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Abstract

Large Language Models (LLMs) have achieved
remarkable performance across diverse tasks,
yet their susceptibility to generating incorrect
content during inference remains a critical un-
solved challenge. While self-correction meth-
ods offer potential solutions, their effectiveness
is hindered by two inherent limitations: (1)
the absence of reliable guidance signals for er-
ror localization, and (2) the restricted reason-
ing depth imposed by conventional next-token
decoding paradigms. To address these issues,
we propose Feedback-Triggered Regeneration
(FTR), a novel framework that synergizes user
feedback with enhanced decoding dynamics.
Specifically, FTR activates response regener-
ation only upon receiving negative user feed-
back, thereby circumventing error propagation
from faulty self-assessment while preserving
originally correct outputs. Furthermore, we in-
troduce Long-Term Multipath (LTM) decoding,
which enables systematic exploration of multi-
ple reasoning trajectories through delayed se-
quence evaluation, effectively overcoming the
myopic decision-making characteristic of stan-
dard next-token prediction. Extensive experi-
ments on mathematical reasoning and code gen-
eration benchmarks demonstrate that our frame-
work achieves consistent and significant im-
provements over state-of-the-art prompt-based
self-correction methods.

1 Introduction

Large Language Models (LLMs) have demon-
strated exceptional capabilities across diverse tasks,
such as text generation, question answering, and
code synthesis (Achiam et al., 2023; Touvron et al.,
2023; Guo et al., 2025). However, a persistent chal-
lenge lies in their tendency to produce factually in-
correct information or flawed logical reasoning—a
critical limitation widely documented in LLM in-
ference research (Yao et al., 2023; Liu et al., 2024a).
To address this, self-correction mechanisms have
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Figure 1: The percentage distribution of answer
changes induced by self-correction using If or Else(IoE)
Prompts (Li et al., 2024) and Critic Prompts (Huang
et al., 2024), with experiments conducted on the Llama3-
Instruct-3B.

emerged as a promising solution. These mech-
anisms are typically implemented through care-
fully crafted prompting strategies (Ji et al., 2023;
Madaan et al., 2024; Kim et al., 2024; Li et al.,
2024; Chen et al., 2024; Huang et al., 2024), which
guide models to introspect on their initial responses.
The self-correction workflow generally follows a
two-step process: first, generating an initial answer
via standard LLM inference; and second, prompt-
ing the model to critically evaluate the initial output
for errors, inconsistencies, or logical gaps, and sub-
sequently revise it.

Nevertheless, the effectiveness of prompt-based
methods remains contentious. As illustrated in
Figure 1, experiments on three typical reason-
ing datasets demonstrate that two state-of-the-art
prompt-based self-correction methods (Huang
et al., 2024; Li et al., 2024) not only frequently
convert correct answers into incorrect ones but also
struggle to revise incorrect answers into correct
responses. In this study, we argue that this phe-
nomenon stems from two key challenges inherent
in the prompt-based self-correction process:

* C1. Lack of Effective Guidance Signals:
The prompt-based self-correction process re-
lies on the LLM itself to evaluate the cor-



rectness of its previous answers. However,
due to the absence of explicit guidance sig-
nals, the LLM may fail to accurately deter-
mine which parts require revision, leading to
unnecessary self-corrections (i.e., modifying
correct answers to incorrect ones). Addition-
ally, given the sensitivity of LLMs to input,
biased prompts may cause incorrect alignment
and mislead the LLM into making inaccurate
judgments (Huang et al., 2024).

* C2. Shallow Decoding Limits Deep Reason-
ing: Self-correction of erroneous results by
LLMs requires deeper thinking and reason-
ing. However, most current methods follow
the next-token prediction paradigm, which fo-
cuses only on single-step predictions during
the decoding process. The correctness of the
answer depends on a comprehensive evalu-
ation of the entire output answer sequence.
This short-term, step-oriented decoding pro-
cess limits the LLM’s ability to engage in
deeper reasoning, thereby hindering its capac-
ity to generate improved responses during the
self-correction process.

To address C1, we propose Feedback-Triggered
Regeneration (FTR), a self-correction framework
that leverages user feedback (e.g., explicit thumbs-
up/down signals) to guide LLMs’ reasoning re-
finement. In human-Al interactions, users nat-
urally provide feedback—such as dissatisfaction
cues—when engaging with LLM outputs, which
acts as a critical trigger for identifying responses
requiring deeper revision. By treating feedback
as a revision trigger, FTR avoids unnecessary re-
processing of outputs that have received positive
user signals, focusing computational resources on
cases requiring improvement. In the FTR frame-
work, negative feedback guides the LLM to re-
generate responses by reprocessing the original
input, with feedback solely determining whether
regeneration is initiated. This design circumvents
limitations of prompt-based methods—such as self-
critical prompting that relies on flawed introspec-
tion or labor-intensive prompt tuning for each
task—thereby enhancing both correction efficiency
and generalizability.

