
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LANGUAGE MODELS, GRADE-SCHOOL MATH, AND
THE HIDDEN REASONING PROCESS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in language models have demonstrated their capability to solve
mathematical reasoning problems, achieving near-perfect accuracy on grade-
school level math benchmarks like GSM8K. In this paper, we formally study how
language models solve these problems. We design a series of controlled experi-
ments to address several fundamental questions: (1) Can language models truly
develop reasoning skills, or do they simply memorize templates? (2) What is
the model’s hidden (mental) reasoning process? (3) Do models solve math ques-
tions using skills similar to or different from humans? (4) Do models trained on
GSM8K-like datasets develop reasoning skills beyond those necessary for solving
GSM8K problems? (5) What mental process causes models to make reasoning
mistakes? (6) How large or deep must a model be to effectively solve GSM8K-
level math questions? Our study uncovers many hidden mechanisms by which
language models solve mathematical questions, providing insights that extend be-
yond current understandings of LLMs.

1 INTRODUCTION

Language models like GPT-4 (OpenAI, 2023) have shown initial signs of general intelli-
gence (Bubeck et al., 2023), while smaller models have demonstrated good reasoning abilities by
solving challenging coding/math problems (Li et al., 2023; Gunasekar et al., 2023; Liu et al., 2023).
In this paper, we focus on the ability of small language models to solve grade-school math prob-
lems. Unlike previous works that empirically push the accuracy of models on grade-school math
benchmarks like GSM8K (Cobbe et al., 2021) and its augmentations (e.g., Liu et al. (2023); Zhang
et al. (2024)), we take a principled approach. We aim to study the following fundamental questions:

1. How do language models learn to solve grade-school level math problems? Do they just mem-
orize templates, or do they learn reasoning skills similar to humans? Or do they discover new
skills to solve the problems?

2. Do models trained solely on grade-school math problems only learn to solve these problems, or
do they develop some more general intelligence?

3. How small can a language model be while still solving grade-school math problems? Is depth
(number of layers) more important than width (number of neurons per layer), or does only size
matter as suggested by practitioners (Kaplan et al., 2020)?

These questions are fundamental to understanding the intelligence of language models. To study
them, it might seem tempting to start with a pre-trained model and fine-tune it on existing datasets
like GSM8K or GPT-4 augmented ones. However, this approach has significant limitations:

• DATA CONTAMINATION. The pretrain data of existing models mostly come from publicly avail-
able internet (Gao et al., 2020), which is a pile of mess. We do not know how many math
problems are included or their structures. There is significant concern regarding whether the
GSM8K benchmark has been leaked to language models’ training datasets (Zhang et al., 2024).
Even if the exact data is not, the pre-trained model might have seen almost identical questions
(e.g., the same problem with different numbers). Thus, this approach cannot answer questions
1-3. We do not know whether a model truly learns the reasoning skills or it simply memorizes
problem templates during training. Therefore, we need full control over the model’s pretrain
data and must train a language model from scratch. This point has been reiterated recently in
(Allen-Zhu & Li, 2024a; 2023b).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• SOLUTION DIVERSITY. The existing fine-tuning data, such as the GSM8K training set, contains
only 7.5K grade-school math problems, which is insufficient to train a model from scratch. Al-
though recent works use GPT-4 to augment GSM8K, this is not enough for our purpose. GPT-4
augmented problems might be biased towards a small number of solution templates, since the
original GSM8K data has very few (obviously, at most 8K) solution templates. We need a much
larger, more diverse set of grade-school math problems.

With these points in mind, we introduce our framework to generate a large set of diverse grade-
school math (GSM) problems and use the dataset to train (from scratch) and test a GPT2-like lan-
guage model. In the framework, we focus on the “logical reasoning” aspect of grade-school math
problems, which involves the dependency of parameters in the problem statement, such as “Alice’s
apple is three times the sum of Bob’s orange and Charles’s banana.” We use synthetic sentences to
reduce the difficulty arising from Common Sense, like “a candle burned for 12 hours at 1 inch per
hour” (implying the candle is reducing in length). We also intentionally remove the difficulty from
pure arithmetic: we only consider integers mod23.1

Moreover, our framework ensures that the generated math problems are highly diverse and do
not come from a small subset of templates. Even ignoring all the arithmetic, English, variable
names, and unused parameters, our problems still have more than 90 trillion solution templates (see
Proposition 2.2), much larger than the size of GPT2-small (100M). Thus, language models cannot
solve the math problems in our case by simply memorizing the solution templates.

In this paper, we use the GPT2 model (Radford et al., 2019), but replace its positional embedding
with rotary embedding (RoPE) (Su et al., 2021; Black et al., 2022). We still call it GPT2 for brevity.
We summarize our main contributions:

– RESULT 2. We demonstrate that the GPT2 model, pretrained on our synthetic dataset, not only
achieves 99% accuracy in solving math problems from the same distribution but also generalizes
to out-of-distribution problems, such as those requiring longer reasoning lengths than any seen
during training. This is similar to length generalization in arithmetic (Anil et al., 2022; Jelassi
et al., 2023), however, in our case, the model has never seen any training example of such
reasoning length. This signifies that the model can genuinely learn reasoning skills instead of
memorizing solution templates.

– RESULT 3. Crucially, the model can learn to generate shortest solutions, almost always avoiding
unnecessary computations. This suggests that the model formulates a plan before it generates,
avoiding computing any quantities not needed towards solving the underlying math problem.

– RESULT 4. We examine the model’s internal states through probing, introducing six probing
tasks to elucidate how the model solves math problems. For instance, we discover the model
(mentally!) preprocesses the full set of necessary parameters before it starts any generation.
Likewise, humans also do this preprocess although we write this down on scratch pads.

– RESULT 5. Surprisingly, the model also learns unnecessary, yet important skills after pretrain-
ing, such as all-pair dependency. Before any question is asked, it already (mentally!) computes
with good accuracy which parameters depend on which, even though some are not needed for
solving the math problem. Note that computing all-pair dependency is a skill not needed to fit
all the solutions in the training data. To the best of our knowledge, this is the first evidence that a
language model can learn useful skills beyond those necessary to fit its pretraining data.2 This
may be a preliminary signal of where the G in AGI can come from.3

– RESULT 6. We explain why mistakes occur. For instance, the model makes systematic errors
that can be explained by probing its internal states. Sometimes, these mistakes can be predicted
before the model generates answers, making them independent of the random generation process.
We connect this to practice, noting that GPT-4/4o also makes similar errors (though we cannot
probe their internal states).

1The conclusions of this paper remain if one replaces 23 with, e.g., 2003. However, for a better-controlled
experiment, we wish to separate reasoning from arithmetic. For instance, if a model fails, we want to ensure it
is not due to an arithmetic error — after all, memorizing the multiplication table for 23 integers is trivial.

2In our case, one can solve all the math problems without computing all-pair dependency. Our pretraining
data never includes such information — all the solutions only compute necessary variables.

3Indeed, the skill to sort relationships among in-context objects is a general skill, which may lead to — via
instruction fine-tuning — skills for solving other tasks, such as discovering causal relationships, determining
the influence of parameter changes, etc.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

School

Classroom

Backpack

Central High Riverview
High

Dance Studio Film Studio

School Dayp-
ack

Messenger
Backpack

Structure Graph

Riverview
High's Film

Studio

Film Studio-
's School
Daypack

Central Hig-
h's Film St-

udio

Riverview
High's Dance

Studio

Dance Studi-
o's School
Daypack

RNG

Film Studio-
's Messenger

Backpack
Film Studio-
's Backpack

Central Hig-
h's Backpack

Dependency Graph

neccesary paramter
abstract dependency

unused paramter
instance dependency

question paramter

Figure 1: Structure and dependency graph corresponding to the op = 7 easy example in (2.1) and (2.2). De-
pendencies from abstract parameters are drawn in red, and from instance parameters are in black.

– RESULT 7+8. The depth of the language model is crucial for its reasoning ability. For example,
a 16-layer, 576-dim transformer solves harder problems (in reasoning length) than a 4-layer,
1920-dim one, despite the latter being twice as large. This holds even when Chain-of-Thought
(CoT) is used. We explain this necessity in depth by the complexity of the mental processes
involved. We advocate for the use of controlled, synthetic data as a more principled approach to
derive such claims, contrasting with predictions like “only size matters” based on training loss
using internet pretrain data (Kaplan et al., 2020).

While we refrain from overstating that our findings directly apply to foundation models like GPT-4
or more challenging mathematical reasoning tasks, we believe our work significantly advances the
understanding of how language models develop their mathematical reasoning skills, and this has to
be done in a way different from pushing benchmarks.

2 RESULT 1: DATA GENERATION

Motivation. Recall a standard grade-school math problem in the GSM8K dataset looks like:
Betty is saving money for a new wallet which costs 100. Betty has only half of the money she needs. Her parents decided to give her 15 for
that purpose, and her grandparents twice as much as her parents. How much more money does Betty need to buy the wallet?

This problem involves multiple parameters whose values are connected through various equalities,
such as “Betty’s current money = 0.5 × cost of the wallet” and “money given by grandparents =
2 × money given by parents.” Motivated by this, we build a GSM8K-like math dataset through a
synthetic generation pipeline that captures the dependencies of parameters. We wish to capture at
least the following three types of dependencies.

1. Direct dependency (♡): such as A = 5× (X + Y), so A can be computed after X and Y .
2. Instance dependency (♠): such as “every classroom has X chairs, and there are Y classrooms.”

Here, the model must infer the total number of chairs by multiplying X by Y.
3. Implicit dependency (♣): such as “Bob has 3 times more fruits than Alice. Alice has 3 apples,

4 eggs and 2 bananas.” Here, the model must learn that apples and bananas are fruits and egg is
not, and “Alice’s fruits” is an abstract parameter derived from the problem statement.

2.1 STEP 1: GRAPH CONSTRUCTION AND PROBLEM GENERATION

Hierarchical categorization. We use a layered structure of categories, each contains possible
items. For instance, categories = (School, Classroom, Backpack) has three layers; category School
= {Central High, Riverview High, . . .}; category Classroom = {Dance Studio, Film Studio, . . .};
category Backpack = {School Daypack, Messenger Backpack, . . .}. We prepare 4 predefined hierar-
chical categorizations, each with 4 layers and 100 items/layer; this represents the world knowledge.

Structure graph. In each math problem, only specific items exist, leading to a structure graph that
outlines what sub-items can appear under what item, see Figure 1. For instance,

• Connecting Dance Studio and School Daypack with an edge signifies an instance parameter,
“the number of school daypacks in each dance studio,” which is a quantifiable variable that can
be assigned.4 This captures the instance dependency (♠) as mentioned above.

• Abstract parameters, like “the total number of classrooms in Central High,” cannot be assigned
and are excluded from the structure graph. They reflect implicity dependency (♣) .

4Even though Central High and Rivierside High can both have (possibly multiple) Dance Studios, for sim-
plicity, we assume that each Dance Studio has the same number of School Daypacks.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Remark 2.1. Rather than using simple objects like Alice’s apple or fake items like Items A/B/C/D,
this structure allows us to describe abstract parameters and adds 2 levels of complexity to the data:

• The model must implicitly learn English concepts, such as a classroom category includes 100
different classroom types. These concepts cannot be derived from individual math problems, as
only a limited selection of classrooms will be mentioned in each problem.

• The model is required to hierarchically access multiple items to calculate abstract parameters, as
opposed to a straightforward retrieval of “Alice’s apple” in the context.5

Dependency graph. The dependency graph is a directed acyclic graph that outlines the dependency
among parameters. For each instance parameter, we choose a random set of (up to 4) parameters it
can depend on — including possibly a special vertex RNG representing a random number generator.
For instance, if “[param A] is X more than the difference of [param B] and [param C]” for X being
randomly generated, then we draw edges from B, C and RNG to parameter A. The dependency
of abstract parameters is implied by the dependency of instance parameters. This captures direct
dependency (♡) as mentioned above. We give an examples in Figure 1 (right).

