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ABSTRACT

Systematic genetic perturbation provides critical insights into cell functioning, yet
predicting their cellular effects remains a major challenge. Despite advances in
computational approaches, accurately modelling cellular responses to unseen per-
turbations continues to be difficult. Large Language Models (LLMs) have shown
promise in biological applications by synthesizing scientific knowledge, but their
direct application to high-dimensional gene expression data has been impractical
due to numerical limitations. We propose LangPert, a novel hybrid framework
that leverages LLMs to guide a downstream k-nearest neighbors (kNN) aggre-
gator, combining biological reasoning with efficient numerical inference. We
demonstrate that LangPert achieves state-of-the-art performance on single-gene
perturbation prediction tasks across multiple datasets.

1 INTRODUCTION

Understanding cellular responses to perturbations, in particular gene knockouts, is a cornerstone in
deciphering complex biological systems. By systematically altering cellular components via genetic
perturbations, researchers can observe cellular behavior changes in genome-wide gene expression
vectors, thereby uncovering the genetic mechanisms underlying health and disease. Mapping out
even the single-gene-perturbation landscape in a particular cell line requires significant experimental
effort. This challenge scales with the number of cell types under investigation, and grows exponen-
tially when considering combinatorial perturbations. This motivates the development of computa-
tional approaches that could reduce the need for exhaustive experimental testing by predicting the
results of unseen perturbations, particularly important when trying to deconvolute the multicellular
functional impact of the thousands of genetic variants associated with complex metabolic disorders
like Type 2 Diabetes and Obesity.

The ability to computationally predict the results of unseen genetic perturbations would dramati-
cally accelerate biological discovery while reducing experimental costs. This challenge has recently
attracted significant attention, with researchers developing various approaches to leverage prior bi-
ological knowledge. These range from transformer-based foundation models, such as scGPT (Cui
et al., 2024) and scFoundation (Hao et al., 2024), pre-trained on large-scale cell atlases to meth-
ods that explicitly incorporate structured knowledge like gene-gene relationships and ontologies
(Roohani et al., 2023). However, despite the sophistication of these approaches, recent studies have
revealed a surprising finding: seemingly simple baselines, such as predicting the mean expression
response, often outperform more complex deep learning methods (Ahlmann-Eltze et al., 2025; Kern-
feld et al., 2024; Wong et al., 2025).

These findings motivate the exploration of alternative approaches that can better leverage biological
knowledge while maintaining the ability to handle high-dimensional gene expression data. Particu-
larly promising are methods that can incorporate the vast amount of unstructured biological knowl-
edge present in the scientific literature, which contains detailed and interrelated (if unstructured)
information about gene functions, interactions, and regulatory mechanisms that could potentially
inform and enhance current perturbation prediction methods.

Large Language Models (LLMs) have recently demonstrated remarkable success in scientific ap-
plications, particularly in assisting with data analysis, literature mining, and complex reasoning
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Figure 1: (A) The task of unseen perturbation outcome prediction illustrated. The training set
consists of pairs {(xn,yn)}, where inputs xn are discrete perturbation labels and outputs yn are
high-dimensional gene expression vectors. At test time, the goal is to predict outcomes y∗ corre-
sponding to unseen perturbation labels x∗. (B) Our proposed LLM-based LangPert framework.
Instead of using the LLM to directly predict high-dimensional y∗, the LLM is tasked with finding
a relevant small subset from the training perturbation labels {(xn)} for every x∗ from the held out
test set. We use the LLM output to aggregate the corresponding subset of training set expression
vectors, effectively resulting in an LLM-informed contextual nearest neighbour prediction.

tasks (Guo et al., 2025; Gao et al., 2024). Their ability to synthesize knowledge from vast scien-
tific corpora and perform step-by-step reasoning has shown promise for various scientific domains.
However, their ability to handle high-dimensional numerical data remains limited due to tokeniza-
tion constraints and fundamental challenges in numerical computation (Gambardella et al., 2024;
Johnson & Hyland-Wood, 2024) with particular difficulties in generating precise continuous val-
ues. This limitation is particularly acute in transcriptional response modeling, where predictions are
high-dimensional and must capture complex, noisy patterns across thousands of genes.