To address C2, we enhance FTR by integrat-
ing a Long-Term Multipath (LTM) decoding strat-
egy, which enables LLMs to perform global reason-
ing through adaptively multi-step path exploration.
Unlike standard autoregressive decoding methods

(e.g., greedy decoding) that optimize solely for
next-token probability, LTM evaluates multiple de-
coding paths at each step, prioritizing long-term
sequence coherence and semantic consistency. This
approach mitigates the limitation of short-term opti-
mization—such as local optimum traps and context
drift—that plague traditional decoding frameworks.
Critically, LTM is dynamically activated during
the regeneration stage—triggered by negative user
feedback—to replace the standard single-path de-
coding, thereby enabling deep reasoning for error
correction without incurring excessive computa-
tional overhead.

Overall, we propose a novel user feedback-
triggered self-correction framework that integrates
user feedback with the advanced LTM decoding
strategy. To validate the effectiveness of our frame-
work, we conduct a series of experiments com-
paring it with SOTA prompt-based methods us-
ing open-source backend LLMs. These experi-
ments focused on challenging mathematical and
coding datasets, where our framework consistently
achieves superior performance. In summary, our
main contributions are as follows:

1. We introduce a novel self-correction frame-
work that leverages user feedback as a regen-
eration signal, thereby preventing unnecessary
self-corrections and improving the quality of
LLM outputs.

2. We propose a novel decoding method that eval-
uates the long-term performance of multiple
reasoning paths, thereby enhancing the accu-
racy and coherence of generated responses.

3. We demonstrate the superiority of our method
through extensive experiments on various
datasets and backend LLMs.

2 Preliminaries

2.1 Notation Definition

Letz = (zg,x1,...,y) denote an input sequence,
andy = (Yo, y1,- - -, Ym ) represent the correspond-
ing LLM response, where y = M (z). Here, M
denotes a typical autoregressive language model.
In this context, the response is generated sequen-
tially during the decoding process. At the i-th step
of the inference process, we define the probability
of the current output sequence s; = (Yo, Y1, - - -, Yi)
as P(s;), which is calculated as the product of the



likelihoods of the first ¢ tokens:

P(si) = P(yole) [ | Plwklyorr—1,2). (1)
k=1

The perplexity (PPL) value of the sequence at step
¢ is then defined as:

PPL; = P(s;) 1, 2)

which quantifies how confidently a language model
predicts the sequence by measuring the inverse
geometric mean of token probabilities, where lower
values indicate better predictions. In this work,
PPL is employed as a metric to assess the quality
of a sequence during the decoding process (Jelinek
et al., 1977; Brown et al., 2020).

2.2 Two-Stage Framework for Self-Correction

The framework of most prompt-based self-
correction methods can be divided into two stages,
as depicted in Figure 2 (a):

 Stage 1: An initial input x is provided to the
LLM to generate an initial response ¥, =

* Stage 2: An independent correction prompt
Deor 18 then given, prompting the LLM to re-
flect on its generated response. This enables
the LLM to refine its answer, regenerating the
refined output yeor = M (l’ s Yinit pcor)-

In Figure 2 (b), we also present our proposed FTR
self-correction framework for intuitive comparison.
Specifically, we have made improvements from
two perspectives: 1) incorporating user feedback
as a guiding signal to prompt LLM to regenerate
responses based on the initial input when necessary;
2) adopting LTM decoding to enhance the LLM’s
ability for deeper reasoning in order to address
more complex error response scenarios.

3 Methodology
3.1 Feedback-Triggered Regeneration

In general, the correction prompt p.,, provides no
information about the correctness of the initial re-
sponse Yni. Additionally, LLMs often lack the
ability to independently assess the correctness of
their own responses, as highlighted in previous
works (Huang et al., 2024; Madaan et al., 2024).
These limitations may lead to erroneous decisions
by the LLM, as demonstrated in Figure 3 (a).
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(a) Prompt-based Self-Correction (b) Feedback-Triggered Regeneration

Figure 2: (a) Framework of the prompt-based self-
correction approach. (b) Framework of our feedback-
triggered self-correction approach.

While properly trained LLMs generally produce
optimal initial responses to well-formed queries,
our investigation identifies two key limitations in
self-correction frameworks: (1) Prompt-induced
solution drift, where externally introduced guid-
ance inadvertently distorts the model’s reasoning
trajectory, causing systematic deviations from the
original optimal solution (Huang et al., 2024); and
(2) Correction capability constraints, as evidenced
in Figure 3(b) showing persistent refinement fail-
ures even when explicit correctness feedback (pcor)
is provided. This dual challenge of prompt fragility
and inherent correction limitations fundamentally
restricts the practical effectiveness of current self-
correction paradigms (Xu et al., 2024; Liu et al.,
2024b).

To avoid the negative impact of self-correction
prompts, we propose an enhanced two-stage FTR
self-correction framework:

» Stage 1: Similarly, provide the initial input
x to the LLM to generate the initial response

Yinit = M(z).

» Stage 2: If user feedback indicates that the
LLM’s output y;,;; is problematic, the origi-
nal prompt = and an advanced decoding strat-
egy, LTM, are employed to regenerate the out-
put. Otherwise, no further action is taken.