Problem generation. The problem is articulated by describing the dependency graphs in English,
one sentence for each instance parameter.6 (Abstract parameters are not described because they are
inherited by the structure graph.) We randomly permute the sentence ordering to further increase
difficulty. A parameter is selected and asked with a question in the end (or at the beginning). Below
is an easy example corresponding to Figure 1; a harder example is in Figure 10.

(Problem - Easy) The number of each Riverview High’s Film Studio equals 5 times as much as the sum of each Film Studio’s Backpack
and each Dance Studio’s School Daypack. The number of each Film Studio’s School Daypack equals 12 more than the sum of each Film
Studio’s Messenger Backpack and each Central High’s Film Studio. The number of each Central High’s Film Studio equals the sum of each
Dance Studio’s School Daypack and each Film Studio’s Messenger Backpack. The number of each Riverview High’s Dance Studio equals
the sum of each Film Studio’s Backpack, each Film Studio’s Messenger Backpack, each Film Studio’s School Daypack and each Central
High’s Backpack. The number of each Dance Studio’s School Daypack equals 17. The number of each Film Studio’s Messenger Backpack
equals 13. How many Backpack does Central High have?

(2.1)

2.2 STEP 2: SOLUTION CONSTRUCTION (COT)

Let solution be a sequence of sentences describing the necessary steps towards solving the given
problem, where the sentences follow any topological order — also known as Chain-of-Thought,
CoT. For each parameter necessary towards answering the final question, we assign to it a random
letter among the 52 choices (a..z or A..Z), and use a sentence to describe its computation:

Define [param] as X; [intermediate steps]; so X = ...

Throughout this paper, we consider arithmetics mod 23 to avoid errors from computation involving
large numbers. It is perhaps the easiest to directly see a solution example (corresponding to (2.1)),
and a more involved example is in Figure 10:

(Solution - Easy) Define Dance Studio’s School Daypack as p; so p = 17. Define Film Studio’s Messenger Backpack as W; so W = 13.
Define Central High’s Film Studio as B; so B = p + W = 17 + 13 = 7. Define Film Studio’s School Daypack as g; R = W + B = 13 + 7 = 20;
so g = 12 + R = 12 + 20 = 9. Define Film Studio’s Backpack as w; so w = g + W = 9 + 13 = 22. Define Central High’s Backpack as c; so c =
B * w = 7 * 22 = 16. Answer: 16.

(2.2)

We emphasize that:

• The solution only contain parameters necessary towards calculating the final query parameter.
• The solution follows the correct logical order: i.e. all the parameters used in the calculation must

have appeared and been computed beforehand.

5For example, the total number of backpacks in Riverview High in Figure 1 is calculated
as ip1 × ap1 + ip2 × ap2 where ip1 = “Riverview High’s number of Dance Studios”, ip2 =
“Riverview High’s number of Film Studios”, ap1 = “each Dance Studio’s number of Backpacks”, and ap2 =
“each Film Studio’s number of Backpacks”, with ip1, ip2 being instance parameters and ap1, ap2 abstract pa-
rameters. Here, the model must not only retrieve ip1, ip2 but also compute ap1, ap2 hierarchically.

6We use simple English sentence templates to describe the problem, and did not worry about grammar
mistakes such as singular vs plural forms. There are other sources of randomness besides the dependency
graph, such as when parameter A depends on B,C it could be A+B or A−B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

op=2 op=3 op=4 op=5 op=6 op=7 op=8 op=9 op=10 op=11 op=12 op=13 op=14 op=15 op=16 op=17 op=18 op=19 op=20

5-shot on GPT-4-turbo

5-shot on GPT-4o

guess ans=0

96.7%
=29/30

90.0%
=27/30

80.0%
=24/30

93.3%
=28/30

56.7%
=17/30

56.7%
=17/30

50.0%
=15/30

50.0%
=15/30

43.3%
=13/30

33.3%
=10/30

40.0%
=12/30

33.3%
=10/30

43.3%
=13/30

30.0%
=9/30

36.7%
=11/30

26.7%
=8/30

46.7%
=14/30

43.3%
=13/30

40.0%
=12/30

96.7%
=29/30

100%
=30/30

90.0%
=27/30

93.3%
=28/30

86.7%
=26/30

86.7%
=26/30

73.3%
=22/30

70.0%
=21/30

70.0%
=21/30

50.0%
=15/30

43.3%
=13/30

56.7%
=17/30

46.7%
=14/30

36.7%
=11/30

43.3%
=13/30

46.7%
=14/30

36.7%
=11/30

46.7%
=14/30

46.7%
=14/30

23.5% 28.8% 29.7% 30.7% 30.6% 31.4% 30.3% 31.9% 30.9% 30.1% 31.8% 31.2% 33.0% 30.4% 32.3% 32.6% 32.8% 33.8% 34.5%

Figure 2: GPT-4 (OpenAI, 2023) few-shot accuracies on iGSM-medpq (with mod5 arithmetics). For each op
we tested 30 problems; and guessing ans = 0 ∈ {0, 1, 2, 3, 4} gives a baseline accuracy around
32%. Details are in Appendix H, where we also showcase how GPT-4/4o make mistakes.

• We break computations to binary ops: g = 12+13+7 is broken into g = 12+R and R = 13+7
in the above solution. The number of semicolons “;” equals the number of operations. This
reduces the arithmetic complexity of the solution, which is not the focus of this paper.7

2.3 DIFFICULTY CONTROL

Although deferring all the data-generation pseudocode to Appendix E, we summarize below the
main randomness used in the data generation process. This includes the random choice of a hi-
erarchical categorization (i.e., the English part); a structure graph (i.e., the instance parameters);
a dependency graph; arithmetic computations on the dependency graph; integer numbers (i.e., the
RNG); problem sentence permutation; and the query parameter.

We use two parameters to control data’s difficulty: ip is the number of instance parameters, and op
is the number of solution operations; the data’s difficulty is an increasing function over them. We
call our dataset iGSM, to reflect the nature that such synthetic dataset can be of infinite size. We
use iGSMop≤op,ip≤ip to denote the data generated with constraint op ≤ op and ip ≤ ip, and use
iGSMop=op,ip≤ip to denote those restricting to op = op.

2.4 TRAIN AND TEST DATASETS

We consider two families of datasets.

• In the iGSM-med data family we use ip ≤ 20.
The training data is iGSM-medop≤15 := iGSMop≤15,ip≤20. We evaluate the pretrained model
both in-distribution, on iGSM-medop≤15 and iGSM-medop=15, and out-of-distribution (OOD),
on iGSM-medop=op for op ∈ {20, 21, 22, 23} and iGSM-medop=op,reask. Here, reask denotes
first generating a problem from iGSM-medop=op and then resampling a query parameter.8

• In the iGSM-hard data family we use ip ≤ 28.
The training data is iGSM-hardop≤21 := iGSMop≤21,ip≤28. We evaluate the pretrained model
both in-distribution, on iGSM-hardop≤21 and iGSM-hardop=21, and OOD on iGSM-hardop=op

for op ∈ {28, 29, 30, 31, 32} and iGSM-hardop=op,reask.

Additionally, we use iGSM-medpq to indicate placing question after problem and iGSM-medqp

the other way (similarly for iGSM-hard). The difficulty of iGSM-med is already quite non-trivial
to humans (at least not solvable with few-shot learning using GPT-4/4o, see Figure 2).

Proposition 2.2. Ignoring unused parameters, numerics, sentence orderings, English words,
a-z and A-Z letter choices, iGSM-medop=15 still has at least 7 billion solution templates, and
iGSM-hardop=21 has at least 90 trillion solution templates.9

No data contamination. A goal in synthetic math data generation is to prevent data contamination
in internet-based math datasets, as noted in Zhang et al. (2024). While it may be impossible to certify

7Even GPT-4 can make mistakes on calculating “3 * (4+10) + 12 * (5+6)” without using external calculator.
8Due to the topological nature of our data/solution generation process, reask greatly changes the data

distribution and the number of operations needed. It provides an excellent OOD sample for evaluation. Details
are in Appendix E.

9A solution template is created by replacing all numbers with ‘0’, substituting variables (a-z or A-Z) with
letters in their appearance order, and changing parameters to their types (instance or abstract). For instance,
“Define Owl Forest’s Elephant as y; so y = 11. Define Parrot Paradise’s Raccoon as t; so t = y = 11.” becomes
“Define Inst as a; so a = 0. Define Inst as b; so b = a = 0.” We use birthday paradox to estimate the num-
ber of solution templates. If M randomly generated problems yield distinct templates, it suggests with good
probability that the total number of templates exceeds Ω(M2).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

op
15

op=15
op=20

op=21
op=22

op=23

op=20 (re
ask)

op
15

op=15
op=20

op=21
op=22

op=23

op=20 (re
ask)

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op=28 (re
ask)

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op=28 (re
ask)

beam1 - nosample
beam4 - dosample

iGSM-med_pq iGSM-med_qp iGSM-hard_pq iGSM-hard_qp
in-dist out-of-dist (OOD) in-dist out-of-dist (OOD) in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)

99.9 99.1 91.8 87.9 84.0 76.8 91.6 100 99.3 92.4 89.9 84.8 78.2 91.4 100 99.4 94.4 92.0 90.6 86.8 82.8 91.3 100 99.2 94.5 93.2 91.0 88.2 85.3 89.4
99.9 99.1 92.0 88.4 84.5 77.7 91.6 100 99.1 92.4 89.6 84.7 78.3 91.4 100 99.3 94.2 92.2 90.3 86.5 82.5 91.3 99.9 99.2 94.4 93.3 90.8 87.7 85.3 89.1

op
15

op=15
op=20

op=21
op=22

op=23
op

15
op=15

op=20
op=21

op=22
op=23

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op
21

op=21
op=28

op=29
op=30

op=31
op=32

avg unnecessary operation
avg unnecessary operation (reask)
avg unnecessary parameter
avg unnecessary parameter (reask)

iGSM-med_pq iGSM-med_qp iGSM-hard_pq iGSM-hard_qp
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.02 0.11 0.15 0.17 0.19 0.17 0.03 0.11 0.17 0.21 0.19 0.20 0.07 0.46 0.52 0.54 0.57 0.66 0.66 0.09 0.40 0.45 0.45 0.58 0.53 0.59
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.01 0.09 0.12 0.12 0.14 0.12 0.03 0.10 0.15 0.16 0.15 0.16 0.06 0.34 0.36 0.36 0.38 0.43 0.44 0.07 0.30 0.32 0.31 0.40 0.36 0.42

Figure 3: (Top): test accuracies on the model pre-trained from iGSM-medpq/qp and iGSM-hardpq/qp datasets.
(Bottom): number of unnecessary params / ops per generated correct solution. Details in Appendix F.

that models trained on internet data are free from contamination, in our setting, we can certify this:

1. We perform OOD evaluation such as on op ≥ 28 while providing only op ≤ 21 training samples.
2. We train with data whose hash value of solution template (see Footnote 9) is < 17 (mod 23),

and test with those ≥ 17. This ensures no template-level overlap between training and testing.

3 RESULT 2-3: SUMMARIZE MODEL’S BEHAVIOR PROCESS

We use the GPT2 architecture (Radford et al., 2019) but replacing its absolute positional embedding
with rotary embedding (Su et al., 2021; Black et al., 2022), yet still referring to it as GPT2 for short.10

We mostly stick to the 12-layer, 12-head, 768-dim GPT2 (a.k.a. GPT2-small) for experiments, but
we explore larger models in Section 6. We use a context length of 768 / 1024 for pretraining on
iGSM-med/iGSM-hard and 2048 for evaluation. More details are in Appendix F.

