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Abstract

Tests of conditional independence (CI) underpin a number of important problems
in machine learning and statistics, from causal discovery to evaluation of predictor
fairness and out-of-distribution robustness. Shah and Peters (2020) showed that,
contrary to the unconditional case, no universally finite-sample valid test can
ever achieve nontrivial power. While informative, this result (based on “hiding”
dependence) does not seem to explain the frequent practical failures observed with
popular CI tests. We investigate the Kernel-based Conditional Independence (KCI)
test – of which we show the Generalized Covariance Measure underlying many
recent tests is nearly a special case – and identify the major factors underlying
its practical behavior. We highlight the key role of errors in the conditional mean
embedding estimate for the Type I error, while pointing out the importance of
selecting an appropriate conditioning kernel (not recognized in previous work) as
being necessary for good test power but also tending to inflate Type I error.

1 Introduction

Conditional independence (CI) testing is a fundamental task, required for almost any scientific
hypothesis that “controls for” confounders; it is moreover a core subroutine in the standard PC
algorithm for causal discovery and its many variants (Spirtes et al., 1993). Further recent major
machine learning-specific applications include checking or enforcing the fairness of a predictor
or representation with equalized odds (Hardt et al., 2016), and relatedly for a predictor’s domain
invariance, particularly in “anticausal” settings (e.g. Z. Wang and Veitch, 2022).

When the conditioning variable takes on a small number of discrete values, the problem is simple to
reduce to that of unconditional independence testing, for which there are many good methods: for
instance, many based on the Hilbert-Schmidt Independence Criterion (Gretton et al., 2005; Gretton
et al., 2008). When the conditioning variable is continuous, however, the situation is much more
challenging: when testing whether A ⊥⊥ B | C based on samples for a continuously distributed
C,1 we will only observe one (A,B) pair for each value of C, and so we must make some form of
assumption on the smoothness of the conditional distribution (A,B) | C = c as a function of c. Shah
and Peters (2020) proved that doing so in total generality is impossible. Their lower bound, however,
is an adversarial construction of a particular distribution (discussed in Section 4) which does not
seem especially informative as to the widespread failures of CI tests in practical settings. Since the
importance of the task means that, despite its impossibility in general, we still want to pursue CI
testing, we must consider particular types of tests used in practice and when, and why, they fail.

∗Work done at Gatsby Unit, UCL.
1We will always use A ⊥⊥ B | C, since papers in this area use both X ⊥⊥ Y | Z and X ⊥⊥ Z | Y .

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



There are a few major categories of techniques. One is the Kernel-based Conditional Independence
(KCI) technique introduced by K. Zhang et al. (2011). As a kernel method, this technique is applicable
to data of any (potentially complex and structured) form. It has a reputation, however, of doing a poor
job at controlling Type I error: that is, it falsely identifies conditional dependence too often (Shah
and Peters, 2020; Pogodin et al., 2024). Recent extensions include CIRCE (Pogodin et al., 2023),
which is useful as a regularizer for learning A but generally yields a much worse test, and SplitKCI
(Pogodin et al., 2024), which helps reduce Type I error rates, but is far from solving the issue. KCI
additionally requires a choice of as many as five kernels in order to operate; Pogodin et al. (2023)
proposed a method to select two of those five, but it remains unclear how to set the other three.

A number of studies propose to test conditional independence by checking the covariance of residuals
from regressions of A and B on C (e.g., H. Zhang et al., 2017; H. Zhang et al., 2018; Shah
and Peters, 2020). We refer to this class of methods collectively as the Generalized Covariance
Measure (GCM), following Shah and Peters (2020). While conceptually simple, GCM captures only
linear covariance between residuals and averages the dependence over C, rather than evaluating the
covariance conditional on specific values of C. Weighted GCM (Scheidegger et al., 2022) generalizes
the GCM by applying weights based on C, allowing detection of a broader range of conditional
dependencies. As we show in Section 3, the standard GCM corresponds to a special case of KCI
with simple kernel choices, while Weighted GCM can be viewed as a more flexible, though still
constrained, setting of the C kernel.

Having introduced measures of conditional independence, we revisit some theoretical work on the
CI testing hardness in Section 4, where in particular we show that challenges in CI testing with
kernel statistics arise specifically due to challenges in estimating the conditional mean embedding, a
kernel embedding of the conditional distribution that underpins the majority of such tests (Song et al.,
2009; Grünewälder et al., 2012; Klebanov et al., 2020; Park and Muandet, 2020; Li et al., 2024).
In Section 5, we provide a clear demonstration that choosing an appropriate C kernel is vital to a
sensitive KCI test – in contrast to an implicit claim by K. Zhang et al. (2011) and the approach taken
by Pogodin et al. (2023) and Pogodin et al. (2024). Following related work in other settings (e.g.
Jitkrittum et al., 2016; Liu et al., 2020; Xu et al., 2024), we suggest a method to select a C kernel
which does help achieve more powerful tests. We observe, however, that this method can also make
the problem of false rejection even more severe.

In Section 6, we investigate the problem of false rejections in KCI tests. We first analyze simple yet
informative special cases, which allows analytical investigation of how regression errors in estimating
conditional mean embeddings induce bias in the test statistic’s moments. These insights motivate a
more general theoretical analysis, where we derive formal bounds linking conditional mean estimation
error to test validity. Together, the results clarify the root cause of false rejections and delineate the
conditions under which KCI and GCM tests remain reliable.

2 Measuring Conditional Dependence

We first show how to measure conditional dependence with kernels. While the fundamental idea is
due to K. Zhang et al. (2011), our framing is somewhat different in terms of the novel Theorem 2.2.

Conditional independence. We build on the characterization of Daudin (1980). To begin, we
formalize the intuition that given C, A and B contain no additional information about one another:
Definition 2.1 (Daudin, 1980). Random variables A and B are conditionally independent given C,
denoted A ⊥⊥ B | C, if for all square-integrable functions f ∈ L2

AC and g ∈ L2
BC ,

E[ f(A,C) g(B,C) | C ] = E[ f(A,C)|C ] E[ g(B,C) | C ] almost surely in C.

This definition is equivalent to stating that the conditional joint distribution factorizes almost surely
in C, PA,B|C = PA|C PB|C , by considering functions f and g as indicators of events.

Building on this definition, we can derive the following equivalence for conditional independence:
Theorem 2.2. Random variables A and B are conditionally independent given C if and only if

E
C

[
w(C) E

AB|C

[
(f(A)− E[f(A) | C]) (g(B)− E[g(B) | C]) | C

] ]
= 0, (1)

for all square-integrable functions f ∈ L2
A, g ∈ L2

B , and w ∈ L2
C .
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This result, proved in Appendix A, extends the characterization of Daudin (1980) to a particularly
interpretable form: does any residual dependence between A and B remains after accounting for
C? The weighting function w(C) allows emphasizing specific regions of the support of C. Under
A ⊥⊥ B | C, the conditional covariances vanish C-almost surely; otherwise, there is some nonzero
conditional covariance on a C-non-negligible region, which an appropriate w(C) can capture.

Kernel spaces. Since it is infeasible to check all square-integrable functions for f , g, and w, we
instead focus on a restricted yet sufficiently rich class of “smooth” functions. Specifically, we consider
functions that lie in reproducing kernel Hilbert spaces (RKHSs), which enable characterization of
conditional dependence via kernel mappings.

A reproducing kernel Hilbert space (RKHS) HA is a particular space of functions A → R; each
RKHS is uniquely associated to a positive-definite kernel kA : A×A → R. This kernel can itself be
written as kA(a, a′) = ⟨ϕA(a), ϕA(a′)⟩HA , where ϕA : A → HA is known as a feature map. The
defining reproducing property of an RKHS is that for all f ∈ HA and a ∈ A, f(a) = ⟨f, ϕA(a)⟩HA .
We always assume that any RKHS we deal with is separable; this is guaranteed when k is continuous
and the underlying space A is separable (Steinwart and Christmann, 2008, Lemma 4.33).

KCI operator. The following operator, introduced (in a different form) by K. Zhang et al. (2011),
will help us characterize conditional dependence; we reframe it, following Theorem 2.2, to explicitly
incorporate a conditional covariance structure.2 We build this up in pieces.

First, the conditional mean embeddings µA|C(c) := E[ϕA(A) | C = c] ∈ HA and µB|C(c) :=
E[ϕB(B) | C = c] ∈ HB give RKHS representations of the conditional distributions of A and B
given C = c: specifically, they satisfy the reproducing property ⟨µA|C(c), f⟩HA = E[f(A) | C = c].

The conditional cross-covariance operator, CAB|C , will capture the dependence structure between A
and B with ⟨f,CAB|C(c)g⟩ = EAB|C

[
(f(A)− E[f(A) | C]) (g(B)− E[g(B) | C]) | C = c

]
:

CAB|C(c) := E
AB|C

[ (
ϕA(A)− µA|C(c)

)
⊗
(
ϕB(B)− µB|C(c)

)
| C = c

]
∈ HS(HB,HA). (2)

Here HS(HB,HA) denotes the space of Hilbert–Schmidt operators from HB to HA, and the outer
product ϕA(a) ⊗ ϕB(b) ∈ HS(HB,HA) is defined by

(
ϕA(a) ⊗ ϕB(b)

)
g = ⟨ϕB(b), g⟩HBϕA(a)

for any g ∈ HB, analogous to the outer product of vectors in finite-dimensional spaces.

The KCI operator aggregates these conditional covariances with information about the context C:

CKCI := E
C

[
CAB|C(C) ⊗ ϕC(C)

]
∈ HS(HC ,HS(HB,HA)). (3)

For any test functions f ∈ HA, g ∈ HB and w ∈ HC , the properties above give that

⟨f ⊗ g,CKCI w⟩HS(HB,HA) = E
C

[
w(C) E

AB|C

[
(f(A)− E[f(A) | C]) (g(B)− E[g(B) | C])

] ]
.

If the KCI operator is itself zero, then the quantity above is zero for any choice of f ∈ HA, g ∈ HB,
w ∈ HC . If the KCI operator is nonzero, then there exist f, g, w for which it is nonzero, implying
that A ⊥̸⊥ B | C. A natural measure of conditional dependence is then the magnitude of CKCI, as
measured by its squared Hilbert-Schmidt norm:

KCI := ∥CKCI∥2HS = E
C,C′

[
kC(C,C

′)
〈
CAB|C(C),CAB|C(C

′)
〉
HS(HB,HA)

]
. (4)

The Hilbert–Schmidt norm of an operator is zero if and only if the operator itself is the zero operator.
If the RKHSs HA, HB and HC are L2-universal, meaning that they are dense in L2, then KCI = 0
if and only if A ⊥⊥ B | C. Many commonly used kernels, such as the Gaussian RBF kernel
kA(a, a

′) = exp
(
−∥a− a′∥2/(2ℓ2)

)
, are L2-universal (c.f. Sriperumbudur et al., 2011; Szabó and

Sriperumbudur, 2018). Large values of KCI indicate strong evidence of conditional dependence,
while values near zero suggest that any apparent dependence can be adequately explained by C.

2To obtain this formulation from theirs: first, following Pogodin et al. (2023), remove the C to C regression
of the original version (also see Mastouri et al., 2021, Appendix B.9). Second, use a product kernel on (B,C);
we are not aware of any uses that do not do this, and our framing of Theorem 2.2 makes the final product clearer.
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3 Connecting KCI and GCM

Shah and Peters (2020) proposed a Generalized Covariance Measure, which has been the basis of
many recent CI tests. For scalar A and B, GCM uses a studentized estimate of the average covariance
between residuals, based on any regression method from C to A. Scheidegger et al. (2022) extend
the approach to Weighted GCM, which adds a weighting function w; assuming perfect regressions,
the population quantity becomes

E
[
w(C)(A− E[A | C ]) (B − E[B | C ])

]
(5)

With w(c) = 1, this is the quantity estimated by GCM; an appropriate choice of w function increases
the sensitivity to more types of dependence.

Consider KCI with scalar linear kernels ϕA(a) = a and ϕB(b) = b. This makes the conditional mean
embeddings µA|C(c) = E[ϕA(A) | C = c] = E[A | C = c], and similarly µB|C(c) = E[B | C = c].
If we further pick the kernel kC(c, c′) = w(c)w(c′) so ϕC(c) = w(c), then (3) becomes identical to
(5). The difference is that GCM estimates the value of that expectation (normalized by the standard
deviation of the estimates), while the KCI operator estimates the absolute value. This relationship is
analogous to that between classifier two-sample tests and maximum mean discrepancy-based tests
(Liu et al., 2020, Section 4), and to that between variational mutual information-based independence
tests and HSIC tests (Xu et al., 2024).