To leverage the impressive knowledge synthesis capabilities of LLMs while overcoming their limi-
tations with high-dimensional data, we propose a novel framework for predicting cellular outcomes
to unseen genetic perturbations. Instead of directly interacting with expression data, we engineer
a system where the LLM guides a downstream k-nearest neighbors (kNN) aggregator, combining
contextual biological insights with efficient numerical computation, as illustrated in Figure 1. We
demonstrate that this hybrid LLM-kNN framework achieves state-of-the-art performance on single-
gene perturbation prediction tasks.

2 BACKGROUND

2.1 EXISTING METHODS FOR PERTURBATION DATA

VAE-based methods Variational Autoencoders (VAEs) (Kingma & Welling, 2014; Rezende et al.,
2014) have been widely employed as a (conditional) generative model for single-cell perturba-
tion data. Various adaptations, including the Compositional Perturbational Autoencoder (Lotfollahi
et al., 2023), sVAE+ (Lopez et al., 2023) and SAMS-VAE (Bereket & Karaletsos, 2023), all cap-
ture perturbation effects in the latent space. However, such VAE-based approaches fundamentally
lack a mechanism to generalize to unseen single-gene perturbations, as they are inherently limited
to modeling only the perturbations observed during training. This is because these methods effec-
tively represent perturbations as distinct categorical conditions—while they learn representations of
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all training-set perturbations, the respective representations for test-set perturbations are absent. The
one-hot or categorical encoding of perturbations does not provide a natural way to infer relation-
ships between observed and unseen conditions, preventing these models from extrapolating beyond
the training set.

GEARS Roohani et al. (2023) proposed a graph neural-network based model called GEARS for
perturbation response modelling. Unlike VAE-based approaches, GEARS explicitly incorporates
structured biological prior knowledge, allowing it to generalize to perturbations involving genes
that have not been experimentally tested in the prediction task of interest. Specifically, GEARS
incorporates information about gene-gene relationships in two ways, using a gene co-expression
graph as well as a gene ontology (GO) knowledge graph.

Single-cell foundation models The success of transformer-based foundation models has spurred
their adaptation to single-cell biology. Models such as GeneFormer (Theodoris et al., 2023), scGPT
(Cui et al., 2024), and scFoundation (Hao et al., 2024) are pre-trained on large-scale single-cell
atlases to learn gene expression patterns. While these models have shown promise in various single-
cell analysis tasks, careful evaluations have questioned their fundamental capabilities compared to
simpler approaches (Boiarsky et al., 2024; Kedzierska et al., 2023). Particularly in the context of
perturbation prediction, where models are fine-tuned to predict responses to unseen genetic inter-
ventions, these sophisticated approaches often fail to outperform simple baselines such as mean
prediction (Ahlmann-Eltze et al., 2025; Kernfeld et al., 2024).

LLM-informed gene embeddings LLMs have been widely applied across scientific domains, in-
cluding biology (Lee et al., 2020). In the context of gene-level biological knowledge, recent methods
such as GenePT (Chen & Zou, 2024) have taken a novel approach: instead of training foundation
models on gene expression data, they leverage LLMs’ understanding of scientific literature to gen-
erate gene embeddings. These embeddings, derived from NCBI text descriptions of genes, have
shown promising results in observational single-cell analysis tasks. Building on this idea, Märtens
et al. (2024) extended the approach to interventional settings, developing a GP+LLM model that
combines a Gaussian Process with literature-derived embeddings as well as protein language model
embeddings to predict perturbation outcomes, demonstrating that LLMs can effectively encode bio-
logically relevant prior knowledge.

2.2 LEVERAGING LLMS FOR BIOLOGICAL KNOWLEDGE

Large Language Models have emerged as powerful tools for synthesizing biological knowledge
from scientific literature, offering new approaches to understanding gene functions and relation-
ships. While methods like GP+LLM (Märtens et al., 2024) have shown promise by leveraging
LLM-derived embeddings in predictive models, these embeddings are inherently static, as they are
extracted from a fixed body of literature (e.g., NCBI abstracts in (Chen & Zou, 2024)) as condensed
into an LLM at a specific training data corpus cutoff-date. This limits their adaptability when rea-
soning about unseen perturbations, where context-dependent interactions may play a crucial role.

