
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2025

IMPROVED ROBUSTNESS AND HYPERPARAMETER
SELECTION IN THE DENSE ASSOCIATIVE MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

The Dense Associative Memory generalizes the Hopfield network by allowing for sharper
interaction functions. This increases the capacity of the network as an autoassociative
memory as nearby learned attractors will not interfere with one another. However, the
implementation of the network relies on applying large exponents to the dot product of
memory vectors and probe vectors. If the dimension of the data is large the calculation can
be very large and result in imprecisions and overflow when using floating point numbers
in a practical implementation. We describe the computational issues in detail, modify the
original network description to mitigate the problem, and show the modification will not
alter the networks’ dynamics during update or training. We also show our modification
greatly improves hyperparameter selection for the Dense Associative Memory, removing
dependence on the interaction vertex and resulting in an optimal region of hyperparameters
that does not significantly change with the interaction vertex as it does in the original
network. Our modifications also allow us to train a Dense Associative Memory with larger
interaction vertices than have been used in any previous literature.

1 INTRODUCTION

Autoassociative memories are a class of neural networks that learn to remember states, typically also allow-
ing nearby states to iterate towards similar learned states. These networks act as memories for the learned
states, reconstructing lost information and correcting errors in probe states. The Hopfield network (Hopfield,
1982; 1984) is perhaps the most studied model in the class. However, as with all autoassociative memories,
the Hopfield network suffers from capacity issues – the number of states that can be stored in a network
without error is limited. In the Hopfield network with Hebbian learning, this has been shown to be roughly
0.14N for a network of dimension N (McEliece et al., 1987; Hertz, 1991). The Dense Associative Memory,
also known as the modern Hopfield network, generalizes the classical Hopfield network by introducing an
interaction function parameterized by an interaction vertex (Krotov & Hopfield, 2016; 2018). This func-
tion controls the range of the influence for learned states, allowing control of the sizes of the attractors
and increasing the network capacity. Krotov & Hopfield (2016) also introduce several other generalizations
which are parameterized by additional hyperparameters relating to learning, including the initial learning
rate, learning rate decay, momentum, learning temperature and the exponent on the error term. Additional
hyperparameters were introduced such as the form of the interaction function, the number of memory vec-
tors, and more. In effect, the Dense Associative Memory is a potentially more powerful autoassociative
memory, but at the cost of increased complexity and reliance on hyperparameter tuning.

We focus on the implementation details of the Dense Associative Memory. In particular, we show the exact
form given by Krotov and Hopfield suffers from issues relating to computation and numerical stability. This
form calculates the dot product between two vectors of length N then immediately applies a potentially large
exponentiation based on the interaction function. This can cause inaccuracies in the floating point numbers

1



047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2025

used for computation, or even completely overflow them. In Section 4 we show a modification to the original
form – a normalization and shifting of scaling factors – that prevents the computational problems, and
prove that the modifications do not change the network behavior for a specific class of interaction functions:
homogenous functions. Fortunately, the typical interaction functions – the polynomial interaction function
(Equation 7) and rectified polynomial interaction function (Equation 8) – are in this class. We show our
modifications do not alter the properties of the autoassociative memory, such as the capacity, but do appear
to have desirable effects on the network over the course of training. In Section 5 we provide experimental
results that show our modified network has a stable region of optimal hyperparameters across a wide range
of interaction vertices. This is in comparison to the original network which had the optimal hyperparameters
shift dramatically as the interaction vertex changed even for the same dataset. We also show that the optimal
region of hyperparameters is no longer heavily dependent on the size of the data vectors or the interaction
vertex, meaning applying the Dense Associative Memory to a new task will not require massively retuning
the hyperparameter selections. A comprehensive list of our results, shown in Appendix A and B, demonstrate
successful training of a Dense Associative Memory with interaction vertices up to n = 100, an arbitrary
stopping point with indications of higher interaction vertices being possible and stable. Current literature
has not discussed using an interaction vertex this large.

Our modified update rule

ξ
(t+1)
i = sign

∑
µ

Fn(α(ζ
µ
i +

∑
j ̸=i

ζµj ξ
(t)
j ))− Fn(α(−ζµi +

∑
j ̸=i

ζµj ξ
(t)
j ))

 , (1)

and learning rule / loss function

L =
∑
a

∑
i

(ξa,i − Ca,i)
2m

Ca,i = tanh

∑
µ

Fn(β(ζ
µ
i +

∑
j ̸=i

ζµj ξ
(t)
j ))− Fn(β(−ζµi +

∑
j ̸=i

ζµj ξ
(t)
j ))

 ,

(2)

are subtly different to the original specifications by Krotov & Hopfield (2016), in that the scaling factors α, β
are within the interaction function evaluations Fn (·). We suggest values of α = 1

N , β = 1
NT , for network

dimension N and temperature T .

