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Abstract

Large Language Models (LLMs) have achieved001
remarkable performance across diverse tasks,002
yet their susceptibility to generating incorrect003
content during inference remains a critical un-004
solved challenge. While self-correction meth-005
ods offer potential solutions, their effectiveness006
is hindered by two inherent limitations: (1)007
the absence of reliable guidance signals for er-008
ror localization, and (2) the restricted reason-009
ing depth imposed by conventional next-token010
decoding paradigms. To address these issues,011
we propose Feedback-Triggered Regeneration012
(FTR), a novel framework that synergizes user013
feedback with enhanced decoding dynamics.014
Specifically, FTR activates response regener-015
ation only upon receiving negative user feed-016
back, thereby circumventing error propagation017
from faulty self-assessment while preserving018
originally correct outputs. Furthermore, we in-019
troduce Long-Term Multipath (LTM) decoding,020
which enables systematic exploration of multi-021
ple reasoning trajectories through delayed se-022
quence evaluation, effectively overcoming the023
myopic decision-making characteristic of stan-024
dard next-token prediction. Extensive experi-025
ments on mathematical reasoning and code gen-026
eration benchmarks demonstrate that our frame-027
work achieves consistent and significant im-028
provements over state-of-the-art prompt-based029
self-correction methods.030

1 Introduction031

Large Language Models (LLMs) have demon-032

strated exceptional capabilities across diverse tasks,033

such as text generation, question answering, and034

code synthesis (Achiam et al., 2023; Touvron et al.,035

2023; Guo et al., 2025). However, a persistent chal-036

lenge lies in their tendency to produce factually in-037

correct information or flawed logical reasoning—a038

critical limitation widely documented in LLM in-039

ference research (Yao et al., 2023; Liu et al., 2024a).040

To address this, self-correction mechanisms have041
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Figure 1: The percentage distribution of answer
changes induced by self-correction using If or Else(IoE)
Prompts (Li et al., 2024) and Critic Prompts (Huang
et al., 2024), with experiments conducted on the Llama3-
Instruct-3B.

emerged as a promising solution. These mech- 042

anisms are typically implemented through care- 043

fully crafted prompting strategies (Ji et al., 2023; 044

Madaan et al., 2024; Kim et al., 2024; Li et al., 045

2024; Chen et al., 2024; Huang et al., 2024), which 046

guide models to introspect on their initial responses. 047

The self-correction workflow generally follows a 048

two-step process: first, generating an initial answer 049

via standard LLM inference; and second, prompt- 050

ing the model to critically evaluate the initial output 051

for errors, inconsistencies, or logical gaps, and sub- 052

sequently revise it. 053

Nevertheless, the effectiveness of prompt-based 054

methods remains contentious. As illustrated in 055

Figure 1, experiments on three typical reason- 056

ing datasets demonstrate that two state-of-the-art 057

prompt-based self-correction methods (Huang 058

et al., 2024; Li et al., 2024) not only frequently 059

convert correct answers into incorrect ones but also 060

struggle to revise incorrect answers into correct 061

responses. In this study, we argue that this phe- 062

nomenon stems from two key challenges inherent 063

in the prompt-based self-correction process: 064

• C1. Lack of Effective Guidance Signals: 065

The prompt-based self-correction process re- 066

lies on the LLM itself to evaluate the cor- 067
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rectness of its previous answers. However,068

