leverage its existing knowledge and generalize from530

a few demonstration examples to solve new, related531

tasks (Dong et al., 2022; Liu et al., 2021; Rubin et al.,532

2021; Gonen et al., 2022). Some notable works533

include chain-of-thought (CoT) prompting (Wei534

et al., 2022b), which elicits reasoning with inter-535

mediate steps in few-shot exemplars. Built upon536

the CoT framework, several works expand CoT by537

organizing and processing thoughts using more538

complex structures, such as trees (Yao et al., 2023)539

and graphs (Besta et al., 2023) or breaking a prob-540

lem into sub problems and then proceeds to solve541

each one independently (Zhou et al., 2022). While542

these studies have effectively improved the reason-543

ing capability of LLMs, they have failed to clearly544

distinguish between inductive and deductive reason-545

ing, let alone investigate which represents a more546

critical limitation for LLM reasoning capabilities:547

deductive reasoning or inductive reasoning.548

6.2 Exploring LLMs’ Reasoning Skills549

Despite the impressive achievements of LLMs in550

various reasoning tasks, the underlying mechanisms551

of their reasoning capabilities remain a subject of552

debate. The question of whether LLMs genuinely553

reason in a manner akin to human cognitive pro-554

cesses or merely simulate aspects of reasoning555

without true comprehension is still open (Huang556

and Chang, 2022). For instance, Kojima et al.557

have suggested that LLMs exhibit commendable558

zero-shot reasoning abilities, implying that these559

models can draw logical conclusions in scenarios560

they have not been explicitly trained on (Kojima561

et al., 2022). However, some researchers cast doubt562

on the reasoning capability of LLMs. While ap-563

proaches like the chain-of-thought method may564

mimic human-like thought processes, it remains565

uncertain whether LLMs are genuinely engaging in566

reasoning or simply following patterns learned dur- 567

ing training (Wei et al., 2022b; Valmeekam et al., 568

2022). Additionally, there’s a debate regarding 569

whether LLMs are symbolic reasoners (Tang et al., 570

2023) or possess strong abstract reasoning capa- 571

bilities (Gendron et al., 2023). In light of these 572

seemingly contradictory conclusions, our research 573

aims to delve deeper into the reasoning capabili- 574

ties of LLMs. We intend to dissect the nuances 575

of inductive and deductive reasoning within the 576

context of LLMs, identifying which form of reason- 577

ing presents a more significant challenge to their 578

reasoning abilities. 579

6.3 Equipping LLMs with External Tools 580

Large Language Models (LLMs) have made signifi- 581

cant progress in utilizing tools through frameworks 582

like CREATOR (Qian et al., 2023) and LATM (Cai 583

et al., 2023), which allow LLMs to create tools 584

using documentation and code. Logic-LM (Pan 585

et al., 2023) integrates LLMs with symbolic solvers 586

to improve logical problem-solving, However, these 587

approaches focus exclusively on deductive reason- 588

ing, aiming to enable LLMs to derive correct an- 589

swers for specific questions without incorporating 590

the capacity for inductive reasoning to infer underly- 591

ing mapping function shared by few-shot examples. 592

In contrast, our primary objective is not to propose 593

a new framework for using tools to enhance the 594

problem-solving capabilities of LLMs. Instead, we 595

aim to differentiate between deductive and inductive 596

reasoning within LLMs and explore which presents 597

a greater challenge to their reasoning abilities. 598

7 Conclusion 599

This study aims to explore a less-investigated aspect 600

of LLMs: within LLM reasoning, which presents 601

a greater challenge — deductive or inductive rea- 602

soning? To delve into the inductive reasoning 603

capacities of LLMs, we introduce a novel frame- 604

work called SolverLearner. By concentrating on 605

inductive reasoning while setting aside LLM-based 606

deductive reasoning, SolverLearner can scrutinize 607

the pure form of inductive reasoning in LLMs. 608

Our findings unveil remarkable inductive reasoning 609

prowers in LLMs through SolverLearner, achieving 610

near-perfect performance with an ACC of 1 in most 611

cases. Surprisingly, despite their strong inductive 612

reasoning abilities, LLMs often exhibit weaker de- 613

ductive capabilities, particularly in tasks involving 614

“counterfactual” scenarios. 615
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Limitations616