Yeor = M’(JS‘) (3)

Here, M’ denotes the LLM equipped with the LTM
decoding strategy, which will be described in the
following section. Note that the second stage of
FTR uses only the original input  without intro-
ducing additional prompts. Human feedback serves



Stage 1
l@ x &l yine = M(x)
. [Reasoning Process...]
[Math Question] The final result is: [6]

__________________________________________________________________________________

(a) Prompt-based self-correction without feedback

& Yeor = M(X, Yinit: Peor)
Upon reviewing my previous answer. | am
confident that the number of pieces of
clothing that could go in each of the
small loads is 6.
Here is the updated answer:
[Reasoning Process...]
The final result is: [6] X

B o

Review your previous answer.
if you are very confident
about your answer, maintain
your answer. Otherwise,
update your answer.

(b) Prompt-based self-correction with feedback

& Peor &lycor = M(X, Yinit, Peor)
The answer you provided is I apologize for my mistake earlier. Thank
incorrect, please review the you for pointing it out.
answer and update it. [Reasoning Process...]
The final result is: [6] X

(c) Feedback triggered regeneration

€ Peor &yeor = M'(x)

Sure! Here's the solution process and
final result for the math problem:
[Reasoning Process...]

Final Result: [3] «

The answer you provided is
incorrect, please review the
answer and update it.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3: Comparison of different self-correction meth-
ods. (a) Self-assessment and update; (b) Revision with
user feedback prompt; (c) Regeneration triggered by
user feedback.

solely as an indicator to trigger regeneration, as il-
lustrated in Figure 2 (b) and Figure 3 (c). This
approach prevents the LLM output from being de-
graded by potentially biased prompts.

3.2 Long-Term Multipath Decoding

When users provide negative feedback on LLM
responses, it indicates the need for deeper reason-
ing beyond standard next-token prediction, as this
conventional paradigm lacks comprehensive evalu-
ation of complete answer quality. Therefore, we en-
hance the decoding process through two key mech-
anisms: (1) Multipath Exploration: Instead of ex-
ploring a single path, token selection is performed
using a “tree” structure rather than the traditional
“chain” structure. This allows the LLM to explore
multiple potential sequences simultaneously, as il-
lustrated in Figure 4. (2) Sequence Evaluation:
Using PPL as our quality metric, we dynamically
retain the top k; sequences at each step ¢, with k;
adjusted according to the step’s PPL distribution.
Unlike Beam Search’s constant beam width, our
method dynamically adjusts the candidate count k;
during decoding.

LTM’s core mechanism dynamically determines
k; through token distributions, with mathematical
formalization provided below and demonstration

Step 0 p(s) =09
0.9
Penro = 0.72,kg =1

Step 1 p(s)) =0.27 PR p(s?) = 0.54
ep (01)
Pener = 0.72 kg = 2 & \ = a6

Step 2 N
Pows =065k, =3 09 (01) (00) 04 04 (02)

p(sd) = 024 p(si) = 0.22 p(st) =022

Figure 4: Tllustration of LTM decoding strategies (V' =
3), where black numbers in circles are token likelihood
and red ones indicate sequence likelihood.

in Figure 4. Firstly, the probabilities of all pos-
sible sequences are computed. Let k;_; denote
the number of candidates retained at the (i — 1)-
th step, and let V' represent the size of the LLM’s
vocabulary. Accordingly, there are k;_; x V can-
didate sequences. Secondly, the top-k; sequences
are selected from the k;_; x V candidates. These
candidates are sorted based on their probabilities
P(s!), where j € [0,kj—1 x V — 1] denotes the
index of each candidate. The cumulative probabil-
ity is computed until it exceeds the threshold value

pthri .

ki

> P(s]) = pin,- @)
j=0

The number of retained sequences, denoted as k;,
is the minimal set that satisfies this condition , with
all other sequences pruned. When all candidate
sequences have equal length, PPL can be computed
directly from the sequence probability. For compu-
tational convenience, we use P (sf ) as our evalua-
tion metric. The threshold pyy,,, is defined as:

]{31‘71 xV—-1

2.

j=0

P(s)).

5 &)

pth?"i = p* X

Here, p* € [0, 1] controls the number of sequences
to be pruned, where a lower p* results in more se-
quences being discarded. Finally, to control com-
putational overhead, an additional hyperparameter
k* is introduced. When k; exceeds k*, only the
first £* sequences are retained. During decoding,
LTM selects the most probable candidates subject
to dual constraints pg,, and £*, ultimately selecting
the optimal answer through minimum PPL evalua-
tion from multiple generated candidates.

In traditional sampling methods that select one
token at a time, errors introduced early in the
process can propagate through subsequent stages.
Moreover, a token initially selected as the opti-
mal choice may lose its advantage as the context



evolves, leading to suboptimal sequence selection
and a decline in overall performance. For instance,
as illustrated in Figure 4, the left branch at step 1
has a lower probability than the right branch but
achieves better performance at step 2. This high-
lights the limitations of methods that focus solely
on immediate token probabilities without consider-
ing long-term sequence quality. In contrast, LTM
explores multiple sequences and evaluates the over-
all long-term performance of each. This approach
enables the LLM to look ahead at future tokens and
retrospectively correct errors, thereby enhancing
its ability to generate higher quality outputs.