due to the absence of explicit guidance sig-069

nals, the LLM may fail to accurately deter-070

mine which parts require revision, leading to071

unnecessary self-corrections (i.e., modifying072

correct answers to incorrect ones). Addition-073

ally, given the sensitivity of LLMs to input,074

biased prompts may cause incorrect alignment075

and mislead the LLM into making inaccurate076

judgments (Huang et al., 2024).077

• C2. Shallow Decoding Limits Deep Reason-078

ing: Self-correction of erroneous results by079

LLMs requires deeper thinking and reason-080

ing. However, most current methods follow081

the next-token prediction paradigm, which fo-082

cuses only on single-step predictions during083

the decoding process. The correctness of the084

answer depends on a comprehensive evalu-085

ation of the entire output answer sequence.086

This short-term, step-oriented decoding pro-087

cess limits the LLM’s ability to engage in088

deeper reasoning, thereby hindering its capac-089

ity to generate improved responses during the090

self-correction process.091

To address C1, we propose Feedback-Triggered092

Regeneration (FTR), a self-correction framework093

that leverages user feedback (e.g., explicit thumbs-094

up/down signals) to guide LLMs’ reasoning re-095

finement. In human-AI interactions, users nat-096

urally provide feedback—such as dissatisfaction097

cues—when engaging with LLM outputs, which098

acts as a critical trigger for identifying responses099

requiring deeper revision. By treating feedback100

as a revision trigger, FTR avoids unnecessary re-101

processing of outputs that have received positive102

user signals, focusing computational resources on103

cases requiring improvement. In the FTR frame-104

work, negative feedback guides the LLM to re-105

generate responses by reprocessing the original106

input, with feedback solely determining whether107

regeneration is initiated. This design circumvents108

limitations of prompt-based methods—such as self-109

critical prompting that relies on flawed introspec-110

tion or labor-intensive prompt tuning for each111

task—thereby enhancing both correction efficiency112

and generalizability.113

To address C2, we enhance FTR by integrat-114

ing a Long-Term Multipath (LTM) decoding strat-115

egy, which enables LLMs to perform global reason-116

ing through adaptively multi-step path exploration.117

Unlike standard autoregressive decoding methods118

(e.g., greedy decoding) that optimize solely for 119

next-token probability, LTM evaluates multiple de- 120

coding paths at each step, prioritizing long-term 121

sequence coherence and semantic consistency. This 122

approach mitigates the limitation of short-term opti- 123

mization—such as local optimum traps and context 124

drift—that plague traditional decoding frameworks. 125

Critically, LTM is dynamically activated during 126

the regeneration stage—triggered by negative user 127

feedback—to replace the standard single-path de- 128

coding, thereby enabling deep reasoning for error 129

correction without incurring excessive computa- 130

tional overhead. 131

Overall, we propose a novel user feedback- 132

triggered self-correction framework that integrates 133

user feedback with the advanced LTM decoding 134

strategy. To validate the effectiveness of our frame- 135

work, we conduct a series of experiments com- 136

paring it with SOTA prompt-based methods us- 137

ing open-source backend LLMs. These experi- 138

ments focused on challenging mathematical and 139

coding datasets, where our framework consistently 140

achieves superior performance. In summary, our 141

main contributions are as follows: 142

1. We introduce a novel self-correction frame- 143

work that leverages user feedback as a regen- 144

eration signal, thereby preventing unnecessary 145

self-corrections and improving the quality of 146

LLM outputs. 147

2. We propose a novel decoding method that eval- 148

uates the long-term performance of multiple 149

reasoning paths, thereby enhancing the accu- 150

racy and coherence of generated responses. 151

3. We demonstrate the superiority of our method 152

through extensive experiments on various 153

datasets and backend LLMs. 154

2 Preliminaries 155

2.1 Notation Definition 156

Let x = (x0, x1, . . . , xn) denote an input sequence, 157

and y = (y0, y1, . . . , ym) represent the correspond- 158

ing LLM response, where y = M(x). Here, M 159

denotes a typical autoregressive language model. 160

In this context, the response is generated sequen- 161

tially during the decoding process. At the i-th step 162

of the inference process, we define the probability 163

of the current output sequence si = (y0, y1, . . . , yi) 164

as P (si), which is calculated as the product of the 165
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likelihoods of the first i tokens:166

P (si) = P (y0|x)
i∏

k=1

P (yk|y0:k−1, x). (1)167

The perplexity (PPL) value of the sequence at step168

i is then defined as:169

PPLi = P (si)
− 1

i+1 , (2)170

which quantifies how confidently a language model171

predicts the sequence by measuring the inverse172

geometric mean of token probabilities, where lower173

values indicate better predictions. In this work,174

PPL is employed as a metric to assess the quality175

of a sequence during the decoding process (Jelinek176

et al., 1977; Brown et al., 2020).177

2.2 Two-Stage Framework for Self-Correction178

The framework of most prompt-based self-179

correction methods can be divided into two stages,180

as depicted in Figure 2 (a):181

• Stage 1: An initial input x is provided to the182

LLM to generate an initial response yinit =183

M(x).184

• Stage 2: An independent correction prompt185

pcor is then given, prompting the LLM to re-186

flect on its generated response. This enables187

the LLM to refine its answer, regenerating the188

refined output ycor = M(x, yinit, pcor).189

In Figure 2 (b), we also present our proposed FTR190

self-correction framework for intuitive comparison.191

Specifically, we have made improvements from192

two perspectives: 1) incorporating user feedback193

as a guiding signal to prompt LLM to regenerate194

responses based on the initial input when necessary;195

2) adopting LTM decoding to enhance the LLM’s196

ability for deeper reasoning in order to address197

more complex error response scenarios.198

3 Methodology199

3.1 Feedback-Triggered Regeneration200

In general, the correction prompt pcor provides no201

information about the correctness of the initial re-202

sponse yinit. Additionally, LLMs often lack the203

ability to independently assess the correctness of204

their own responses, as highlighted in previous205

works (Huang et al., 2024; Madaan et al., 2024).206

These limitations may lead to erroneous decisions207

by the LLM, as demonstrated in Figure 3 (a).208
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Figure 2: (a) Framework of the prompt-based self-
correction approach. (b) Framework of our feedback-
triggered self-correction approach.

While properly trained LLMs generally produce 209

optimal initial responses to well-formed queries, 210

our investigation identifies two key limitations in 211

self-correction frameworks: (1) Prompt-induced 212

solution drift, where externally introduced guid- 213

ance inadvertently distorts the model’s reasoning 214

trajectory, causing systematic deviations from the 215

original optimal solution (Huang et al., 2024); and 216

(2) Correction capability constraints, as evidenced 217

in Figure 3(b) showing persistent refinement fail- 218

ures even when explicit correctness feedback (pcor) 219

is provided. This dual challenge of prompt fragility 220

and inherent correction limitations fundamentally 221

restricts the practical effectiveness of current self- 222

correction paradigms (Xu et al., 2024; Liu et al., 223

2024b). 224

To avoid the negative impact of self-correction 225

prompts, we propose an enhanced two-stage FTR 226

self-correction framework: 227

• Stage 1: Similarly, provide the initial input 228

x to the LLM to generate the initial response 229

yinit = M(x). 230

• Stage 2: If user feedback indicates that the 231

LLM’s output yinit is problematic, the origi- 232

nal prompt x and an advanced decoding strat- 233

egy, LTM, are employed to regenerate the out- 234

put. Otherwise, no further action is taken. 235

ycor = M′(x) (3) 236

Here, M′ denotes the LLM equipped with the LTM 237

decoding strategy, which will be described in the 238

following section. Note that the second stage of 239

FTR uses only the original input x without intro- 240

ducing additional prompts. Human feedback serves 241
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 [Math Question] [Reasoning Process…]
The final result is: [6] 

Review your previous answer. 
if you are very confident 
about your answer, maintain 
your answer. Otherwise, 
update your answer.