LLMs cannot perform inductive reasoning over617

all the tasks In our inductive learning setting, LLMs618

are provided with only a limited number of contex-619

tual examples. The goal is to infer the function that620

accurately maps inputs to outputs based solely on621

this constrained dataset. In order to solve this prob-622

lem, it is significant that we can find a unique func-623

tion satisfied given these examples. For instance, a624

linear function can be precisely determined given625

just two data points, as it has a singular solution.626

However, attempting to deduce a quadratic curve627

from two points poses an insurmountable challenge628

due to the existence of infinite functions capable629

of passing through those specific points. Addition-630

ally, LLMs might struggle to discern the correct631

mapping function when the search space of the632

problem expands excessively. Consider the case633

of arithmetic tasks; without limiting the search634

space to finding a suitable base that aligns with635

the observations, the task becomes overwhelmingly636

complex. This is because the search space could en-637

compass any conceivable rule that accommodates638

the observations.639

The effectiveness of LLMs’ inductive reason-640

ing capability is heavily reliant on the founda-641

tional model While GPT-4 consistently showcase642

impressive inductive reasoning abilities through643

SolverLearner and achieve perfect performance644

with ACC of 1 across all the tasks, GPT-3.5 strug-645

gle to learn the correct input-output mapping func-646

tion in several cases. This observation suggests647

that the inductive reasoning potential of LLMs is648

significantly constrained by the underlying model.649

Chain of Thought (COT) has not been incor-650

porated into the comparison Chain of Thought651

(COT) is a significant prompting technique designed652

for use with LLMs. Rather than providing a direct653

answer, COT elicits reasoning with intermediate654

steps in few-shot exemplars. This method was not655

incorporated into our comparison as it is viewed656

as a technique to improve the deductive reasoning657

capabilities of LLMs. Although COT has proven to658

be effective across various tasks, numerous studies659

highlight a significant performance gap that COT660

still needs to bridge to achieve flawless execution.661

Ethical Considerations662

The authors foresee no ethical concerns with the663

research presented in this paper.664
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A Appendix794