While LLMs can extract meaningful biological relationships from text, their effectiveness in high-
dimensional perturbation modeling is constrained by tokenization limits and numerical precision
issues. These limitations motivate our hybrid approach, which integrates LLM-driven biological
reasoning with computational models capable of handling high-dimensional data – a paradigm we
explore in LangPert.

3 LANGPERT: A HYBRID LLM-KNN FRAMEWORK

We propose LangPert, a framework that leverages LLMs’ ability to reason about biological mech-
anisms while ameliorating their limitations in handling high-dimensional data. Instead of using
LLMs to generate static embeddings or to directly predict expression values, LangPert employs an
LLM to identify biologically relevant training examples that can inform predictions for unseen per-
turbations. These LLM-selected examples then guide a downstream aggregation function (here we
employ a k-nearest neighbors (kNN) scheme) that performs the actual numerical computations in
the high-dimensional expression space.
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Problem formulation As illustrated in Figure 1, the task of unseen perturbation response predic-
tion presents a challenging supervised learning challenge, where given pairs {(xn,yn)}, inputs xn

are discrete perturbation labels and outputs yn ∈ RD are high-dimensional numeric readouts cor-
responding to those labels. The goal is to predict responses y∗ for test inputs x∗ which are distinct
from those in the training set. This makes the task fundamentally different from standard supervised
learning, as it requires extrapolation to entirely new perturbations, which would fall outside of the
one-hot representational space of the training data perturbation categories.

Naive application of LLMs One approach to utilise LLMs for this problem is via in-context
learning (ICL), where (xn,yn) pairs are given to the LLM as part of the input prompt, alongside
with new inputs x∗. However, this approach is problematic due to the high dimensionality of gene
expression vectors. Therefore, we propose a strategy to remedy this challenge inherent in a naive /
brute force application of LLMs in this doamin.

LangPert adaptation for high-dimensional outcomes Specifically, we propose to only show the
model training inputs {xn} alongside with a test input x∗. As these inputs correspond to perturba-
tion labels – for genetic perturbations these would be gene names – LLMs have demonstrated strong
capabilities in reasoning about biological relationships and identifying functionally related genes
through their training on scientific literature (Hu et al., 2025). We leverage these established capa-
bilities, using the LLM’s comprehensive knowledge of biological systems and its proven few-shot
learning abilities (Brown et al., 2020) to identify genes from the training set that are functionally
relevant for the prediction target x∗. This biological reasoning can be further enhanced through
relevant context included in the prompt by a human user.

Contextual aggregation Given the LLM output of a subset of gene perturbation labels relevant
to the input prompt, the final output of an unseen perturbation prediction pipeline can be made via
an aggregation / reduction of the gene expression vectors of those relevant genes. That is, given a
relevant subset G where {(xn,yn)} for n ∈ G, we propose to make the prediction 1

|G|
∑

n∈G yn

for the unseen output. This can be interpreted as a k nearest neigbour predictor, where the relevant
neighbours are identified by the LLM and then averaged. In principle, different aggregation tech-
niques can be adapted here, for examaple weighting the inputs, using nonparametric (e.g. median)
reductions, or even passing the subset data {(xn,yn)} to a small tabular prediction framework. In
this work, we found it sufficient to use simple averaging to achienve SOTA results, but future work
investigating more principled aggregation/reduction strategies may yield even stronger predictions.

In summary, we have proposed a hybrid LLM-kNN framework, where predictions take the following
form

y∗ =
1∑
n wn

∑
n

wnyn, where wn = LLM(x∗, {xn}, context) ∈ {0, 1}

where the LLM sees the test perturbation label x∗, all training labels {xn} and potentially additional
information presented in the prompt. The number of chosen training perturbations, i.e. the number
of nearest neighbours k :=

∑
n wn can either be specified in the prompt or remain unspecified,

giving the LLM flexibility to choose.