The answer you provided is 
incorrect, please review the 
answer and update it.

The answer you provided is 
incorrect, please review the 
answer and update it.

Upon reviewing my previous answer. l am 
confident that the number of pieces of 
clothing that could go in each of the 
small loads is 6.
Here is the updated answer:
[Reasoning Process…]
The final result is: [6] 

I apologize for my mistake earlier. Thank 
you for pointing it out.
[Reasoning Process…] 
The final result is: [6] 

Sure! Here's the solution process and 
final result for the math problem:
[Reasoning Process…]
Final Result: [3] 

(a) Prompt-based self-correction without feedback 

(b) Prompt-based self-correction with feedback

(c) Feedback triggered regeneration

 x y୧୬୧୲ = M(x)

 pୡ୭୰ yୡ୭୰ = M(x, y୧୬୧୲, pୡ୭୰)

 pୡ୭୰

 pୡ୭୰

Stage 1

Stage 2

yୡ୭୰ = M(x, y୧୬୧୲, pୡ୭୰)

yୡ୭୰ = M′(x)

Figure 3: Comparison of different self-correction meth-
ods. (a) Self-assessment and update; (b) Revision with
user feedback prompt; (c) Regeneration triggered by
user feedback.

solely as an indicator to trigger regeneration, as il-242

lustrated in Figure 2 (b) and Figure 3 (c). This243

approach prevents the LLM output from being de-244

graded by potentially biased prompts.245

3.2 Long-Term Multipath Decoding246

When users provide negative feedback on LLM247

responses, it indicates the need for deeper reason-248

ing beyond standard next-token prediction, as this249

conventional paradigm lacks comprehensive evalu-250

ation of complete answer quality. Therefore, we en-251

hance the decoding process through two key mech-252

anisms: (1) Multipath Exploration: Instead of ex-253

ploring a single path, token selection is performed254

using a “tree” structure rather than the traditional255

“chain” structure. This allows the LLM to explore256

multiple potential sequences simultaneously, as il-257

lustrated in Figure 4. (2) Sequence Evaluation:258

Using PPL as our quality metric, we dynamically259

retain the top ki sequences at each step i, with ki260

adjusted according to the step’s PPL distribution.261

Unlike Beam Search’s constant beam width, our262

method dynamically adjusts the candidate count ki263

during decoding.264

LTM’s core mechanism dynamically determines265

ki through token distributions, with mathematical266

formalization provided below and demonstration267
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Figure 4: Illustration of LTM decoding strategies (V =
3), where black numbers in circles are token likelihood
and red ones indicate sequence likelihood.

in Figure 4. Firstly, the probabilities of all pos- 268

sible sequences are computed. Let ki−1 denote 269

the number of candidates retained at the (i − 1)- 270

th step, and let V represent the size of the LLM’s 271

vocabulary. Accordingly, there are ki−1 × V can- 272

didate sequences. Secondly, the top-ki sequences 273

are selected from the ki−1 × V candidates. These 274

candidates are sorted based on their probabilities 275

P (sji ), where j ∈ [0, ki−1 × V − 1] denotes the 276

index of each candidate. The cumulative probabil- 277

ity is computed until it exceeds the threshold value 278

pthri : 279
ki∑
j=0

P (sji ) ≥ pthri . (4) 280

The number of retained sequences, denoted as ki, 281

is the minimal set that satisfies this condition , with 282

all other sequences pruned. When all candidate 283

sequences have equal length, PPL can be computed 284

directly from the sequence probability. For compu- 285

tational convenience, we use P (sji ) as our evalua- 286

tion metric. The threshold pthri is defined as: 287

pthri = p∗ ×
ki−1×V−1∑

j=0

P (sji ). (5) 288

Here, p∗ ∈ [0, 1] controls the number of sequences 289

to be pruned, where a lower p∗ results in more se- 290

quences being discarded. Finally, to control com- 291

putational overhead, an additional hyperparameter 292

k∗ is introduced. When ki exceeds k∗, only the 293

first k∗ sequences are retained. During decoding, 294

LTM selects the most probable candidates subject 295

to dual constraints pthri and k∗, ultimately selecting 296

the optimal answer through minimum PPL evalua- 297

tion from multiple generated candidates. 298

In traditional sampling methods that select one 299

token at a time, errors introduced early in the 300

process can propagate through subsequent stages. 301

Moreover, a token initially selected as the opti- 302

mal choice may lose its advantage as the context 303
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evolves, leading to suboptimal sequence selection304