A.1 Full Setups795

SolverLearner is a prompting based reasoning ap-796

proach, and we only need to perform inference with797

LLMs.798

A.1.1 Settings for Each Task799

Arithmetic The arithmetic dataset introduced in800

Wu et al.’s paper (Wu et al., 2023) comprises 1,000801

randomly selected addition expressions, each in-802

volving two-digit numbers. These expressions are803

drawn from bases 8, 9, 10, 11, and 16, with sepa-804

rate sampling for each base. Importantly, all the805

expressions have been carefully chosen to yield806

distinct results when evaluated in their respective807

bases, thereby distinguishing them from one another808

during the process of rule learning.809

Basic Syntactic Reasoning In accordance with810

the methodology outlined in Wu et al.’s work (Wu811

et al., 2023), we have generated a set of 100 simple812

three-word sentences (e.g., “bob likes bananas”)813

with five different word order variations (e.g., “ba-814

nanas bob likes” in OSV format). Subsequently,815

we tasked LLMs with learning how to manipulate816

sentence order. It’s noteworthy that we took great817

care in selecting words to ensure that each word in818

a sentence can only fulfill one specific role, such as819

subject, object, or verb. For instance, we ensured820

that sentences like “bob likes anna” were excluded,821

as both “bob” and “anna” could potentially serve as822

both subjects and objects, violating this constraint.823

Spatial Reasoning The spatial reasoning dataset824

introduced in Wu et al.’s paper (Wu et al., 2023)825

consists of 100 rooms that were randomly selected,826

and each room contains three distinct objects. The827

spatial directions within these rooms are represented828

using unit vectors. For instance, north is represented829

as (0, 1), south as (0, -1), east as (1, 0), and west830

as (-1, 0), with a y-axis pointing upward serving831

as the default orientation. In our study, we have832

modified the mapping between directions and unit833

vectors and tasked LLMs with learning this new834

direction-to-unit vector relationship. We explore835

two direction-swapped scenarios (north-south and836

east-west), three rotated scenarios (by 90°, 180°,837

and 270°), and a randomly permuted scenario. The838

primary metric we report is instance-level accuracy,839

which necessitates that all three objects within a840

room must be correctly positioned in order to be841

considered accurate.842

Cipher Decryption We’ve generated a collection843

of 100 pairs of strings (e.g., “Mrxuqhb -> Journey” 844

for Caesar Cipher) for each of three cipher systems, 845

including the Alphabetically Sorting Cipher the 846

Caesar Cipher and the Morse Cipher. Each pair 847

comprises an encrypted string (e.g., “Mrxuqhb”) 848

and its corresponding decrypted version (e.g., “Jour- 849

ney”). By providing LLMs with several examples, 850

each containing an encrypted string alongside its 851

corresponding decrypted counterpart, the primary 852

task is to accurately determine the cipher system 853

employed in an open-world context. 854

A.1.2 Few shot Example Generation 855

The preparation of examples for few-shot learning 856

follows a straightforward process. We divide all the 857

data into a training set and a test set, from which few- 858

shot examples are extracted from the training set. 859

These few-shot examples are automatically prepared 860

by associating queries with their corresponding 861

ground truth answers using a pre-defined template. 862

A.1.3 Test Case Generation 863

In the function execution phase, the test cases are 864

generated using a template without involving LLM. 865

In particular, the test cases are drawn from the test 866

data files, containing all the queries along with 867

their correct answers (e.g., “76+76 = 174”). When 868

the LLM is used for generating code, we specify 869

a function interface, such as def solver(n1: str, 870

n2: str) -> str. Then, using the query examples 871

provided, like “76+76 = 174”, we create test cases 872

by applying this function interface to the query (e.g., 873

solver(76,76)), thereby eliminating any reliance on 874

LLM for this process. This method ensures that our 875

test case generation is 100% correct. 876

A.2 Full Prompts 877

We provide the prompts that we used to query the 878

LLMs for all tasks in Tables 1 to 4. We do not use 879

the system message field for any model. 880

A.3 Full Results 881

We show the full numerical results in Tables 5 to 8. 882

In addition to using 8-shot examples, these results 883

also include experiments with 16-shot examples 884

to assess how changes in the number of in-context 885

examples impact the results. 886

A.4 More Results on Additional LLMs 887

To validate the generalizability of our conclu- 888

sion, we have included additional LLMs, claude- 889

3-sonnet-20240229-v1:0, which is denoted as 890
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Claude3. We show the full numerical results in891

Tables 9 to 12.892

A.5 Ablation studies893

LLMs struggle as executors when applying894

learned functions. To better demonstrate the de-895

ductive capacity of LLM, we present both GPT-3.5896

and Python with identical code and task them with897

applying the code to deduce the same set of queries.898

As shown in Table 13, while the Python interpreter899

can be considered an oracle, delivering flawless900

performance, it proves challenging for LLMs to901

accurately execute the code.902

LLMs can learn the function with very few903

examples when the inductive reasoning problem904

is well defined. To examine the impact of the905

number of few-shot examples on the inductive rea-906

soning capability of LLMs, we vary the number of907

in-context examples within [1,2,4,8,16] and assess908

performance on the spatial reasoning task using909

GPT-3.5 as presented in Table 14. We observe that910

even with very few examples, GPT-3.5 can still911

learn the mapping function if it is learnable.912
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Table 1: Prompts for the Arithmetic Task.