2 LITERATURE REVIEW

Our proposed method of shifting the scaling factors within the interaction function does not appear to have
been suggested previously, and other implementations of the Dense Associative Memory do not seem to
have included it. However, many implementations of the Dense Associative Memory use the feed-forward
equivalence set forth by Krotov & Hopfield (2016). This equivalence allows the Dense Associative Memory
to be expressed with some approximations as a feed-forward densely connected neural network with a single
hidden layer. This architecture is much easier to implement using traditional deep learning software libraries.
The feed-forward equivalent model implicitly implements our proposed changes by selecting values of the
scaling factor that negate terms arising from a Taylor expansion. This may help explain why the feed-forward
version of the model is more stable and popular than the auto-associative version.

Normalization is a typical operation in neural networks. In autoassociative memories specifically, we may
apply a normalization term to provide a constant power throughout network calculations, which ensures
calculations are proportional only to the magnitudes of the learned weights rather than the magnitude of
the probe vector. Even more specifically, in the Hopfield network this is typically achieved by using binary

2



094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

valued vectors. It has been shown networks using these vectors have the same behavior as networks using
graded (continuous value) neurons (Hopfield, 1984). Normalization may also be applied in the learning
rule, such as in the Hebbian learning rule (Hebb, 1949). Normalization in learning may be used to simply
scale the weights into something more interpretable, as in the Hebbian, or to achieve a different behavior
during training. For example, batch normalization aims to improve training by normalizing the inputs to a
layer across a batch – allowing the network to focus only on the variations in training data rather than the
potentially overwhelming average signal (Ioffe & Szegedy, 2015). Layer normalization is a technique used
in training recurrent neural networks and removes the dependence on batch size (Ba et al., 2016). These
normalizations techniques are more complex than what we suggest. Our modifications are not aiming to
supersede these techniques in the Dense Associative Memory but simply improve network stability and
practicality on an implementation level. Moreover, our suggestions do not exclude the possibility of using
these other normalization techniques.

Networks related to the Dense Associative Memory have employed some normalization techniques in a sim-
ilar manner to our work. Perhaps most closely related is the continuous, attention-like Hopfield network
(Ramsauer et al., 2021) which has shown promising results in the realm of transformer architectures. Ram-
sauer et al. operate over a slightly different domain; spherical vectors rather than bipolar vectors. While
the vector magnitude is still constant, the network has changed rather significantly from the one introduced
by Krotov and Hopfield, which may slightly change the arguments we make below. However, we note that
no analysis of the network stability in relation to floating point accuracy is made, and the remainder of our
modifications are not applied (e.g. shifting scaling factors inside the interaction function), which our work
expands on considerably. Further works have applied a similar normalization, albeit without noting why it is
useful for network stability (Millidge et al., 2022; Liang et al., 2022; Alonso & Krichmar, 2024). Literature
on Dense Associative Memory applications and derivatives discuss normalization either in a separate context
or only tangentially. Extensive work has been done on contrastive normalization (a biologically plausible ex-
planation of network behavior) in the Dense Associative Memory and its relation to the restricted Boltzmann
machine (Krotov & Hopfield, 2021). Other research employs advanced normalization techniques, including
some we discuss above such as layer normalization, by treating the Dense Associative Memory as a deep
recurrent network (Seidl et al., 2021). Again, these works do not consider shifting the scaling factors within
the interaction function.

3 FORMALIZATION OF THE HOPFIELD NETWORK AND DENSE ASSOCIATIVE
MEMORY

The Hopfield network defines a weight matrix based on the Hebbian of the learned states ξ, indexed by µ:

Wji =
∑
µ

ξµj ξ
µ
i (3)

The update dynamics for a probe state ξ are defined by the sign of the energy function, with updates being
applied asynchronously across neurons:

ξ
(t+1)
i = sign

∑
j

Wjiξ
(t)
j

 , (4)

where sign is the sign function, or hardlimiting activation function:

sign(x) =
{
1 if x ≥ 0,

−1 if x < 0.
(5)

The Dense Associative Memory has significantly different learning rules and update dynamics compared to
the Hopfield network, as well as major architectural changes, such as using a set of memory vectors ζ instead