and a decline in overall performance. For instance,305

as illustrated in Figure 4, the left branch at step 1306

has a lower probability than the right branch but307

achieves better performance at step 2. This high-308

lights the limitations of methods that focus solely309

on immediate token probabilities without consider-310

ing long-term sequence quality. In contrast, LTM311

explores multiple sequences and evaluates the over-312

all long-term performance of each. This approach313

enables the LLM to look ahead at future tokens and314

retrospectively correct errors, thereby enhancing315

its ability to generate higher quality outputs.316

4 Experimental Setup317

4.1 Datasets318

To evaluate the effectiveness of our method, we319

select mathematical and coding datasets that re-320

quire model reasoning capabilities while allow-321

ing objective verification of outputs. The detailed322

dataset specifications are as follows: (1) GSM8K323

(Cobbe et al., 2021): This dataset comprises 1,319324

grade-school mathematics problems with standard325

solutions, utilizing the zero-shot prompt: "The fol-326

lowing is a math problem from elementary school.327

Please provide the solution process and the final328

result. Write the final result within square brackets.329

Only one pair of square brackets should be used,330

and it should contain only a number. The ques-331

tion is:..." (2) MultiArith (Roy and Roth, 2015):332

This dataset contains 180 mathematical problems333

evaluated using identical prompting methodology334

to GSM8K. (3) HumanEval (Chen et al., 2021):335

This dataset includes 164 programming questions.336

Prompts are formulated based on implementations337

from the DeCLaRe Lab (Chia et al., 2023).338

4.2 Baselines339

To evaluate the effectiveness of our method,340

we compare it with two general-purpose, two-341

stage prompt-based self-correction approaches: (1)342

Critic Prompt (Huang et al., 2024): To ensure343

experimental fairness, we adopt the experimental344

setting from Li et al. (2024), which instructs the345

LLM to identify errors in its previous responses346

and generate refined results. (2) If or Else (IoE)347

Prompt (Li et al., 2024): This method prompts the348

LLM to assess its confidence in the initial answer349

and generate a refined response if necessary.350

For the Critic Prompt method, the LLM is in-351

structed using the following prompt: "Review your352

previous answer and find problems with your an- 353

swer. Based on the problems you found, improve 354

your answer. Please reiterate your answer". For 355

the IoE Prompt method, the prompt employed is 356

"Review your previous answer. If you are very con- 357

fident about your answer, maintain your answer. 358

Otherwise, update your answer". The key differ- 359

ence between these methods aligns with variations 360

in pcor within the discussed framework. 361

4.3 Evaluation metrics 362

We evaluate model performance using top-1 ac- 363

curacy (acc@1) for mathematical tasks and top- 364

1 pass rate (pass@1) for coding tasks. acc@1 365

measures the percentage of test cases where the 366

model’s highest-ranked prediction matches the 367

ground truth, while pass@1 quantifies the propor- 368

tion of instances where the top prediction success- 369

fully passes a predefined coding test. 370

4.4 Implementation Details 371

To verify the universality of our method, we test 372

various open-source LLMs ranging from 1B to 373

13B parameters, including Llama2-Chat-7B and 374

Llama2-Chat-13B (Touvron et al., 2023), Llama3- 375

Instruct-1B and Llama3-Instruct-3B (Dubey et al., 376

2024), and Qwen2.5-1.5B-Instruct and Qwen2.5- 377

3B-Instruct (Yang et al., 2024). For brevity, we 378

refer to these LLMs as Llama2-7B, Llama2-13B, 379

Llama3-1B, Llama3-3B, Qwen-1.5B, and Qwen- 380

3B in the subsequent sections. 381

All methods employ nucleus sampling (Holtz- 382

man et al., 2020) with hyperparameters p = 383

0.95, k = 15 during initial stage. In contrast, base- 384

line approaches retain this strategy in the second 385

stage, whereas our FTR framework employs the 386

proposed LTM decoding strategy—featuring mul- 387

tipath exploration and long-term context evalua- 388

tion—during the regeneration phase. 389

5 Experimental Results 390

5.1 Overall Comparison 391

Given the challenge of directly obtaining real 392

user feedback in controlled experimental set- 393

tings—where subjective human preferences and 394

contextual interactions are difficult to repli- 395

cate—we design two complementary evaluation 396

protocols to rigorously assess FTR against state- 397

of-the-art self-correction methods: (1) Super- 398

vised Ground-Truth Evaluation (Protocol 1): 399

In a supervised setting, we compare FTR with 400
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PROTOCOL 1 PROTOCOL 2
Method GSM8K MultiArith HumanEval GSM8K MultiArith HumanEval

# Llama2-7B #
Initial Input 0.206 0.539 0.104 0.206 0.539 0.104

+ Critic Prompt 0.171 0.522 0.043 0.202 0.572 0.104
+ IoE Prompt 0.136 0.339 0.091 0.189 0.406 0.116
+ FTR (Ours) 0.360 0.878 0.165 0.269 0.744 0.140

# Llama2-13B #
Initial Input 0.303 0.656 0.207 0.303 0.656 0.207

+ Critic Prompt 0.122 0.322 0.049 0.276 0.611 0.207
+ IoE Prompt 0.281 0.656 0.122 0.308 0.700 0.195
+ FTR (Ours) 0.463 0.917 0.250 0.419 0.822 0.226

# Llama3-1B #
Initial Input 0.245 0.406 0.287 0.245 0.406 0.287

+ Critic Prompt 0.167 0.289 0.165 0.246 0.439 0.287
+ IoE Prompt 0.173 0.383 0.281 0.244 0.439 0.317
+ FTR (Ours) 0.399 0.622 0.409 0.310 0.473 0.384

# Llama3-3B#
Initial Input 0.774 0.961 0.488 0.774 0.961 0.488

+ Critic Prompt 0.485 0.750 0.390 0.753 0.972 0.506
+ IoE Prompt 0.394 0.650 0.323 0.744 0.878 0.482
+ FTR (Ours) 0.875 0.994 0.604 0.837 0.983 0.585