Mode Prompt
Zero-shot You are a mathematician. Assuming that all numbers are in base-8 where the digits are "01234567",

what is 36+33? End the response with the result in "\boxed{result}".
Few-shot IO w/ MF You are a mathematician. You are asked to add two numbers. Assuming that all numbers are in

base-8 where the digits are "01234567". Below are some provided examples:
The result for 76+76 is 174.
Please identify the base being used and determine what is 36+33? End the response with the result
in "\boxed{result}".

Few-shot IO w/o MF You are a mathematician. You are asked to add two numbers, the base of which is unknown. Below
are some provided examples:
The result for 76+76 is 174.
Please identify the base being used and determine what is 36+33? End the response with the result
in "\boxed{result}".

SolverLearner You are an expert mathematician and programmer. You are asked to add two numbers, the base of
which is unknown. Below are some provided examples:
The result for 76+76 is 174.
Please identify the underlying pattern to determine the base being used and implement a solver()
function to achieve the goal.
def solver(n1: str, n2: str) -> str:
# Let’s write a Python program step by step
# Each input is a number represented as a string.
# The function computes the sum of these numbers and returns it as a string.
After defining the solver() function, create test cases based on the input examples and print the results.
An example of a test case could be "print(solver("76", "76"))". Place the function solver() as well as
the test cases between "START_CODE" and "END_CODE".

Table 2: Prompts for the Basic Syntactic Reasoning Task.

Mode Prompt
Zero-shot You are an expert in linguistics. Imagine a language that is the same as English with the only

exception being that it uses the object-subject-verb order instead of the subject-verb-object order.
Please identity the subject, verb, and object in the following sentences from this invented language:
shirts sue hates.
Encode the identified subject, verb, and object in the form of a dictionary with the following structure:
{’subject’: ?, ’verb’: ?, ’object’: ?}.

Few-shot IO w/ MF As a linguistics expert, your objective is to analyze sentences in a constructed language that shares
English vocabulary but uses the object-subject-verb order instead of the subject-verb-object order.
Presented below are examples of valid sentences in this constructed language, accompanied by their
corresponding English translations.
A sentence in this invented language: phones mary finds. Its equivalent sentence in English reads:
mary finds phones.
Following the examples, please analyze the subject, verb, and object in the following sentences from
this invented language:
shirts sue hates.
Encode the identified subject, verb, and object in the form of a dictionary with the following structure:
{’subject’: ?, ’verb’: ?, ’object’: ?}.

Few-shot IO w/o MF As a linguistics expert, your objective is to analyze sentences in a constructed language that shares
English vocabulary but follows a unique grammatical structure. Presented below are examples of valid
sentences in this constructed language, accompanied by their corresponding English translations.
A sentence in this invented language: phones mary finds. Its equivalent sentence in English reads:
mary finds phones.
Following the examples, please analyze the subject, verb, and object in the following sentences from
this invented language:
shirts sue hates.
Encode the identified subject, verb, and object in the form of a dictionary with the following structure:
{’subject’: ?, ’verb’: ?, ’object’: ?}.

SolverLearner As a linguistics expert, your objective is to analyze sentences in a constructed language that shares
English vocabulary but follows a unique grammatical structure.Presented below are examples of valid
sentences in this constructed language, accompanied by their corresponding English translations.
A sentence in this invented language: phones mary finds. Its equivalent sentence in English reads:
mary finds phones.
Please summarize the pattern concerning the order of subject, verb and object in this invented
linguistic system. Place the pattern between START_PATTERN and END_PATTERN.
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Table 3: Prompts for the Spatial Reasoning Task.