4 RESULTS

4.1 EXPERIMENTAL SETUP

Datasets For evaluation, we consider data from large-scale Perturb-seq screens across two cell
lines: the leukemia cell line (K562) and the retinal pigment epithelial (RPE1) cell line from (Re-
plogle et al., 2022). We use the version of the data curated by Roohani et al. (2023)1, with a total of
1092 perturbations in the K562 cell line and a total of 1543 perturbations in the RPE1 cell line.

Experimental details and metrics In all our evaluations, we assess performance in a 5-fold cross-
validation setting, so in the end, all metrics are calculated on the entire set of 1092 perturbations in
K562 cell line, and 1543 perturbations in RPE1. Predictions on every held-out cross-validation fold

1Available in https://github.com/snap-stanford/GEARS
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are made independently to avoid any data leakage. In experiments where we consider a gradually
increasing number of training perturbations (e.g. along x-axis in Figure 2), for every cross-validation
split we repeatedly downsample the training set.

Following practices from literature, we quantify perturbation prediction performance relative to con-
trol cells, i.e. using Pearson correlation, mean absolute error (MAE), and mean squared error (MSE)
on the differences ∆n :=n −control. Following Roohani et al. (2023), we calculate both metrics
across the top 20 differentially expressed genes relative to control cells, resulting in gene sets that
are specific for every perturbation.

Baselines As discussed in the Background section 2.1, we consider existing methods which have
a capability to generalise to unseen single-gene perturbations. Specifically, we consider the graph
neural network approach GEARS, fine-tuning a single-cell foundation model scGPT, and two ver-
sions of the GP+LLM model (one using NCBI text embeddings as input, the other combining text
embeddings and protein sequence embeddings). We also consider a non-control mean baseline that
has been shown to be surprisingly effective (Kernfeld et al., 2024; Märtens et al., 2024).

Choice of LLM A crucial component of LangPert is its LLM engine, meaning the choice of LLM
can significantly impact its behavior and performance. For all comparisons in Section 4.2, we use
Claude 3.5 Sonnet v2. Later, in Section 4.3, we examine how performance varies across different
LLMs and explore a more advanced prompting strategy incorporating a self-refinement step.

4.2 PERFORMANCE COMPARISON

Results on K562 cell line Figure 2 shows the performance metrics (MAE and correlation) on
the K562 cell line dataset across a varying number of training perturbations. The ordering of ex-
isting baselines is aligned with what has been reported in literature: the fine-tuned scGPT is the
lowest performing model, followed by GEARS. GEARS outperforms the non-control mean base-
line according to the MAE metric, but slightly underperforms in correlation. The GP+LLM models
outperform both scGPT and GEARS.

Our proposed LangPert significantly outperforms all existing models according to the MAE and
MSE metrics (see Table 1 for numerical values), and also achieves a slightly higher correlation
value. For example, in the scenario with 850 training perturbations, LangPert achieves MAE of
0.224(±0.005) which is a substantial improvement over the second best GP+LLM’s 0.265(±0.004).

Results on RPE1 cell line We conducted a similar experiment on the RPE1 cell line, with results
summarized in Table 2. The ranking of methods remains consistent with previous benchmarks,
with LangPert achieving the best results in MAE and MSE metrics. For the correlation metric,
at the smallest sample size (50 training perturbations), the non-control mean achieves the highest
correlation (0.737± 0.006), slightly surpassing LangPert (0.726± 0.005). However, as the sample
size increases, LangPert outperforms all baselines. At the largest sample size (1170 perturbations),
LangPert achieves an MAE of 0.318 ± 0.004 (compared to the second-best LLM+GP at 0.364 ±
0.004) and a correlation of 0.772± 0.005 (vs. LLM+GP’s 0.760± 0.005).

Overall, LangPert sets a new state-of-the-art performance on both the K562 and RPE1 cell line
benchmarks.

4.3 IMPACT OF LLM DESIGN CHOICES

The LLM component in LangPert framework has two main elements: the choice of the LLM itself
and the prompting strategy. In this section, we evaluate how different LLM architectures affect per-
formance and examine the role of a refinement-based prompting approach in improving the selection
of relevant gene perturbations.