# Qwen-1.5B#
Initial Input 0.422 0.678 0.409 0.422 0.678 0.409

+ Critic Prompt 0.334 0.506 0.220 0.446 0.667 0.390
+ IoE Prompt 0.328 0.567 0.085 0.434 0.656 0.323
+ FTR (Ours) 0.594 0.839 0.732 0.459 0.689 0.585

# Qwen-3B#
Initial Input 0.837 0.994 0.677 0.837 0.994 0.677

+ Critic Prompt 0.789 0.939 0.524 0.843 0.994 0.720
+ IoE Prompt 0.823 0.989 0.628 0.846 0.994 0.687
+ FTR (Ours) 0.902 1.000 0.768 0.879 1.000 0.750

Table 1: Overall performance comparison of self-correction methods across different datasets and LLMs.

prompt-based baselines that rely solely on inter-401

nal self-assessment (i.e., no user or external signal).402

Here, baselines perform self-correction via default403

prompt configurations, while FTR simulates super-404

vised feedback by leveraging ground-truth labels405

to identify initially incorrect answers and trigger406

regeneration. This protocol isolates the impact of407

objective error signals, ideal for tasks with veri-408

fiable ground truths (e.g., math problem solving).409

(2) Human-Mimicking Proxy Evaluation (Pro-410

tocol 2): To bridge the gap between controlled411

experiments and real-world human-AI interactions,412

we employ GPT-4o (Hurst et al., 2024) as an au-413

tomated proxy for human judgment. This unified414

framework applies GPT-4o’s error classification415

(e.g., factual errors, logical flaws) to first-stage out-416

puts, mimicking how users might subjectively eval-417

uate responses. Critically, regeneration is triggered418

only for outputs deemed incorrect by the proxy,419

ensuring fair comparison across methods. 1420

Table 1 presents a comprehensive performance421

1The rationality of this approach is supported by GPT-4o’s
demonstrated human-like competence: 76.6% accuracy on
the MATH dataset (Hendrycks et al., 2021) and comparable
code generation performance to humans (Suh et al., 2025).
Quantitative analysis of the proxy’s evaluation errors (false
positives/negatives) is provided in Appendices Table 4.

comparison between FTR and baseline approaches 422

across datasets, LLMs, and both evaluation proto- 423

cols. Under Protocol 1, FTR achieves substantial 424

performance gains (10%–20%) consistently across 425

all evaluated scenarios, highlighting its effective- 426

ness in integrating user feedback with the LTM de- 427

coding strategy to drive targeted corrections. This 428

consistency demonstrates FTR’s adaptability to di- 429

verse model scales and task types, from factual 430

answer to logical reasoning. In contrast, quantita- 431

tive results show that baseline methods like Critic 432

and IoE prompt techniques often exhibit perfor- 433

mance degradation compared to their own initial 434

outputs across most datasets and LLMs. These 435

findings align with prior research by Huang et al. 436

(2024), which attributes such issues to prompts 437

potentially misleading LLMs into altering correct 438

responses during self-assessment. Together, these 439

results underscore the limitations of prompt-based 440

self-correction in open-source models, where in- 441

trospective capabilities remain constrained. Un- 442

der Protocol 2, FTR demonstrates consistent supe- 443

riority over baselines across model architectures 444

and task domains, even when using noisy feedback 445

proxies. This robustness validates FTR’s effective- 446

ness in realistic settings and confirms that improve- 447
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Figure 5: Performance comparison of different user
feedback utilization approaches.

ments stem from its architectural design—rather448

than reliance on ground-truth labels—as shown by449

comparable gains in both protocols. Such cross-450

protocol analysis further reveals that explicit accu-451

racy feedback (Protocol 1) and simulated human452

feedback (Protocol 2) both contribute to FTR’s per-453

formance, albeit through different mechanisms, re-454

inforcing its generalizability as a self-correction455

framework.456

5.2 Feedback Experiment457

Here, we analyze the design rationale of the pro-458

posed FTR framework, which leverages user feed-459

back as a guiding signal to refine LLM outputs. A460

critical limitation of prompt-based self-correction461

methods is their propensity to erroneously revise462

correct responses during self-assessment—a phe-463

nomenon often attributed to flawed introspective464

mechanisms (Huang et al., 2024). User feedback465

addresses this by serving as an external validation466

signal, directly identifying outputs requiring revi-467

sion without relying on the LLM’s internal judg-468

ment. To investigate the optimal integration of469

feedback into self-correction workflows, we design470

two experimental configurations: (1) feedback-471

as-prompt: The accuracy of the initial answer is472

encoded as a natural language prompt to guide re-473

finement. For example, when an initial response is474

incorrect, the LLM receives the prompt: "The an-475

swer you provided contains factual errors. Please476

review the question and regenerate a correct re-477

sponse." (2) feedback-as-indicator: The system478

uses feedback solely as a binary trigger (regenerate479

if feedback is negative) and reprocesses the original480

input without additional prompts. Both configura-481

tions employ identical nucleus sampling strategy482

to ensure comparability.483

Figure 5 presents the comparative performance484

of three representative LLMs across different rea-485

soning benchmarks. The feedback-as-indicator486

approach significantly outperforms feedback-as-487

Decoding Strategy GSM8K MultiArith HumanEval

# Llama2-7B #
Greedy Decoding 0.243 0.683 0.122

Beam Search 0.261 0.739 0.134
Combined Sampling 0.253 0.733 0.134
Adaptive Decoding 0.257 0.722 0.128