Result 2: accuracy. After sufficient pre-training, we give the model a problem from the test
set (without solution) and let it continue to generate (allegedly a solution followed by an answer).
Because we have restricted ourselves to a fixed solution format, language models can learn the
format easily, allowing us to write a solution parser to check if the solution is fully correct.11

Figure 3 shows that GPT2 performs well when pretrained using iGSM-med or iGSM-hard data,
even when evaluated out-of-distribution on harder (i.e., larger op) math problems. Thus, the model
can truly learn some reasoning skill instead of memorizing solution templates.12 This could be
reminiscent of language models’ length generalization capability on arithmetics (Zhou et al., 2023;
Jelassi et al., 2023); however, in our case, op captures the “reasoning length” and our model has
never seen any training example of the same reasoning length as in test time.

Such accuracies also indicate that our iGSM data families are indeed good for pretraining purpose,
allowing us to investigate further how LLMs can solve grade-school math problems.
Remark 3.1. Our controlled experiment distinguishes between “reasoning length generalization”
and “token length generalization”. When designing our test data, we ensured that the test data have
a similar token length compared to the training data (though with longer “reasoning length”, see
Appendix F.1). Thus, Figure 3 primarily addresses the model’s “reasoning length generalization”.
For readers interested in “token length generalization”, we include this in Appendix G.

Result 3: solution redundancy. We examine whether GPT2 achieves high accuracy by

• brute-forcedly computing all the parameters during generation (a “level-0” reasoning skill), or
• computing only necessary parameters to give shortest solutions (a “level-1” reasoning skill).

Recall our iGSM (pretrain) data only contains necessary solution steps (i.e., CoT) to simulate what
we see in textbook solutions for math problems. For instance, if a problem describes X=3+2,
E=3+X, Y=X+2 and asks for the value of Y, then a shortest solution would be “X=3+2=5 and

10We also tested Llama architectures (esp. with gated MLP layers) and didn’t see major change. GPT2-rotary
performs no worse than Llama for knowledge tasks (Allen-Zhu & Li, 2024b). We are bounded by resources to
repeat all experiments in this paper with other architectures that have small differences from GPT2-rotary.

11We check not only the correctness of the final 0..22 but also the calculations and parameter dependencies.
12Llama (of the same model size) gives similar performance, but we refrain from repeating all the experi-

ments with another model. We are not interested in small model differences in this theoretical study; instead,
we care more about the general behavior of (autoregressive) language models.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

[Problem] The number of each Riverview High‘s Film Studio equals 5 times as
much as the sum of each Film Studio’s Backpack and each Dance Studio‘s
School Daypack. … The number of each Film Studio's Messenger Backpack
equals 13.
[Question] How many Backpack does Central High have?
[Solution] Define Dance Studio's School Daypack as p; so p = 17. Define Film
Studio's Messenger Backpack as W; so W = 13. Define Central High's Film Studio
as B; so B = p + W = 17 + 13 = 7. Define Film Studio's School Daypack as g; R = W
+ B = 13 + 7 = 20; so g = 12 + R = 12 + 20 = 9. Define Film Studio's Backpack as
w; so w = g + W = 9 + 13 = 22. Define Central High's Backpack as c; so c = B * w
= 7 * 22 = 16. [Answer] 16.

dep(A,B) – at the end of problem description,
does the model know parameter A depend on B?

nece(A) – after question is asked, does the model
know if A is necessary for answering question?

can_next(A) – in the middle of solution, does the
model know if A can be computed next?

e.g. can_next(“Riverview High's Film Studio”) = true
can_next(“Riverview High's Dance Studio”) = false

e.g. nece(“Riverview High's Film Studio”) = false

e.g. dep(“Riverview High‘s Film Studio”,
 “Film Studio’s Messenger Bag”) = true

Figure 4: To discover model’s mental (reasoning) process.

[BOS] The number of each Riverview High's Film Studio ... How many Backpack does Central High have? [START] Dance Studio’s School Daypack [END]

decoder layer (attention + MLP)

…

trainable rank 𝑟 update
on the embedding layer

freeze the pretrained LM

add a trainable linear
(classification) layer

problem question some parameter A

Predict necc(A) ∈ {True, False}

… … … … …

decoder layer (attention + MLP)

Figure 5: Illustrations of V-probing on the nece(A) task. For other tasks, see Figure 12.

Y=X+2=7” without ever computing E.

Figure 3 shows that GPT2 predominantly solves the iGSM problems with a “level-1” reasoning
skill, avoiding unnecessary computations, even when evaluated out-of-distribution. This finding is
significant as it suggests that, unlike humans who usually rely on “backward reasoning” and a scratch
pad to write down necessary parameters by backtracking the dependencies from the question (Rips,
1994), the language model can directly generate shortest solutions without using a scratch pad. But,
how does it achieve so? We shall investigate in the next section.

4 RESULT 4-5: DISCOVER MODEL’S MENTAL PROCESS

To understand how the model learns to solve math problems, we propose studying the following
probing tasks, which align closely with human problem-solving strategies:

• nece(A): if parameter A is necessary for computing the answer.
• dep(A,B): if parameter A (recursively) depends on parameter B given the problem statement.
• known(A): if parameter A has already been computed.
• value(A): the value of parameter A (a number between 0-22, or 23 if known(A) = false).
• can next(A): if A can be computed in the next solution sentence (namely, its predecessors

have all been calculated). Note that A might not be necessary to answer the question.
• nece next(A): if parameter A satisfies both can next(A) and nece(A).

For a model to generate the shortest solutions, it must identify nece(A) for all A’s in its mental
process. This is because whether nece(A) is true directly corresponds to whether there is a solution
sentence to compute A. However, how early does the model recognize this, and how is it stored?
Similarly, does it recognize dependencies between parameters (dep)? If so, how early is this mental
process completed? Moreover, in the middle of solution generation, does the model keep track of
each parameter A’s value at all times (value, known)? Does the model mentally know all possible
parameters A that are ready to compute in the next sentence (can next)? Or does it only focus on
A that is both ready and necessary (nece next)?

This section proposes probing technique to answer all of these questions.

4.1 V-PROBING: A NEARLY-LINEAR PROBING METHOD

As illustrated in Figure 4, we conduct probing at the end of the problem description for the dep
task, and end of the question description nece task.13 For other tasks, we probe them at the end of
every solution sentence (including the start of the first solution sentence).

Recall that standard linear probing involves freezing a pretrained language model and checking if a
property is linearly encoded at a hidden layer (usually the last layer) for a given token position. This

13If the problem format is qp (question asked before the problem) then we probe nece and dep both after
the problem description.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

op
15

op=15
op=20

op=21
op=22

op=23
op

21
op=21

op=28
op=29

op=30
op=31

op=32
op

15
op=15

op=20
op=21

op=22
op=23

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op
15

op=15
op=20

op=21
op=22

op=23
op

21
op=21

op=28
op=29

op=30
op=31

op=32

baseline - majority guess
pretrained model probing (pq)
pretrained model probing (qp)
random model probing (pq)
random model probing (qp)

can_next(A) dep(A,B) known(A)
iGSM-med iGSM-hard

in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)
iGSM-med iGSM-hard

in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)
iGSM-med iGSM-hard

in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)
57.4 59.9 57.0 56.7 55.7 55.6 61.7 65.3 61.4 61.3 59.2 58.5 58.4 84.6 82.2 83.0 83.5 83.5 83.7 82.6 79.5 80.2 81.3 82.2 82.8 82.7 87.0 77.6 75.0 74.8 74.5 74.3 84.8 73.5 71.7 72.1 72.4 71.8 71.7
99.9 99.5 99.3 99.2 99.1 99.0 99.8 99.4 99.1 99.0 99.0 98.9 98.9 99.7 99.3 100 100 100 100 99.6 99.0 98.9 98.9 98.9 98.9 98.9 100 100 100 100 100 100 100 100 100 99.9 100 100 99.9
99.6 99.1 98.8 98.6 98.7 98.5 99.9 99.5 99.1 99.0 99.0 99.0 99.0 99.3 99.0 98.9 99.0 99.0 98.9 99.7 99.4 99.2 99.1 99.2 99.1 99.3 100 100 100 100 100 100 100 100 100 100 100 100 100
65.8 62.0 62.6 62.3 63.0 63.3 63.1 59.3 60.6 60.5 62.0 62.2 62.3 84.6 82.2 83.0 83.5 83.5 83.7 82.6 79.5 80.2 81.3 82.2 82.8 82.7 87.2 78.4 75.8 75.4 74.7 74.6 85.4 76.0 73.8 73.6 73.0 72.8 71.9
65.7 61.9 62.5 62.2 62.7 63.1 63.0 59.2 60.8 60.9 61.8 62.3 62.6 84.6 82.2 83.0 83.5 83.5 83.7 82.6 79.5 80.2 81.3 82.2 82.8 82.7 87.3 78.7 76.3 76.0 75.3 75.4 85.8 76.4 75.1 74.7 74.6 74.2 73.6

op
15

op=15
op=20

op=21
op=22

op=23
op

21
op=21

op=28
op=29

op=30
op=31

op=32
op

15
op=15

op=20
op=21

op=22
op=23

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op
15

op=15
op=20

op=21
op=22

op=23
op

21
op=21

op=28
op=29

op=30
op=31

op=32

baseline - majority guess
pretrained model probing (pq)
pretrained model probing (qp)
random model probing (pq)
random model probing (qp)

nece(A) nece_next(A) value(A)
iGSM-med iGSM-hard

in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)
iGSM-med iGSM-hard

in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)
iGSM-med iGSM-hard

in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)
74.7 54.8 50.1 50.4 51.4 52.1 70.3 53.1 56.9 56.4 55.5 55.6 56.7 94.9 93.5 93.1 92.9 92.9 92.8 94.5 93.0 92.6 92.2 92.7 93.0 92.5 86.5 82.5 81.7 77.8 79.2 77.8 86.7 81.9 75.2 77.0 75.6 71.0 80.4
99.8 99.8 98.7 97.9 96.9 94.7 99.6 99.6 99.1 98.6 97.9 97.1 95.5 99.9 99.5 99.2 99.1 99.0 98.7 99.7 99.3 98.7 98.6 98.4 98.3 98.3 100 100 100 100 100 100 100 100 100 100 100 100 100
99.8 99.9 99.5 99.4 99.3 99.2 99.8 99.8 99.7 99.7 99.6 99.4 99.3 99.5 99.2 98.7 98.3 98.3 97.7 99.7 99.7 99.5 99.4 99.3 99.2 99.2 100 100 100 100 100 100 100 100 100 100 100 100 100
74.7 55.9 51.1 51.0 50.1 49.3 69.4 50.2 47.0 46.9 48.1 47.9 47.4 94.6 93.5 93.1 92.9 92.9 92.8 94.5 93.0 92.6 92.2 92.7 93.0 92.5 71.9 53.4 48.5 47.4 46.7 45.5 73.6 55.2 50.2 50.6 48.9 48.8 48.2
74.0 56.3 52.2 51.8 51.3 50.7 69.2 51.3 49.1 48.9 50.4 50.8 50.5 94.7 93.5 93.1 92.9 92.9 92.8 94.5 93.0 92.6 92.2 92.7 93.0 92.5 70.9 52.6 47.8 46.7 46.3 45.1 75.2 57.3 52.5 53.2 51.6 51.2 50.5

(a) Probing accuracies on the six tasks: can next,dep,known,nece,nece next,value.

op
15

op=15
op=20

op=21
op=22

op=23
op

21
op=21

op=28
op=29

op=30
op=31

op=32
op

15
op=15

op=20
op=21

op=22
op=23

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op
15

op=15
op=20

op=21
op=22

op=23
op

21
op=21

op=28
op=29

op=30
op=31

op=32
op

15
op=15

op=20
op=21

op=22
op=23

op
21

op=21
op=28

op=29
op=30

op=31
op=32

pretrained model probing (pq)
pretrained model probing (pq) - reask
pretrained model probing (qp)
pretrained model probing (qp) - reask

can_next(A) on negative labels when A is unnecessary can_next(A) on positive labels when A is unnecessary dep(A,B) on negative labels when A is unnecessary dep(A,B) on positive labels when A is unnecessary
iGSM-med iGSM-hard iGSM-med iGSM-hard iGSM-med iGSM-hard iGSM-med iGSM-hard