To assess the significance of LLM selection, we conducted a comparative analysis across three
frontier models: OpenAI o1, OpenAI o3-mini, and Claude 3.5 Sonnet v2. Our evaluation considered
both overall predictive performance and the consistency of selected genes across models.

First, examining overall performance (Column “Single-pass” in Table 3), we observed robust per-
formance across all models. All evaluated LLMs outperformed the best GP+LLM baseline in both
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Figure 2: Performance comparison across models (scGPT, GEARS, non-control mean baseline,
GP+LLM, and LangPert) evaluated using mean absolute error (MAE, lower is better) and Pearson
correlation between predicted and observed differences from control cells (higher is better). Shaded
regions indicate ±1.96 standard errors across data splits. Model performance is shown as a function
of training set size, varying from 50 to 850 perturbations.

Table 1: Results on K562 cell line dataset: Performance comparison of different models at different
training data sizes. Values shown as mean ± standard error.

100 training perturbations 850 training perturbatons
Model MAE ↓ MSE ↓ Correlation ↑ MAE ↓ MSE ↓ Correlation ↑
scGPT 0.388 ± 0.016 0.234 ± 0.014 0.430 ± 0.021 0.324 ± 0.008 0.195 ± 0.012 0.488 ± 0.016
GEARS 0.316 ± 0.004 0.164 ± 0.004 0.633 ± 0.005 0.292 ± 0.002 0.147 ± 0.003 0.655 ± 0.007
Non-ctrl mean 0.329 ± 0.006 0.175 ± 0.008 0.665 ± 0.006 0.332 ± 0.006 0.176 ± 0.007 0.671 ± 0.007
GP+LLM (text) 0.312 ± 0.006 0.162 ± 0.008 0.672 ± 0.006 0.268 ± 0.004 0.132 ± 0.006 0.718 ± 0.012
GP+LLM (text+seq) 0.306 ± 0.006 0.158 ± 0.008 0.683 ± 0.006 0.265 ± 0.004 0.130 ± 0.005 0.728 ± 0.012
LangPert 0.259 ± 0.006 0.132 ± 0.005 0.689 ± 0.004 0.224 ± 0.005 0.108 ± 0.005 0.731 ± 0.011

Table 2: Results on RPE1 cell line dataset: Performance comparison of different models at differ-
ent training data sizes. Values shown as mean ± standard error.

50 training perturbations 100 training perturbations
Model MAE ↓ MSE ↓ Correlation ↑ MAE ↓ MSE ↓ Correlation ↑
scGPT 0.452 ± 0.008 0.346 ± 0.016 0.627 ± 0.009 0.451 ± 0.009 0.354 ± 0.006 0.642 ± 0.003
GEARS 0.471 ± 0.013 0.343 ± 0.019 0.670 ± 0.007 0.435 ± 0.022 0.307 ± 0.026 0.706 ± 0.005
Non-ctrl mean 0.427 ± 0.010 0.303 ± 0.015 0.737 ± 0.006 0.430 ± 0.006 0.305 ± 0.013 0.738 ± 0.005
GP+LLM (text) 0.414 ± 0.011 0.289 ± 0.014 0.721 ± 0.002 0.408 ± 0.005 0.282 ± 0.009 0.725 ± 0.002
GP+LLM (text+seq) 0.417 ± 0.013 0.294 ± 0.016 0.717 ± 0.004 0.403 ± 0.005 0.277 ± 0.009 0.723 ± 0.004
LangPert 0.368 ± 0.008 0.249 ± 0.012 0.726 ± 0.005 0.361 ± 0.008 0.239 ± 0.013 0.737 ± 0.008