LTM Decoding 0.276 0.750 0.146
# Llama2-13B #

Greedy Decoding 0.330 0.750 0.220
Beam Search 0.366 0.800 0.220

Combined Sampling 0.345 0.756 0.213
Adaptive Decoding 0.366 0.722 0.213

LTM Decoding 0.378 0.833 0.232
# Llama3-1B #

Greedy Decoding 0.286 0.428 0.274
Beam Search 0.268 0.478 0.354

Combined Sampling 0.231 0.411 0.287
Adaptive Decoding 0.257 0.322 0.348

LTM Decoding 0.289 0.494 0.354
# Llama3-3B #

Greedy Decoding 0.782 0.967 0.500
Beam Search 0.796 0.983 0.555

Combined Sampling 0.761 0.950 0.506
Adaptive Decoding 0.747 0.972 0.512

LTM Decoding 0.804 0.994 0.561
# Qwen-1.5B #

Greedy Decoding 0.441 0.456 0.457
Beam Search 0.456 0.489 0.610

Combined Sampling 0.418 0.439 0.390
Adaptive Decoding 0.439 0.506 0.476

LTM Decoding 0.456 0.522 0.622
# Qwen-3B #

Greedy Decoding 0.842 1.000 0.756
Beam Search 0.851 1.000 0.756

Combined Sampling 0.817 0.994 0.762
Adaptive Decoding 0.823 0.994 0.713

LTM Decoding 0.852 1.000 0.768

Table 2: Performance comparison of different decoding
strategies for backend LLMs.

prompt methods in reasoning accuracy, providing 488

empirical evidence that conventional prompt-based 489

correction mechanisms introduce decision bound- 490

ary instability and lead to performance degradation. 491

These results empirically support the recommen- 492

dation to employ user feedback primarily as a re- 493

generation trigger—rather than embedding it in 494

corrective prompts—to maintain decoding stability 495

and optimize LLM self-correction efficiency. 2 496

5.3 Decoding Comparison 497

To evaluate the LTM method, we assess its perfor- 498

mance as a standalone decoding strategy for LLMs 499

without integrating any self-correction techniques, 500

focusing on single-turn tasks. The models and 501

datasets used are consistent with those described 502

in the preceding sections. The baseline methods 503

comprise: (1) Greedy Decoding: This method al- 504

ways selects the word with the highest probability 505

at each decoding step. (2) Beam Search: This 506

2Complete quantitative results for all backend LLMs and
datasets are documented in Appendices Table 5.
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method selects the top-k most probable beams at507

each decoding step and is a classical decoding tech-508

nique in the field of NLP. (3) Combined Sampling509

(nucleus sampling): This approach combines top-510

p and top-k sampling, with parameters p = 0.95511

and k = 15 used consistently across all experi-512

ments. It is a widely adopted decoding strategy513

in LLMs. (4) Adaptive Decoding: This method514

enhances top-k sampling by dynamically adjusting515

the candidate set size at each generation step based516

on an entropy-based confidence score. Adaptive517

Decoding is a relatively novel technique compared518

to the aforementioned methods.519

To ensure fair comparative evaluation, we stan-520

dardize computational budgets—quantified by gen-521

erated token counts—across methods through hy-522

perparameter adjustments.3 Results in Table 2523

demonstrate that LTM consistently outperforms524

baseline approaches. This superiority highlights525

the effectiveness of its multipath exploration and526

dynamically adjusted candidate set mechanism,527

which expand the decoding space exploration be-528

yond single-path methods. Compared to Beam529

Search, LTM strategically allocates computational530

resources to critical decoding steps. For example,531

in scenarios with flattened token probability dis-532

tributions, LTM adaptively selects diverse tokens,533

whereas Beam Search’s fixed-width strategy may534

overlook high-potential paths, illustrating LTM’s535

flexibility in optimizing resource utilization for im-536

proved performance. 4537

6 Related Work538

6.1 Self-Correction Methods539

Numerous studies have advanced self-correction540

methods in the domain of LLMs. For instance,541

Madaan et al. (2024) proposed a three-stage frame-542

work that enhances LLM outputs by integrating543

feedback from previous iterations. Li et al. (2024)544

designed prompts to guide the LLM in assessing545

its confidence and deciding whether to generate a546

revised response. Huang et al. (2024) further ex-547

plored the use of critic prompts to evaluate the self-548

correction capabilities of LLMs. Additionally, task-549

specific prompts have been developed for transla-550

tion tasks to facilitate iterative refinement (Chen551

et al., 2024). However, existing self-correction552

methods for LLMs rely on prompts while neglect-553

3Detailed hyperparameter settings for different decoding
strategies are presented in Appendices Table 6.

4Appendices A.1 presents a real illustrative case.