4 Experimental Setup

4.1 Datasets

To evaluate the effectiveness of our method, we
select mathematical and coding datasets that re-
quire model reasoning capabilities while allow-
ing objective verification of outputs. The detailed
dataset specifications are as follows: (1) GSM8K
(Cobbe et al., 2021): This dataset comprises 1,319
grade-school mathematics problems with standard
solutions, utilizing the zero-shot prompt: "The fol-
lowing is a math problem from elementary school.
Please provide the solution process and the final
result. Write the final result within square brackets.
Only one pair of square brackets should be used,
and it should contain only a number. The ques-
tion is:..." (2) MultiArith (Roy and Roth, 2015):
This dataset contains 180 mathematical problems
evaluated using identical prompting methodology
to GSMB8K. (3) HumanEval (Chen et al., 2021):
This dataset includes 164 programming questions.
Prompts are formulated based on implementations
from the DeCLaRe Lab (Chia et al., 2023).

4.2 Baselines

To evaluate the effectiveness of our method,
we compare it with two general-purpose, two-
stage prompt-based self-correction approaches: (1)
Critic Prompt (Huang et al., 2024): To ensure
experimental fairness, we adopt the experimental
setting from Li et al. (2024), which instructs the
LLM to identify errors in its previous responses
and generate refined results. (2) If or Else (IoE)
Prompt (Li et al., 2024): This method prompts the
LLM to assess its confidence in the initial answer
and generate a refined response if necessary.

For the Critic Prompt method, the LLM is in-
structed using the following prompt: "Review your

previous answer and find problems with your an-
swer. Based on the problems you found, improve
your answer. Please reiterate your answer". For
the IoE Prompt method, the prompt employed is
"Review your previous answer. If you are very con-
fident about your answer, maintain your answer.
Otherwise, update your answer". The key differ-
ence between these methods aligns with variations
in peo within the discussed framework.

4.3 Evaluation metrics

We evaluate model performance using top-1 ac-
curacy (acc@1) for mathematical tasks and top-
1 pass rate (pass@1) for coding tasks. acc@l
measures the percentage of test cases where the
model’s highest-ranked prediction matches the
ground truth, while pass@1 quantifies the propor-
tion of instances where the top prediction success-
fully passes a predefined coding test.

4.4 Implementation Details

To verify the universality of our method, we test
various open-source LLMs ranging from 1B to
13B parameters, including Llama2-Chat-7B and
Llama2-Chat-13B (Touvron et al., 2023), Llama3-
Instruct-1B and Llama3-Instruct-3B (Dubey et al.,
2024), and Qwen2.5-1.5B-Instruct and Qwen2.5-
3B-Instruct (Yang et al., 2024). For brevity, we
refer to these LLMs as Llama2-7B, Llama2-13B,
Llama3-1B, Llama3-3B, Qwen-1.5B, and Qwen-
3B in the subsequent sections.

All methods employ nucleus sampling (Holtz-
man et al., 2020) with hyperparameters p =
0.95, k = 15 during initial stage. In contrast, base-
line approaches retain this strategy in the second
stage, whereas our FTR framework employs the
proposed LTM decoding strategy—featuring mul-
tipath exploration and long-term context evalua-
tion—during the regeneration phase.

5 Experimental Results

5.1 Overall Comparison

Given the challenge of directly obtaining real
user feedback in controlled experimental set-
tings—where subjective human preferences and
contextual interactions are difficult to repli-
cate—we design two complementary evaluation
protocols to rigorously assess FTR against state-
of-the-art self-correction methods: (1) Super-
vised Ground-Truth Evaluation (Protocol 1):
In a supervised setting, we compare FTR with



PROTOCOL 1 PROTOCOL 2
Method GSMSK MultiArith HumanEval GSMSK MultiArith HumanEval

# Llama2-7B #
Initial Input 0.206 0.539 0.104 0.206 0.539 0.104
+ Critic Prompt 0.171 0.522 0.043 0.202 0.572 0.104
+ IoE Prompt 0.136 0.339 0.091 0.189 0.406 0.116
+ FTR (Ours) 0.360 0.878 0.165 0.269 0.744 0.140

# Llama2-13B #
Initial Input 0.303 0.656 0.207 0.303 0.656 0.207
+ Critic Prompt 0.122 0.322 0.049 0.276 0.611 0.207
+ IoE Prompt 0.281 0.656 0.122 0.308 0.700 0.195
+ FTR (Ours) 0.463 0.917 0.250 0.419 0.822 0.226

# Llama3-1B #
Initial Input 0.245 0.406 0.287 0.245 0.406 0.287
+ Critic Prompt 0.167 0.289 0.165 0.246 0.439 0.287
+ IoE Prompt 0.173 0.383 0.281 0.244 0.439 0.317
+ FTR (Ours) 0.399 0.622 0.409 0.310 0.473 0.384

# Llama3-3B#
Initial Input 0.774 0.961 0.488 0.774 0.961 0.488
+ Critic Prompt 0.485 0.750 0.390 0.753 0.972 0.506
+ IoE Prompt 0.394 0.650 0.323 0.744 0.878 0.482
+ FTR (Ours) 0.875 0.994 0.604 0.837 0.983 0.585
# Qwen-1.5B#
Initial Input 0.422 0.678 0.409 0.422 0.678 0.409
+ Critic Prompt 0.334 0.506 0.220 0.446 0.667 0.390
+ IoE Prompt 0.328 0.567 0.085 0.434 0.656 0.323
+ FTR (Ours) 0.594 0.839 0.732 0.459 0.689 0.585
# Qwen-3B#