3



141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2025

of a weight matrix W . The Dense Associative Memory also does away with a simple energy function and
instead uses the sign of the difference of energies. The unmodified update rule has the form:

ξ
(t+1)
i = sign

∑
µ

Fn(ζ
µ
i +

∑
j ̸=i

ζµj ξ
(t)
j )− Fn(−ζµi +

∑
j ̸=i

ζµj ξ
(t)
j )

 (6)

Where Fn is the interaction function, parameterized by interaction vertex n. The interaction vertex controls
how steep the interaction function is. Common interaction functions include the polynomial

Fn (x) = xn, (7)

rectified polynomial

Fn (x) =

{
xn if x ≥ 0,

0 if x < 0,
(8)

or leaky rectified polynomial

Fn (x, ϵ) =

{
xn if x ≥ 0,

−ϵx if x < 0.
(9)

The Hopfield network behavior is recovered when using the polynomial interaction function in Equation
7 and n = 2 (Krotov & Hopfield, 2016; Demircigil et al., 2017). Increasing the interaction vertex allows
memory vectors to affect only very similar probe vectors, decreasing interference with other memory vectors.

The Hopfield network requires only the energy calculation of the current state for updates (Equation 4), while
the Dense Associative Memory requires the calculation of the energy for the current state when neuron i is
clamped on (value 1) and clamped off (value −1). This is more computationally expensive but allows for
updating when the interaction vertex is larger than 2 and the usual arguments for update convergence in the
Hopfield network fail (Hopfield, 1982; Hopfield & Tank, 1985).

Instead of a weight matrix, the Dense Associative Memory uses a set of memory vectors, clamped to have
values between −1 and 1, but not necessarily corresponding to the learned states. Instead, the learned states
are used to update the memory vectors in a gradient descent. The unmodified loss function used in the
gradient descent is based on the update rule in Equation 6:

L =
∑
a

∑
i

(ξa,i − Ca,i)
2m

Ca,i = tanh

β∑
µ

Fn(ζ
µ
i +

∑
j ̸=i

ζµj ξ
(t)
a,j)− Fn(−ζµi +

∑
j ̸=i

ζµj ξ
(t)
a,j)

 (10)

Where a indexes over the learned states, and i indexes over the neurons. The new parameters m and β
control the learning process. The error exponent m emphasizes larger errors, and the inverse temperature β
scales the argument of the tanh function, avoiding vanishing gradients as the argument grows in magnitude.
Krotov & Hopfield (2016) found the error exponent can help train higher interaction vertex networks, and
suggest β = 1

Tn , with hyperparameter T representing the network temperature.

Inspecting the order of calculations in Equation 6 and 10: first the “similarity score” between a learned
state and a memory vector is calculated ±ζµi +

∑
j ̸=i ζ

µ
j ξ

(t)
j , effectively the dot product between two binary

vectors of length equal to the network dimension N . Next, this similarity score is passed into the interaction
function, which will typically have a polynomial-like form such as in Equation 7 or 8. If the interaction
vertex n is large the memory vectors become prototypes of the learned states (Krotov & Hopfield, 2016),

4



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

hence the similarity scores will approach the bound for the dot product of two binary vectors, N . We may
have to calculate a truly massive number as an intermediate value. For example, N = 104 and n = 30 will
result in an intermediate value of 10120. Single precision floating point numbers (“floats”) have a maximum
value of around 1038, while double precision floating point numbers (“doubles”) have a maximum value of
around 10308. In our example, we are already incapable of even storing the intermediate value in a float, and
it would not require increasing the network dimension or interaction vertex considerably to break a double.
Furthermore, the precision of these data types decreases as we approach the limits, potentially leading to
numerical instabilities during training or updating. Even in the update rule (Equation 6) where only the sign
of the result is relevant, a floating point overflow renders the calculation unusable.

We propose a slight modification to the implementation of the Dense Associative Memory. Normalizing
the similarity score by the network dimension N bounds the magnitude of the result to 1 rather than N .
Additionally, we propose pulling the scaling factor β inside the interaction function, so we can appropriately
scale the value before any imprecision is introduced by a large exponentiation as well as controlling the
gradient, making the network more robust. We show these modifications are equivalent to the original Dense
Associative Memory specification in Section 4. In Section 5 we also show by experimentation that these
modifications make the network temperature independent of the interaction vertex. This makes working
with the Dense Associative Memory more practical, as it avoids large hyperparameter searches when slightly
altering the interaction vertex.