ing real-time user feedback. This can lead to redun- 554

dant refinements and degrade LLM performance. 555

Unlike previous work, our prompt-free approach 556

incorporates useful user feedback to enhance effi- 557

ciency and performance. 558

6.2 Decoding Strategies 559

Current decoding strategies in LLMs primarily use 560

next-token prediction mechanisms such as top-k 561

sampling (Fan et al., 2018; Holtzman et al., 2018) 562

and nucleus sampling (top-p sampling) (Holtzman 563

et al., 2020). In top-k sampling, the LLM selects 564

the next token from the top-k most probable to- 565

kens, while in nucleus sampling, it samples from 566

the smallest set of tokens whose cumulative prob- 567

ability exceeds a threshold p. Basu et al. (2021) 568

proposed a modified version of top-k sampling that 569

incorporates a feedback mechanism to control the 570

perplexity of the generated text. Zhu et al. (2024b) 571

introduced adaptive decoding, a variant of top-k 572

sampling that dynamically adjusts the size of k 573

based on the information entropy of the token prob- 574

ability distribution. Other recent approaches boost 575

LLM performance by exploring multiple decoding 576

paths. For instance, Wang and Zhou (2024) com- 577

bines sampling methods to select optimal outputs, 578

while Zhu et al. (2024a) scores reasoning steps to 579

determine path expansion. However, these methods 580

are constrained by fixed templates and limited rea- 581

soning steps. Our LTM decoding overcomes these 582

limitations through flexible, template-free reason- 583

ing for more adaptable human-AI interactions. 584

7 Conclusion 585

This work introduces the FTR self-correction 586

framework, which significantly enhances the per- 587

formance of LLMs by leveraging user feedback 588

as a guiding signal. Specifically, when user feed- 589

back indicates dissatisfaction with the LLMs’ out- 590

put, the framework employs LTM—an advanced 591

decoding strategy—to refine the response. By inte- 592

grating LTM with feedback-triggered regeneration, 593

the framework notably improves the overall quality 594

of the LLMs’ responses. Unlike existing meth- 595

ods that rely heavily on prompts and the LLMs’ 596

internal assessment capabilities, the FTR frame- 597

work is more flexible and adaptive. This makes it 598

particularly well-suited for real-world human-AI 599

interaction scenarios where intuitive feedback is 600

readily available. 601
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Limitations602

Despite its advantages, LTM’s multipath decoding603

mechanism exhibits a tendency to produce repeti-604

tive or redundant outputs in text generation tasks.605

Future research may focus on developing mecha-606

nisms to detect and mitigate such redundancy dur-607

ing decoding—such as dynamic path pruning based608

on semantic similarity—while incorporating ad-609

vanced sampling techniques (e.g., diverse beam610

search) to enhance output diversity. These enhance-611

ments could not only reduce computational over-612

head and inference latency but also improve real-613

time interaction quality in human-AI dialogue sys-614

tems. Meanwhile, our current experimental scope615

is limited to LLMs with fewer than 13 billion pa-616

rameters, which serve as a cost-efficient platform617

for method validation. While prior studies (Li et al.,618

2024) have shown that prompt-based approaches619

excel in larger models (e.g., GPT series) due to their620

superior instruction-following capabilities, our con-621

trolled experiments on smaller architectures pro-622

vide essential baselines for low-resource scenarios.623

Future work will systematically evaluate LTM’s624

scalability across LLM model scales to characterize625

its impacts on computational efficiency, accuracy,626

and latency in diverse computational environments.627
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A Appendices 783

A.1 Case Study 784

In this section, we present a case study comparing 785

LTM with Beam Search to demonstrate LTM’s dis- 786

tinctive advantages. As illustrated in Figure 6, we 787

analyze the reasoning processes of both methods 788

on a mathematical problem from the MultiArith 789

dataset. For controlled comparison, Beam Search 790

uses a fixed beam width of 3, while LTM dynami- 791

cally adjusts its beam width with an average value 792

of 3 across decoding steps. 793

The key observation reveals that at a critical de- 794

coding step with a relatively flat candidate distri- 795

bution, Beam Search fails to retain all promising 796

candidates due to its fixed beam width strategy, 797

ultimately leading to an incorrect solution. In con- 798

trast, LTM dynamically adjusts its computational 799

resources at this step and increases the beam width 800

to 5, successfully preserving all potentially correct 801

candidates and consequently arriving at the accu- 802

rate final answer. This case clearly demonstrates 803

LTM’s adaptive advantage over static beam search 804

methods in handling complicated decoding scenar- 805

ios. 806

A.2 Inference Time Analysis 807

Although LTM decoding introduces computa- 808

tional overhead compared to single-beam decod- 809

ing, FTR’s design mitigates this cost by triggering 810

regeneration only for samples with negative feed- 811

back, unlike standard self-correction methods that 812

perform mandatory double-pass generation for all 813

10



Figure 6: Comparison of decoding processes between
Beam Search (fixed beam width=3) and LTM on a Mul-
tiArith dataset question. The yellow rectangle denotes
Beam Search’s candidate set, while the orange rectangle
represents LTM’s candidate set.

inputs and thus lead to net efficiency gains in low er-814

ror rate scenarios. Baseline methods such as Critic815

and IoE Prompt require 2 × N × t computation816

time (with N as the number of samples and t as817

the average inference time per sample), a linear818

complexity arising from re-generating responses819

for all inputs. In contrast, FTR’s total computa-820

tion time is N × t × (1 + p × n), where p is the821

proportion of samples requiring regeneration and822

n is the average LTM beam width, with efficiency823

emerging when p× n < 1. It is worth noting that824

the impact of beam size on performance can be825

reduced through parallel computing. For example,826

with parallel LTM decoding at an average beam827

width n = 3, the per-sample regeneration cost is828

1.85× single-beam decoding time, leading to the829

efficiency condition p < 1
1.85 ≈ 0.54. Detailed830

test results across backend LLMs and datasets are831

presented in Table 3, confirming that FTR’s adap-832

tive regeneration strategy balances reasoning depth833

with computational efficiency for real-world de-834

ployments. 5835

A.3 Additional Experiments Details836

5The experimental evaluations were performed on a com-
puting system featuring an NVIDIA RTX 6000 Ada Gen-
eration GPU and Intel Xeon Platinum 8358P CPUs with 32
physical cores (64 threads) running at 2.60GHz base frequency
and 48MB L3 cache.