Initial Input 0.837 0.994 0.677 0.837 0.994 0.677
+ Critic Prompt 0.789 0.939 0.524 0.843 0.994 0.720
+ IoE Prompt 0.823 0.989 0.628 0.846 0.994 0.687
+ FTR (Ours) 0.902 1.000 0.768 0.879 1.000 0.750

Table 1: Overall performance comparison of self-correction methods across different datasets and LLM:s.

prompt-based baselines that rely solely on inter-
nal self-assessment (i.e., no user or external signal).
Here, baselines perform self-correction via default
prompt configurations, while FTR simulates super-
vised feedback by leveraging ground-truth labels
to identify initially incorrect answers and trigger
regeneration. This protocol isolates the impact of
objective error signals, ideal for tasks with veri-
fiable ground truths (e.g., math problem solving).
(2) Human-Mimicking Proxy Evaluation (Pro-
tocol 2): To bridge the gap between controlled
experiments and real-world human-Al interactions,
we employ GPT-40 (Hurst et al., 2024) as an au-
tomated proxy for human judgment. This unified
framework applies GPT-40’s error classification
(e.g., factual errors, logical flaws) to first-stage out-
puts, mimicking how users might subjectively eval-
uate responses. Critically, regeneration is triggered
only for outputs deemed incorrect by the proxy,
ensuring fair comparison across methods. '

Table 1 presents a comprehensive performance

'The rationality of this approach is supported by GPT-40’s
demonstrated human-like competence: 76.6% accuracy on
the MATH dataset (Hendrycks et al., 2021) and comparable
code generation performance to humans (Suh et al., 2025).
Quantitative analysis of the proxy’s evaluation errors (false
positives/negatives) is provided in Appendices Table 4.

comparison between FTR and baseline approaches
across datasets, LLMs, and both evaluation proto-
cols. Under Protocol 1, FTR achieves substantial
performance gains (10%—-20%) consistently across
all evaluated scenarios, highlighting its effective-
ness in integrating user feedback with the LTM de-
coding strategy to drive targeted corrections. This
consistency demonstrates FTR’s adaptability to di-
verse model scales and task types, from factual
answer to logical reasoning. In contrast, quantita-
tive results show that baseline methods like Critic
and IoE prompt techniques often exhibit perfor-
mance degradation compared to their own initial
outputs across most datasets and LLMs. These
findings align with prior research by Huang et al.
(2024), which attributes such issues to prompts
potentially misleading LLMs into altering correct
responses during self-assessment. Together, these
results underscore the limitations of prompt-based
self-correction in open-source models, where in-
trospective capabilities remain constrained. Un-
der Protocol 2, FTR demonstrates consistent supe-
riority over baselines across model architectures
and task domains, even when using noisy feedback
proxies. This robustness validates FTR’s effective-
ness in realistic settings and confirms that improve-
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Figure 5: Performance comparison of different user
feedback utilization approaches.

ments stem from its architectural design—rather
than reliance on ground-truth labels—as shown by
comparable gains in both protocols. Such cross-
protocol analysis further reveals that explicit accu-
racy feedback (Protocol 1) and simulated human
feedback (Protocol 2) both contribute to FTR’s per-
formance, albeit through different mechanisms, re-
inforcing its generalizability as a self-correction
framework.

5.2 Feedback Experiment

Here, we analyze the design rationale of the pro-
posed FTR framework, which leverages user feed-
back as a guiding signal to refine LLM outputs. A
critical limitation of prompt-based self-correction
methods is their propensity to erroneously revise
correct responses during self-assessment—a phe-
nomenon often attributed to flawed introspective
mechanisms (Huang et al., 2024). User feedback
addresses this by serving as an external validation
signal, directly identifying outputs requiring revi-
sion without relying on the LLM’s internal judg-
ment. To investigate the optimal integration of
feedback into self-correction workflows, we design
two experimental configurations: (1) feedback-
as-prompt: The accuracy of the initial answer is
encoded as a natural language prompt to guide re-
finement. For example, when an initial response is
incorrect, the LLLM receives the prompt: "The an-
swer you provided contains factual errors. Please
review the question and regenerate a correct re-
sponse." (2) feedback-as-indicator: The system
uses feedback solely as a binary trigger (regenerate
if feedback is negative) and reprocesses the original
input without additional prompts. Both configura-
tions employ identical nucleus sampling strategy
to ensure comparability.