99.8 99.3 98.7 98.6 98.4 98.2 99.8 98.9 97.9 97.7 97.4 97.3 97.4 99.8 99.5 99.2 99.2 99.0 99.2 99.7 99.2 98.7 98.7 98.6 98.8 98.6 99.6 99.4 99.3 99.4 99.4 99.5 99.5 98.9 99.2 99.1 99.2 99.3 99.4 99.6 99.5 99.4 99.3 99.2 99.2 99.3 99.3 99.3 99.2 99.3 99.2 99.2
99.9 99.7 99.6 99.6 99.5 99.5 99.9 99.7 99.5 99.5 99.4 99.4 99.4 99.9 99.8 99.7 99.7 99.7 99.6 99.9 99.7 99.6 99.6 99.6 99.5 99.6 99.6 99.1 99.1 99.2 99.2 99.2 99.5 98.8 98.6 98.5 98.7 98.7 98.7 99.7 99.6 99.5 99.5 99.4 99.4 99.4 99.4 99.3 99.3 99.3 99.2 99.2
99.6 98.8 98.1 98.0 98.0 97.8 99.8 99.1 98.3 98.2 98.0 97.5 97.4 99.7 99.0 99.0 99.0 98.9 99.0 99.8 99.1 98.4 98.3 98.4 98.6 98.7 99.3 99.0 99.2 99.3 99.3 99.4 99.6 99.3 99.4 99.5 99.5 99.5 99.6 98.8 98.4 97.8 97.8 97.8 97.8 99.5 99.2 99.1 99.1 99.0 98.9 98.8
99.7 99.3 99.1 99.0 99.0 98.9 99.9 99.7 99.4 99.4 99.3 99.2 99.2 99.7 99.5 99.5 99.6 99.6 99.5 99.9 99.8 99.6 99.6 99.6 99.6 99.7 99.3 98.8 98.9 99.0 99.1 99.1 99.7 99.3 99.2 99.2 99.2 99.2 99.2 98.9 98.5 98.1 97.9 98.1 98.0 99.6 99.4 99.3 99.2 99.2 99.2 99.0

(b) Probing accuracies of can next(A),dep(A,B) restricted to pos/neg labels in which A is unnecessary

Figure 6: V-probing accuracies; experiment details are in Appendix F.2.

is done by introducing a trainable linear classifier on the hidden states and performing a lightweight
finetuning task for this property (see Hewitt & Manning (2019) and references therein).

Our setting is more complex because the properties have one or two conditional variables, A and B,
described in plain English. To handle this, we truncate the math problems to the probing position
and append tokens [START] and [END] around the descriptions of A (or A,B). We then probe from
the token position of [END] to see if the property is linearly encoded at the last layer.

Unlike standard linear probing, to account for the input change, we introduce a small trainable
rank-8 (linear) update on the input embedding layer. We freeze the pretrained language model and
finetune both the linear classifier and the rank-8 update for the desired property. We refer to this as
V(ariable)-probing and provide details in Appendix C. An illustration of the nece(A) probing task
is shown in Figure 5.

We compute the V-probing accuracies on a language model pretrained from iGSM and compare
them with the V-probing accuracies on a randomly-initialized transformer model. If the former
accuracies are significantly higher, we conclude that the probing signals must have (or be very close
to having) come from the pretrained weights, rather than the (lightweight) finetuning stage.

4.2 PROBING RESULTS AND FINDINGS

We present our probing results in Figure 6. The probing accuracies are high for all the tasks, com-
pared to majority guess and random-model probing — except for the very hard OOD cases (i.e., for
large op where the model’s generation accuracies fall down to 80% anyways in Figure 3),

Result 4: model solves math problems like humans. We make the following observations:

• When generating solutions, the model not only remembers which parameters have been com-
puted and which have not (value,known) but also knows which parameters can be computed
next (can next,nece next). These abilities ensure that the model can solve the given math
problem step by step, similar to human problem-solving skills.

• By the end of the problem description, the model already knows the full list of necessary pa-
rameters (nece). This indicates that the model has learned to plan ahead, identifying necessary
parameters before starting to generate the solution. This aligns with human behavior, except that
the model plans mentally while humans typically write this down. This further confirms that the
model reaches the “level-1” reasoning skill discussed in Section 3.

Remark 4.1. The mental process described can be compared to (out-of-context) knowledge ma-
nipulation (Allen-Zhu & Li, 2023b), which involves retrieving factual knowledge and performing
single-step computations (e.g., retrieving two people’s birth dates to determine who was born ear-
lier). Allen-Zhu & Li (2023b) found that even single-step computations cannot be performed men-
tally without a substantial number of pretrain samples. In contrast, this paper studies in-context
reasoning and demonstrates that the model can execute very complex mental calculations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Result 5: model learns beyond human reasoning skills. Remarkably, the model learns
dep(A,B) and can next(A), even for parameters A not necessary for answering the question,
as shown in Figure 6(b). This differs from human problem-solving, where we typically use back-
ward reasoning from the question to identify necessary parameters, often overlooking unnecessary
ones (Rips, 1994). In contrast, language models pre-compute, for instance, the all-pair dependency
graph dep(A,B) even before a question is raised. This is non-trivial, as the model must dynam-
ically update this graph whenever a new dependency relationship is seen.14 We consider this a
“level-2” reasoning skill that is very different from human behavior or mental processes.

Note also, this skill is not needed for solving the math problems. Although no pretrain data teaches
the model to compute “all-pair dependency” — fitting the data only requires computing necessary
parameters — the model still discovers it after training. This enables the model to sort relationships
among the things it hears, a skill that can be useful for future tasks (via instruction fine-tuning). To
our knowledge, this may be the first evidence of a language model acquiring skills beyond those
needed for learning its pretrain data. This may be a preliminary signal of where the G in AGI can
come from (generalizing to skills not taught in the pretrain data).

Corollary: the backward thinking process. A key question for AGI success is whether the
“backward thinking process” (e.g., “because I want to compute X, but X depends on Y and Y
depends on Z, so let me compute Z first”) needs to be explicitly included in the training data. This
differs from CoT, where CoT breaks down complex computations into simpler steps, but planning
is still required to decide which step to compute first. Our findings suggest that, at least for grade-
school math problems, with abundant data, this backward thinking process can be autonomously
learned through language modeling, without needing to be directly included in the training data.

5 RESULT 6: EXPLAIN MODEL’S MISTAKES

Due to space limitations, we defer Result 6 to Appendix A, which categorizes the model’s erroneous
behaviors in its generated solutions and connects them to our probing results. Probing reveals that
some of the erroneous behaviors trace back to the model’s mental processing errors, which can occur
long before the erroneous behavior manifests (specifically, before the model begins generating its
solution). We also show that GPT-4/4o exhibit the same erroneous behaviors on our dataset, although
we cannot probe their internal states. This finding actually motivates us to write a separate paper
(also in submission to ICLR) regarding how to encourage models to correct their mistakes.

6 RESULT 7-8: DEPTH VS. REASONING LENGTH

Our controlled dataset enables a systematic exploration of the relationship between a language
model’s depth and its reasoning length. Recent studies have demonstrated that for knowledge stor-
age and extraction, only model size matters (even for 2-layer transformers) (Allen-Zhu & Li, 2024b).
Furthermore, both the seminal scaling-law paper by OpenAI (Kaplan et al., 2020) and theoretical
studies in deep learning such as (Allen-Zhu et al., 2019) suggest that model depth/width might have
a minimal impact universally.

Contrary to these findings, we present evidence in Figure 7 that language model’s depth is crucial
for mathematical reasoning (as Result 7).15 Specifically, we experimented with models of depths
4/8/12/16/20 and two sizes (a smaller size 1 and a larger size 2).16 From Figure 7, we observe
that a 4-layer transformer, even with 1920 hidden dimensions, underperforms on our math datasets.
Conversely, deeper but smaller models, such as a 20-layer 576-dim, perform very well. Comparing
accuracies vertically reveals a clear correlation between model depth and performance. Thus, we
infer that depth is likely essential for reasoning tasks, such as solving grade-school math problems.

14Before a question is raised, the model cannot tell if all the dependency statements (such as A is five
times B) have been given. Thus, the model has to pre-compute the all-pair dependency graph both before and
after each sentence; adding a simple relationship such as A depends on B may result in cascading effects, so
everything that depends on A must now also depend on everything that B depends on.

15Math reasoning only occupies a tiny fraction of pretraining data for language models, thus one might not
observe a difference if we only look at the perplexity as in the original scaling law paper (Kaplan et al., 2020).

16GPT2-ℓ-h represents an ℓ-layer, h-head, 64h-dimensional GPT2 model. Size-1 models are GPT2-4-21,
GPT2-8-15, GPT2-12-12, GPT2-16-10, GPT2-20-9, with similar parameter counts; size-2 models are GPT2-
4-30, GPT2-8-21, GPT2-12-17, GPT2-16-15, GPT2-20-13, approximately twice the size of size-1 models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

op
15

op=15
op=20

op=21
op=22

op=23
op

15
op=15

op=20
op=21

op=22
op=23

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op
21

op=21
op=28

op=29
op=30

op=31
op=32

dep4 - size1 - head21
dep4 - size2 - head30
dep8 - size1 - head15
dep8 - size2 - head21

dep12 - size1 - head12
dep12 - size2 - head17
dep16 - size1 - head10
dep16 - size2 - head15
dep20 - size1 - head9

dep20 - size2 - head13

iGSM-med_pq iGSM-med_qp iGSM-hard_pq iGSM-hard_qp avg
in-dist out-of-dist (OOD) in-dist out-of-dist (OOD) in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)

99.5 92.7 74.7 68.0 62.4 54.5 99.4 93.3 73.3 66.8 61.1 54.6 98.9 90.8 72.4 67.7 62.1 57.1 50.6 99.1 89.8 69.4 62.2 57.8 52.3 45.7 72.2
99.6 94.7 74.2 67.9 61.6 53.1 99.4 94.5 78.1 71.9 65.7 58.8 97.0 71.7 46.3 40.6 37.0 32.3 27.3 99.4 92.1 74.5 69.5 64.7 59.1 53.2 68.6
100 98.8 89.7 86.5 82.8 76.8 100 99.2 92.4 88.5 84.2 78.7 100 99.1 94.6 92.0 89.7 86.4 82.2 100 99.0 92.2 89.6 86.2 82.4 77.3 90.3
100 99.3 93.7 91.6 88.3 83.6 99.9 99.0 90.2 87.1 83.3 76.3 100 99.2 93.6 91.3 88.6 85.6 82.6 100 99.1 93.5 91.3 89.1 85.7 81.2 91.3
100 99.3 92.0 88.9 84.2 77.9 100 99.4 92.2 89.2 83.9 77.9 100 99.5 96.0 94.1 91.0 88.5 84.3 100 99.3 95.3 93.0 91.9 88.0 84.5 91.9
100 99.5 94.0 91.9 89.0 82.7 100 99.0 90.8 85.4 80.2 73.2 100 99.8 97.1 95.5 93.5 91.8 88.0 100 99.5 94.5 91.9 88.9 86.8 81.3 92.1
100 99.6 94.6 91.9 87.9 82.7 100 99.5 89.9 85.0 79.1 71.1 100 99.6 97.0 95.2 94.2 92.2 88.5 100 99.4 95.8 93.8 92.4 88.9 85.8 92.5
100 99.8 95.9 93.7 90.4 86.5 100 99.8 95.6 93.5 90.3 84.3 100 99.7 97.5 96.3 95.1 92.9 89.5 100 99.8 97.3 96.0 94.2 91.9 88.9 95.0
100 99.8 95.5 93.6 90.0 86.3 100 99.6 94.8 91.4 87.4 80.4 100 99.8 97.0 95.1 94.0 91.0 87.4 100 99.6 96.6 94.5 92.8 90.1 86.5 94.0
100 99.8 95.8 93.3 89.2 84.4 100 99.6 93.7 91.8 87.4 81.3 100 99.8 98.0 96.7 95.9 93.9 90.9 100 99.9 97.5 96.0 95.2 92.4 89.7 94.7

Figure 7: Accuracies for GPT2 models of different depth/widths pretrained on iGSM datasets, see Appendix F.