Consider instead A = RdA , B = RdB , with multivariate linear kcA(a, a
′), kcB(b, b

′) and the same
ϕC = w. The conditional cross-covariance (2) becomes the conditional cross-covariance matrix of
shape dA × dB , and the KCI operator (3) is the w-weighted average of that matrix. The multivariate
(weighted) GCM again takes a studentized estimate of that matrix, and uses the maximum absolute
value as its entry. KCI would instead use the Frobenius norm.

In this way, we can see that (weighted) GCM is almost a special case of KCI using simple kernels,
further motivating our study of KCI in particular (especially with linear kcA(a, a

′), kcB(b, b
′)). The

advantage of the weighted over the unweighted statistic also foreshadows the importance of kC(c, c′).

4 Revisiting the Theoretical Hardness of CI Testing

In null hypothesis significance testing, we wish to find a test procedure which rejects the null, i.e.
claims that A⊥̸⊥ B | C, with no more than α probability (say 0.05) when in fact the null hypothesis
that A ⊥⊥ B | C holds. Such rejections, also known as false positives, are called Type I errors.
A test has (finite-sample) valid level if its Type I error rate is at most α, while it has (pointwise)
asymptotically valid level if for any null distribution, the Type I error rate is asymptotically no more
than α. Failing to reject the null when it does not hold is called a Type II error; the power of a test is
the rate at which it does reject, i.e. one minus the Type II error rate for that distribution. Among valid
tests, the best one is the one with the highest power. A test is consistent against fixed alternatives if
for any distribution where the null does not hold, the power approaches 1 as n→ ∞.

Impossibility result. Shah and Peters (2020) showed that if a CI test has finite-sample valid level
for all Lebesgue-continuous null distributions, then it has power no more than α for any Lebesgue-
continuous alternative. This is in stark contrast to the unconditional case (or conditioning on a discrete
variable), in which case there exist finite-sample valid, consistent tests (e.g. permutations based on
HSIC; see Rindt et al., 2021).

Intuitively, when detecting unconditional dependence A ⊥⊥ B, dependence can be missed (causing a
Type II error) but Type I error arises only from sampling variability. By contrast, for A ⊥⊥ B | C,
it is possible either to miss actual dependence (Type II) or falsely detect dependence (Type I)
because subtle conditional effects of C have been overlooked. For the latter case, consider generating
C,A′, B′ ∼ N (0, 1), extracting the thirtieth decimal place of C as C30 ∈ {0, 1, . . . , 9}, and then
taking A = C30 + A′, B = C30 + B′. Unless we know to look at the thirtieth decimal place of
C, A and B will seem to be strongly dependent and C irrelevant; in fact, however, all information
that A carries about B is present in C, so A ⊥⊥ B | C. Shah and Peters (2020) show that for all
test procedures, for any case which is truly conditionally dependent, the test has such a “blind spot”
which is conditionally independent but “looks the same” to the test.
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Interpretation with KCI. How do these issues manifest with KCI? We can show, in fact, that they
arise solely because of the estimation of the conditional mean embedding.

In practice, conditional independence testing relies on empirical estimates constructed from finite
samples. Given observations {(ai, bi, ci)}ni=1, we first define the KCI statistic KCIn as a U-statistic
based on the true conditional mean embeddings µA|C and µB|C :

KCIn =
1

n(n− 1)

∑
1≤i̸=j≤n

hi,j where hi,j = (KC)i,j (K
c
A)i,j (K

c
B)i,j , (6)

where (KC)i,j = kC(ci, cj) is the kernel matrix for C, (Kc
A)i,j = ⟨ϕcA(ai, ci), ϕcA(aj , cj)⟩HA with

ϕcA(ai, ci) = ϕA(ai) − µA|C(ci) is the centered kernel matrix for A, and similarly (Kc
B)i,j =

⟨ϕcB(bi, ci), ϕcB(bj , cj)⟩HB with ϕcB(bi, ci) = ϕB(bi)− µB|C(ci) is that for B.

To run a KCI-based test, we require a test threshold tn and reject the null whenever the KCI statistic
exceeds tn. This threshold tn depends on the data size n, the choice of kernels, and the particular
data distributions. K. Zhang et al. (2011) show that when A ⊥⊥ B | C, nKCIn converges to a mixture
of χ2 variables,3 so tn could in principle be estimated by fitting the parameters of this limiting
distribution. If we know the true µA|C and µB|C , we can easily construct a finite-sample valid test
with nontrivial power:
Proposition 4.1. Suppose supa∈A kA(a, a) ≤ κA, supb∈B kB(b, b) ≤ κB , supc∈C kC(c, c) ≤ κC .

Then a test which rejects when KCIn > t̃n := 32κAκBκC

√
1

n−1 log
1
α has finite-sample level at

most α. Moreover, if each kernel is L2-universal, the test is consistent against fixed alternatives.

The proof, given in Appendix B, is a simple consequence of Hoeffding’s inequality for U -statistics.
Although the resulting test is highly conservative – the correct threshold for the null distribution of
KCIn should be Θ(1/n) (K. Zhang et al., 2011, Theorem 3), much smaller than the chosen t̃n – the
fact that it avoids the impossibility result of Shah and Peters (2020) indicates that the main challenge
lies in estimating conditional mean embeddings.

Relationship to model-X. The recently popular “model-X” setting (Candes et al., 2018; Berrett
et al., 2019; Grünwald et al., 2024) assumes that the conditional distribution of A | C is known.
This corresponds to perfect knowledge of µA|C : for a characteristic (or a fortiori, L2-universal)
kA, µA|C uniquely corresponds to Law(A | C). Given knowledge of both A | C and B | C, the
KCI-based test in Proposition 4.1 would be exactly valid; knowledge of only one is also sufficient
using CIRCE rather than KCI (Pogodin et al., 2023; Pogodin et al., 2024). We discuss more aspects
of the relationship to other CI tests in Appendix C.

5 Pitfalls of Kernel Choices for CI Testing in Practice

Since the true conditional mean embeddings are unknown, in practice we must use the empirical
KCI statistic K̂CIn, which substitutes these embeddings with estimates µ̂A|C and µ̂B|C . These
embeddings are typically estimated via kernel ridge regression (Grünewälder et al., 2012; Li et al.,
2024) with inputs ci and labels ϕA(ai) or ϕB(bi). K. Zhang et al. (2011) used the same kernel for
both regressions. Recognizing the need for high-quality regressions, Pogodin et al. (2023) proposed
instead choosing separate kernels to minimize the leave-one-out validation error. Doing so introduces
two new kernels, which we call kC→A and kC→B . Pogodin et al. (2023) and Pogodin et al. (2024)
then used kC as either kC→A or kC→B , implicitly assuming that a good kernel for this regression
will also be a good kernel for measuring dependence.

We now demonstrate that the aforementioned choice for kC – though computationally convenient –
can be a very poor choice for measuring dependence in complex situations. For an intuitive example,
consider an engineering problem involving high-dimensional vibration data: we wish to know if
the behavior of part A is connected to that of part B given vibration data C. While predicting the

3Their Proposition 5 makes a stronger claim, that K̂CIn does so under fixed-regularization ridge regression
estimates for the conditional means; their argument (which was only sketched) appears to rely on a property that
does not clearly always hold for this estimator, but does hold with the true µA|C , µB|C . Personal communication
with the authors confirmed that they agree “there is a gap” between the published sketch and a true proof.
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Figure 1: Motivating example. We simulate (rA, rB , C) following (7), where τ = 1 and the residual
correlation γ(C) = sin(C) introduces dependence that varies smoothly with C. The left three
panels visualize samples of residuals for different slices of C, showing that Cov(A,B | C) changes
substantially across C. The rightmost panel shows all of the residuals, for every value of C, where
the averaged conditional covariance EC [Cov(A,B | C)] is zero. A kernel on C with an appropriately
chosen lengthscale can instead focus on local regions where dependence is strong: if the lengthscale
is too long, the conditional covariance will be "blurred out"; while if it is too short, there will be
insufficient data to estimate the covariance.

behavior of eitherA orB depends on broad, long-term trends of C, the two parts may be coupled only
by high-frequency sinusoidal resonances which require a substantially different kernel to efficiently
detect. Using kC→A or kC→B then results in high Type-II error.

Motivated by this, consider a synthetic problem where A and B are determined as some functions of
C plus noise factors which are zero mean, but potentially conditionally correlated given C:

C ∼ N (0, 1), A = fA(C) + τ rA, B = fB(C) + τ rB ,

where fA, fB are fixed functions, τ, β > 0, and the additive residual terms (rA, rB) follow

(rA, rB) | C ∼ N
([

0
0

]
,

[
1 γ(C)

γ(C) 1

])
, γ(C) =

{
0 under H0

sin(βC) under H1.
(7)

We use linear kernels for A and B, aligning closely to GCM, and a lengthscale-ℓC Gaussian kernel
kC(C,C

′) = exp
(
− (C−C′)2

2ℓ2C

)
, on C; GCM corresponds to ℓC = ∞.

Figure 1 illustrates this setup under H1: although the conditional covariance Cov(A,B | C) =
τ2 E[rArB | C] changes smoothly with C and alternates in sign, its expectation EC [Cov(A,B | C)]
is nearly zero. As a result, methods like GCM—which effectively test this average—fail to detect
dependence, highlighting the need for kernels on C that can localize to regions where the conditional
covariance is nonzero.

The regressions which try to learn the functions fA, fB should use respective kernels kC→A and
kC→B with lengthscales appropriate to those functions. On the other hand, the residuals’ covariance
varies on the lengthscale of γ, 1/β, and so kC’s should be chosen to detect variations on that scale –
which may be quite different than the appropriate scales for fA and fB .

In this setting, we can analytically evaluate the KCI, at least when using the true mean embeddings
µA|C and µB|C . (Details are given in Appendix F.1.) We first see, using properties of Gaussians, that

KCI = τ4 E
C,C′

[
kC(C,C

′)γ(C)γ(C ′)
]
= τ4

√
ℓ2C

ℓ2C + 2
E

(X,X′)∼NℓC

[
γ(X)γ(X ′)

]
(8)

for auxiliary variables (X,X ′) ∼ NℓC := N

([
0
0

]
,

[
1− 1

ℓ2C+2
1

ℓ2C+2
1

ℓ2C+2
1− 1

ℓ2C+2

])
. Under the null, we

of course obtain KCI = 0; under the alternative, we can use trigonometric identities to see

KCI =
1

2
τ4e−β

2

√
ℓ2C

ℓ2C + 2

(
e2β

2/(ℓ2C+2) − 1
)
.

When ℓC ≪
√
2, the square root term arising from kC(C,C

′) vanishes, giving zero KCI; for ℓC ≫ β,
the other term coming from the covariance of γ vanishes, yielding the same problem. Consequently,
for each β, the effective ℓC lies at an intermediate value that balances these effects (see Figure 2, left).
GCM, with ℓC = ∞, cannot detect dependence here at all.
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Figure 2: Effect of kernel lengthscale ℓ2C on KCI, asymptotic variance σ2
H1

, and approximate test
power (SNR) for different conditional dependence lengthscale β, in the synthetic example (7) under
the alternative. The optimal ℓ2C

∗ is selected by maximizing SNR. Different β values correspond to
different ℓ2C ranges yielding high approximate test power. Here we use noise scale τ = 0.1.

Selecting a conditioning kernel. How can we choose the right C kernel for a given problem? One
approach, following that taken in related settings (Jitkrittum et al., 2016; Liu et al., 2020; Xu et al.,
2024), is to maximize the approximate power of the test, based on the following asymptotic result:

Proposition 5.1. Under the alternative, there is a scalar σ̂2
H1

≥ 0 so that as n→ ∞,

√
n(K̂CIn − K̂CI)

d−→ N (0, σ̂2
H1

). (9)

As always, the hat here refers to the use of estimated mean embeddings, not to estimation of a quantity
from samples; K̂CI and σ̂2

H1
depend on the problem, the kernels, and the choice of µ̂A|C and µ̂B|C ,

but not on n or any particular test sample. Under the alternative, we typically have σ̂2
H1

> 0, in which
case the rejection probability is approximately

PrH1(K̂CIn > tn) ∼ Φ

(√
n K̂CI

σ̂H1

−
√
n tn
σ̂H1

)
,

where a ∼ b means limn→∞ a/b = 1, Φ is the standard normal CDF, and tn is any rejection
threshold. We expect tn = Θ(1/n), following the null distribution of KCIn; the power is therefore
dominated by the first term for reasonably large n, and the kernel yielding the most powerful test will
approximately maximize the signal-to-noise ratio ŜNR = K̂CI/σ̂H1

.