250 training perturbations 1170 training perturbations
MAE ↓ MSE ↓ Correlation ↑ MAE ↓ MSE ↓ Correlation ↑

scGPT 0.436 ± 0.024 0.329 ± 0.030 0.641 ± 0.009 0.449 ± 0.038 0.349 ± 0.040 0.603 ± 0.040
GEARS 0.430 ± 0.011 0.291 ± 0.015 0.720 ± 0.007 0.405 ± 0.015 0.266 ± 0.015 0.710 ± 0.011
Non-ctrl mean 0.432 ± 0.005 0.306 ± 0.011 0.741 ± 0.004 0.434 ± 0.005 0.308 ± 0.011 0.743 ± 0.005
GP+LLM (text) 0.400 ± 0.004 0.271 ± 0.010 0.735 ± 0.003 0.371 ± 0.004 0.238 ± 0.009 0.759 ± 0.005
GP+LLM (text+seq) 0.397 ± 0.003 0.269 ± 0.009 0.732 ± 0.003 0.364 ± 0.004 0.233 ± 0.009 0.760 ± 0.005
LangPert 0.344 ± 0.005 0.218 ± 0.010 0.753 ± 0.009 0.318 ± 0.004 0.192 ± 0.006 0.772 ± 0.005

MAE and MSE metrics, with only the o3-mini model showing slightly lower performance on the
correlation metric relative to the GP+LLM baseline. This consistent strong performance across
different models suggests that the LangPert framework is reasonably robust to model choice.

When analyzing the overlap in model responses, we found considerable variation in gene selection
across different LLMs, yet they produced similarly predictive gene sets. For example, when compar-
ing Claude 3.5 Sonnet v2 and OpenAI o3-mini inferred gene lists, the average overlap is 2.5 genes
(Fig 3 left), when an average total number of listed genes is 6.2. When focusing on the overlap
across all three considered models, the average overlap is 1.8 genes (Fig 3 right). This variation,
despite similar predictive performance, suggests that different models may identify distinct but sim-
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Table 3: Performance comparison of language models using two strategies: (1) a single LLM call
(”Single-pass”) and (2) an additional call for self-critique (”Refinement-based strategy”).

Single pass Refinement-based strategy
Model MAE ↓ MSE ↓ Correlation ↑ MAE ↓ MSE ↓ Correlation ↑
OpenAI o1 0.220 ± 0.004 0.105 ± 0.003 0.731 ± 0.007 0.220 ± 0.004 0.105 ± 0.003 0.731 ± 0.007
Claude 3.5 Sonnet 0.229 ± 0.004 0.111 ± 0.004 0.731 ± 0.007 0.229 ± 0.004 0.111 ± 0.004 0.731 ± 0.007
OpenAI o3-mini 0.235 ± 0.004 0.116 ± 0.004 0.704 ± 0.007 0.215 ± 0.004 0.101 ± 0.003 0.739 ± 0.007

Figure 3: Gene selection overlap across LLM models. (Left): Distribution of overlapping gene
counts between o3-mini and Claude 3.5 Sonnet v2. (Right): Distribution of intersecting gene counts
across all three models.

Question: What are the most relevant genes for the purpose of predicting SMG5 perturbation?

• OpenAI o3-mini:

◦ Single pass: ‘UPF1’, ‘DDX6’, ‘PPP4C’, ‘CNOT3’, ‘PNN’
◦ Refinement-based: ‘UPF1’, ‘UPF2’, ‘SMG7’, ‘DDX6’, ‘CNOT3’
◦ Reasoning (Single pass): I selected UPF1 because it is a core component of the nonsense-mediated decay (NMD) path-

way and directly interacts with SMG5. The additional genes, DDX6, PPP4C, CNOT3, and PNN, are involved in RNA
metabolism—through mRNA decapping, dephosphorylation, and processing—functions that are closely linked to NMD
and are relevant in the context of perturbation prediction in K562 cells.

◦ Reasoning (Refinement-based): UPF1, UPF2, and SMG7 are core components of the nonsense-mediated decay pathway
and share functional relationships with SMG5, making them highly relevant for perturbation prediction in chronic myeloid
leukemia. DDX6 and CNOT3 are key regulators in mRNA decay and gene expression, likely resulting in expression
changes similar to those induced by SMG5 perturbation.

• OpenAI o1:

◦ Single pass: ‘UPF1’, ‘UPF2’, ‘RBM8A’, ‘RNPS1’, ‘MAGOH’
◦ Refinement-based: ‘UPF1’, ‘UPF2’, ‘RBM8A’, ‘RNPS1’, ‘MAGOH’
◦ Reasoning (Single pass): These genes participate in the nonsense-mediated mRNA decay pathway alongside SMG5. Their

shared involvement in recognizing and degrading aberrant transcripts suggests similar perturbation effects. Additionally,
literature supports interactions among these factors, reinforcing their functional similarity in K562 cells.