1 2 3 4 5 6 7 8
0

50

100

de
pt

h2
0

- s
ize

1 med_pq - op15

1 2 3 4 5 6 7 8
0

50

100
med_pq - op20

1 2 3 4 5 6 7 8
0

50

100
med_qp - op15

1 2 3 4 5 6 7 8
0

50

100
med_qp - op20

1 2 3 4 5 6 7 8
0

50

100
hard_pq - op21

1 2 3 4 5 6 7 8
0

50

100
hard_pq - op28

1 2 3 4 5 6 7 8
0

50

100
hard_qp - op21

1 2 3 4 5 6 7 8
0

50

100
hard_qp - op28

layer5
layer10
layer15
layer20

Figure 8: Increasing probing accuracies of nece(A) with increasing layer depth. The x-axis denotes the dis-
tance of parameter A to the query parameter, with colors from light to dark to represent layers 1
to 20. This figure is for a 20-layer GPT2 model; for other model depths/sizes, see Figure 13.

Next, we try to reveal “why” this happens. We delved into how depth influences math problem-
solving skills through the nece probing task, focusing on necessary parameters at distance t from
the query parameter, for t ∈ {1, 2, . . . , 8}. These parameters all have nece(A) = true, but we can
probe the model to see how correct they are at predicting nece(A) at different hidden layers.

Figure 8 shows our result. It reveals a correlation between the model’s layer hierarchy, reasoning
accuracy, and mental reasoning depth. Shallower layers excel at predicting nece(A) for parame-
ters A closer to the query, whereas deeper layers are more accurate and can predict nece(A) for
parameters further from the query. This suggests that the model employs layer-by-layer reasoning
during the planning phase to recursively identify all parameters the query depends on. Furthermore,
the depth of a language model is crucial, likely due to the complexity of its hidden (mental) rea-
soning processes. A t-step mental reasoning, such as mentally computing nece(A) for parameters
A that are a distance t from the query, may require deeper models for larger t, assuming all other
hyperparameters remain constant.

We make two disclaimers here. First, if the “backward thinking process” is added as CoT to the data
(see the end of Section 4.2), then deep mental thinking is no longer required, reducing the language
model’s depth requirement. However, in practice, many such “thinking processes” may not be
included in standard math solutions or languages in general. Second, the above claim does not imply
that “a t-step mental thinking requires a depth-t transformer”. A single-layer transformer (containing
attention and MLP sub-layers) can implement t > 1 mental thinking steps, though possibly with
reduced accuracy (or requiring the hidden dimension to be extremely large) as t increases. We refrain
from providing an exact correlation in this paper, as it heavily depends on the data distribution.

7 CONCLUSION

We use a synthetic setting to demonstrate that language models can learn to solve grade-school math
problems through true generalization, rather than relying on data contamination or template mem-
orization. We develop probing to examine the models’ hidden reasoning processes. Our findings
reveal that these models can learn math skills aligned with human cognitive processes, as well as
“new thinking processes” not present in the training data. Additionally, we explain why models
make reasoning mistakes, and provide a principled approach to connect the model’s depth to its
capable reasoning length. We believe this research opens doors to study the mathematical reasoning
skills of language models from a different angle compared to pushing math benchmarks.

One may argue that iGSM may be very different from the pretrain data that modern LLMs use.
While this may be true, we attempt to look into the future. Recall, even GPT-4/4o of today cannot
few-shot learn to solve iGSM-medop=11 (see Figure 2). From this perspective, it is reasonable to
believe that future versions of LLMs will rely on synthetic math data to improve their reasoning
skills. While one may not directly use iGSM, it is tempting to use existing LLMs to turn iGSM into
more natural formats while keeping the logical chains. On the other hand, models trained purely on
the iGSM data make similar mistakes compared to GPT-4/4o (see Appendix H); this further suggests
that our findings do connect to practice, regarding the model’s hidden reasoning process.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 1, Learning Hierarchical
Language Structures. ArXiv e-prints, abs/2305.13673, May 2023a. Full version available at
http://arxiv.org/abs/2305.13673.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 3.2, Knowledge Manip-
ulation. ArXiv e-prints, abs/2309.14402, September 2023b. Full version available at http:
//arxiv.org/abs/2309.14402.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 3.1, Knowledge Storage
and Extraction. In ICML, 2024a. Full version available at http://arxiv.org/abs/2309.
14316.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 3.3, Knowledge Capacity
Scaling Laws. ArXiv e-prints, abs/2404.05405, April 2024b. Full version available at http:
//arxiv.org/abs/2404.05405.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, 2019. Full version available at http://arxiv.org/abs/1811.
03962.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Ho-
race He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth,
Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-
NeoX-20B: An open-source autoregressive language model. In Proceedings of the ACL Work-
shop on Challenges & Perspectives in Creating Large Language Models, 2022. URL https:
//arxiv.org/abs/2204.06745.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are
all you need. arXiv preprint arXiv:2306.11644, 2023.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pp. 4129–4138, Minneapolis, Minnesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-1419. URL https://aclanthology.org/N19-1419.

Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and François
Charton. Length generalization in arithmetic transformers. arXiv preprint arXiv:2306.15400,
2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023.

Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janardhan Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel
Ward, and Yi Zhang. TinyGSM: achieving > 80% on GSM8k with small language models. arXiv
preprint arXiv:2312.09241, 2023.

11

http://arxiv.org/abs/2305.13673
http://arxiv.org/abs/2309.14402
http://arxiv.org/abs/2309.14402
http://arxiv.org/abs/2309.14316
http://arxiv.org/abs/2309.14316
http://arxiv.org/abs/2404.05405
http://arxiv.org/abs/2404.05405
http://arxiv.org/abs/1811.03962
http://arxiv.org/abs/1811.03962
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://aclanthology.org/N19-1419

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

OpenAI. Gpt-4 technical report, 2023.
Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language

models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.
Lance J Rips. The psychology of proof: Deductive reasoning in human thinking. Mit Press, 1994.
Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer

with rotary position embedding, 2021.
Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson, Catherine Wu, Will Song, Tiffany Zhao, Pranav

Raja, Dylan Slack, Qin Lyu, et al. A careful examination of large language model performance
on grade school arithmetic. arXiv preprint arXiv:2405.00332, 2024.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
arXiv preprint arXiv:2310.16028, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX
A MISSING RESULT 6: EXPLAIN MODEL’S MISTAKES

op=15 op=20 op=21 op=22 op=23 op=21 op=28 op=29 op=30 op=31 op=32

on all parameters | pq

on all parameters | pq (reask)

on all parameters | qp

on all parameters | qp (reask)

on unnecessary parameter in model's output | pq (reask) | beam1

on unnecessary parameter in model's output | pq (reask) | beam4

on unnecessary parameter in model's output | qp (reask) | beam1

on unnecessary parameter in model's output | qp (reask) | beam4

nece(A)

iGSM-med iGSM-hard

99.8% 98.7% 97.9% 96.9% 94.7% 99.6% 99.1% 98.6% 97.9% 97.1% 95.5%

93.4% 94.9% 95.7% 95.6% 95.9% 89.6% 89.9% 90.5% 91.6% 92.0% 92.0%

99.9% 99.5% 99.4% 99.3% 99.2% 99.8% 99.7% 99.7% 99.6% 99.4% 99.3%

98.5% 98.1% 98.3% 98.5% 98.2% 96.6% 96.1% 96.6% 97.1% 97.2% 97.2%

31.6%
=105/332

38.6%
=168/435

49.2%
=224/455

40.5%
=206/509

35.9%
=161/449

20.5%
=262/1280

17.1%
=225/1314

18.6%
=245/1320

21.6%
=298/1381

23.2%
=364/1570

23.6%
=370/1566

30.3%
=92/304

38.1%
=167/438

45.8%
=204/445

40.5%
=217/536

34.7%
=169/487

19.7%
=252/1280

16.5%
=219/1326

18.4%
=242/1316

20.1%
=272/1353

23.3%
=355/1523

23.1%
=346/1496

21.7%
=81/373

22.5%
=124/551

24.0%
=145/605

21.6%
=118/546

21.7%
=125/575

17.0%
=193/1133

22.3%
=260/1165

21.1%
=234/1108

21.0%
=303/1443

18.9%
=243/1285

24.7%
=367/1484

21.8%
=80/367

22.5%
=126/560

22.6%
=133/588

21.1%
=120/569

20.6%
=123/597

17.1%
=194/1136

22.6%
=254/1125

23.1%
=251/1085

21.6%
=304/1405

19.0%
=252/1325

25.0%
=375/1498

(a) nece(A) probing accuracies correlate with model’s outputted unnecessary parameters

op=20 op=21 op=22 op=23 op=28 op=29 op=30 op=31 op=32 op=20 op=21 op=22 op=23 op=28 op=29 op=30 op=31 op=32

on all parameters | pq

on all parameters | qp

on first wrong param | pq | beam1

on first wrong param | pq | beam4

on first wrong param | qp | beam1

on first wrong param | qp | beam4

can_next(A) nece_next(A)

iGSM-med iGSM-hard iGSM-med iGSM-hard

99.3% 99.2% 99.1% 99.0% 99.1% 99.0% 99.0% 98.9% 98.9% 99.2% 99.1% 99.0% 98.7% 98.7% 98.6% 98.4% 98.3% 98.3%

98.8% 98.6% 98.7% 98.5% 99.1% 99.0% 99.0% 99.0% 99.0% 98.7% 98.3% 98.3% 97.7% 99.5% 99.4% 99.3% 99.2% 99.2%
75.8%

=172/227
75.6%

=270/357
69.6%

=330/474
70.9%

=473/667
57.1%

=128/224
58.2%

=185/318
60.7%

=229/377
63.7%

=332/521
62.5%

=419/670
52.2%

=119/228
47.6%

=171/359
41.6%

=197/474
42.5%

=284/669
42.9%

=96/224
40.9%

=130/318
45.4%

=171/377
46.4%

=242/522
47.2%

=317/671
76.6%

=187/244
76.3%

=280/367
70.4%

=350/497
69.8%

=481/689
61.3%

=141/230
59.9%

=187/312
62.9%

=246/391
66.8%

=356/533
63.3%

=439/694
51.6%

=126/244
47.2%

=174/369
44.9%

=223/497
43.3%

=300/693
39.6%

=91/230
40.3%

=126/313
45.5%

=178/391
46.4%

=248/534
48.8%

=339/695
68.1%

=190/279
65.2%

=234/359
66.5%

=354/532
67.8%

=503/742
59.2%

=119/201
59.4%

=149/251
62.4%

=204/327
60.5%

=259/428
61.9%

=313/506
51.3%

=143/279
56.1%

=202/360
56.5%

=301/533
59.4%

=443/746
50.5%

=102/202
50.6%

=127/251
52.9%

=173/327
52.8%

=226/428
57.3%

=290/506
67.9%

=190/280
67.7%

=249/368
65.7%

=352/536
69.7%

=524/752
63.0%

=131/208
58.5%

=148/253
64.1%

=214/334
57.8%

=256/443
60.9%

=310/509
54.6%

=153/280
60.4%

=223/369
56.3%

=302/536
60.6%

=458/756
54.5%

=114/209
51.4%

=130/253
56.3%

=188/334
54.9%

=243/443
56.0%

=285/509

(b) can next(A) and nece next(A) probing accuracies correlate with model’s outputted wrong solutions

Figure 9: Probing results correlate with model’s output solutions. We tested 4096 math problems and presented
the probing accuracies restricted to (1) unnecessary parameters in the model’s correct output solution
(top), and (2) the first wrong parameter in model’s wrong output solution (bottom). Details are in
Appendix F.2.