Mode Prompt
Zero-shot You are in the middle of a room. You can assume that the room’s width and height are both 500

units. The layout of the room in the following format:
’name’: ’bedroom’, ’width’: 500, ’height’: 500, ’directions’: ’north’: [0, 1], ’south’: [0, -1], ’east’:
[1, 0], ’west’: [-1, 0], ’objects’: [’name’: ’chair’, ’direction’: ’east’, ’name’: ’wardrobe’, ’direction’:
’north’, ’name’: ’desk’, ’direction’: ’south’]
Please provide the coordinates of objects whose positions are described using cardinal directions,
under a conventional 2D coordinate system using the following format:
[’name’: ’chair’, ’x’: ’?’, ’y’: ’?’, ’name’: ’wardrobe’, ’x’: ’?’, ’y’: ’?’, ’name’: ’desk’, ’x’: ’?’, ’y’:
’?’]

Few-shot IO w/ MF You are an expert programmer. You are in the middle of a room. You can assume that the room’s
width and height are both 500 units. The layout of the room in the following format:
’name’: ’laundry room’, ’width’: 500, ’height’: 500, ’directions’: ’north’: [0, 1], ’south’: [0, -1],
’east’: [1, 0], ’west’: [-1, 0], ’objects’: [’name’: ’dryer’, ’direction’: ’east’, ’name’: ’sink’, ’direction’:
’west’, ’name’: ’washing machine’, ’direction’: ’south’]
Please provide the coordinates of objects whose positions are described using cardinal directions,
under a conventional 2D coordinate system. For example, the coordinates of objects in the above
example is:
[’name’: ’dryer’, ’x’: 500, ’y’: 250, ’name’: ’sink’, ’x’: 0, ’y’: 250, ’name’: ’washing machine’, ’x’:
250, ’y’: 0]
Following the examples, please give the coordinates of objects in the following room using the same
format:
’name’: ’bedroom’, ’width’: 500, ’height’: 500, ’directions’: ’north’: [0, 1], ’south’: [0, -1], ’east’:
[1, 0], ’west’: [-1, 0], ’objects’: [’name’: ’chair’, ’direction’: ’east’, ’name’: ’wardrobe’, ’direction’:
’north’, ’name’: ’desk’, ’direction’: ’south’]

Few-shot IO w/o MF You are in the middle of a room. You can assume that the room’s width and height are both 500
units. The layout of the room in the following format:
’name’: ’laundry room’, ’width’: 500, ’height’: 500, ’objects’: [’name’: ’dryer’, ’direction’: ’east’,
’name’: ’sink’, ’direction’: ’west’, ’name’: ’washing machine’, ’direction’: ’south’]
Please provide the coordinates of objects whose positions are described using cardinal directions,
under a conventional 2D coordinate system. For example, the coordinates of objects in the above
example is:
[’name’: ’dryer’, ’x’: 500, ’y’: 250, ’name’: ’sink’, ’x’: 0, ’y’: 250, ’name’: ’washing machine’, ’x’:
250, ’y’: 0]
Following the examples, please give the coordinates of objects in the following room using the same
format:
’name’: ’bedroom’, ’width’: 500, ’height’: 500, ’objects’: [’name’: ’chair’, ’direction’: ’east’, ’name’:
’wardrobe’, ’direction’: ’north’, ’name’: ’desk’, ’direction’: ’south’]

SolverLearner You are an expert programmer. You are in the middle of a room. You can assume that the room’s
width and height are both 500 units. The layout of the room in the following format: ’name’: ’laundry
room’, ’width’: 500, ’height’: 500, ’objects’: [’name’: ’dryer’, ’direction’: ’east’, ’name’: ’sink’,
’direction’: ’west’, ’name’: ’washing machine’, ’direction’: ’south’]
Please provide the coordinates of objects whose positions are described using cardinal directions,
under a conventional 2D coordinate system. For example, the coordinates of objects in the above
example is:
[’name’: ’dryer’, ’x’: 500, ’y’: 250, ’name’: ’sink’, ’x’: 0, ’y’: 250, ’name’: ’washing machine’, ’x’:
250, ’y’: 0]
Please summarize the pattern and implement a solver() function to achieve the goal.
def solver():
# Let’s write a Python program step by step
# the input is the layout of the room
# the output the coordinates of objects
After defining the solver() function. Place the function solver() between "START_CODE" and
"END_CODE".
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Table 4: Prompts for the Cipher Decryption Task.