Figure 5 presents the comparative performance
of three representative LLMs across different rea-
soning benchmarks. The feedback-as-indicator
approach significantly outperforms feedback-as-

Decoding Strategy GSM8K  MultiArith  HumanEval

# Llama2-7B #
Greedy Decoding 0.243 0.683 0.122
Beam Search 0.261 0.739 0.134
Combined Sampling 0.253 0.733 0.134
Adaptive Decoding 0.257 0.722 0.128
LTM Decoding 0.276 0.750 0.146

# Llama2-13B #
Greedy Decoding 0.330 0.750 0.220
Beam Search 0.366 0.800 0.220
Combined Sampling 0.345 0.756 0.213
Adaptive Decoding 0.366 0.722 0.213
LTM Decoding 0.378 0.833 0.232

# Llama3-1B #
Greedy Decoding 0.286 0.428 0.274
Beam Search 0.268 0.478 0.354
Combined Sampling 0.231 0.411 0.287
Adaptive Decoding 0.257 0.322 0.348
LTM Decoding 0.289 0.494 0.354

# Llama3-3B #
Greedy Decoding 0.782 0.967 0.500
Beam Search 0.796 0.983 0.555
Combined Sampling 0.761 0.950 0.506
Adaptive Decoding 0.747 0.972 0.512
LTM Decoding 0.804 0.994 0.561

# Qwen-1.5B #
Greedy Decoding 0.441 0.456 0.457
Beam Search 0.456 0.489 0.610
Combined Sampling 0.418 0.439 0.390
Adaptive Decoding 0.439 0.506 0.476
LTM Decoding 0.456 0.522 0.622

# Qwen-3B #

Greedy Decoding 0.842 1.000 0.756
Beam Search 0.851 1.000 0.756
Combined Sampling 0.817 0.994 0.762
Adaptive Decoding 0.823 0.994 0.713
LTM Decoding 0.852 1.000 0.768

Table 2: Performance comparison of different decoding
strategies for backend LLMs.

prompt methods in reasoning accuracy, providing
empirical evidence that conventional prompt-based
correction mechanisms introduce decision bound-
ary instability and lead to performance degradation.
These results empirically support the recommen-
dation to employ user feedback primarily as a re-
generation trigger—rather than embedding it in
corrective prompts—to maintain decoding stability
and optimize LLM self-correction efficiency.

5.3 Decoding Comparison

To evaluate the LTM method, we assess its perfor-
mance as a standalone decoding strategy for LLMs
without integrating any self-correction techniques,
focusing on single-turn tasks. The models and
datasets used are consistent with those described
in the preceding sections. The baseline methods
comprise: (1) Greedy Decoding: This method al-
ways selects the word with the highest probability
at each decoding step. (2) Beam Search: This

“Complete quantitative results for all backend LLMs and
datasets are documented in Appendices Table 5.



method selects the top-k most probable beams at
each decoding step and is a classical decoding tech-
nique in the field of NLP. (3) Combined Sampling
(nucleus sampling): This approach combines top-
p and top-k sampling, with parameters p = 0.95
and k = 15 used consistently across all experi-
ments. It is a widely adopted decoding strategy
in LLMs. (4) Adaptive Decoding: This method
enhances top-k sampling by dynamically adjusting
the candidate set size at each generation step based
on an entropy-based confidence score. Adaptive
Decoding is a relatively novel technique compared
to the aforementioned methods.

To ensure fair comparative evaluation, we stan-
dardize computational budgets—quantified by gen-
erated token counts—across methods through hy-
perparameter adjustments.> Results in Table 2
demonstrate that LTM consistently outperforms
baseline approaches. This superiority highlights
the effectiveness of its multipath exploration and
dynamically adjusted candidate set mechanism,
which expand the decoding space exploration be-
yond single-path methods. Compared to Beam
Search, LTM strategically allocates computational
resources to critical decoding steps. For example,
in scenarios with flattened token probability dis-
tributions, LTM adaptively selects diverse tokens,
whereas Beam Search’s fixed-width strategy may
overlook high-potential paths, illustrating LTM’s
flexibility in optimizing resource utilization for im-
proved performance. *

6 Related Work

6.1 Self-Correction Methods

Numerous studies have advanced self-correction
methods in the domain of LLMs. For instance,
Madaan et al. (2024) proposed a three-stage frame-
work that enhances LLM outputs by integrating
feedback from previous iterations. Li et al. (2024)
designed prompts to guide the LLM in assessing
its confidence and deciding whether to generate a
revised response. Huang et al. (2024) further ex-
plored the use of critic prompts to evaluate the self-
correction capabilities of LLMs. Additionally, task-
specific prompts have been developed for transla-
tion tasks to facilitate iterative refinement (Chen
et al., 2024). However, existing self-correction
methods for LLMs rely on prompts while neglect-

3Detailed hyperparameter settings for different decoding
strategies are presented in Appendices Table 6.
*Appendices A.1 presents a real illustrative case.

ing real-time user feedback. This can lead to redun-
dant refinements and degrade LLM performance.
Unlike previous work, our prompt-free approach
incorporates useful user feedback to enhance effi-
ciency and performance.

6.2 Decoding Strategies

Current decoding strategies in LLMs primarily use
next-token prediction mechanisms such as top-k
sampling (Fan et al., 2018; Holtzman et al., 2018)
and nucleus sampling (top-p sampling) (Holtzman
et al., 2020). In top-k sampling, the LL.M selects
the next token from the top-k most probable to-
kens, while in nucleus sampling, it samples from
the smallest set of tokens whose cumulative prob-
ability exceeds a threshold p. Basu et al. (2021)
proposed a modified version of top-k sampling that
incorporates a feedback mechanism to control the
perplexity of the generated text. Zhu et al. (2024b)
introduced adaptive decoding, a variant of top-k
sampling that dynamically adjusts the size of k
based on the information entropy of the token prob-
ability distribution. Other recent approaches boost
LLM performance by exploring multiple decoding
paths. For instance, Wang and Zhou (2024) com-
bines sampling methods to select optimal outputs,
while Zhu et al. (2024a) scores reasoning steps to
determine path expansion. However, these methods
are constrained by fixed templates and limited rea-
soning steps. Our LTM decoding overcomes these
limitations through flexible, template-free reason-
ing for more adaptable human-Al interactions.