We further examine the relationship between our probing results and the model’s generated solu-
tions, focusing on two questions: (1) When does the model answer correctly but include unnecessary
parameters? (2) What causes incorrect answers? We aim to determine if such erroneous behavior of
the model aligns with errors in the model’s mental process (via probing).

For the first question, given the model rarely produces solutions longer than necessary (see Figure 3),
we turned to out-of-distribution reask data for evaluation.17 On this data, pretrained models produce
an average of ∼ 0.5 unnecessary parameters per solution even for op = 32 (see Figure 3). We
examined if these unnecessary parameters A were incorrectly predicted as nece(A) = true in
the probing task. Figure 9(a) reveals that this is often indeed the case, thus language models produce
solutions with unnecessary steps due to errors in their mental planning phase.

For the second question, we focused on the model’s wrong solutions and their first wrong pa-
rameters. (Using synthetic data, we can easily identify such parameters.) Our findings in
Figure 9(b) show that the model’s errors mainly stem from incorrectly predicting nece next(A)
or can next(A) as true in its internal states when such A’s are not ready for computation.18

Result 6 (Figure 9). Combining these, we conclude:

• Many reasoning mistakes made by the language model are systematic, stemming from errors in
its mental process, not merely random from the generation process.

• Some of the model’s mistakes can be discovered by probing its inner states even before the
model opens its mouth (i.e., before it says the first solution step).

17Recall this re-samples a query after generating the problem, leading to a different set of necessary param-
eters.

18In Figure 9(b), we focus on these “first wrong parameters” with correct label being can next(A) = false
or nece next(A) = false and present the probability that their probing also correctly predicts false. Low
accuracy indicates that the model “thought” these parameters were ready for computation, but they were not.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

We also observe that GPT-4/4o makes similar mistakes by outputting unnecessary parameters or
insisting on computing parameters A with can next(A) = false (see Appendix H). This further
hints that our findings may be applicable more broadly.

B RESULT 1 — AN EXAMPLE IN IGSM-HARD WITH OP = 21

(Problem - A Hard Example) The number of each Jungle Jim’s International Market’s Cheese equals the sum of each Parmesan Cheese’s Pear and each The Fresh
Market’s Ice Cream. The number of each Ice Cream’s Pineapple equals 2 more than each Goat Cheese’s Grape. The number of each New Seasons Market’s Goat
Cheese equals the sum of each Residential College District’s Jungle Jim’s International Market, each Jungle Jim’s International Market’s Parmesan Cheese and each
Residential College District’s Supermarket. The number of each Arts Campus’s New Seasons Market equals each Cheese’s Pineapple. The number of each Goat
Cheese’s Banana equals each Vocational School District’s Product. The number of each Residential College District’s Jungle Jim’s International Market equals 5
more than each Ice Cream’s Grape. The number of each Parmesan Cheese’s Pineapple equals each Parmesan Cheese’s Pear. The number of each Residential College
District’s The Fresh Market equals each Arts Campus’s Trader Joe’s. The number of each Arts Campus’s Trader Joe’s equals each Parmesan Cheese’s Ingredient.
The number of each Goat Cheese’s Grape equals 0. The number of each The Fresh Market’s Ice Cream equals 13 more than the difference of each Residential
College District’s The Fresh Market and each Parmesan Cheese’s Grape. The number of each Goat Cheese’s Pineapple equals each New Seasons Market’s Product.
The number of each Vocational School District’s The Fresh Market equals the sum of each Trader Joe’s’s Cheese and each The Fresh Market’s Cheese. The number
of each Trader Joe’s’s Cheese equals 6. The number of each The Fresh Market’s Cheese equals 3. The number of each Jungle Jim’s International Market’s Ice
Cream equals the difference of each Ice Cream’s Banana and each Goat Cheese’s Grape. The number of each Jungle Jim’s International Market’s Parmesan Cheese
equals each Ice Cream’s Pineapple. The number of each Parmesan Cheese’s Pear equals the difference of each Goat Cheese’s Grape and each Ice Cream’s Grape.
The number of each Parmesan Cheese’s Grape equals 12 times as much as each Residential College District’s Jungle Jim’s International Market. The number of
each The Fresh Market’s Parmesan Cheese equals each The Fresh Market’s Cheese. The number of each Ice Cream’s Banana equals the sum of each Parmesan
Cheese’s Pineapple and each Ice Cream’s Pineapple. The number of each School District’s Jungle Jim’s International Market equals each The Fresh Market’s Ice
Cream. The number of each Cheese’s Pineapple equals 20 more than the sum of each Trader Joe’s’s Cheese and each The Fresh Market’s Cheese. The number of
each Trader Joe’s’s Parmesan Cheese equals 16. The number of each Ice Cream’s Pear equals 8. The number of each Ice Cream’s Grape equals each Goat Cheese’s
Grape. How many Product does School District have?

(Solution - A Hard Example) Define Goat Cheese’s Grape as u; so u = 0. Define Ice Cream’s Grape as x; so x = u = 0. Define Residential College District’s Jungle
Jim’s International Market as N; so N = 5 + x = 5 + 0 = 5. Define Parmesan Cheese’s Pear as G; so G = u - x = 0 - 0 = 0. Define Parmesan Cheese’s Grape as f; so
f = 12 * N = 12 * 5 = 14. Define Parmesan Cheese’s Pineapple as C; so C = G = 0. Define Parmesan Cheese’s Ingredient as Z; e = f + C = 14 + 0 = 14; so Z = e
+ G = 14 + 0 = 14. Define Arts Campus’s Trader Joe’s as q; so q = Z = 14. Define Residential College District’s The Fresh Market as j; so j = q = 14. Define Ice
Cream’s Pineapple as X; so X = 2 + u = 2 + 0 = 2. Define Ice Cream’s Banana as K; so K = C + X = 0 + 2 = 2. Define The Fresh Market’s Ice Cream as P; i = j - f =
14 - 14 = 0; so P = 13 + i = 13 + 0 = 13. Define Jungle Jim’s International Market’s Ice Cream as R; so R = K - u = 2 - 0 = 2. Define School District’s Jungle Jim’s
International Market as V; so V = P = 13. Define Jungle Jim’s International Market’s Cheese as v; so v = G + P = 0 + 13 = 13. Define Jungle Jim’s International
Market’s Parmesan Cheese as S; so S = X = 2. Define Jungle Jim’s International Market’s Product as y; U = S + R = 2 + 2 = 4; so y = U + v = 4 + 13 = 17. Define
School District’s Product as J; so J = V * y = 13 * 17 = 14. Answer: 14.

District

Supermarket

Product

Ingredient

Residential
College Dis-

trict
School Dist-

rict Arts Campus
Vocational

School Dist-
rict

Trader Joe's
Jungle Jim's
Internation-
al Market

New Seasons
Market

The Fresh
Market

Parmesan Ch-
eese Ice Cream Cheese Goat Cheese

Grape Pineapple Banana Pear

Structure Graph
Jungle Jim's
Internation-
al Market's

Cheese

Ice Cream's
Pineapple

New Seasons
Market's Go-

at Cheese
Arts Campus-
's New Seas-
ons Market

Vocational
School Dist-
rict's Prod-

uct Goat Cheese-
's Banana

Residential
College Dis-
trict's Jun-
gle Jim's

Internation-
al Market

Parmesan Ch-
eese's Pine-

appleResidential
College Dis-

trict's The
Fresh MarketArts Campus-

's Trader
Joe's

Goat Cheese-
's GrapeResidential

College Dis-
trict's Sup-
ermarketThe Fresh

Market's Ice
CreamJungle Jim's

Internation-
al Market's

ProductGoat Cheese-
's PineappleThe Fresh

Market's Pr-
oduct

Vocational
School Dist-

rict's The
Fresh Market

Trader Joe'-
s's Cheese

RNG

The Fresh
Market's Ch-

eese

Jungle Jim's
Internation-
al Market's
Ice Cream

Jungle Jim's
Internation-
al Market's

Parmesan Ch-
eese

Parmesan Ch-
eese's Ingr-

edient

Parmesan Ch-
eese's Pear

Parmesan Ch-
eese's Grape

School Dist-
rict's Prod-

uct

The Fresh
Market's Pa-

rmesan Chee-
se

Ice Cream's
Banana

New Seasons
Market's Pr-

oduct

School Dist-
rict's Jung-
le Jim's In-
ternational

Market

Cheese's Pi-
neapple

Trader Joe'-
s's Parmesan

Cheese

Ice Cream's
Pear

Ice Cream's
Grape

Dependency Graph

neccesary paramter
abstract dependency

unused paramter
instance dependency

question paramter

Figure 10: An example with op = 21 in iGSM-hardpq used for training. Don’t forget during testing we
evaluate models on op = 32 which is even much harder.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

op
15

op=15
op=20

op=21
op=22

op=23
op

21
op=21

op=28
op=29

op=30
op=31

op=32
op

15
op=15

op=20
op=21

op=22
op=23

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op
15

op=15
op=20

op=21
op=22

op=23
op

21
op=21

op=28
op=29

op=30
op=31

op=32
op

15
op=15

op=20
op=21

op=22
op=23

op
21

op=21
op=28

op=29
op=30

op=31
op=32

pretrained model probing (pq)
pretrained model probing (pq) - reask
pretrained model probing (qp)
pretrained model probing (qp) - reask

dep(A,B) on negative labels dep(A,B) on positive labels nece_next(A) on negative labels nece_next(A) on positive labels
iGSM-med iGSM-hard iGSM-med iGSM-hard iGSM-med iGSM-hard iGSM-med iGSM-hard

99.7 99.1 99.0 99.1 99.1 99.2 99.6 98.8 98.5 98.5 98.7 98.7 98.7 99.7 99.6 99.5 99.5 99.4 99.5 99.3 99.3 99.2 99.2 99.3 99.2 99.2 99.9 99.5 99.2 99.2 99.2 99.1 99.7 99.3 99.1 99.0 99.0 99.1 98.9 99.7 99.3 96.5 95.5 94.3 93.4 99.2 98.4 95.0 93.6 92.9 91.4 90.4
99.7 99.1 99.0 99.1 99.1 99.1 99.6 98.9 98.6 98.5 98.7 98.6 98.7 99.7 99.6 99.5 99.5 99.5 99.4 99.3 99.3 99.3 99.2 99.3 99.2 99.2 99.6 98.9 98.8 98.8 98.9 98.9 98.9 97.9 97.7 97.7 97.8 97.9 97.9 90.7 97.8 97.1 97.0 96.2 95.9 90.6 97.2 96.6 96.0 95.7 95.5 95.3
99.4 98.8 98.9 98.9 98.9 99.1 99.7 99.3 99.2 99.1 99.2 99.3 99.3 99.0 98.4 98.1 98.0 97.9 98.1 99.6 99.4 99.3 99.2 99.1 99.2 99.1 99.7 99.3 98.9 98.9 98.8 98.7 99.9 99.8 99.6 99.5 99.5 99.5 99.4 97.7 95.9 90.8 89.3 87.8 86.7 98.7 99.4 97.8 97.3 97.0 96.2 95.7
99.4 98.9 98.9 98.9 99.0 99.0 99.7 99.3 99.3 99.2 99.3 99.2 99.3 99.0 98.4 98.0 98.0 98.0 98.1 99.6 99.4 99.3 99.2 99.2 99.2 99.1 99.6 99.4 99.3 99.2 99.2 99.3 99.7 99.2 99.1 99.1 99.1 99.2 99.2 90.3 95.1 92.9 92.5 91.0 90.7 93.2 97.2 96.3 96.0 95.5 95.6 95.0

Figure 11: Probing accuracies restricted to positives/negatives labels (complement to Figure 6 which is on all
labels.)