Mode Prompt
Zero-shot As an expert cryptographer and programmer, your task involves reordering the character sequence

according to the alphabetical order to decrypt secret messages. Please decode the following sequence:
spring
Please answer the question by placing the decoded sequence between "START_DECODING" and
"END_DECODING".

Few-shot IO w/ MF As an expert cryptographer and programmer, your task involves reordering the character sequence
according to the alphabetical order to decrypt secret messages. For example, given the sequence
"family," you must translate it into "afilmy." Below are further examples that demonstrate the
translation:
school -> chloos
Following the examples, please decode the following sequence:
spring
Please answer the question by placing the decoded sequence between "START_DECODING" and
"END_DECODING".

Few-shot IO w/o MF As an expert cryptographer and programmer, your task involves deciphering secret messages. For
example, given the sequence "family," you must translate it into "afilmy." Below are further examples
that demonstrate the translation:
school -> chloos
Following the examples, please decode the following sequence:
spring
Please answer the question by placing the decoded sequence between "START_DECODING" and
"END_DECODING".

SolverLearner As an expert cryptographer and programmer, your task involves deciphering secret messages. For
example, given the sequence "family," you must translate it into "afilmy." Below are further examples
that demonstrate the translation:
school -> chloos
Please deduce the encryption system and develop a solver() function for the decryption.
def solver():
# Let’s write a Python program step by step
# the input is the coded sequence
# the output is the decoded sequence
After defining the solver() function. Place the function solver() between "START_CODE" and
"END_CODE".

Table 5: Full Main Results for Arithmetic Task.

Method
Base 8 9 10 11 16

GPT-3.5

Zero-shot 0.330 0.117 1 0.066 0.294
8-IO w/ MF 0.376 0.089 1 0.089 0.849
8-IO w/o MF 0.120 0.027 0.905 0.057 0.587
16-IO w/ MF 0.428 0.088 1 0.098 0.912
16-IO w/o MF 0.108 0.025 0.924 0.063 0.575

8-shot SolverLearner 0.571 0.462 1 0.095 1

GPT-4

Zero-shot 0.600 0.697 0.999 0.551 0.819
8-IO w/ MF 0.576 0.717 0.860 0.540 0.862
8-IO w/o MF 0.255 0.268 0.545 0.264 0.431
16-IO w/ MF 0.543 0.720 0.817 0.534 0.840
16-IO w/o MF 0.257 0.245 0.505 0.237 0.435

8-shot SolverLearner 1 1 1 1 1
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Table 6: Full Main Results for Basic Syntactic Reasoning.

Method
Word Order OSV OVS SOV VOS VSO

GPT-3.5

Zero-shot 0.560 0.298 0.190 0.226 0.560
8-IO w/ MF 1 0.643 0.583 0.976 0.988
8-IO w/o MF 1 0.452 0.929 0.988 1
16-IO w/ MF 1 0.738 0.762 0.988 0.952
16-IO w/o MF 1 0.190 0.964 1 1

8-shot SolverLearner 0.988 1 1 1 1

GPT-4

Zero-shot 1 1 1 1 1
8-IO w/ MF 1 1 1 1 1
8-IO w/o MF 1 1 1 1 1
16-IO w/ MF 1 1 1 1 1
16-IO w/o MF 1 0.988 1 1 1

8-shot SolverLearner 1 1 1 1 1

Table 7: Full Main Results for Spatial Reasoning.