7 Conclusion

This work introduces the FTR self-correction
framework, which significantly enhances the per-
formance of LLMs by leveraging user feedback
as a guiding signal. Specifically, when user feed-
back indicates dissatisfaction with the LLMs’ out-
put, the framework employs LTM—an advanced
decoding strategy—to refine the response. By inte-
grating LTM with feedback-triggered regeneration,
the framework notably improves the overall quality
of the LLMs’ responses. Unlike existing meth-
ods that rely heavily on prompts and the LLMs’
internal assessment capabilities, the FTR frame-
work is more flexible and adaptive. This makes it
particularly well-suited for real-world human-Al
interaction scenarios where intuitive feedback is
readily available.



Limitations

Despite its advantages, LTM’s multipath decoding
mechanism exhibits a tendency to produce repeti-
tive or redundant outputs in text generation tasks.
Future research may focus on developing mecha-
nisms to detect and mitigate such redundancy dur-
ing decoding—such as dynamic path pruning based
on semantic similarity—while incorporating ad-
vanced sampling techniques (e.g., diverse beam
search) to enhance output diversity. These enhance-
ments could not only reduce computational over-
head and inference latency but also improve real-
time interaction quality in human-AlI dialogue sys-
tems. Meanwhile, our current experimental scope
is limited to LL.Ms with fewer than 13 billion pa-
rameters, which serve as a cost-efficient platform
for method validation. While prior studies (Li et al.,
2024) have shown that prompt-based approaches
excel in larger models (e.g., GPT series) due to their
superior instruction-following capabilities, our con-
trolled experiments on smaller architectures pro-
vide essential baselines for low-resource scenarios.
Future work will systematically evaluate LTM’s
scalability across LLM model scales to characterize
its impacts on computational efficiency, accuracy,
and latency in diverse computational environments.
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A Appendices
A.1 Case Study

In this section, we present a case study comparing
LTM with Beam Search to demonstrate LTM’s dis-
tinctive advantages. As illustrated in Figure 6, we
analyze the reasoning processes of both methods
on a mathematical problem from the MultiArith
dataset. For controlled comparison, Beam Search
uses a fixed beam width of 3, while LTM dynami-
cally adjusts its beam width with an average value
of 3 across decoding steps.

The key observation reveals that at a critical de-
coding step with a relatively flat candidate distri-
bution, Beam Search fails to retain all promising
candidates due to its fixed beam width strategy,
ultimately leading to an incorrect solution. In con-
trast, LTM dynamically adjusts its computational
resources at this step and increases the beam width
to 5, successfully preserving all potentially correct
candidates and consequently arriving at the accu-
rate final answer. This case clearly demonstrates
LTM’s adaptive advantage over static beam search
methods in handling complicated decoding scenar-
i0s.

A.2 Inference Time Analysis

Although LTM decoding introduces computa-
tional overhead compared to single-beam decod-
ing, FTR’s design mitigates this cost by triggering
regeneration only for samples with negative feed-
back, unlike standard self-correction methods that
perform mandatory double-pass generation for all



Question:
John earned 8 dollars for each lawn he mowed. If he had 15 lawns to mow,
but forgot to mow 7 of them, how much money did he actually earn?

\n
P(s) = 0.01 Bean Search output:
Th )
P(S§ - 0.004 Final result:[8] >
Final
Prefix: P(s) = 0.004 !

) Now, let's calculate...
P(s) = 0.004 Therefore, the final
[ result is [64] /
P(s) = 0.003

Other
tokens

Figure 6: Comparison of decoding processes between
Beam Search (fixed beam width=3) and LTM on a Mul-
tiArith dataset question. The yellow rectangle denotes
Beam Search’s candidate set, while the orange rectangle
represents LTM’s candidate set.

inputs and thus lead to net efficiency gains in low er-
ror rate scenarios. Baseline methods such as Critic
and IoE Prompt require 2 x N X t computation
time (with NV as the number of samples and ¢ as
the average inference time per sample), a linear
complexity arising from re-generating responses
for all inputs. In contrast, FTR’s total computa-
tion time is N x t x (1 + p x n), where p is the
proportion of samples requiring regeneration and
n is the average LTM beam width, with efficiency
emerging when p x n < 1. It is worth noting that
the impact of beam size on performance can be
reduced through parallel computing. For example,
with parallel LTM decoding at an average beam
width n = 3, the per-sample regeneration cost is
1.85x single-beam decoding time, leading to the
efficiency condition p < &= ~ 0.54. Detailed
test results across backend LLMs and datasets are
presented in Table 3, confirming that FTR’s adap-
tive regeneration strategy balances reasoning depth
with computational efficiency for real-world de-
ployments.