C RESULTS 4-5 — DETAILS ON V-PROBING

Recall that we wish to conduct probing at the end of the problem description for the nece and
dep tasks (before the solution for nece; before the solution or even the question for dep). For
other tasks, we probe at the end of every solution sentence (including the start of the first solution
sentence). The goal is to freeze a pretrained language model, then introduce a very small number of
additional trainable parameters on top of it, and finetune them for each probing task.

Specifically, we take a pretrained language model, e.g., pretrained from the iGSM-hard training
data. We freeze its parameters completely except for adding a trainable rank-r update on the em-
bedding layer to account for the task change (from next-token prediction to probing). Throughout
this paper we use a small value r = 8. We feed this network with training data that are the same as
iGSM-hard, but truncated at exactly the position we wish to probe. Importantly, we append such
inputs with a special starting token [START] along with a parameter name (or two names, if it is the
dep(A,B) task). We then extract the hidden states of the last token position at the last transformer
layer, and add a trainable linear layer (a.k.a. linear head) to perform classification for one of the six
probing tasks.

This probing method is illustrated in Figure 12. We call it V(ariable)-Probing, because it can take
an arbitrary number of variables (i.e., parameters in this paper) to allow us to perform functional
probing inside the transformer.

Note, if it were only a trainable linear head such probing would be called linear probing (Hewitt &
Manning, 2019). Unlike traditional linear probing, we are adding a small low-rank update on the
model’s embedding layer. This is arguably the minimum change needed (to account for the task
change, for special tokens like [START] [MID] [END], etc.) in order to perform any non-trivial
probing. This is related but different from the nearly-linear probing methods introduced in Allen-
Zhu & Li (2023a; 2024a), because they do not support taking variables as probing inputs.

Unbalanced probing tasks. Our probing accuracies for the six tasks were presented in Figure 6.
Note however, the dep and nece next tasks have unbalanced labels — even guessing “all false”
would give 83% accuracy for dep(A,B) and 92% for nece next(A). For such reason, we
also present their (high) probing accuracies restricted to positives/negatives labels separately in
Figure 11.

C.1 PROBING DATA PREPARATION

We describe here how we prepare the probing data. We generate math data according to Appendix E.

For each problem and each probing task (such as nece(A), dep(A,B), etc), we need to specify
two things: at which position to probe and what parameters A (or A,B) to probe.

• For nece and dep, the probing always takes place at the end of the problem (and question)
description, so there is no choice to be made; for value, can next, nece next tasks, the
probing can take place at the end of each sentence in the solution for (including the beginning of
the first solution sentence), and we uniformly at random make such choices.

• Each parameter A (or B) can be uniformly at random chosen from the set of all (instance or
abstract) parameters in our dependency graph (with the only requirement that A ̸= B).

In the end, we make sure for each problem and each probing task, we make at most 10 such random
choices (over the position and the choice of parameters) and sample without replacement.

Just like in the pretrain data, we prepare our probing data so that only problems with hash values of
their solution template (see Footnote 9) where the hash < 17 (mod 23) are included in the training
set, and the rest are used for testing.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

[BOS] The number of each Riverview High's Film Studio ... How many Backpack does Central High have? [START] Dance Studio’s School Daypack [END]

decoder layer (attention + MLP)

…

trainable rank 𝑟 update
on the embedding layer

freeze the pretrained LM

add a trainable linear
(classification) layer

problem question some parameter A

Predict necc(A) ∈ {True, False}

… … … … …

decoder layer (attention + MLP)

(a) V-probing for the nece(A) task

[BOS] The number of each Riverview High's Film Studio ... each Film Studio's Messenger Backpack equals 13.[START] Riverview High’s Film Studio [MID] Dance Studio’s School Daypack [END]

decoder layer (attention + MLP)

…

problem some parameter A

Predict dep(A,B) ∈ {True, False}

some parameter B

decoder layer (attention + MLP)

… … … … … … …

(b) V-probing for the dep(A,B) task

[BOS] The number of each Riverview ... How many Backpack …? [SOL] Define … Define Central High’s Film Studio as B; so B = p + W = 17 + 13 = 7. [START] Film Studio’s School Daypack [END]

decoder layer (attention + MLP)

…

decoder layer (attention + MLP)

problem question some parameter A

Predict known(A) ∈ {True, False}, or value(A) ∈ {0,1,…22,None}, or can_next(A) ∈ {True, False}, or necc_next(A) ∈ {True, False}

a prefix of solution

(c) V-probing for the value(A),can next(A),nece next(A) tasks

Figure 12: Illustrations of V-probing, our nearly-linear probing methods to investigate whether a pretrained
model, at a specific input position, knows an arbitrary func(A) for a parameter A described in
text.

In all cases, we freeze the entire pretrained language model, except for a low-rank r = 8 update on
the input embedding layer to accommodate the task change.
The illustration is for pq data (problem precedes question); for qp data, we simply reverse the order,
except for dep(A,B) where the question is added before the problem.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D RESULT 8 — ADDITIONAL FIGURE

1 2 3 4 5 6 7 8
0

50

100
de

pt
h1

2
- s

ize
1 med_pq - op15

1 2 3 4 5 6 7 8
0

50

100
med_pq - op20

1 2 3 4 5 6 7 8
0

50

100
med_qp - op15

1 2 3 4 5 6 7 8
0

50

100
med_qp - op20

1 2 3 4 5 6 7 8
0

50

100
hard_pq - op21

1 2 3 4 5 6 7 8
0

50

100
hard_pq - op28

1 2 3 4 5 6 7 8
0

50

100
hard_qp - op21

1 2 3 4 5 6 7 8
0

50

100
hard_qp - op28

layer3
layer6
layer9
layer12

1 2 3 4 5 6 7 8
0

50

100

de
pt

h1
2

- s
ize

2

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100 layer3
layer6
layer9
layer12

1 2 3 4 5 6 7 8
0

50

100

de
pt

h2
0

- s
ize

1

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100 layer5
layer10
layer15
layer20

1 2 3 4 5 6 7 8
0

50

100

de
pt

h2
0

- s
ize

2

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100 layer5
layer10
layer15
layer20

1 2 3 4 5 6 7 8
0

50

100

de
pt

h4
 -

siz
e1

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100 layer1
layer2
layer3
layer4

1 2 3 4 5 6 7 8
0

50

100

de
pt

h4
 -

siz
e2

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100

1 2 3 4 5 6 7 8
0

50

100 layer1
layer2
layer3
layer4

Figure 13: Increasing probing accuracies of nece(A) with increasing layer depth. This is an extension of
Figure 8 but including more model depths/sizes. The x-axis denotes the distance t of parameter A
from the query parameter for t = 1 . . . 8. The colors transition from light to dark to represent layers
1 to max. (Model architecture details are in Footnote 16 and Appendix F.)

Remark. It is not surprising to see in some cases (e.g., iGSM-hardpq for depth-20 and size-2), for
deeper layers, the probing accuracy of nece(A) actually increases as the distance t increases; in
such cases, the information of nece(A) for smaller t is stored (relatively better) in lower layers.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E RESULT 1 DETAILS — MATH DATA GENERATION

Our math data generation process consists of first generating the structure graph (see Figure 1 and
10 left), which defines the set of parameters we shall use; then generating the dependency graph (see
Figure 1 and 10 right), which defines the arithmetic relationship between the parameters; and finally
generating the English problem and solution descriptions.

Notations. In this section, to make the description concise, when we say “randomly sampling”
in the pseudocode, we mean uniform random unless otherwise noted. Whenever we consider a
(directed) graph G, slightly abusing notation, we write a ∈ G to indicate that a is a vertex in G and
(a→ b) ∈ G to indicate that there is an edge from a to b in G.

E.1 GENERATE STRUCTURE GRAPH

Recall the structure graph (see Figure 1 and 10 left) describes the set of possible items (nodes) and
instance parameter (edges) that we shall rely on to construct our math problem.

We use Gs to denote such structure graph, and it is generated Gs = DrawStructure(e, d, w0, w1)
from a random distribution defined with hyperparameters e, d, w0, w1 ∈ N. At a high level, we
construct Gs so that it has d layers, e edges, and each layer has between w0 and w1 items.

Specifically, suppose li ∈ {w0, w0 + 1, . . . , w1} represents the number of items for each layer
i. In this configuration, one must have at least e− = l2 + · · · + ld edges to ensure the graph is
“connected”, and at most e+ = l1l2 + · · · + ld−1ld edges. Using this formula, we first randomly
choose a configuration (l1, . . . , ld) so that e− ≤ e ≤ e+ for the given parameter e. Then, after the
configuration is chosen, we randomly generate edges accordingly. Details are given in Algorithm 1.

Algorithm 1 Gs = DrawStructure(e, d, w0, w1)

Input: e, d, w0, w1 ∈ N ⋄ satisfying 2 ≤ d ≤ 4; 2 ≤ w0 ≤ w1 ≤ 4; (d− 1)w0 ≤ e ≤ (d− 1)w2
1

1: l← (w0, w0, . . . , w0) ∈ Zd ⋄ li represents the number of items (nodes) for layer i
2: p← uniform random from (0, 1)
3: while l ̸= (w1, w1, . . . , w1) do
4: e−, e+ ← minimum and maximum number of edges that l can give
5: if e+ < e then
6: randomly select i ∈ [d] such that li < w1, and increase it li ← li + 1.
7: else if e− = e then
8: break
9: else if randomly choose a number in (0, 1) and it is less than p then

10: randomly select i ∈ [d] such that li < w1, and increase it li ← li + 1.
11: else
12: break
13: end ⋄ after while loop, we must have e− ≤ e ≤ e+ and ∀i ∈ [d] : w0 ≤ li ≤ w1

14: Construct Gs with exactly li items on layer i ∈ [d].
15: for each item a in each layer i ≥ 2 do
16: randomly select an item b in layer i− 1 and connect (a, b) in Gs. ⋄ this creates e− edges

17: while number of edges < e do
18: randomly select two items a, b from adjacent layers to create an edge in Gs.
19: return Gs and attach English to it.

E.1.1 ATTACH ENGLISH

As described in Section 2.1, we have prepared 4 predefined hierarchical categorizations, each of
them with 4 total layers of categories:

[
["District", "Supermarket", "Product", "Ingredient"],
["Zoo", "Enclosure", "Animal", "Bone"],
["School", "Classroom", "Backpack", "Stationery"],
["Ecosystems", "Creatures", "Organs", "Cells"]

]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

In each of the above 16 categories, we have prepared around 100 items (further decomposed into 5
sub-categories). Below is a showcase of them:

{
"District": {

"Residential Districts": [...],
"Commercial Districts": [

"Shopping District", "Business District", "Financial District", "Industrial District",
"Warehouse District", "Market District", "Restaurant District", "Entertainment District",
"Arts District", "Fashion District", "Silicon Valley", "Wall Street",
"Tech Park", "Automotive District", "Jewelry District", "Medical District",
"Legal District", "Media District", "Research Park", "Manufacturing District"

],
"Historical Districts": [...],
"Educational Districts": [...],
"Government Districts": [...]

},
"Supermarket": {...},
"Product": {

"Canned Foods": [...],
"Snack Foods": [

"Potato Chips", "Pretzels", "Popcorn", "Candy Bars",
"Gummy Candy", "Cookies", "Crackers", "Granola Bars",
"Fruit Snacks", "Cheese Puffs", "Nuts", "Trail Mix",
"Beef Jerky", "Rice Cakes", "Yogurt Covered Raisins", "Chocolate Covered Pretzels",
"Tortilla Chips", "Salsa", "Hummus", "Dried Fruit"

],
"Beverages": [...],
"Baked Goods": [...],
"Dairy Products": [...]