◦ Reason (Refinement-based): These genes are central components of the nonsense-mediated decay (NMD) pathway,
closely linked to SMG5’s function. Their co-regulation and interactions ensure that perturbations resemble SMG5-related
cellular effects, which is crucial for chronic myeloid leukemia research.

• Claude:

◦ Single pass: ‘UPF1’, ‘UPF2’, ‘RNPS1’, ‘RBM8A’, ‘MAGOH’, ‘SRSF1’, ‘SRSF2’
◦ Refinement-based: ‘UPF1’, ‘UPF2’, ‘MAGOH’, ‘RBM8A’, ‘RNPS1’
◦ Reasoning (Single pass): Selected genes are involved in the nonsense-mediated mRNA decay (NMD) pathway, where

SMG5 plays a crucial role. UPF1 and UPF2 are core NMD factors that directly interact with SMG5. RNPS1, RBM8A,
and MAGOH are part of the exon junction complex (EJC) which is essential for NMD. SRSF1 and SRSF2 are splicing
factors that can influence NMD efficiency and interact with the NMD machinery. These genes are particularly relevant in
K562 cells where proper mRNA quality control is essential for cellular homeostasis.

◦ Reason (Refinement-based): These genes form a core component of the nonsense-mediated mRNA decay (NMD) path-
way, which is closely related to SMG5’s function. UPF1 and UPF2 are central NMD factors, while MAGOH, RBM8A,
and RNPS1 are part of the exon junction complex (EJC) that interacts with the NMD machinery. SRSF1 and SRSF2
were removed as they are more generally involved in splicing regulation rather than specifically in the NMD pathway like
SMG5.

Figure 4: Example output for SMG5 gene perturbation across three LLMs, comparing a single LLM
call (’Single-pass’) with an additional self-critique call (’Refinement-based strategy’). Full prompt
examples are provided in Supplementary Material A.
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ilarly relevant gene relationships. Future work may explore ensembling strategies or methods to
integrate insights from multiple LLMs to enhance interpretability and robustness.

Refinement-based approaches have become widely adopted in LLM applications (Gao et al., 2024),
with recent work formalizing and analyzing their effectiveness (Madaan et al., 2024). Building on
these insights, we investigated a refinement-based approach in LangPert. This strategy involves a
secondary call to the LLM, where the initial gene selection is presented back to the model for critical
evaluation and potential refinement. Examples of both single-pass and refinement-based prompting
are provided in Supplementary Material A. As shown in Table 3, the impact of refinement varies
across models. The o3-mini model achieves optimal results when employing the refinement-based
approach, while the o1 model maintains its strong performance with or without refinement. Figure 4
illustrates examples of how the refinement process can lead to modifications in the initially selected
gene list, demonstrating the model’s ability to reconsider its selections in light of its first response.

5 DISCUSSION

We introduce LangPert, a novel hybrid framework that leverages Large Language Models to guide
k-nearest neighbour predictions for unseen genetic perturbations. LangPert achieves state-of-the-art
performance across multiple datasets and metrics, particularly as measured by mean absolute error
of predictions across the entire spectrum of low-to-high data regimes. Our model demonstrates the
potential of combining LLMs’ ever-growing biological knowledge with efficient numerical compu-
tation to address challenges in predicting unseen genetic perturbations.

LangPert’s key innovation lies in its ability to harness LLMs’ biological reasoning capabilities with-
out being constrained by their numerical limitations. By using LLMs to identify relevant training
examples and employing kNN for aggregation, our approach effectively bridges the gap between
knowledge-driven and data-driven methodologies. This hybrid strategy outperforms existing meth-
ods such as GEARS, scGPT, and GP+LLM.