A.3 Additional Experiments Details

SThe experimental evaluations were performed on a com-
puting system featuring an NVIDIA RTX 6000 Ada Gen-
eration GPU and Intel Xeon Platinum 8358P CPUs with 32
physical cores (64 threads) running at 2.60GHz base frequency
and 48MB L3 cache.

Method GSMSK MultiArith HumanEval
# Llama2-7B #

Initial Input 1x 1x 1x

+ Critic/IoE Prompt 2X 2X 2x
+ FTR (Ours) 2.47x 2.15x 3.87x

# Llama2-13B #

Initial Input 1x 1x 1x

+ Critic/IoE Prompt 2% 2x 2x
+ FTR (Ours) 2.48x% 1.64x 2.98%

# Llama3-1B #

Initial Input 1x 1x 1x

+ Critic/IoE Prompt 2X 2x 2X
+ FTR (Ours) 2.40% 2.49x 2.32x

# Llama3-3B#

Initial Input 1x 1x 1x

+ Critic/IoE Prompt 2% 2% 2x
+ FTR (Ours) 1.42x 1.12x 2.64 %

# Qwen-1.5B#

Initial Input 1x 1x 1x

+ Critic/IoE Prompt 2X 2x 2X
+ FTR (Ours) 2.07x 1.81x 2.89%

# Qwen-3B#

Initial Input 1x 1x 1x

+ Critic/IoE Prompt 2x 2x 2%
+ FTR (Ours) 1.30x 1.02x 2.03x%

Table 3: Inference time comparison of different self-
correction methods across different datasets and LLMs.

LLM Model GSMSK  MultiArith HumanEval
Llama2-7B II:JII\JI 3;49(3 ;Sgg fgg
Llama2-13B I;;II\)I 29%5371 42;3(3); 111,15746
Llama3-1B 1;1;,1 ég?i 6207745 2?2
Llama3-3B ];1; %;(7)3 218'.7537 i;gg
Qwen-1.5B 11?; ;g% ;2'.1706 iggg
QuerdB gl gw0 207

Table 4: False Negative (FN) and False Positive (FP)
rates of GPT-40 on different datasets (%).

Method GSMSK MultiArith HumanEval

# Llama2-7B #

Initial Input 0.206 0.539 0.104

+ Prompt 0.243 0.694 0.140

+ Indicator (Ours) 0.328 0.810 0.146
# Llama2-13B #

Initial Input 0.303 0.656 0.207

+ Prompt 0.359 0.806 0.220

+ Indicator (Ours) 0.455 0.872 0.243
# Llama3-1B #

Initial Input 0.245 0.406 0.287

+ Prompt 0.301 0.506 0.317

+ Indicator (Ours) 0.374 0.556 0.384
# Llama3-3B#

Initial Input 0.774 0.961 0.488

+ Prompt 0.822 0.972 0.534

+ Indicator (Ours) 0.859 0.983 0.567
# Qwen-1.5B#

Initial Input 0.422 0.678 0.409

+ Prompt 0.512 0.750 0.476

+ Indicator (Ours) 0.630 0.900 0.512

# Qwen-3B#

Initial Input 0.837 0.994 0.677

+ Prompt 0.867 0.994 0.732

+ Indicator (Ours) 0.892 1.000 0.768

Table 5: Detailed model performance comparison under
different user feedback utilization approaches.



GSM8K MultiArith

Beam Search
Combined Sampling
Adaptive Decoding
LTM Decoding

Beam Search
Combined Sampling
Adaptive Decoding

LTM Decoding

Beam Search
Combined Sampling
Adaptive Decoding
LTM Decoding

Beam Search
Combined Sampling
Adaptive Decoding
LTM Decoding

Beam Search
Combined Sampling
Adaptive Decoding
LTM Decoding

Beam Search
Combined Sampling
Adaptive Decoding
LTM Decoding

# Llama2-7B #

n=23 n=>5
n=23 n=>5
n=23 n=>5
p*=0.8k* = p*=09,k"=7
# Llama2-13B #
n=4 n=23
n=4 n=23
n=4 n=23

p*=09,k*=7 p*=0.85k"=
# Llama3-1B #

n=3 n=>5
n=3 n=>5
n=3 n=>5
p*=0.8k* = p*=0.9k" =
# Llama3-3B #
n=23 n="17
n=3 n==06
n=3 n==06
p*=08k*=7 p*=095k"=7
# Qwen-1.5B #
n=3 n=>5
n=3 n=>5
n=3 n=>5
p*=08k*=7 p*"=09k*=7
# Qwen-3B #
n=3 n=>5
n=3 n=>5
n=3 n=>5

p* =085k =7 p* =085k =7

*

*

*

*

*

p

HumanEval
n="7
n==~06
n="7

=0.85,k*=7
n=>5
n =
n=>5

=08,k*=7
n=23
n=23
n=23
=08,k*=7
n=>=5
n="7
n="17
=09,k*=7
n="17
n="17
n="17
=0.9,k*=8
n="7
n="7
n="17
=09,k*=7

Table 6: Hyperparameters of different decoding methods used in Tables 1 and 2. For beam search, n denotes
the number of beams, while for combined sampling and adaptive decoding, n indicates the number of generated

answers.
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