4 MODIFICATION AND CONSISTENCY WITH ORIGINAL

Our modifications attempt to rectify the floating point issues by scaling the similarity scores before applying
the exponentiation of the interaction function. To justify our modifications we must show that the scaling
has no effect on the properties of the Dense Associative Memory in both learning and updating. For the
update rule, we will show the sign of the argument to the hardlimiting function in Equation 6 is not affected
as we introduce a scaling factor and move it within the interaction function. For learning, we will make a
similar argument using Equation 10.

4.1 HOMOGENEITY OF THE INTERACTION FUNCTION

In parts of our proof on the modification of the Dense Associative Memory we require the interaction func-
tion to have a particular form. We require the sign of the difference of two functions remain constant even
when a scaling factor is applied inside those functions; f(x)−f(y) = f(αx)−f(αy) ∀a > 0. A stronger
property (that is much easier to prove) is that of homogeneity:

f(αx) = αkf(x) ∀α > 0 (11)

with the exponent k known as the degree of homogeneity.
Lemma 4.1.1. The polynomial interaction function (Equation 7) is homogenous.

Proof.

Fn (αx) = (αx)
n

= αnxn

= αnFn(x)

Hence, the polynomial interaction function is homogenous, with degree of homogeneity equal to the inter-
action vertex n.

Lemma 4.1.2. The rectified polynomial interaction function (Equation 8) is homogenous.

5



235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2025

Proof.

Fn (αx) =

{
(αx)

n if (αx) ≥ 0

0 if (αx) < 0
=

{
αnxn if (αx) ≥ 0

0 if (αx) < 0,

= αn

{
xn if x ≥ 0

0 if x < 0,
= αnFn(x)

Note that the sign of x is unchanged by scaling by α > 0, so we can change the conditions on the limits as
we have. Hence, the rectified polynomial interaction function is homogenous, with degree of homogeneity
equal to the interaction vertex n.

4.1.1 ON COMMON NONHOMOGENOUS INTERACTION FUNCTIONS

The leaky rectified polynomial interaction function (Equation 9) is common in literature, alongside Equation
7 and 8. However, the leaky rectified polynomial is not homogenous. Empirically, we find it still behaves
well under our modifications.

The Dense Associative Memory has been generalized further using an exponential interaction function
(Demircigil et al., 2017). Another modification of the exponential interaction function has been used to
allow for continuous states and an exponential capacity (Ramsauer et al., 2021). This interaction function
has been analyzed in depth and linked to the attention mechanism in transformer architectures (Vaswani
et al., 2017).

F (x) = ex, (12)

The exponential interaction function is not homogenous. However, we can analyze the exponential function
specifically and relax the homogeneity constraint to show our modifications will not affect networks with
exponential interaction functions. In particular, we need only show the sign of the difference between two
exponentials is unaffected:

sign [α (ex − ey)] = sign [αex − αey]

= sign
[
elog(α)ex − elog(α)ey

]
= sign

[
elog(α)x − elog(α)y

]
.

Therefore, our modifications will not affect the properties of the Dense Associative Memory when using the
exponential interaction function, as we are still free to choose any scaling factor α.

4.2 UPDATE IN THE DENSE ASSOCIATIVE MEMORY

We start with the right-hand side of Equation 6, introducing an arbitrary constant α > 0. We will then show
this has no effect on the sign of the result, and we are free to choose α = 1

N to normalize the similarity
scores by the network dimension.

Theorem 4.2.1. The Dense Associative Memory, equipped with a homogenous interaction function, has
unchanged update dynamics (Equation 6) when applying a scaling factor α > 0 to similarity calculations
inside the interaction function. That is:

6



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2025

sign

∑
µ

Fn(ζ
µ
i +

∑
j ̸=i

ζµj ξ
(t)
j )− Fn(−ζµi +

∑
j ̸=i

ζµj ξ
(t)
j )


= sign

∑
µ

Fn(α(ζ
µ
i +

∑
j ̸=i

ζµj ξ
(t)
j ))− Fn(α(−ζµi +

∑
j ̸=i

ζµj ξ
(t)
j ))

 .

Proof. The sign of any real number is unaffected by scaling factor α > 0:

sign

α∑
µ

Fn(ζ
µ
i +

∑
j ̸=i

ζµj ξ
(t)
j )− Fn(−ζµi +

∑
j ̸=i

ζµj ξ
(t)
j )


= sign

∑
µ

αFn(ζ
µ
i +

∑
j ̸=i

ζµj ξ
(t)
j )− αFn(−ζµi +

∑
j ̸=i

ζµj ξ
(t)
j )


= sign

∑
µ

Fn(α
′(ζµi +

∑
j ̸=i

ζµj ξ
(t)
j ))− Fn(α

′(−ζµi +
∑
j ̸=i

ζµj ξ
(t)
j ))


Using the assertion that Fn is homogenous in the last step. Since the scaled factor α′ is still arbitrary, we are
free to select any (positive) value we like without changing the result.