We can estimate ŜNR by dividing K̂CIn by the variance estimator given by Liu et al. (2020, Equation
5), and choose a kernel on a training split to maximize this estimate. (In independent work, W. Wang
et al. (2025) used a similar scheme, but with a somewhat different estimator setup and with limited
analysis; see Appendix C.1.) We can then use the selected kernel on a testing split; as long as the two
splits are independent, this will not break the independence assumptions of the test procedure.

For a fixed µ̂A|C and µ̂B|C , ŜNRn in fact generalizes, identifying a good kernel:

Theorem 5.2 (Informal). Consider the U -statistic kernel ĥ of K̂CIn; give it parameters ω, such as
the parameters of kC , in a finite-dimensional Banach space such that ĥ is smooth with respect to
those parameters. Then ŜNRn converges uniformly to ŜNR over bounded sets of parameters with
variance bounded away from zero; thus the maximizer of ŜNRn approaches that of ŜNR.

This is a modification of the result of Liu et al. (2020, Theorem 6), since for fixed µ̂A|C , µ̂B|C the
U -statistic structure is very similar; a detailed statement and a proof are in Appendix D.

To evaluate whether maximizing the approximate test power is effective in practice, we compare the
theoretical (approximate) power with the empirical power estimated from data. Figure 2 illustrates
how the analytic results KCI, σ2

H1
, and the corresponding SNR vary with the kernel lengthscale ℓ2C

in the synthetic example (7), where the optimal ℓ2C
∗ is obtained by maximizing the SNR. As shown

in Figure 3 (right), the theoretical power curve (SNR vs.ℓ2C ) closely tracks the empirical power curve
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Figure 3: Means and standard error (over 500 runs) of Type-I/II errors on the synthetic (7) with
fA = cos, fB = exp, τ = 0.1 and different values of β, plotted against the kernel lengthscale
ℓ2C . The training sample size is m = 200 (solid line with circles) or m = 1000 (dashed line with
squares); the independent test set has size 200. The significance level is set at α = 0.05. Left: When
m = 200, varying ℓ2C noticeably affects the Type-I error, for certain values of ℓ2C . In contrast, when
m = 1000, the regressor is better trained, and the Type-I error remains well-controlled for all ℓ2C .
Right: The empirical test power (1 - Type-II error) depends strongly on both β and ℓ2C , indicating the
the importance of proper kernel selection for kC .

((1− Type II error) vs.ℓ2C), indicating that the selected ℓ2C
∗ remains effective in practice under the

alternative hypothesis.

Although maximizing test power is effective under the alternative, it can substantially inflate Type-I
error in conditional independence testing. In the unconditional independence settings of Liu et al.
(2020) and Xu et al. (2024), the null threshold is determined by permutation, ensuring exact Type-I
error control: any chosen kernel rejects at most at rate α. In our case, no such procedure is available;
instead, we rely on asymptotic null approximations, which depend sensitively on kernel choice and
regression quality, making null calibration delicate. Data splitting prevents overfitting to the points
used to select ℓ2C , yet ℓ2C can still overfit to the imperfect estimates µ̂A|C and µ̂B|C . As shown in
Figure 3 (left), Type-I error remains controlled with ample training data, but with limited training
samples there exists a range of ℓ2C values where it rises sharply. Power maximization tends to favor
this region due to its higher ŜNR. Hence, when ℓ2C is chosen based on imperfect regressions, an
inherent tension arises between Type-I error control and test power.

Relationship to wGCM selection scheme. One approach of Scheidegger et al. (2022) identifies
a weight function by trying to predict the sign of the product of residuals; if that prediction works
perfectly, then it changes GCM from measuring the average residual correlation to measuring the
average absolute value of the residual correlation, which is potentially much more powerful. As
discussed previously, this is essentially equivalent to choosing kC , which they do by setting it to a ±1
indicator of whether the residual signs are predicted to be the same or not. While the scheme works
differently than ours, it has essentially the same trade-offs as other approaches for kernel selection.

6 Type-I Error Inflation with Regression Errors

As shown by Proposition 4.1 and reinforced by the previous section’s example, the fundamental
challenges in conditional independence testing stem from the estimation of conditional mean em-
beddings. To further illustrate this point, we examine the effect of regression errors by letting
µ̂A|C = µA|C + ∆A|C and µ̂B|C = µB|C + ∆B|C . Under the null hypothesis and the setting of
problem (7), we can explicitly characterize K̂CI and its asymptotic variance in terms of ∆A|C and
∆B|C . This allows us to quantify how regression errors distort the KCI statistic and its variance. More
importantly, the discrepancy between the true limiting distribution and the null approximation can
be analyzed in terms of K̂CI and Var(K̂CI), without requiring assumptions on the data distribution.
This allows us to derive formal bounds that link conditional mean estimation error to test validity
more generally.
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Effect on moments. The following result, proved in Appendix E, is a more convenient form of
textbook results about U -statistics (Serfling, 1980, Section 5.2.1) for kernel methods:
Theorem 6.1. Let h(X,X ′) = ⟨ϕh(X), ϕh(X

′)⟩ with mean embedding µh = EX ϕh(X) and the
centered covariance operator Ch = EX [ϕh(X)⊗ ϕh(X)]− µh ⊗ µh. Define ν1 = ⟨µh,Chµh⟩ and
ν2 = ∥Ch∥2HS. The corresponding U -statistic satisfies

Un =
1

n(n− 1)

∑
1≤i ̸=j≤n

h(Xi, Xj), E[Un] = U = ∥µh∥2, Var(Un) =
4

n
ν1 +

2

n(n− 1)
ν2.

The function h of (6), for KCIn, has this form with ϕh(X) = ϕcA(A,C) ⊗ ϕcB(B,C) ⊗ ϕC(C);
moreover, µh = EX [ϕh(X)] = EC

[
EAB [ϕcA(A,C) ⊗ ϕcB(B,C) | C] ⊗ ϕC(C)

]
is exactly the

definition (3) of CKCI. Thus, under the null where µh = CKCI = 0, we have EKCIn = KCI = 0
and Var(KCIn) =

2
n(n−1)ν2.

K̂CIn has the same decomposition, except µĥ = EC
[
EAB [ ϕ̂cA(A,C)⊗ ϕ̂cB(B,C) | C ]⊗ ϕC(C)

]
is now not zero if the error in µ̂A|C , µ̂B|C is not exactly conditionally independent. As shown by
Pogodin et al. (2024), with linear kernels kA and kB , under the null we have

E K̂CIn = K̂CI = E
[
kC(C,C

′) ⟨∆A|C(C),∆A|C(C
′)⟩HA ⟨∆B|C(C),∆B|C(C

′)⟩HB

]
. (10)

As they note, we typically expect ∆A|C and ∆B|C to be relatively smooth functions of C; thus it
is reasonable to expect that K̂CI can be nontrivial even though they were trained on independent
datasets. Perhaps even more significantly, for fixed regression functions, it will generally be the case
that ν1 = ⟨µĥ,Cĥµĥ⟩ > 0. This implies that the standard deviation decreases as n shrinks only like
Θ(1/

√
n), rather than the Θ(1/n) obtained when ∆A|C ,∆B|C are zero. (The exact expression for

the variance of K̂CIn in the synthetic example is given in Appendix F.2.)

Multi-dimensional C example. Though the analytical expression of K̂CI does not require as-
sumptions on the data structure, so far we implicitly presumed that the same features of C are used
both in the true/estimated conditional means and the conditional dependence γ(C). We thus extend
our analysis to cases where C is multi-dimensional, considering two scenarios: (1) using the same
dimensions of C for both conditional means and dependence, and (2) using separate dimensions.
This allows us to study how the information in C influences spurious dependence. See Appendix F.3
for the setup and Appendix H.1 for additional experiments.

Table 1: Comparison of Testing Results for Two Conditional Dependence Scenarios
Scenario Type I Error Type II Error
Scenario 1: Shared dimensions 0.21 0.0
Scenario 2: Separate dimensions 0.10 0.08

As observed in Table 1, Scenario 1 exhibits a notably higher Type I error (0.21) compared to Scenario
2 (0.10). This increase arises from regression errors leaking correlated noise into the test statistic
when regressions C → A,C → B, and dependence share the same dimension. Consequently,
Scenario 1 generates inflated KCI values, increasing false positives. In contrast, Scenario 2, with
separate dimensions, shows lower Type I error but slightly higher Type II error, illustrating a trade-off
driven by regression error correlations.

Real-world experiments. Appendix H.2 presents experiments on a real-world age-estimation task,
following Y. Zhang et al. (2025), which investigate whether certain face regions are informative for
age prediction. The results show imperfect regression can make the test more prone to indicating
dependence, highlighting the practical impact of regression errors on CI testing.

Effect on null calibration. Standard methods for setting a test threshold for KCI do not incorporate
regression error; rather, they rely on the asymptotic distribution of KCIn. For instance, K. Zhang et al.
(2011) estimate the parameters of a χ2 mixture or a gamma approximation thereof, while Pogodin
et al. (2024) suggest a wild bootstrap. In either case, the null threshold scales as Θ(1/n). However, if
regression errors remain fixed while the number of test points grows, K̂CIn = Θ(1) +Op(1/

√
n)

will almost surely exceed the threshold, inflating Type-I error. This shows that regression errors must
shrink as n grows, and motivates establishing the required decay rate.
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Asymptotics. When ν1 > 0,
√
n(Un − U) converges to a normal distribution (Proposition 5.1);

when ν1 = 0 but ν2 > 0, n(Un − U) converges in distribution to a weighted mixture of centered χ2

variables (Serfling, 1980, Section 5.5). We can thus ask: under the null, how likely is a sample from
KCIn to exceed a test threshold set according to the limiting distribution of nKCIn?

Theorem 6.2. Assume that A ⊥⊥ B | C. Let Z1 = K̂CIn and Z2 ∼ N
(
K̂CI,Var(K̂CIn)

)
be a

normal variable moment-matched to Z1. Let q > 0 and ρ ∈ (0, 1); define T1 =
√

(1− ρ)/ρ and
T2 = Φ−1(1− ρ), where Φ is the standard normal CDF. Then the following holds for i ∈ {1, 2}:

Pr
(
Zi >

q

n

)
≤ ρ if q ≥ nK̂CI + Ti

√
n2 Var(K̂CIn).

The proof is in Appendix G.1; the case for K̂CIn is more precisely applicable, but using asymptotic
normality gives better dependence on ρ. This theorem provides an upper bound on the probability that
the inflated statistic K̂CIn exceeds a nominal null threshold. Intuitively, the bound shows that if the
regression bias inducedK̂CI or the variance Var(K̂CIn) are non-negligible, the effective threshold

q/n must grow proportionally to K̂CI + Ti

√
Var(K̂CIn) in order to maintain the level ρ.

The following result, stated with explicit constants and proved in Appendix G.2, instead bounds
the approximation error between wild bootstrap and a moment-matched normal to nK̂CIn. The
wild bootstrap generates surrogate samples Y = 1

n

∑
i ̸=j ĥijεiεj , where the random multipliers εi

are drawn independently and ĥij is defined analogously to (6) using estimated conditional mean
embeddings. For given kernel matrix ĥij , the wild bootstrap stastistic Y has zero mean and a variance
that closely matches that of nKCIn under the null, providing a practical approximation to the null
distribution of the KCI statistic.

Theorem 6.3. Assume A ⊥⊥ B | C, and let Y = 1
n

∑n
i,j=1 ĥij εi εj ,where εi

iid∼ N (0, 1). Let Ĥ

be the matrix with entries ĥi,j; assume ∥Ĥ∥2F > 2∥Ĥ∥2op. Let Zn ∼ N
(
K̂CI, Var(K̂CIn)

)
be the

moment-matched normal approximation to K̂CIn. Then, there exist constants Ri,n → Ri > 0 for
i ∈ {1, 2, 3} (depending on the distribution of Y and K̂CIn) such that

sup
x∈R

∣∣∣Pr(Y | Ĥ ≤ x)−Pr(nZn ≤ x)
∣∣∣ ≤ R1,n + R2,n

K̂CI√
Var(K̂CIn)

+ R3,n

∣∣∣ Var(Y | Ĥ)

n2 Var(K̂CIn)
−1
∣∣∣.