Method GSM8K MultiArith HumanEval

# Llama2-7B #
Initial Input 1× 1× 1×

+ Critic/IoE Prompt 2× 2× 2×
+ FTR (Ours) 2.47× 2.15× 3.87×

# Llama2-13B #
Initial Input 1× 1× 1×

+ Critic/IoE Prompt 2× 2× 2×
+ FTR (Ours) 2.48× 1.64× 2.98×

# Llama3-1B #
Initial Input 1× 1× 1×

+ Critic/IoE Prompt 2× 2× 2×
+ FTR (Ours) 2.40× 2.49× 2.32×

# Llama3-3B#
Initial Input 1× 1× 1×

+ Critic/IoE Prompt 2× 2× 2×
+ FTR (Ours) 1.42× 1.12× 2.64×

# Qwen-1.5B#
Initial Input 1× 1× 1×

+ Critic/IoE Prompt 2× 2× 2×
+ FTR (Ours) 2.07× 1.81× 2.89×

# Qwen-3B#
Initial Input 1× 1× 1×

+ Critic/IoE Prompt 2× 2× 2×
+ FTR (Ours) 1.30× 1.02× 2.03×

Table 3: Inference time comparison of different self-
correction methods across different datasets and LLMs.

LLM Model GSM8K MultiArith HumanEval

Llama2-7B FN 34.93 13.83 5.88
FP 8.40 30.23 1.36

Llama2-13B FN 22.31 22.03 11.76
FP 9.57 40.32 1.54

Llama3-1B FN 16.41 2.74 6.38
FP 25.71 60.75 5.13

Llama3-3B FN 13.03 1.73 15.00
FP 15.77 28.57 17.86

Qwen-1.5B FN 13.54 4.10 20.90
FP 35.70 82.76 20.62

Qwen-3B FN 9.51 0.56 8.11
FP 18.14 0.00 20.75

Table 4: False Negative (FN) and False Positive (FP)
rates of GPT-4o on different datasets (%).

Method GSM8K MultiArith HumanEval

# Llama2-7B #
Initial Input 0.206 0.539 0.104
+ Prompt 0.243 0.694 0.140

+ Indicator (Ours) 0.328 0.810 0.146
# Llama2-13B #

Initial Input 0.303 0.656 0.207
+ Prompt 0.359 0.806 0.220

+ Indicator (Ours) 0.455 0.872 0.243
# Llama3-1B #

Initial Input 0.245 0.406 0.287
+ Prompt 0.301 0.506 0.317

+ Indicator (Ours) 0.374 0.556 0.384
# Llama3-3B#

Initial Input 0.774 0.961 0.488
+ Prompt 0.822 0.972 0.534

+ Indicator (Ours) 0.859 0.983 0.567
# Qwen-1.5B#

Initial Input 0.422 0.678 0.409
+ Prompt 0.512 0.750 0.476

+ Indicator (Ours) 0.630 0.900 0.512
# Qwen-3B#

Initial Input 0.837 0.994 0.677
+ Prompt 0.867 0.994 0.732

+ Indicator (Ours) 0.892 1.000 0.768

Table 5: Detailed model performance comparison under
different user feedback utilization approaches.
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GSM8K MultiArith HumanEval

# Llama2-7B #
Beam Search n = 3 n = 5 n = 7

Combined Sampling n = 3 n = 5 n = 6
Adaptive Decoding n = 3 n = 5 n = 7

LTM Decoding p∗ = 0.8, k∗ = 7 p∗ = 0.9, k∗ = 7 p∗ = 0.85, k∗ = 7
# Llama2-13B #

Beam Search n = 4 n = 3 n = 5
Combined Sampling n = 4 n = 3 n = 5
Adaptive Decoding n = 4 n = 3 n = 5

LTM Decoding p∗ = 0.9, k∗ = 7 p∗ = 0.85, k∗ = 7 p∗ = 0.8, k∗ = 7
# Llama3-1B #

Beam Search n = 3 n = 5 n = 3
Combined Sampling n = 3 n = 5 n = 3
Adaptive Decoding n = 3 n = 5 n = 3

LTM Decoding p∗ = 0.8, k∗ = 7 p∗ = 0.9, k∗ = 7 p∗ = 0.8, k∗ = 7
# Llama3-3B #

Beam Search n = 3 n = 7 n = 5
Combined Sampling n = 3 n = 6 n = 7
Adaptive Decoding n = 3 n = 6 n = 7

LTM Decoding p∗ = 0.8, k∗ = 7 p∗ = 0.95, k∗ = 7 p∗ = 0.9, k∗ = 7
# Qwen-1.5B #

Beam Search n = 3 n = 5 n = 7
Combined Sampling n = 3 n = 5 n = 7
Adaptive Decoding n = 3 n = 5 n = 7

LTM Decoding p∗ = 0.8, k∗ = 7 p∗ = 0.9, k∗ = 7 p∗ = 0.9, k∗ = 8
# Qwen-3B #

Beam Search n = 3 n = 5 n = 7
Combined Sampling n = 3 n = 5 n = 7
Adaptive Decoding n = 3 n = 5 n = 7

LTM Decoding p∗ = 0.85, k∗ = 7 p∗ = 0.85, k∗ = 7 p∗ = 0.9, k∗ = 7

Table 6: Hyperparameters of different decoding methods used in Tables 1 and 2. For beam search, n denotes
the number of beams, while for combined sampling and adaptive decoding, n indicates the number of generated
answers.
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