Hence, our modified update rule in Equation 1 will give the same behavior as the original update rule in
Equation 6. As discussed, we suggest choosing α = 1

N , the inverse of the network dimension, such that the
similarity scores are normalized between −1 and 1. This nicely avoids floating point overflow.

4.3 LEARNING IN THE DENSE ASSOCIATIVE MEMORY

Reasoning about the learning rule (Equation 10) is slightly trickier than the update rule. We must ensure
the network learning remains consistent with the unmodified network as to not throw away much of the
theoretical work on, say, the capacity of the Dense Associative Memory. Furthermore, there is already a
scaling factor β present; adding a second, independent hyperparameter would only complicate the network
further. We will show that we can pull the existing scaling factor within the interaction function and keep
its intended action of shifting the argument of the tanh function, and hence that we can achieve the same
calculation as the original network. The argument here is largely the same as in Section 4.2.
Theorem 4.3.1. The Dense Associative Memory, equipped with a homogenous interaction function, has
unchanged learning behavior (Equation 10) when moving the scaling factor β inside the interaction function
evaluations, up to adjusting the scaling factor. That is:

tanh

β′
∑
µ

Fn(ζ
µ
i +

∑
j ̸=i

ζµj ξ
(t)
j )− Fn(−ζµi +

∑
j ̸=i

ζµj ξ
(t)
j )


=tanh

∑
µ

Fn(β(ζ
µ
i +

∑
j ̸=i

ζµj ξ
(t)
j ))− Fn(β(−ζµi +

∑
j ̸=i

ζµj ξ
(t)
j ))

 .

7



329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

Proof. Equation 10 defines a loss function over which a gradient descent is applied to update the memory
vectors ζ. To show this gradient descent is unchanged by moving the scaling factor β inside the interaction
function evaluations, we focus on the predicted neuron value in Equation 10 and apply the same algebra as
in Theorem 4.2.1 to take the scaling factor β′ inside the interaction function. Note that this also requires
the homogeneity of the interaction function, and may alter the value the scaling factor β, but will ensure the
argument to the tanh (and hence the gradient) remains the same. The exact gradient expression is eschewed
here but remains unchanged from the original.

Therefore, our modified learning rule in Equation 2 is a suitable replacement for the original in Equation 10.
Krotov and Hopfield suggest a value of β = 1

Tn . We suggest a modified value of β = 1
NT , as to normalize

the similarity scores once again.

5 HYPERPARAMETER TUNING

The original Dense Associative Memory suffers from very strict hyperparameter requirements. Changing
the value of the interaction vertex significantly changes the optimal hyperparameters for training. We find
that our modifications — particularly, normalizing the similarity scores in the learning rule — remove the
dependence on the interaction vertex.

We focus on the most important hyperparameters for learning: the initial learning rate and temperature.
Other hyperparameters were tuned but did not display behavior as dramatic as we present here. We use a
learning rate decay of 0.999 per epoch, a momentum of 0.0, and an error exponent of m = 1.0. We found
similar results using a decay rate of 1.0 and higher values for momentum. We also found we did not require
changing the error exponent m, which Krotov & Hopfield (2016) found to be useful in learning higher
interaction vertices. This perhaps indicates we can remove this hyperparameter and simplify the network.

The network is trained on 20 randomly generated bipolar vectors of dimension 100. Even for the lowest
interaction vertex n = 2 this task is perfectly learnable. Larger dimensions and other dataset sizes were
tested with similar results. After training, we probe the network with the learned states; if the probes move
only a small distance from the learned states, the network operates as an acceptable associative memory.
We measure the average distance from the final, stable states to the learned states, for which a lower value
is better. We repeat the experiment five times for each combination of hyperparameters, of which select
interaction vertices are shown in Figure 1. All of our results can be found in Appendix A. In particular,
Appendix A.3 shows our results for interaction vertices up to n = 100; far above any interaction vertices
documented in other literature. Note that for the unmodified network have avoided floating point overflow
by engineering our experiments to remain within the bounds of a double. The performance degradation seen
at larger interaction vertices is not due to floating point overflow.