Noting that n2 Var(K̂CIn) ∼ 4nν1 + 2ν2. In Theorem 6.3 we would like K̂CI = o(1/n) and
ν1 = o(1/n). Under these conditions, the remainder terms R2 and R3 in Theorem 6.3 vanish, leaving
only a constant R1 gap between the wild bootstrap statistic Y and the normal approximation nZn;
for the bound to be informative, R1 should be small. Similarly, in Theorem 6.2, the asymptotic
threshold behaves correctly if 4nν1 + 2ν2 → v ≤ (q/Ti)

2, which is most easily achieved when
ν1 = o(1/n) and ν2 = Θ(1). Although exact calibration would require more detailed knowledge of
the distribution, the fact that both bounds demand K̂CI and ν1 to scale as o(1/n) strongly indicates
that this is the correct scaling for controlling Type-I error.

7 Discussion

We provided a novel framing of the KCI test, one which helped us connect it closely to GCM-based
tests. We explained how this category of tests interacts with the famed hardness result of Shah and
Peters (2020), identifying regression error as the key difficulty, and showing bounds on the excess
Type I error based on the amount of regression error. We showed that, contra the assumptions of most
prior work, selecting a kC kernel specifically for testing can be of vital importance in achieving test
power, but that doing so can exacerbate Type I error.

While CI testing remains fundamentally difficult, our work makes a step towards understanding how
this difficulty manifests in practice, and demonstrates paths towards addressing it. This underscores
that users of GCM- or KCI-type tests must carefully consider how to mitigate spurious residual
dependence under the null—something that sample splitting alone does not resolve.
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A Conditional independence decomposition

We recall and prove Theorem 2.2, which extends results of Daudin (1980).

Theorem 2.2. Random variables A and B are conditionally independent given C if and only if

E
C

[
w(C) E

AB|C

[
(f(A)− E[f(A) | C]) (g(B)− E[g(B) | C]) | C

] ]
= 0, (11)

for all square-integrable functions f ∈ L2
A, g ∈ L2

B , and w ∈ L2
C .

Proof. (i) Let A and B be conditionally independent given C. Let f̃ ∈ L2
AC and g̃ ∈ L2

BC . Then by
Definition 2.1, almost surely in C it holds that

E
[
f̃(A,C) g̃(B,C) | C

]
= E

[
f̃(A,C) | C

]
E
[
g̃(B,C) | C

]
,

which is equivalent to the statement that almost surely in C,

E
AB|C

[
(f̃(A,C)− E[ f̃(A,C) | C ]) (g̃(B,C)− E[ g̃(B,C) | C]) | C

]
= 0.

Since this expectation is almost surely zero, it holds for any w ∈ L2
C that

E
C

[
w(C) E

AB|C

[
(f̃(A,C)− E[ f̃(A,C) | C ]) (g̃(B,C)− E[ g̃(B,C) | C]) | C

]]
= 0.

Given any f ∈ L2
A and any g ∈ L2

B , we can choose f̃(·, c) = f and g̃(·, c) = g to simply ignore the
second argument. These functions satisfy f̃ ∈ L2

AC and g̃ ∈ L2
BC . Then, as desired,

E
C

[
w(C) E

AB|C

[
(f(A)− E[ f(A) | C ]) (g(B)− E[ g(B) | C]) | C

]]
= 0.

(ii) Suppose (11) holds for all functions f̃ ∈ L2
A, g̃ ∈ L2

B , and w̃ ∈ L2
C . Let PC denote the marginal

distribution of C, and let PA|C , PB|C , and PAB|C denote the conditional distributions of A, B, and
(A,B) given C, respectively. Let Q be a Borel subset of the image set of C. Pick w∗ = 1Q ∈ L2

C ,
where 1Q is the indicator function of Q. Substituting this choice into equation (11) yields∫

Q
E

AB|C

[
(f̃(A)− E[ f̃(A) | C ]) (g̃(B)− E[ g̃(B) | C]) | C

]
dPC = 0,

Since this holds for all Borel sets Q, it follows that the integrand must vanish almost surely with
respect to PC . That is, for PC-almost every value of C, (11) implies that

E
[
f̃(A) g̃(B) | C = c

]
= E

[
f̃(A) | C = c

]
E
[
g̃(B) | C = c

]
.

Given any f ∈ L2
AC and any g ∈ L2

BC , for each C = c in its domain, f(·, c) ∈ L2
A and g(·, c) ∈ L2

B
for almost every c. Thus, for any f ∈ L2

AC and any g ∈ L2
BC , we have for almost every c,

E
[
f(A, c) g(B, c) | C = c

]
= E

[
f(A, c) | C = c

]
E
[
g(B, c) | C = c

]
,

which is precisely Definition 2.1. This completes the proof.

B Finite-sample valid test with exact mean embeddings

We recall and prove Proposition 4.1.

Proposition 4.1. Suppose supa∈A kA(a, a) ≤ κA, supb∈B kB(b, b) ≤ κB , supc∈C kC(c, c) ≤ κC .

Then a test which rejects when KCIn > t̃n := 32κAκBκC

√
1

n−1 log
1
α has finite-sample level at

most α. Moreover, if each kernel is L2-universal, the test is consistent against fixed alternatives.
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Proof. KCIn is a U -statistic with kernel

kC(c, c
′) ⟨ϕA(a)− µA|C(c), ϕA(a

′)− µA|C(c
′)⟩HA ⟨ϕB(b)− µA|C(c), ϕA(b

′)− µA|C(c
′)⟩HB .

We have that
∥ϕA(a)∥ =

√
⟨ϕA(a), ϕA(a)⟩ =

√
kA(a, a) ≤

√
κA

and by Jensen’s inequality

∥µA|C(c)∥ =
∥∥E[ϕA(A) | C = c]

∥∥ ≤ E[∥ϕA(A)∥ | C = c] ≤
√
κA,

so that ∥ϕA(a)− µA|C(c)∥ ≤ 2
√
κA. Hence, by Cauchy-Schwarz,

|⟨ϕA(a)− µA|C(c), ϕA(a
′)− µA|C(c

′)⟩HA | ≤ 4κA.

Similarly, |⟨ϕB(b) − µB|C(c), ϕB(b
′) − µB|C(c

′)⟩HB | ≤ 4κB . Thus the kernel of the U -statistic
KCIn has absolute value at most 16κAκBκC . Hoeffding (1963)’s inequality for U -statistics (c.f.
Serfling, 1980, Section 5.6.1, Theorem A) thus shows that when KCI = 0,

Pr (KCIn ≥ tn) ≤ exp

(
− 2⌊n/2⌋ t2n
4 · (16κAκBκC)2

)
≤ exp

(
− (n− 1) t2n

(32κAκBκC)
2

)
= α,

showing finite-sample validity of the test.

On the other hand, when A ⊥̸⊥ B | C, since each kernel is L2-universal, we know that KCI > 0.
Thus a symmetric application of Hoeffding’s inequality tells us that once n is large enough that
tn < KCI/2, we have that

Pr (KCIn < tn) = Pr (KCI−KCIn > KCI− tn)

≤ exp

(
−(n− 1)

(
KCI− tn

32κAκB
√
κC

)2
)

≤ exp

(
−(n− 1)

(
KCI/2

32κAκB
√
κC

)2
)

→ 0,

and hence for any fixed alternative, the probability of a Type-II error goes to zero.

C Relationship to other testing methods

Relationship to other CI tests. One major category of conditional independence tests are based
on variations of approximate permutation, i.e. that samples with similar C values have similar A
and B distributions, which can be exploited either by “swapping” samples with nearby C values
(e.g. Sen et al., 2017; Berrett et al., 2019; Kim et al., 2022) or by producing bins of C values and
assuming the distribution is constant within (e.g. Györfi and Walk, 2012). While this approach might
seem fundamentally different than the regression or conditional mean embedding approaches, we
emphasize that it is not. For instance, Kim et al. (2022) assume that the Hellinger or Rényi distance
between A | C = c and A | C = c′ is at most a constant times ∥c − c′∥, and the same for B;
similar assumptions underlie all methods of this type. This smoothness justifies using the distribution
A | C = c′ to estimate A | C = c for some similar value of c′. Bearing in mind the one-to-one
correspondence between mean embeddings and distributions, this assumption is essentially equivalent
to using a nearest-neighbor type estimator for µ̂A|C , µ̂B|C .

Another recent CI test is the Rao-Blackwellized Predictor Test, RBPT (Polo et al., 2023). This
method is regression-based, but based on comparing predictors of B | A,C to an averaged predictor
of B | C. This structure makes it harder to compare to the KCI-type tests directly, but we note that it
relies on a good estimate of A | C and hence is essentially in the model-X framework. Like most
tests in this area, it suffers from severe bias problems, as discussed by Pogodin et al. (2024).

Smoothness of distributions. In the model-X setting where the conditional distribution is only
approximately known, Berrett et al. (2019, Section 5) bound the worst-case inflation of the Type
I error for two common model-X tests by at most the average conditional total variation distance
between the true distribution and the approximation. Generic distribution modeling methods are
likely to succeed in this sense only if the distribution changes slowly in total variation. Similarly, the
bound of Kim et al. (2022) in a permutation case assumes that the distribution changes slowly in
Hellinger distance; note that the total variation distance is upper-bounded by a constant times the
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Hellinger distance, and so slow Hellinger change is a (slightly) stronger assumption than slow total
variation change.

By contrast, while the precise conditions for effective conditional mean embedding estimation are
complex (Li et al., 2024), we can roughly expect them to work when the mean embedding changes
smoothly as a function of C; that is, the maximum mean discrepancy, MMD (Gretton et al., 2012),
between A | C = c and A | C = c′ changes slowly as a function of c. It is easy to see (e.g. Xu et al.,
2024) that for bounded kernels, the MMD is a lower bound on the total variation. Thus, in the settings
where the bounds of Berrett et al. (2019) and Kim et al. (2022) are applicable, we can roughly expect
that µA|C , µB|C should also be learnable. The reverse, however, is not true: the total variation is a
much stronger distance than the MMD, i.e. there are many cases where the MMD is quite small and
the total variation is very large. For instance, the Gaussian-kernel MMD between two nearby point
masses will be small, while for total variation and Hellinger it will be maximal.

C.1 KCI-Power method

W. Wang et al. (2025), in unpublished parallel work, proposed choosing the parameters of kernels for
a KCI test based on signal-to-noise ratio maximization, in a scheme very similar to that discussed
in Section 5. They suggested doing it only for kC(C,C ′) and not for the mean embeddings, as did
we; in a few application settings, they obtained marginal improvements to the test power. They said
they did not update the A or B kernels because “due to the presence of conditional expectation bias,
we empirically found that updating these parameters does not yield residual matrices with higher
expected test power.” In our view, the failure is exactly for the reasons identified in Section 5. While
this can in fact be termed “conditional expectation bias,” we think that our theoretical results and
framing of exactly how this problem arises adds significant understanding over their paper.

It is also worth noting that W. Wang et al. also provided a decomposition of CKCI identical to ours,
although they originated from the previous definition as in our Footnote 2, rather than our novel
first-principles derivation.

D Generalization bound for SNR

For a formal version of Theorem 5.2, we generalize the proof of Liu et al. (2020, Theorem 6) to other
second-order U -statistics.

Given a set of samples X1, . . . , Xn and a function h, define

Un :=
1

n(n− 1)

∑
1≤i̸=j≤n

h(Xi, Xj) → U := Eh(X,X ′)

σ2
H1,n

:=
4

n

n∑
i=1

 1

n

n∑
j=1

h(Xi, Xj)

2

− 4

 1

n2

n∑
i=1

n∑
j=1

h(Xi, Xj)

2

→ σ2
H1

:= 4E
X

[
Var
X′

[h(X,X ′) | X]
]

SNRn,λ := Un/
√
σ2
H1,n

+ λ → SNRλ := U/
√
σ2
H1

+ λ

and let SNR := SNR0.

Here Un is the usual second-order U -statistic; we assume, without loss of generality, that h(x, x′) =
h(x′, x) for all x, x′. We know from Section 5.2.1 of Serfling (1980) (also see Theorem 6.1) that
Var(Un) = 4ν1/n + O(1/n2). The estimator ν1,n follows the biased estimator used by Liu et al.
(2020); while Sutherland et al. (2017) used an unbiased variance estimator, the biased estimator is
much simpler and also performs better in this setting (Deka and Sutherland, 2023).

Note that using X = (A,B,C) and h((A,B,C), (A′, B′, C ′)) given by

kC(C,C
′) ⟨ϕA(A)−µ̂A|C(C), ϕA(A

′)−µ̂A|C(C
′)⟩HA ⟨ϕB(B)−µ̂B|C(C), ϕB(B

′)−µ̂B|C(C
′)⟩HB ,

we obtain that U = K̂CI, σ2
H1

is σ̂2
H1

, and SNR is ŜNR.
Theorem D.1. Let hω : X × X → R be a set of functions for each ω ∈ Ω such that:

(i) The hω are uniformly bounded: supω∈Ω supx,x′∈X |hω(x, x′)| ≤ ρ for some 1 ≤ ρ <∞.
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(ii) Ω is a subset of some D-dimensional Banach space, and supω∈Ω∥ω∥ ≤ R.