The superior performance of LangPert has significant implications for perturbation biology. Im-
proved predictive models could dramatically reduce the need for exhaustive experimental testing, ac-
celerating biological discovery and potentially informing more efficient experimental design strate-
gies. Furthermore, LangPert’s flexible framework allows for the incorporation of different LLMs,
prompting strategies, and aggregation methods, suggesting ample room for further optimization and
adaptation to various biological contexts.

Despite its promising results, LangPert is not without limitations. Its performance depends on the
quality and up-to-date nature of the LLM’s knowledge, and potential biases in LLM training data
could influence predictions. Future work should explore more sophisticated aggregation methods
beyond averaging, incorporate uncertainty quantification, and extend the approach to multi-gene
perturbations or other types of biological interventions. Additionally, investigating the impact of
different LLMs as well as prompting strategies could further enhance the model’s capabilities.

The success of LangPert in integrating LLMs with traditional machine learning techniques for high-
dimensional biological data suggests potential applications beyond perturbation biology. This ap-
proach could be adapted to other scientific domains characterized by high-dimensional outcomes
and rich contextual knowledge, such as multi-objective molecular property prediction.

In conclusion, LangPert represents a significant advance in our ability to predict cellular responses
to unseen genetic perturbations. By effectively combining the strengths of LLMs and traditional
machine learning approaches, it opens new avenues for accelerating biological discovery and deep-
ening our understanding of complex cellular systems. As we continue to refine and expand this
approach, we anticipate its impact to grow, potentially transforming how we approach predictive
modeling in biology and beyond.
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SUPPLEMENTARY MATERIAL

A PROMPTS

This section provides the prompts used in the paper, the bold text in the prompts are variables.

A.1 SINGLE PASS GENE SELECTION

The prompt aims to identify approximately 5-10 genes from a provided list that closely resemble
the specified gene based on shared involvement in specific biological pathways, co-regulation, or
protein-protein interactions in the context of K562 cell line. These selected genes should be pertinent
for perturbation prediction, implying that their removal or inactivation would likely lead to similar
alterations in gene expression as the specified gene. The task also requires ranking these genes in
descending order of similarity, with the most similar gene listed first.

Given a gene of interest gene, choose around 5-10 genes from the list that are most similar to gene gene based on shared involvement in specific
biological pathways, co-regulation, or protein-protein interactions. These genes should be relevant for perturbation prediction, meaning their
knockout effect is likely to result in similar changes in gene expression as the knockout of gene gene. Rank the genes in order of decreasing
similarity, with the most similar gene first. Consider data from relevant databases or literature to assess the similarity between genes.
Focus on the context of the K562 cell line, a model for chronic myeloid leukemia. Consider the role of genes in pathways relevant to cancer
biology, including, but not limited to, ribosome biogenesis, transcriptional regulation, mitochondrial function, and stress responses.
Here is the list of genes available to choose from: gene train list
Provide your response as LIST:
Note: You may choose NO genes if NOT CONFIDENT in the similarity of others. Equally, when there are many genes involved in the same
pathway, feel free to include more relevant genes in the list.
OUTPUT JSON FORMAT

A.2 REFINEMENT-BASED GENE SELECTION

The task involves a detailed examination of the generated gene list, emphasizing its suitability for
perturbation prediction and its alignment with the specified gene of interest. As an expert, the
objective is to evaluate and potentially refine the gene list to guarantee its relevance and suitability
within the domain of gene perturbation prediction, especially within the context of the K562 cell
line, which serves as a model for chronic myeloid leukemia.

As an expert in gene perturbation prediction for the K562 cell line, a model for chronic myeloid leukemia, your task is to carefully review and,
if necessary, alter the following LIST single pass gene list based on their relevance to perturbation prediction and similarity to the gene gene
of interest.
Gene List for Considering: gene train list
Consider the biological pathways, co-regulation, and protein-protein interactions of each gene. Ensure that the listed genes are highly relevant
for perturbation prediction and are likely to result in similar changes in gene expression as the gene of interest when perturbed. You may
replace or remove genes as needed to optimize the list for perturbation prediction.
Please make any necessary alterations to the gene list to improve its relevance for perturbation prediction in the context of chronic myeloid
leukemia.
Once you have reviewed and made any alterations, provide the updated gene LIST of genes:
OUTPUT JSON FORMAT
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