In the original network, the optimal hyperparameter region shifts considerably with the interaction vertex.
At even modest interaction vertices we find the optimal region is fleeting enough to not appear in our grid
search. It is tempting to claim that a finer grid search may reveal the region to persist. However, inspection
of Figure 1e shows that not only has the optimal region vanished at this granularity, but the same region now
has high distance measure. Even if the optimal region exists and is very small, it is apparently surrounded
by an increasingly suboptimal region. This is troublesome and makes working with the network difficult,
especially when altering the interaction vertex even slightly.

For our modified implementation of the Dense Associative Memory, we have shifted the scale of the inverse
temperature as discussed in Section 4. We find the optimal region shifts slightly for small interaction vertices,
but unlike the original network we find the region stabilizes and remains substantial for large interaction
vertices. Most notably, we find that the optimal region’s position remains stable and size remains large
across many values of the interaction vertex for the same network dimension.

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

(a) Original n = 2 (b) Modified n = 2

(c) Original n = 10 (d) Modified n = 10

(e) Original n = 20 (f) Modified n = 20

Figure 1: Select hyperparameter searches for an autoassociative memory task, measuring the Euclidean dis-
tance between learned states and relaxed states. The left column shows results from the original, unmodified
network, while the right column shows results from our modified network, and rows showing results from
various interaction vertices. Smaller distances correspond to better recall and hence better a better associa-
tive memory.

9



423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2025

5.1 HYPERPARAMETER SELECTION IN CLASSIFICATION TASKS

We have focused on the Dense Associative Memory as an autoassociative memory, where all neurons are
updated at each step and may be updated numerous times until the state reaches stability. Another, perhaps
more popular use case of the network in current literature is as a classifier. By splitting the memory vectors
into two parts – a section for input data and a section for classes as logits – the network can be run as
a classifier by only updating the classification neurons, and only updating those neurons once (Krotov &
Hopfield, 2016).

We conduct a similar hyperparameter search over both the original and modified implementation of the
Dense Associative Memory for a classification as we did for the autoassociative tasks in Section 5. Specifi-
cally, we trained a Dense Associative Memory to classify the MNIST dataset and measured the validation F1
score for a validation split of 20%. We found that the optimal hyperparameter region in classification tasks
was of roughly the same shape, size, and relative location between both the original and modified imple-
mentations for each respective interaction vertex. This indicates that our modifications have preserved the
hyperparameter stability in classification based tasks, but not improved as seen in Section 5. However, we
also observe that the optimal inverse temperature in our modified implementation to be consistently around
β ≈ 1, meaning we have a better idea of where to search for optimal hyperparameters. While not as sig-
nificant a result as in autoassociative tasks, this result is still useful in working with the Dense Associative
Memory as the location of the optimal hyperparameter region is consistent across different datasets and
tasks. Our full results of these experiments can be found in Appendix B.

6 CONCLUSION

In this work, we have investigated the technical details of the Dense Associative Memory and its implemen-
tation. We note that the original network specification leads to floating point imprecision and overflow when
calculating intermediate values for both update and learning. We provide details on when this imprecision
occurs and show the conditions are more likely when the interaction vertex is large based on the feature-
to-prototype transition of the memory vectors (Krotov & Hopfield, 2016). We propose a modification to
the network implementation that prevents the floating point issues. We prove our modifications do not alter
the network properties, such as the capacity and autoassociative nature. Our proof relies on the interaction
function being homogenous, however this property is stronger than is required, and we find empirically that
some nonhomogenous functions also give well-behaved Dense Associative Memories. We then show our
modified network has optimal hyperparameter regions that do not shift based on the choice of interaction
vertex for purely autoassociative tasks. For classification like tasks, such as MNIST classification, our mod-
ifications do not appear to radically improve the optimal hyperparameter region but rather shift the region to
a common location that makes tuning the network easier. Our modifications greatly simplify working with
the Dense Associative Memory, as experiments on a dataset do not need to search across a potentially large
hyperparameter space for each change in the interaction vertex. We also find several hyperparameters do not
need tuning in our experiments, hinting at a potentially simpler network that is easier to tune and interpret.

REFERENCES

Nicholas Alonso and Jeffrey L. Krichmar. A sparse quantized hopfield network for online-continual memory.
Nature Communications, 15(1):3722, May 2024. ISSN 2041-1723. doi: 10.1038/s41467-024-46976-4.
Publisher: Nature Publishing Group.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization, July 2016.
arXiv:1607.06450 [cs, stat].