(iii) The functions are Lipschitz in their parameterization: there is some L <∞ such that for all
x, x′ ∈ X and ω, ω′ ∈ Ω, |hω(x, x′)− hω′(x, x′)| ≤ L∥ω − ω′∥.

Use U (ω)
n and similar to denote the quantities defined above with the function hω. Let Ω̄s ⊆ Ω be a

set of parameters for which σ(ω)
H1

≥ s. Take λ = ℓn−1/3. Then, with probability at least 1− δ,

sup
ω∈Ω̄s

|SNR
(ω)
n,λ−SNR(ω)| ≤ ρ

s2n1/3

[
ℓ

2s
+

[
448ρ√
ℓ

+
2s

n1/6

] [
L+

√
2 log

4

δ
+ 2D log(4R

√
n)

]
+

72ρ3√
ℓn

]
.

Thus, treating ρ and ℓ as constants, we have that

sup
ω∈Ω̄s

|SNR
(ω)
n,λ − SNR(ω)| = O

(
1

s2n1/3

[
1

s
+
(
1 +

s

n1/6

)[
L+

√
D log(Rn) + log

1

δ

]])
.

This further implies that if SNR(ω) has a unique maximizer ω∗ ∈ Ω̄s, the sequence of empirical
minimizers of SNR

(ω)

n,λ=ℓn− 1
3

converges in probability to ω∗.

The assumptions in Theorem D.1 agree with those of Liu et al. (2020). Their Appendix A.4’s bounds
on L directly apply to the h of K̂CI if we only consider changing kC , as we do in our experiments.
These techniques could be readily adapted to changing other parameters, whether kA or kB (if the
regressions are also updated appropriately) or parameters inside µ̂A|C and µ̂B|C . We emphasize,
however, that doing so only increases ŜNR; any of these operations could increase the probability of
rejecting the null under the alternative, but they will also increase the probability of rejecting the null
under the null, further inflating Type I error.

Proof. Let σ2
H1,n,λ

= σ2
H1,n

+ λ and σ2
H1,λ

= σ2
H1

+ λ. We begin with the decomposition

sup
ω∈Ω̄s

|SNR
(ω)
n,λ − SNR(ω)| = sup

ω∈Ω̄s

∣∣∣∣∣ U (ω)
n

σ
(ω)
H1,n,λ

− U (ω)

σ
(ω)
H1

∣∣∣∣∣
≤ sup
ω∈Ω̄s

∣∣∣∣∣ U (ω)
n

σ
(ω)
H1,n,λ

− U
(ω)
n

σ
(ω)
H1,λ

∣∣∣∣∣+ sup
ω∈Ω̄s

∣∣∣∣∣ U (ω)
n

σ
(ω)
H1,λ

− U
(ω)
n

σ
(ω)
H1

∣∣∣∣∣+ sup
ω∈Ω̄s

∣∣∣∣∣U (ω)
n

σ
(ω)
H1

− U (ω)

σ
(ω)
H1

∣∣∣∣∣.
Now notice that |Uωn | ≤ ρ, σ(ω)

H1,λ
≥

√
s2 + λ ≥ s, and σ(ω)

H1,n,λ
≥

√
λ. Hence the first term is

sup
ω∈Ω̄s

∣∣∣∣∣ U (ω)
n

σ
(ω)
H1,n,λ

− U
(ω)
n

σ
(ω)
H1,λ

∣∣∣∣∣ = sup
ω∈Ω̄s

|U (ω)
n | 1

σ
(ω)
H1,n,λ

1

σ
(ω)
H1,λ

|(σ(ω)
H1,n,λ

)2 − (σ
(ω)
H1,λ

)2|

(σ
(ω)
H1,n,λ

)2 + (σ
(ω)
H1,λ

)2

≤ ρ√
λ
√
s2 + λ(

√
s2 + λ+

√
λ)

sup
ω∈Ω̄s

|(σ(ω)
H1,n,λ

)2 − (σ
(ω)
H1,λ

)2|

≤ ρ

s2
√
λ

sup
ω∈Ω̄s

|(σ(ω)
H1,n,λ

)2 − (σ
(ω)
H1,λ

)2|,

the second is

sup
ω∈Ω̄s

∣∣∣∣∣ U (ω)
n

σ
(ω)
H1,λ

− U
(ω)
n

σ
(ω)
H1

∣∣∣∣∣ = sup
ω∈Ω̄s

|U (ω)
n | 1

σ
(ω)
H1,λ

1

σ
(ω)
H1

∣∣∣∣∣ (σ
(ω)
H1,λ

)2 − (σ
(ω)
H1

)2

σ
(ω)
H1,λ

+ σ
(ω)
H1

∣∣∣∣∣ ≤ ρλ

2s3
,

and the third is

sup
ω∈Ω̄s

∣∣∣∣∣U (ω)
n

σ
(ω)
H1

− U (ω)

σ
(ω)
H1

∣∣∣∣∣ = sup
ω∈Ω̄s

1

σ
(ω)
H1

∣∣∣U (ω)
n − U (ω)

∣∣∣ ≤ 1

s
sup
ω∈Ω̄s

∣∣∣U (ω)
n − U (ω)

∣∣∣.
Thus we have reduced to needing uniform convergence of Un and σ2

H1,n,λ
.
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Propositions 15 and 16 of Liu et al. (2020) show this, up to replacing their ν with our ρ/4, their RΩ

with our R, and their Lk with our L/4; this can be seen by inspecting the proofs. The results become

Pr

(
sup
ω∈Ω

∣∣∣U (ω)
n − U (ω)

∣∣∣ ≤ 2√
n

[
ρ

√
2 log

2

δ
+ 2D log(4R

√
n) + L

])
≥ 1− δ

Pr

(
sup
ω∈Ω

∣∣∣(σ(ω)
H1,n,λ

)2 − (σ
(ω)
H1,λ

)2
∣∣∣ ≤ 64√

n

[
7

√
2 log

2

δ
+ 2D log(4R

√
n) +

9ρ2

8
√
n
+

1

2
Lρ

])
≥ 1− δ.

Combining the results, it holds with probability at least 1 − δ that the worst-case error
supω∈Ω̄s

|SNR
(ω)
n,λ − SNR(ω)| is at most

ρλ

2s3
+

[
2ρ

s
√
n
+

448ρ

s2
√
λn

]√
2 log

4

δ
+ 2D log(4R

√
n) +

[
2

s
√
n
+

32ρ2

s2
√
λn

]
L+

72ρ3

s2n
√
λ
.

Plugging in λ = ℓn−
1
3 yields

ρℓ

2s3n
1
3

+

[
2ρ

s
√
n
+

448ρ√
ℓs2n

1
3

]√
2 log

4

δ
+ 2D log(4R

√
n) +

[
2

s
√
n
+

32ρ2√
ℓs2n

1
3

]
L+

72ρ3√
ℓs2n

5
6

.

We can use our assumption ρ ≥ 1 and that 448 > 32 to get a slightly looser but simpler upper bound
of

ρℓ

2s3n1/3
+

[
2ρ

s
√
n
+

448ρ2√
ℓs2n1/3

][
L+

√
2 log

4

δ
+ 2D log(4R

√
n)

]
+

72ρ3√
ℓs2n5/6

,

which reduces to the result in the theorem statement.

The final result is a standard consequence of the prior statement, as in Corollary 12 of Liu et al.
(2020).

E U-Statistic moments for Hilbert space kernels

Theorem 6.1. Let h(X,X ′) = ⟨ϕh(X), ϕh(X
′)⟩ with mean embedding µh = EX ϕh(X) and the

centered covariance operator Ch = EX [ϕh(X)⊗ ϕh(X)]− µh ⊗ µh. Define ν1 = ⟨µh,Chµh⟩ and
ν2 = ∥Ch∥2HS. The corresponding U -statistic satisfies

Un =
1

n(n− 1)

∑
1≤i ̸=j≤n

h(Xi, Xj), E[Un] = U = ∥µh∥2, Var(Un) =
4

n
ν1 +

2

n(n− 1)
ν2.

Proof. Un is the definition of a second-order U -statistic. We have that

EUn = E
X,X′

h(X,X ′)

= E
X,X′

⟨ϕh(X), ϕh(X
′)⟩

= ⟨E
X
ϕh(X), E

X′
ϕh(X)⟩ = ⟨µh, µh⟩ = ∥µh∥2

when µh exists in the Bochner sense, E∥ϕh(X)∥ <∞.

For the variance, it is a standard result that (e.g. Serfling, 1980, Section 5.2.1):

Var(Un) =
4(n− 2)

n(n− 1)
Var
X

[
E

X′|X
[h(X,X ′) | X ]

]
+

2

n(n− 1)
Var
[
h(X,X ′)

]
.

Using the law of total variance,

Var
[
h(X,X ′)

]
= Var

X

[
E

X′|X
[h(X,X ′) | X ]

]
+ E
X

[
Var
X′|X

[h(X,X ′) | X ]
]

and so

Var(Un) =
4n− 6

n(n− 1)
Var
X

[
E

X′|X
[h(X,X ′) | X ]

]
+

2

n(n− 1)
E
X

[
Var
X′|X

[h(X,X ′) | X ]
]
.
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We can now compute that

E
X′|X

[h(X,X ′) | X] = ⟨ϕh(X), µh⟩

Var
X

[
E

X′|X
[h(X,X ′) | X]

]
= E
X

[(
E

X′|X
[h(X,X ′) | X]

)2]− (E
X

E
X′|X

[h(X,X ′) | X]
)2

= E
X
⟨ϕh(X), µh⟩2 − ⟨µh, µh⟩2

= E
X
⟨µh, ϕh(X)⟩⟨ϕh(X), µh⟩ − ⟨µh, µh⟩⟨µh, µh⟩

= E
X

〈
µh,
(
ϕh(X)⊗ ϕh(X)− µh ⊗ µh

)
µh
〉

=
〈
µh,E

X

[
ϕh(X)⊗ ϕh(X)− µh ⊗ µh

]
µh

〉
= ⟨µh,Chµh⟩ = ν1.

The remaining term is given by

Var
X′|X

[
h(X,X ′) | X

]
= E
X′|X

[
h(X,X ′)2 | X

]
−
(

E
X′|X

[
h(X,X ′) | X

])2
= E
X′|X

⟨ϕh(X), ϕh(X
′)⟩⟨ϕh(X ′), ϕh(X)⟩ −

(
E

X′|X
⟨ϕh(X), ϕh(X

′)⟩
)2

= E
X′|X

⟨ϕh(X), ϕh(X
′)⟩⟨ϕh(X ′), ϕh(X)⟩ − ⟨ϕh(X), µh⟩⟨ϕh(X), µh⟩

=

〈
ϕh(X),

(
E

X′|X
ϕh(X

′)⊗ ϕh(X
′)− µh ⊗ µh

)
ϕh(X)

〉
= ⟨ϕh(X),Chϕh(X)⟩

E
X

Var
X′|X

[
h(X,X ′) | X

]
= E
X
⟨ϕh(X),Chϕh(X)⟩

= E
X
⟨ϕh(X)⊗ ϕh(X),Ch⟩HS

=
〈
E
X
ϕh(X)⊗ ϕh(X),Ch

〉
HS

= ⟨Ch + µh ⊗ µh,Ch⟩HS = ν1 + ν2.

Combining, we find that

Var(Un) =
4n− 6

n(n− 1)
ν1 +

2

n(n− 1)
(ν1 + ν2) =

4

n
ν1 +

2

n(n− 1)
ν2.