Method
Coordinates Default S-NS S-WE R90 R180 R270 Random

GPT-3.5

Zero-shot 0.273 0.702 0.143 0.012 0.310 0.060 0.024
8-IO w/ MF 0.952 0.845 0.869 0.25 0.976 0.060 0.095
8-IO w/o MF 0.369 0.726 0.310 0.083 0.690 0.107 0.071
16-IO w/ MF 0.929 0.893 0.857 0.274 0.952 0.071 0.131
16-IO w/o MF 0.452 0.667 0.452 0.083 0.798 0.131 0.083

8-shot SolverLearner 1 1 0 0 1 0 0

GPT-4

Zero-shot 0.119 0.060 0.083 0.024 0.048 0.012 0.036
8-IO w/ MF 1 1 0.964 0.643 0.952 0.679 0.190
8-IO w/o MF 1 0.976 0.929 0.560 0.976 0.429 0.333
16-IO w/ MF 1 1 0.952 0.690 0.929 0.667 0.214
16-IO w/o MF 1 0.976 0.964 0.607 0.976 0.405 0.369

8-shot SolverLearner 1 1 1 1 1 1 1

Table 8: Full Main Results for Cipher Decryption.

Method
Encryption System Alphabetically Sorting Cipher Caesar Cipher Morse Cipher

GPT-3.5

Zero-shot 0.560 0.036 0.512
8-IO w/ MF 0.595 0.024 0.464
8-IO w/o MF 0.560 0 0.452
16-IO w/ MF 0.619 0.024 0.536
16-IO w/o MF 0.512 0.012 0.440

8-shot SolverLearner 1 0 1

GPT-4

Zero-shot 0.726 0 1
8-IO w/ MF 0.774 0.060 1
8-IO w/o MF 0.75 0.583 1
16-IO w/ MF 0.798 0.179 1
16-IO w/o MF 0.738 0.583 1

8-shot SolverLearner 1 1 1
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Table 9: Results over Claude3 for Arithmetic Task.

Method
Base 8 9 10 11 16

Zero-shot 0.710 0.185 0.996 0.334 0.868
8-IO w/ MF 0.783 0.385 0.995 0.473 0.913
8-IO w/o MF 0.269 0.083 0.659 0.105 0.752

8-shot SolverLearner 0 0 1 0.095 1

Table 10: Results over Claude3 for Basic Syntactic Reasoning.

Method
Word Order OSV OVS SOV VOS VSO

Zero-shot 1 1 1 1 0.988
8-IO w/ MF 1 1 1 1 1
8-IO w/o MF 1 0.976 1 1 1

8-shot SolverLearner 1 1 1 1 1

Table 11: Results over Claude3 for Spatial Reasoning.

Method
Coordinates Default R90 R180 R270 S-NS S-WE Random

Zero-shot 0.607 0.012 0.119 0.024 0.321 0.262 0.060
8-IO w/ MF 1 1 1 1 0.988 0.988 1
8-IO w/o MF 1 1 1 1 1 1 1

8-shot SolverLearner 1 1 1 1 1 1 1

Table 12: Results over Claude3 for Cipher Decryption.

Method
Encryption System Alphabetically Sorting Cipher Caesar Cipher Morse Cipher

Zero-shot 0.560 0.024 0.988
8-IO w/ MF 0.607 0.167 1
8-IO w/o MF 0.214 0.048 1

8-shot SolverLearner 0.131 0.119 1
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Table 13: Results over the arithmetic task with Python interpreter as executor vs. GPT-3.5 as executor

Executor
Base 8 9 10 11 16

Python Interpreter 1 1 1 1 1
GPT-3.5 0.398 0.196 0.934 0.152 0.64

Table 14: Results for the spatial reasoning over GPT-3.5 w.t.r the number of few-shot examples

Shot
Coordinates Default S-NS S-WE R90 R180 R270 Random

1 1 1 0 0 0 0 0
2 1 1 0 0 1 0 0
4 1 1 0 0 1 0 0
8 1 1 0 0 1 0 0
16 1 1 0 0 1 0 0
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