10



470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

Mete Demircigil, Judith Heusel, Matthias Löwe, Sven Upgang, and Franck Vermet. On a Model of Asso-
ciative Memory with Huge Storage Capacity. Journal of Statistical Physics, 168(2):288–299, July 2017.
ISSN 0022-4715, 1572-9613. doi: 10.1007/s10955-017-1806-y.

D. O. Hebb. The organization of behavior; a neuropsychological theory. The organization of behavior; a
neuropsychological theory. Wiley, Oxford, England, 1949. Pages: xix, 335.

John A. Hertz. Introduction To The Theory Of Neural Computation. CRC Press, Boca Raton, 1991. ISBN
978-0-429-49966-1. doi: 10.1201/9780429499661.

J J Hopfield. Neural networks and physical systems with emergent collective computational abilities. Pro-
ceedings of the National Academy of Sciences, 79(8):2554–2558, April 1982. doi: 10.1073/pnas.79.8.
2554. Publisher: Proceedings of the National Academy of Sciences.

J. J. Hopfield. Neurons with Graded Response Have Collective Computational Properties like Those of
Two-State Neurons. Proceedings of the National Academy of Sciences of the United States of America,
81(10):3088–3092, 1984. ISSN 0027-8424. Publisher: National Academy of Sciences.

J. J. Hopfield and D. W. Tank. “Neural” computation of decisions in optimization problems. Biological
Cybernetics, 52(3):141–152, July 1985. ISSN 1432-0770. doi: 10.1007/BF00339943.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reduc-
ing Internal Covariate Shift, March 2015. arXiv:1502.03167 [cs].

Dmitry Krotov and John Hopfield. Dense Associative Memory Is Robust to Adversarial Inputs. Neural
Computation, 30(12):3151–3167, December 2018. ISSN 0899-7667. doi: 10.1162/neco a 01143.

Dmitry Krotov and John Hopfield. Large Associative Memory Problem in Neurobiology and Machine
Learning, April 2021. arXiv:2008.06996 [cond-mat, q-bio, stat].

Dmitry Krotov and John J. Hopfield. Dense Associative Memory for Pattern Recognition. In Advances in
Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

Yuchen Liang, Dmitry Krotov, and Mohammed J. Zaki. Modern Hopfield Networks for graph embedding.
Frontiers in Big Data, 5, November 2022. ISSN 2624-909X. doi: 10.3389/fdata.2022.1044709. Publisher:
Frontiers.

R. McEliece, E. Posner, E. Rodemich, and S. Venkatesh. The capacity of the Hopfield associative memory.
IEEE Transactions on Information Theory, 33(4):461–482, July 1987. ISSN 1557-9654. doi: 10.1109/
TIT.1987.1057328. Conference Name: IEEE Transactions on Information Theory.

Beren Millidge, Tommaso Salvatori, Yuhang Song, Thomas Lukasiewicz, and Rafal Bogacz. Universal
Hopfield Networks: A General Framework for Single-Shot Associative Memory Models. In Proceedings
of the 39th International Conference on Machine Learning, pp. 15561–15583. PMLR, June 2022. ISSN:
2640-3498.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler, Lukas
Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, Victor Greiff, David Kreil, Michael
Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. Hopfield Networks is All You
Need, April 2021. arXiv:2008.02217 [cs, stat].

Philipp Seidl, Philipp Renz, Natalia Dyubankova, Paulo Neves, Jonas Verhoeven, Marwin Segler, Jörg K.
Wegner, Sepp Hochreiter, and Günter Klambauer. Modern Hopfield Networks for Few- and Zero-Shot
Reaction Template Prediction, June 2021. arXiv:2104.03279 [cs, q-bio, stat].

11



517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red Hook, NY, USA, December
2017. Curran Associates Inc. ISBN 978-1-5108-6096-4.

12



564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2025

A FULL RESULTS OF HYPERPARAMETER SEARCHES

A.1 ORIGINAL NETWORK, DIMENSION 100

These results are from the original network, have dimension 100, and train on 20 learned states.

(a) Coarse search space (b) Fine search space

Figure 2: Hyperparameter search space for n = 2

(a) Coarse search space (b) Fine search space

Figure 3: Hyperparameter search space for n = 3

13



611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2025

(a) Coarse search space (b) Fine search space

Figure 4: Hyperparameter search space for n = 5

(a) Coarse search space (b) Fine search space

Figure 5: Hyperparameter search space for n = 10

14



658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2025

(a) Coarse search space (b) Fine search space

Figure 6: Hyperparameter search space for n = 20

(a) Coarse search space (b) Fine search space

Figure 7: Hyperparameter search space for n = 30

A.2 MODIFIED NETWORK, DIMENSION 100

These results are from our modified network, have dimension 100, and train on 20 learned states.