F Analytical example

F.1 With correct regressions

KCI as an expectation under a bivariate Gaussian. Under the assumption of linear kernels
ϕA(a) = a and ϕB(b) = b, the conditional cross-covariance operator with correct regressions can be
written as:

CAB|C = E
AB|C

[
(A− µA|C(C))(B − µB|C(C)) | C

]
= E
AB|C

[
(A− fA(C)) (B − fB(C)) | C

]
= τ2EAB|C

[
rA rB | C

]
= τ2γ(C)

Since C,C ′ ∼ N (0, 1) independently, and kC(c, c′) = exp
(
− (c−c′)2

2ℓ2C

)
, then the KCI statistic

becomes:

KCI = τ4 E
C,C′

[
kC(C,C

′)γ(C)γ(C ′)
]
.
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Using the fact that C,C ′ are independent standard Gaussians, this becomes:

KCI = τ4
∫∫

1

2π
exp

(
−c

2 + c′2

2

)
exp

(
− (c− c′)2

2ℓ2C

)
γ(c)γ(c′)dcdc′

= τ4
∫∫

1

2π
exp

(
− (ℓ2C + 1)c2 − 2cc′ + (ℓ2C + 1)c′2

2ℓ2C

)
γ(c)γ(c′)dcdc′,

Define the vector x =

[
c
c′

]
, and write the integrand as a bivariate Gaussian density with covariance

matrix Σ. That is,

KCI = τ4

√
ℓ2C

ℓ2C + 2

∫
R2

ϕΣ(c, c
′) γ(c) γ(c′) dcdc′,

where ϕΣ denotes the bivariate normal density with zero mean and covariance matrix

Σ =

 ℓ2C+1

ℓ2C+2
1

ℓ2C+2

1
ℓ2C+2

ℓ2C+1

ℓ2C+2

 , det(Σ) =
ℓ2C

ℓ2C + 2
.

We may thus express:

KCI = τ4

√
ℓ2C

ℓ2C + 2
E

(X,X′)∼NℓC

[
γ(X)γ(X ′)

]
,

with auxiliary variables (X,X ′) ∼ NℓC := N

([
0
0

]
,

[
1− 1

ℓ2C+2
1

ℓ2C+2
1

ℓ2C+2
1− 1

ℓ2C+2

])
.

Exact expression for KCI We can analytically compute both the population KCI value and its
variance to generate the theoretical curve shown in Figure 2. Under the alternative hypothesis, suppose
the conditional dependence takes the form γ(X) = sin(βX). Then the KCI statistic becomes:

KCI = τ4

√
ℓ2C

ℓ2C + 2
E

(X,X′)∼NℓC

[
sin(βX) sin(βX ′)

]
=
τ4

2

√
ℓ2C

ℓ2C + 2
E

(X,X′)∼NℓC

[
cos(β(X −X ′))− cos(β(X +X ′))

]
,

Now note that X −X ′ and X +X ′ are linear functions of a jointly Gaussian vector and hence are
Gaussian themselves. Since (X,X ′) ∼ N (0,Σ), the random variables Z1 = X−X ′, Z2 = X+X ′

are zero-mean and have variances:

Var(Z1) = 2

(
1− 2

ℓ2C + 2

)
, Var(Z2) = 2.

We now compute the expectations using the identity for the cosine of a Gaussian: E[cos(βZ)] =
exp

(
− 1

2β
2 Var(Z)

)
. Thus,

EX,X′
[
cos
(
β(X −X ′)

)]
= exp

(
−β2

(
1− 2

ℓ2C + 2

))
,

EX,X′
[
cos
(
β(X +X ′)

)]
= exp

(
−β2

)
.

Substituting into the expression for KCI, we obtain:

KCI =
τ4

2

√
σC

σC + 2

(
exp

(
−β2

(
1− 2

σC + 2

))
− exp

(
−β2

))
=
τ4

2
exp(−β2)

√
σC

σC + 2

(
exp

(
2β2

σC + 2

)
− 1

)
.
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Exact expression of variance of KCIn. The variance of the U-statistic KCIn can be decomposed
into three components, as described in Appendix E. We now provide exact expressions for each term
under the alternative hypothesis.

vc := E
ABC

[
E

A′B′C′
[h(ABC,A′B′C ′) | ABC]2

]
= E
ABC

[
E

A′B′C′

[
τ4kC(C,C

′)rArBrA
′rB

′ | ABC
]2]

=τ8 E
C

[
E
AB

[rA
2rB

2 | C] E
C′

[
kC(C,C

′) E
A′B′|C′

[rA
′rB

′ | C ′]

]2]
=τ8 E

C

[(
1 + 2γ2(βC)

)
E
C′

[kC(C,C
′)γ(βC ′)]

2
]

=
τ8ℓ2C√

(ℓ2C + 1)(ℓ2C + 3)
E

X∼N (0,
ℓ2
C

+1

ℓ2
C

+3
)

(1 + 2γ2(βX)
)

E
X′∼N ( X

ℓ2
C

+1
,

ℓ2
C

ℓ2
C

+1
)

[γ(βX ′)]
2


=
τ8ℓ2C exp(− β2ℓ2C

ℓ2C+1
)√

(ℓ2C + 1)(ℓ2C + 3)

(
1− exp

(
− 2β2

(ℓ2C + 1)(ℓ2C + 3)

)
− 1

2
exp

(
− 2β2(ℓ2C + 1)

ℓ2C + 3

)
+

1

4
exp

(
− 2β2(ℓ2C + 2)2

(ℓ2C + 1)(ℓ2C + 3)

)
+

1

4
exp

(
− 2β2ℓ4C

(ℓ2C + 1)(ℓ2C + 3)

))
.

Besides,

vm := E
ABC,A′B′C′

[
h(ABC,A′B′C ′)

]2
= KCI2.

Also,

vs :=E
[
h2(ABC,A′B′C ′)

]
=τ8 E

[
kC

2(C,C ′)rA
2rB

2rA
′2rB

′2]
=τ8 E

C,C′

[
kC

2(C,C ′) E
A,B

[rA
2rB

2 | C] E
A′,B′

[rA
′2rB

′2 | C ′]
]

=τ8 E
C,C′

[
exp

( (C − C ′)2

ℓ2C

)
(1 + 2γ2(C))(1 + 2γ2(C ′))

]

=τ8

√
ℓ2C

ℓ2C + 4

(
4− 2 exp

(
− 2β2(ℓ2C + 2)

ℓ2C + 4

)
+ exp

(
− 2β2ℓ2C
ℓ2C + 2

)
·
(
− 2 exp

( −8β2

(ℓ2C + 2)(ℓ2C + 4)

)
+

1

2
exp

(−2β2(ℓ2C + 4)

ℓ2C + 2

)
+

1

2
exp

( −2β2ℓ4C
(ℓ2C + 2)(ℓ2C + 4)

)))
.

Therefore, the variance can be obtained by combining those three terms together:

Var(KCIn) =
(4n− 8)vc − (4n− 6)vm + 2vs

n(n− 1)
.

F.2 With regression errors

Suppose the conditional mean embeddings have errors, that µ̂A|C = µA|C + ∆A|C and µ̂B|C =
µB|C +∆B|C , where ∆A|C and ∆B|C denote the respective regression errors. Then the conditional
cross-covariance operator becomes:

ĈAB|C(C) = E
AB|C

[
(A− µ̂A|C(C))(B − µ̂B|C(C)) | C

]
= E
AB|C

[
(A− fA(C)−∆A|C(C)) (B − fB(C)−∆B|C(C)) | C

]
= EAB|C

[
(τrA −∆A|C(C)) (τrB −∆B|C(C)) | C

]
= τ2γ(C) + ∆A|C(C)∆B|C(C).
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The final equality follows from the assumption that the regression estimates are obtained using an
independent training set, and are thus independent of the test-time noise in rA and rB . Consequently,
the cross terms involving rA∆B|C(C) and rB∆A|C(C) have zero conditional expectation.

Thus, under the null hypothesis (A ⊥⊥ B | C), the KCI with noisy conditional means becomes

K̂CI = E
CC′

[
kC(C,C

′)∆A|C(C)∆B|C(C)∆A|C(C
′)∆B|C(C

′)
]
.

Under the null hypothesis, the variance of the U-statistic K̂CIn includes the following three compo-
nents:

vc = E
ABC

[
E

A′B′C′

[
kC(C,C

′)(τrA −∆A|C(C))(τrB −∆B|C(C))(τrA
′ −∆A|C(C

′))(τrB
′ −∆B|C(C

′))
]2]

= E
ABC

[
(τrA −∆A|C(C))

2(τrB −∆B|C(C))
2 E
C′

[
kC(C,C

′)∆A|C(C
′)∆B|C(C

′)
]2]

=E
C

[
(τ2 +∆A|C

2(C))(τ2 +∆B|C
2(C)) E

C′

[
kC(C,C

′)∆A|C(C
′)∆B|C(C

′)
]2]

.

vm = E
C

[
kC(C,C

′)∆A|C(C)∆B|C(C)∆A|C(C
′)∆B|C(C

′)
]2
.

vs = E
[
kC

2(C,C ′)(τrA −∆A|C(C))
2 (τrB −∆B|C(C))

2(τrA
′ −∆A|C(C

′))2 (τrB
′ −∆B|C(C

′))2
]

= E
[
kC

2(C,C ′)(τ2 +∆A|C
2(C))(τ2 +∆B|C

2(C))(τ2 +∆A|C
2(C ′))(τ2 +∆B|C

2(C ′))
]
.

F.3 Complex conditional dependence scenario (3-dimensional C)

We now extend our motivating example to a more complex setting by considering a three-dimensional
conditioning variable C = (C1, C2, C3). Specifically, we define random variables:

C ∼ N (0, I3), A = fA(eA
⊤C) + τ rA, B = fB(eB

⊤C) + τ rB ,

where eA and eB are indicator vectors selecting specific dimensions of (one entry equals 1, others
0), determining which dimension influences each variable. The additive noise terms (rA, rB) are
conditionally dependent via on γ(eC⊤C), as previously defined.

We employ a generalized Gaussian kernel for C with dimension-specific bandwidths ℓ2Ci, as

commonly implemented in libraries such as sklearn: kC(C,C
′) = exp

(
−
∑3
i=1

(Ci−C′
i)

2

2ℓ2Ci

)
.

We assume regression models are trained specifically on the relevant dimensions (as selected
by eA and eB), effectively ignoring irrelevant or noisy dimensions. Thus, ∆A|C(eA

⊤C) =

µ̂A|C(eA
⊤C) − µA|C(eA

⊤C) and ∆B|C(eB
⊤C) = µ̂B|C(eB

⊤C) − µB|C(eB
⊤C) depend only

on the dimensions directly influencing A and B. The noisy KCI statistic K̂CI, using linear kernels
for A and B, becomes:

K̂CI

=E
[
kC(C,C

′)
(
τ2γ(eC

⊤C) + ξ(eA
⊤C, eB

⊤C)
)(
τ2γ(eC

⊤C
′
) + ξ(eA

⊤C
′
, eB

⊤C
′
)
)]

=

(
3∏
i=1

√
ℓ2Ci

ℓ2Ci + 2

)
E
[
τ4γ(XC)γ(X

′
C) + ξ(XA, XB)γ(X

′
C) + ξ(X ′

A, X
′
B)γ(XC) + ξ(XA, XB)ξ(X

′
A, X

′
B)
]

where XC = eC
⊤X , ξ(XA, XB) = ∆A|C(eA

⊤X)∆B|C(eB
⊤X). Similar to Appendix F.1, X is

an auxiliary variable, and for i = 1, 2, 3, we have Xi, X
′
i ∼ NℓCi

.

Kernel bandwidth selection and regression errors critically influence test performance. We discuss
two illustrative scenarios:

Scenario 1: Shared-dimension dependence (eA = eB = eC ): . WhenA,B, and their conditional
dependence all rely on the same coordinate (e.g., C1). The KCI is

K̂CI =

(
3∏
i=1

√
ℓ2Ci

ℓ2Ci + 2

)
E
[
τ4γ(X1)γ(X

′
1)+ξ(X1, X1)γ(X

′
1)+ξ(X

′
1, X

′
1)γ(X1)+ξ(X1, X1)ξ(X

′
1, X

′
1)
]
.
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Specifically, under the null hypothesis, the regression error will leak "dependence" into the test,

K̂CI =

(
3∏
i=1

√
ℓ2Ci

ℓ2Ci + 2

)
E
[
ξ(X1, X1)ξ(X

′
1, X

′
1)
]
.

Explicitly, this is:

K̂CI =

(
3∏
i=1

√
ℓ2Ci

ℓ2Ci + 2

)
E
[
∆A|C(X1)∆A|C(X

′
1) ∆B|C(X1)∆B|C(X

′
1)
]
.

Scenario 2: Independent-dimension dependence (distinct eA, eB , eC) . When A,B and their
conditional dependence each utilize distinct coordinates (e.g., C1, C2, C3 respectively), because of
the independence between (XA, XB) and XC , the KCI becomes:

K̂CI =

(
3∏
i=1

√
ℓ2Ci

ℓ2Ci + 2

)
E
[
τ4γ(X3)γ(X

′
3) + ξ(X1, X2)ξ(X

′
1, X

′
2).
]
.

where we can further decompose the noise

E[ξ(X2, X3)ξ(X
′
2, X

′
3)] = E

[
∆A|C(X2)∆A|C(X

′
2)
]
E
[
∆B|C(X3)∆B|C(X

′
3)
]

Under the null hypothesis, the KCI becomes

K̂CI =

(
3∏
i=1

√
ℓ2Ci

ℓ2Ci + 2

)
E
[
∆A|C(X2)∆A|C(X

′
2)
]
E
[
∆B|C(X3)∆B|C(X

′
3)
]

Experiments. Table 1 summarizes empirical results from synthetic experiments. Both scenarios
used fA = cos, fB = exp, noise scale τ = 0.1, dependence frequency β = 2, with 200 training
points for regression and 200 test points, averaged over 100 runs. The significance level is set at
α = 0.05. We used Gaussian kernels for all kernels. Kernel ridge regression with leave-one-out
validation was used to select kernels for kC→A and kC→B , while kernel bandwidth for condition
kernel kC was selected by maximizing test power.

G Type-I bound proofs

G.1 Moment-matched normal against a threshold

Theorem 6.2. Assume that A ⊥⊥ B | C. Let Z1 = K̂CIn and Z2 ∼ N
(
K̂CI,Var(K̂CIn)

)
be a

normal variable moment-matched to Z1. Let q > 0 and ρ ∈ (0, 1); define T1 =
√

(1− ρ)/ρ and
T2 = Φ−1(1− ρ), where Φ is the standard normal CDF. Then the following holds for i ∈ {1, 2}:

Pr
(
Zi >

q

n

)
≤ ρ if q ≥ nK̂CI + Ti

√
n2 Var(K̂CIn).

Proof. Notice that, when either bound is satisfied, we have that( q
n
− K̂CI

)
/

√
Var(K̂CIn) ≥ Ti.

The result for K̂CIn follows by Cantelli’s inequality, which slightly improves the better-known
Chebyshev inequality for one-sided bounds; it says that for any random variable X ,

Pr(X ≥ E[X] + λ) ≤ Var(X)

Var(X) + λ2

and so, equivalently,

Pr

(
X − EX√
Var(X)

≥ t

)
≤ Var(X)

Var(X) + t2 Var(X)
=

1

1 + t2
.
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Plugging in T1 yields that

Pr
(
K̂CIn ≥ q

n

)
≤ Pr

 K̂CIn − K̂CI√
Var(K̂CIn)

>

√
1− ρ

ρ

 ≤ 1

1 + 1−ρ
ρ

= ρ,

as desired. The bound for Z2 is similar:

Pr
(
Z2 ≥ q

n

)
≤ Pr

(
Z2 − EZ2√
Var(Z2)

≥ Φ−1(1− ρ)

)
= 1− Φ

(
Φ−1(1− ρ)

)
= ρ.

G.2 Alignment to wild bootstrap

We provide a bound on the distance between two null distributions used in testing:

1. Wild bootstrap distribution given the test dataset.

2. Normal approximation to the test statistic nK̂CIn when regression errors are present.

Setup. Let Ĥ ∈ Rn×n be the kernel matrix with noisy regression under the null hypothesis, with
entries Ĥij = ĥij . We define a random variable

Y :=
1

n

∑
1≤i̸=j≤n

ĥij εi εj ,

where {εi}ni=1 are i.i.d. N (0, 1) variables. It is known from the results of Imhof (1961) that the wild
bootstrap distribution of Y | Ĥ is the same as

(Y | Ĥ) ≡ Q :=

n∑
r=1

λr (X
2
r − 1),

where Xr ∼ N (0, 1) i.i.d., and {λr}nr=1 are the eigenvalues of Ĥ/n. This centered form (X2
r − 1)

ensures that E[Q] = 0. The variance is Var(Q) = 2
∑n
r=1 λ

2
r = 2

n2 tr(Ĥ
2). And the third central

moment of Q is 8
∑n
r=1 λ

3
r =

8
n3 tr(Ĥ

3) (see Buckley and Eagleson, 1988). Moreover, in the limit
n → ∞, Q and nKCIn under a “perfect regression” null converge to the same distribution (see
Leucht and Neumann 2013, Theorem 2.1 and Pogodin et al. 2024, Theorem 4).

When regression errors are present, the errors include a small but nonzero leading variance term,
and thus the null distribution of K̂CIn becomes slightly non-degenerate. By a suitable central limit
theorem argument (analogous to Theorem 5.1), K̂CIn is approximately normal for large n:(

K̂CIn − K̂CI
)√

Var(K̂CIn)

d−→ N (0, 1).

Recall that for a second-order U-statistic with kernel ĥij = ĥ(Xi, Xj), a standard formula (see
Serfling (1980)) gives

Var(K̂CIn) =
4(n− 2)

n(n− 1)
Var
i

[
E
j
(ĥij)

]
+

2

n(n− 1)
Var
[
ĥij
]

=
4(n− 2)

n(n− 1)
Var
i

[
E
j
(ĥij)

]
+

2

n(n− 1)
E
[
ĥ2ij
]
− 2

n(n− 1)

(
E[ĥij ]

)2
.

Meanwhile, for the wild-bootstrap statistic, we have

Var(Y | Ĥ) = Var(Q) = 2
n∑
r=1

λ2r =
2

n2
tr(Ĥ2) −→ 2 E

[
ĥ2ij
]

as n→ ∞.

If the test uses correct regressions, under the null, E[hij ] = Vari
[
Ej(hij)

]
= 0, then Var(Q)

converges exactly to n2 Var(K̂CIn). If with regression errors, note in n2 Var(K̂CIn) that the factor
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4n Vari[Ej(ĥij)] can remain substantial if Vari[Ej(ĥij)] does not vanish. This Vari[Ej(ĥij)] term
can contribute a larger leading order when multiplied by n. Hence, if Vari[Ej(ĥij)] is non-negligible,
for large n, n2 Var(K̂CIn) can be bigger than Var(Q).

In practice, we use wild bootstrap to sample from the distribution of Y | Ĥ under the noisy-regression
null to determine a test threshold. Meanwhile, the actual test statistic n K̂CIn can be approximated
by a normal variable

S ≡ nZn ∼ N
(
nK̂CI, n2 Var(K̂CIn)

)
.

Hence, we want to quantify the distance between the distribution of Y | Ĥ and the distribution of
nZn. Concretely, we measure

sup
x∈R

∣∣∣Pr(Y | Ĥ ≤ x
)
− Pr

(
nZn ≤ x

)∣∣∣. (12)

A small supremum indicates that Y | Ĥ (wild bootstrap) and nZn (normal approximation under
regression error) produce nearly identical thresholds, while a large value implies a more significant
discrepancy between the two distributions.

Theorem 6.3. Assume A ⊥⊥ B | C, and let Y = 1
n

∑n
i,j=1 ĥij εi εj ,where εi

iid∼ N (0, 1). Let Ĥ

be the matrix with entries ĥi,j; assume ∥Ĥ∥2F > 2∥Ĥ∥2op. Let Zn ∼ N
(
K̂CI, Var(K̂CIn)

)
be the

moment-matched normal approximation to K̂CIn. Then, there exist constants Ri,n → Ri > 0 for
i ∈ {1, 2, 3} (depending on the distribution of Y and K̂CIn) such that

sup
x∈R

∣∣∣Pr(Y | Ĥ ≤ x)−Pr(nZn ≤ x)
∣∣∣ ≤ R1,n + R2,n

K̂CI√
Var(K̂CIn)

+ R3,n

∣∣∣ Var(Y | Ĥ)

n2 Var(K̂CIn)
−1
∣∣∣.

Proof. The overarching goal is to bound supx∈R
∣∣Pr(Q ≤ x) − Pr(S ≤ x)

∣∣, where Q is a centered
weighted sum of chi-squared variables (which, as noted above, is exactly the distribution of Y | H),
and S ≡ nZn is a normal approximation to a U-statistic-based test statistic. The classical approach
(Buckley and Eagleson, 1988; J.-T. Zhang, 2005) utilizes characteristic functions (ψ(·)) and the
Fourier inversion formula to control the Kolmogorov distance between distributions.

Let T be a generic random variable with characteristic function ψT (t) = E[eitT ]. If log
(
ψT (t)

)
admits the power series expansion

log(ψT (t)) =

∞∑
l=1

Kl(T )
(it)l

l!
,

then the constants Kℓ(T ) for ℓ = 1, 2, . . . ) are the cumulants of T (Muirhead, 2009, Sec. 2.4). In
particular: K1(T ) = E[T ] is the mean, K2(T ) = Var(T ) is the variance, K3(T ) = E[(T − E[T ])3]
is related to skewness.

Recall that Q =
∑n
r=1 λr

(
Z2
r − 1

)
, where Zr ∼ N (0, 1) i.i.d., and {λr} are positive (eigenvalues

of H/n). By construction,

K1(Q) = 0, K2(Q) = 2

n∑
r=1

λ2r, K3(Q) = 8

n∑
r=1

λ3r, Kl(Q) = 2l−1 (l−1)!

n∑
r=1

λlr (l ≥ 3).

Define the normalized version Q∗ by

Q∗ =
Q− E[Q]√
Var(Q)

=
Q√
K2(Q)

.

Hence, K1(Q
∗) = 0, K2(Q

∗) = 1, K3(Q
∗) = 8

∑n
r=1 λ

3
r/K

3/2
2 (Q), and for l ≥ 3,

Kℓ(Q∗) =
Kℓ(Q)

(K2(Q))ℓ/2
.
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For ease of comparison with Q, define

S∗ =
S√

K2(Q)
∼ N

( n K̂CI√
K2(Q)

,
n2 Var(K̂CIn)

K2(Q)

)
.

The distance supx |Pr(Q ≤ x) − Pr(S ≤ x)| is equivalent to comparing Q∗ and S∗:
supx∈R

∣∣Pr(Q∗ ≤ x)− Pr(S∗ ≤ x)
∣∣.

By results of Esseen (1945, page 33), we have

sup
x∈R

∣∣Pr(Q∗ ≤ x)− Pr(S∗ ≤ x)
∣∣ ≤ 1

2π

∫ +∞

−∞

∣∣∣∣ψQ∗(t)− ψS∗(t)

t

∣∣∣∣ dt,
where ψQ∗ and ψS∗ are the characteristic functions of Q∗ and S∗, respectively.

ψQ∗(t) =

n∏
r=1

exp

(
−it λr

K1/2
2 (Q)

)
·

(
1− it

2λr

K1/2
2 (Q)

)−1/2

ψS∗(t) = exp

(
it

nK̂CI

K1/2
2 (Q)

− t2
n2 Var(K̂CIn)

2K2(Q)

)
.

To handle the integral ∫ ∞

−∞

∣∣∣∣ψQ∗(t)− ψS∗(t)

t

∣∣∣∣ dt,
it is standard to split the domain at |t| = A for some positive A. Define

I1 =

∫
|t|≤A

∣∣∣∣ψQ∗(t)− ψS∗(t)

t

∣∣∣∣ dt, I2 =

∫
|t|>A

∣∣∣∣ψS∗(t)

t

∣∣∣∣ dt, I3 =

∫
|t|>A

∣∣∣∣ψQ∗(t)

t

∣∣∣∣ dt.
Then, ∫ ∞

−∞

∣∣∣∣ψQ∗(t)− ψS∗(t)

t

∣∣∣∣ dt ≤ I1 + I2 + I3.

Optimizing over A balances these different regions. This is a classical technique in Fourier-based
proofs of Berry–Esseen-type inequalities.

Bounding I1. We decompose I1 based on the characteristic function ratio. Define

r(t) := log
(
ψQ∗(t)

)
− log

(
ψS∗(t)

)
.

Then

I1 =

∫
|t|≤A

|ψS∗(t)|
∣∣∣∣ψQ∗(t)/ψS∗(t)− 1

t

∣∣∣∣ dt
=

∫
|t|≤A

|ψS∗(t)|
∣∣∣∣exp(r(t))− 1

t

∣∣∣∣ dt
≤
∫
|t|≤A

|ψS∗(t)| |r(t)| exp(|r(t)|)
|t|

dt,

where the last step comes from the inequality | exp(z)− 1| ≤ |z| exp(|z|).
We use the following expansion bound for real θ, which be easily verified using the mean-value
theorem (see also Buckley and Eagleson, 1988; J.-T. Zhang, 2005):∣∣∣∣log(1 + iθ)−

{
iθ +

θ2

2

}∣∣∣∣ ≤ |θ|3/3. (13)

Concretely,

r(t) =
(
i t

∑n
r=1 λr

K2(Q)1/2

)
+

1

2

n∑
r=1

log
(
1− i t

2λr
K2(Q)1/2

)
+
(
i t

n K̂CI

K1/2
2 (Q)

− t2
n2 Var(K̂CIn)

2K2(Q)

)
.
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By bounding each log(·) via the expansion (13), we obtain

|r(t)| ≤ 1

6

∑n
r=1|2 t λr|3

K3/2
2 (Q)

+
∣∣∣i t n K̂CI

K1/2
2 (Q)

∣∣∣ +
∣∣∣t2 (∑n

r=1 λ
2
r

K2(Q)
− n2 Var(K̂CIn)

2K2(Q)

)∣∣∣.
Recognizing K3(Q

∗) = 8
∑
r λ

3
r/(K2(Q))3/2 and

∑
r λ

2
r =

1
2 K2(Q), we rewrite:

|r(t)| ≤ 1

6
|t|3 K3(Q

∗) + |t| n K̂CI

K1/2
2 (Q)

+
t2

2

∣∣∣n2 Var(K̂CIn)

K2(Q)
− 1
∣∣∣.