15



705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2025

(a) Coarse search space (b) Fine search space

Figure 8: Hyperparameter search space for n = 2

(a) Coarse search space (b) Fine search space

Figure 9: Hyperparameter search space for n = 3

16



752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2025

(a) Coarse search space (b) Fine search space

Figure 10: Hyperparameter search space for n = 5

(a) Coarse search space (b) Fine search space

Figure 11: Hyperparameter search space for n = 10

17



799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2025

(a) Coarse search space (b) Fine search space

Figure 12: Hyperparameter search space for n = 15

(a) Coarse search space (b) Fine search space

Figure 13: Hyperparameter search space for n = 20

18



846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2025

(a) Coarse search space (b) Fine search space

Figure 14: Hyperparameter search space for n = 25

(a) Coarse search space (b) Fine search space

Figure 15: Hyperparameter search space for n = 30

A.3 MODIFIED NETWORK, DIMENSION 100, LARGE INTERACTION VERTEX

These results continue with the same network and setup from Appendix A.2 but with much larger interaction
vertices than were possible with the original network. We also present only the tight grid search results, as
the coarse grid search did not capture the optimal region well.

19



893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2025

Figure 16: Hyperparameter search space for n = 40

Figure 17: Hyperparameter search space for n = 50

20



940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2025

Figure 18: Hyperparameter search space for n = 60

Figure 19: Hyperparameter search space for n = 70

21



987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2025

Figure 20: Hyperparameter search space for n = 80

Figure 21: Hyperparameter search space for n = 90

22



1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2025

Figure 22: Hyperparameter search space for n = 100

A.4 MODIFIED NETWORK, DIMENSION 250

These results are from our modified network, have dimension 250, and train on 30 learned states.

(a) Coarse search space (b) Fine search space

Figure 23: Hyperparameter search space for n = 2

23



1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2025

(a) Coarse search space (b) Fine search space

Figure 24: Hyperparameter search space for n = 3

(a) Coarse search space (b) Fine search space

Figure 25: Hyperparameter search space for n = 5

24



1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2025

(a) Coarse search space (b) Fine search space

Figure 26: Hyperparameter search space for n = 10

(a) Coarse search space (b) Fine search space

Figure 27: Hyperparameter search space for n = 20

25



1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2025

(a) Coarse search space (b) Fine search space

Figure 28: Hyperparameter search space for n = 30

26



1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2025

B HYPERPARAMETER SEARCH OVER MNIST TASK

In our results below, we have trained the Dense Associative Memory on the MNIST dataset and note the
validation F1 score across hyperparameter space, meaning for the following results we are aiming for larger
values, not smaller as above. We have used the autoassociative memory model, rather than the feed-forward
equivalent shown by Krotov & Hopfield (2016). This means we have not explicitly ignored the effects of
the classification neurons on one another, as is done in constructing the feed-forward equivalent, although
the effect is likely negligible. Note that we have significantly different scales for the original and modified
network’s values of β, which is not seen in the previous results. We believe this is due to leaving some mem-
ory weights unclamped, as well as only updating a small number of neurons as required for classification.
Notably, our range of β for the original network matches the range found by (Krotov & Hopfield, 2016). In
all experiments we trained the network for 500 epochs with 256 memory vectors.

(a) n = 2 (b) n = 5

(c) n = 10 (d) n = 20

Figure 29: Hyperparameter search space for the original network, measuring the validation F1 score on the
MNIST dataset. A larger F1 score corresponds to a better performing network.

27



1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2025

(a) n = 2 (b) n = 5

(c) n = 10 (d) n = 20

Figure 30: Hyperparameter search space for the modified network, measuring the validation F1 score on the
MNIST dataset. A larger F1 score corresponds to a better performing network.

28


	Introduction
	Literature Review
	Formalization of the Hopfield Network and Dense Associative Memory
	Modification and Consistency with Original
	Homogeneity of the Interaction Function
	On Common Nonhomogenous Interaction Functions

	Update in the Dense Associative Memory
	Learning in the Dense Associative Memory

	Hyperparameter Tuning
	Hyperparameter Selection in Classification Tasks

	Conclusion
	Full Results of Hyperparameter Searches
	Original Network, Dimension 100
	Modified Network, Dimension 100
	Modified Network, Dimension 100, Large Interaction Vertex
	Modified Network, Dimension 250

	Hyperparameter Search over MNIST Task