Hence, for |t| ≤ A,

I1 ≤ exp
(
|r(A)|

)∫
|t|≤A

exp
(
− t2 n2 Var(K̂CIn)

2K2(Q)

)(1

6
t2 K3(Q

∗)

+
n K̂CI

K2(Q)1/2
+

|t|
2

∣∣∣n2 Var(K̂CIn)

K2(Q)
− 1
∣∣∣)dt.

This splits naturally into three integrals:

I1 ≤ 1

6
exp
(
|r(A)|

)
K3(Q

∗)

∫
|t|≤A

t2 exp
(
− t2 n2 Var(K̂CIn)

2K2(Q)

)
dt

+
1

2
exp
(
|r(A)|

) ∣∣∣n2 Var(K̂CIn)

K2(Q)
− 1
∣∣∣ ∫

|t|≤A
|t| exp

(
− t2 n2 Var(K̂CIn)

2K2(Q)

)
dt

+ exp
(
|r(A)|

) n K̂CI

K2(Q)1/2

∫
|t|≤A

exp
(
− t2 n2 Var(K̂CIn)

2K2(Q)

)
dt.

In each term, the integral is bounded by Gaussian-like tail and one can get explicit numerical
constants. The factor exp(|r(A)|) can then be controlled by choosing A suitably in combination with
the expansions for |r(t)|.

Boudning I2. Recall

I2 =

∫
|t|>A

∣∣∣∣ψS∗(t)

t

∣∣∣∣ dt,
where

ψS∗(t) = exp
(
i t n K̂CI

K2(Q)1/2
− t2 n2 Var(K̂CIn)

2K2(Q)

)
.

Since
∣∣ψS∗(t)

∣∣ = exp
(
− t2 n2 Var(K̂CIn)

2K2(Q)

)
, we have

I2 =

∫
|t|>A

1

|t|
exp
(
− t2 n2 Var(K̂CIn)

2K2(Q)

)
dt.

Next, use the fact that |t| ≥ A implies 1
|t| ≤

t2

A3 for |t| > 0. Hence,

I2 ≤
∫
|t|>A

t2

A3
exp
(
− t2 n2 Var(K̂CIn)

2K2(Q)

)
dt.

Combining I1 and I2. We select A′ such that A′−3 ≥ exp
(
|r(A′)|

)
K3(Q

∗)

6 , ensuring we can combine
the first term of I1 and I2. Let

η =
n2 Var(K̂CIn)

K2(Q)

for shorthand, we derive

I1 + I2 ≤ 2

A′3

∫ ∞

0

t2 exp
(
− η t2

2

)
dt +

6

A′3 K3(Q
∗)

∣∣∣∣n2 Var(K̂CIn)

K2(Q)
− 1

∣∣∣∣ ∫ ∞

0

t exp
(
− η t2

2

)
dt

+
12

A′3 K3(Q
∗)

n K̂CI

K2(Q)1/2

∫ ∞

0

exp
(
− η t2

2

)
dt.
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Then, from the Gaussian integral identity∫ ∞

0

tk exp
(
−η t2

2

)
dt = (finite constants scaling with η−

k+1
2 ),

evaluate the integrals yields the following bound:

I1 + I2 ≤ 6
√
2π

A′3 K3(Q
∗)

n K̂CI

K1/2
2 (Q)

η−1/2 +
6

A′3 K3(Q
∗)

∣∣∣∣n2 Var(K̂CIn)

K2(Q)
− 1

∣∣∣∣η−1 +

√
2π

A′3 η
−3/2.

Substitute the value of η, then

I1 + I2 ≤ 6
√
2π

A′3 K3(Q
∗)

K̂CI√
Var(K̂CIn)

+
6

A′3 K3(Q
∗)

∣∣∣∣ K2(Q)

n2 Var(K̂CIn)
− 1

∣∣∣∣
+

√
2π

A′3

(
n2 Var(K̂CIn)

K2(Q)

)−3/2

.

Bounding I3. Recall

I3 =

∫
|t|>A

∣∣∣ψQ∗ (t)

t

∣∣∣ dt.
We apply a refined argument from Buckley and Eagleson (1988) and J.-T. Zhang (2005) regarding
|ψQ∗(t)|. Assuming the Frobenius norm of the kernel matrix dominates the operator norm, ∥Ĥ∥2F >
2∥Ĥ∥2op, which implies δ = max1≤j≤n

λ2
j∑n

r=1 λ
2
r
< 1

2 , we then obtain

∣∣ψQ∗(t)
∣∣ ≤ 21/4

(
1− 2 δ

)− 1
2 (2 t2)−

1
2 .

It follows that

I3 =

∫
|t|>A′

∣∣∣∣ψQ∗(t)

t

∣∣∣∣ dt ≤ 23/4(1− 2 δ)−1/2

∫
t≥A′

t−2 dt = 23/4(1− 2 δ)−1/2A′−1.

Final Assembly. Combining the pieces, we have∫ ∞

−∞

∣∣∣∣ψQ∗(t)− ψS∗(t)

t

∣∣∣∣dt ≤ (I1 + I2 + I3)

which in turn implies the Kolmogorov bound

sup
x∈R

∣∣Pr(Q∗ ≤ x
)
− Pr

(
S∗ ≤ x

)∣∣ ≤ 1

2π

(
I1 + I2 + I3

)
.

Putting everything together, the distributional distance satisfies:

sup
x∈R

∣∣∣Pr(Q ≤ x) − Pr(S ≤ x)
∣∣∣

≤ 3
√
2√

πA′3 K3(Q
∗)

K̂CI√
Var(K̂CIn)

+
3

πA′3 K3(Q
∗)

∣∣∣∣ K2(Q)

n2 Var(K̂CIn)
− 1

∣∣∣∣
+

1

21/4 π
√
(1− 2 δ)A′

+
1√

2πA′3

(
K2(Q)

n2 Var(K̂CIn)

)3/2

.

Here A′ is the splitting parameter and δ = maxj
{
λ2j/

∑
r λ

2
r

}
measures spectral concentration of

Ĥ/n. This first term quantifies the normalized mean shift K̂CI√
Var(K̂CIn)

caused by regression errors.

Under perfect regressions, this deviation is 0. However, increased regression errors magnify this
term. The second term captures discrepancies in the variance between the wild bootstrap distribution
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and the Gaussian approximation. Under perfect regressions, we have equality n2 Var(K̂CIn) =

Var(Q) = K2(Q). However, regression errors cause inflation in Var(K̂CIn), resulting in deviations
and increasing distributional mismatch. Thus, the wild bootstrap becomes misspecified under noisy
regression, as it fails to accurately reflect the mean and variance of the statistic. The third and fourth
terms combined, represent intrinsic limitations and higher-order adjustments. The intrinsic mismatch
term (third term) does not directly depend on regression error. The fourth term rapidly becomes
negligible as sample size n increases.

Consequently, noting Var(Q) = K2(Q), the constants in the bound satisfy

R1,n =
1

21/4 π
√
1− 2δ A′

+
1√

2π A′3

(
Var(Q)

n2 Var(K̂CIn)

)3/2

,

R2,n =
3
√
2√

π A′3 K3(Q
∗)
, R3,n =

3

π A′3 K3(Q
∗)
.

With these expressions established, the proof is complete.

H Experimental Results

H.1 Synthetic Data

1D Synthetic Test Case We compare standard KCI, KCI with power-maximizing kernel selection,
and GCM, using linear kernels forA andB in all methods, on problem (7). Figure 4 shows that GCM,
while maintaining low Type I error, fails to detect conditional dependence in this setting. Standard
KCI exhibits high Type II error, whereas power-maximized KCI achieves low Type II error. For both
KCI variants, Type I error decreases as the training size increases.
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Figure 4: Mean and standard error (over 100 runs) of errors on the synthetic (7) with fA = cos, fB =
exp, τ = 0.1 and β = 3 across training sizes; the independent test set has size 200. The significance
level is set at α = 0.05

3D Synthetic Test Case We work on the problems introduced in Appendix F.3, using Gaussian
kernels for A and B with β = 2. We compare standard KCI with fixed bandwidths and KCI with
power-maximized kernel selection across training sizes 200–1000, with a fixed test size of 200. All
kernels are Gaussian, and regression and power maximization selects per-dimension bandwidths for
the C kernel. We compare results obtained with regressors trained for 500 epochs and those obtained
with early stopping. Experiments are repeated 100 times, and we report mean and standard error.

We conduct experiments on two scenarios. Scenario 1: shared-dimension dependence, where A and
B depend on the same coordinate of C1 (see Figure 5). Scenario 2: separate-dimension dependence,
where A depends on C1, B on C2, correlation on C3 (see Figure 6).

Results show that poorly-trained conditional mean embeddings inflate Type I error, particularly
in Scenario 1 where shared dimensions induce strongly correlated regression errors. Interestingly,
power maximization further amplifies Type I error in Scenario 2 when CMEs are undertrained, but
in Scenario 1, it slightly reduces the error by focusing on the relevant coordinate C1 and ignoring
irrelevant ones.
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(a) Sufficient Training.
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(b) Early Stopping.
Figure 5: Shared-dimension dependence. Means and standard errors (over 100 runs) of Type I and
Type II errors on the 3D synthetic case with fA = cos, fB = exp, and τ = 0.1. All kernels are
Gaussian, and the significance level is set at α = 0.05.

H.2 real data

We conducted experiments on the UTKFace dataset (Z. Zhang et al., 2017), following the setup of
Y. Zhang et al. (2025). Although not described as such in their paper, this test is effectively a KCI
test. In particular, we used the cropped and aligned UTKFace dataset to test whether age (A) depends
on the full face image (B) when conditioned on the same image with a specific region masked out
(C). The null hypothesis is E[A | C] = E[A | B,C], corresponding to a linear kernel on A, where
the conditional mean embedding can be estimated as a regressor from C to A via neural networks.

The dataset is split into ten subsets, each with its own training and test partition. We reran their
code and report both the resulting p-values for the conditional independence tests and the mean
absolute error (MAE) of the age regressors (ImageNet-pretrained) used in testing. For comparison,
we also retrained the same network from scratch (random initialization) and report its MAE and
corresponding test results. The results are shown in Figure 7.

In Y. Zhang et al. (2025), p-values remain above 5% when a facial region is masked, suggesting that
the region is not critical for age estimation. However, when the same network is trained from random
initialization, the validation loss increases–indicating a less accurate conditional mean embedding–
and the resulting p-values drop consistently across all regions. This shows that test outcomes are
highly sensitive to regressor quality: imperfect conditional mean estimation makes the test more
prone to signal dependence.
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Figure 6: Separate-dimension dependence. Means and standard errors (over 100 runs) of Type I and
Type II errors on the 3D synthetic case with fA = cos, fB = exp, and τ = 0.1. All kernels are
Gaussian, and the significance level is set at α = 0.05.
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Figure 7: Box plots of p-values (left y-axis) and test MAE (right y-axis) across different facial regions
in the age estimation task. “Pretrained” refers to using an ImageNet-pretrained age regressor, while
“Scratch” indicates training the same model from random initialization.

31



NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made cover what we did in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Throughout, especially e.g. following Theorems 6.2 and 6.3 and in the
supplement.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Either in the theorem statement or the supplement.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: While we have few experiments, they are clearly described and code will be
provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: In the supplement.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In the supplement and the code.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Experiments are limited, but we have error bars.
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the experiments?

Answer: [No]

Justification: The amount of computation used was very limited by modern standards.

Guidelines:
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or cloud provider, including relevant memory and storage.
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10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a foundational theoretical paper and does not really propose a new
algorithm.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

36



Answer: [NA]

Justification: The only existing asset is code we built on, which we cite and specify in the
source.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our code (in the supplement) is documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Not used in such ways.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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