},
"Ingredient": {...},
"Zoo": {...},
"Enclosure": {...},
"Animal": {...},
"Bone": {...},
"School": {...},
"Classroom": {...},
"Backpack": {...},
"Stationery": {...},
"Ecosystems": {...},
"Creatures": {...},
"Organs": {...},
"Cells": {...}

}

Now, given a constructed structure graph Gs, we first randomly pick one of the four categorizations,
then randomly pick d ∈ {2, 3, 4} consecutive layers of categories, next randomly pick one of the
five subcategories, and finally pick li random item names in this subcategory for each layer i.

At this point, we have constructed Gs as well as added English names to each of its node, just like
Figure 1 and 10 (left).

E.2 GENERATE DEPENDENCY GRAPH

A structure graph Gs defines the set of possible parameters we consider, while a dependency graph
defines how these parameters depend on each other. We use an edge a→ b to indicate that parameter
b depends on a; there is a special vertex RNG and it can happen that RNG → b. What an abstract
parameter depends on is inherited from the structure graph Gs. For each instance parameter, we
shall randomly add edges to indicate what parameters it depends on.

High-level plan. We shall use Gd to denote the dependency graph, we start from an empty graph
and then add vertices/edges incrementally and randomly. Our process is as follows:

• Generate a necessary dependency graph Gnece
d which covers all the vertices and nodes that are

necessary for the computation of the query parameter.
– Generate necessary abstract parameters (and add parameters they depend on); call this graph
Gnece1

d .
– Generate necessary instance parameters and add them to Gnece1

d ; call this graph Gnece2
d .

– Generate a topological order for parameters Gnece2
d and ensure all of them are necessary to-

wards computing the query parameter (which is the last one in this tropologic order). During
this process, we shall add additional edges from Gnece2

d to create Gnece3
d .

– Generate additional necessary edges and add them to Gnece3
d ; call this graph Gnece

d .
• Add to Gnece

d all the remaining (unnecessary) parameters and edges to form Gd.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

At a high level, our problem description shall solely depend on Gd — by describing each instance
parameter in it using a sentence, and our solution description shall solely depend on Gnece

d — by
describing the computation of each parameter in it using a sentence.

Before we proceed with the construction let us formally introduce:

Definition E.1 (operation). Given any dependency graph Gd,

• For an (abstract or instance) parameter a ∈ Gd that has in-degree t ≥ 0, we define opGd
(a) :=

max{1, t− 1} which is the number of operations needed to compute a.19

• We use op(Gd) :=
∑

a∈Gd\{RNG} opGd
(a) to denote the total number of (arithmetic) operations

needed to compute all the parameters in Gd.
Remark E.2. In our final design of Gd, we shall ensure that each parameter (except the special
vertex RNG) has in-degree at least 1; however, during the construction process since we add edges
incrementally, some (instance) parameter may temporarily have in-degree 0. For notation simplicity,
we still say opGd

(a) = max{1,−1} = 1 in such a case.

Hyperparameters. We use hyperparameters 1 ≤ n ≤ m ≤ s to control the difficulty of Gd.

• we shall ensure op(Gnece1
d) ≤ n and is as close as possible to n;

• we shall ensure op(Gnece3
d) = op(Gnece2

d) ≤ m and is as close as possible to m;

• we shall ensure op(Gnece
d) = s is exact.

In other words, hyperparameter s controls exactly how many operations are needed to compute the
query parameter, which is the primary factor controlling the problem’s difficulty.

E.2.1 CONSTRUCTION OF Gnece1
d , Gnece2

d

Given a structure graph Gs, recall its edges represent all the instance parameters we shall use. Its
abstract parameters are those ones that describe quantities across 1 or multiple layers: for instance
in Figure 1, Central High’s number of Classrooms is across 1 layer, and Central High’s number of
Backpacks is across 2 layers. We define this number as the difficulty level of abstract parameters.

With this notion, our construction of Gnece1
d and Gnece2

d are described together in Algorithm 2.

At a high level, we try to incrementally and randomly add abstract parameters to Gnece1
d while main-

taining op(Gnece1
d) ≤ n. We cannot make this exact equality because when adding a single abstract

parameter requires also (recursively) adding all the other parameters it may depend on. We tried
to prioritize adding abstract parameters with higher difficulty levels. Once we finish constructing
Gnece1

d , we randomly add additional instance parameters from Gs to make it Gnece2
d .

19For instance, in Figure 1, a = “Riverview High’s total number of Backpacks” is equal
to ip1 × ap1 + ip2 × ap2 for ip1 = “Riverview High’s number of Dance Studios”, ip2 =
“Riverview High’s number of Film Studios”, ap1 = “each Dance Studio’s number of Backpacks”,
ap2 = “each Film Studio’ number of Backpacks”, where ip1, ip2 are instance parameters and ap1, ap2
are abstract parameters. In this case, this abstract parameter depends on 4 other parameters, and requires 3
arithmetic operations.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 2 Gnece2
d = DrawNecessary1(Gs, n,m)

Input: structure graph Gs of depth d, n,m ∈ N with 1 ≤ n ≤ m
1: Gnece1

d ← empty graph
2: repeat
3: updated← false
4: for i← d− 1, . . . , 1 do
5: if ∃ abstract parameter of difficulty level i in Gs that is not yet in Gnece1

d then
6: randomly pick one such abstract parameter a of difficulty level i
7: G′ ← Gnece1

d +a and all instance/abstract parameters a may (recursively) depend on
⋄ also add their dependency edges

8: if op(G′) ≤ n then
9: Gnece1

d ← G′; updated← true; break
10: until updated = false
11: Gnece2

d ← Gnece1
d ⋄ op(Gnece1

d) ≤ n and all instance parameters in Gnece1
d have in-degree 0

12: for i← 1, 2, . . . ,m− op(Gnece1
d) do

13: if there’s leftover instance parameter in Gs not yet in Gnece2
d , add a random one to Gnece2

d

14: return Gnece2
d ⋄ op(Gnece2

d) ≤ m and all instance parameters in Gnece2
d have in-degree 0

E.2.2 CONSTRUCTION OF Gnece3
d

Our goal next is to select a random query parameter in Gnece2
d and construct a random topological

ordering Topo for all the parameters in Gnece2
d , so as to ensure that all the parameters are necessary

towards the computation of query.

We start with Topo = [query] and append parameters to its left one by one. During this process, we
may also introduce new edges randomly; we start with Gnece3

d = Gnece2
d and add edges incrementally.

This process may not always succeed — sometimes the created topological ordering cannot make
all the parameters necessary towards the computation of the query. If this happens we declare a
failure.20

We introduce two notions (we use Gnece3
d \ Topo to denote the set of vertices in Gnece3

d that are not
in Topo):

• Next1Gnece3
d

(Topo) :=
{
a ∈ Gnece3

d \ Topo | ∃(a→ b) ∈ Gnece3
d for some b ∈ Topo

}
Intuitively, if a ̸∈ Next1(Topo) then we cannot immediately append a to the front of Topo,
because it is not yet necessary towards the computation of query.

• Next2Gnece3
d

(Topo) :=
{
a ∈ Gnece3

d \ Topo | ∄(a→ b) ∈ Gnece3
d for any b ∈ Gnece3

d \ Topo
}

Intuitively, if a ̸∈ Next2Gnece3
d

(Topo) then we cannot immediately append a to the front of Topo,
because some other parameter depends on it and is not yet added to Topo. (Obviously we always
have Next2Gnece3

d
(Topo) ̸= ∅ unless Gnece3

d \ Topo = ∅ so we are done.)

Our generation algorithm is now easy to describe: we keep adding parameters that are in
Next1Gnece3

d
(Topo) ∩ Next2Gnece3

d
(Topo) to the front of Topo; and if we get stuck, we introduce new

edges to Gnece3
d (or declare failure). The pseudocode is in Algorithm 3.

20The outside pseudocode, which comes later, shall go back to regenerate the structure graph and start again.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 3 (Gnece3
d , Topo) = DrawNecessary2(Gnece2

d)

1: Gnece3
d ← Gnece2

d ; Topo← [].
2: while true do
3: if Topo = [] then
4: param0 ← random parameter in Next2Gnece3

d
(Topo); ⋄ this is query parameter

5: else
6: param0 ← random parameter in Next1Gnece3

d
(Topo) ∩ Next2Gnece3

d
(Topo);

7: Topo = [param0] + Topo ⋄ append to the front
8: if Gnece3

d \ Topo = ∅ then break
9: if Next1Gnece3

d
(Topo) ∩ Next2Gnece3

d
(Topo) = ∅ then

10: If param0 is abstract then return failure
11: param1 ← a “random” parameter in Next2Gnece3

d
(Topo). ⋄ see Remark E.4

12: add edge param1 → param0 to Gnece3
d . ⋄ now param1 ∈ Next1Gnece3

d
(Topo)

13: else if param0 is instance parameter then
14: if a probability event p0 occurs for p0 uniform chosen in (0, 1) then
15: param1 ← a “random” parameter in Gnece3

d \ Topo. ⋄ see Remark E.4
16: add edge param1 → param0 to Gnece3

d . ⋄ now param1 ∈ Next1Gnece3
d

(Topo)

17: return (Gnece3
d , Topo) ⋄ op(Gnece3

d) ≤ m and all instance parameters in Gnece3
d have in-degree ≤ 1

Proposition E.3. Every instance parameter in Gnece3
d has in-degree ≤ 1 and thus op(Gnece3

d) =
op(Gnece2

d).
Remark E.4. In Line 11 and Line 15 of Algorithm 3, when randomly selecting param1 from a set,
instead of doing so uniformly at random, to improve the algorithm’s success rate and the problem’s
difficulty level, we introduce a discursion that that biases slightly towards abstract parameters and
parameters already in Next1Gnece3

d
(Topo).21 Specifically, we first generate g ∼ N (0, 1) a random

Gaussian, then define weight(a) =
(
1a is abstract + 1a∈Next1

Gnece3
d

(Topo)

)
· |g|, and then sample a with

a probability ∝ eweight(a).

E.2.3 CONSTRUCTION OF Gnece
d

So far we have created Gnece3
d and Topo with the property that every instance parameter in Gnece3

d
has in-degree ≤ 1. In the next step, we add additional dependency edges to make in-degree to be a
random number between 1 and 4. We do so by introducing additional edges; and we also introduce
an additional vertex RNG. This is our final necessary dependency graph Gnece

d .

Our pseudocode is given in Algorithm 4. In this step, we shall make sure op(Gnece
d) = s is exact

(and declare failure if this is not possible). We do so to precisely control the solution’s difficulty (so
that when we evaluate the model, we can choose to evaluate it on problems with a fixed value of s).

21For those who are interested, abstract parameters are the keys to cause the generation process to fail,
because once they become param0 we cannot add edges param1 → param0; so we had better select them
earlier than later (thus put them at the back of Topo). On the other hand, for param1 that is already in
Next1Gnece3

d
(Topo), adding this edge param1 → param0 does not further change it; this can help us create

a problem whose solution “depth” is higher.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 4 Gnece
d = DrawNecessary3(Gnece3

d , Topo, s)

1: cur op(a)← opGnece3
d

(a) for every parameter a ∈ Gnece3
d .

2: max opTopo(a) := the maximum number of operations an instance parameter a can require.22

3: while
∑

a∈Gnece3
d

cur op(a) < s do
4: randomly select an instance parameter a ∈ Gnece3

d with cur op(a) < max opTopo(a);
5: If a is found then cur op(a)← cur op(a) + 1 else return failure.
6: Gnece

d ← Gnece3
d + vertex RNG.

7: for each instance parameter a in Gnece3
d do

8: pool← RNG + all parameters in front of a in Topo.
9: if cur op(a) = 1 then

10: dep num← 1 or 2 each w.p. 0.5;
11: else
12: dep num← cur op(a) + 1

13: dep num← min{|pool|, dep num}
14: if ∃(b→ a) ∈ Gnece3

d for some b ∈ pool then ⋄ at most one such b
15: pool← pool \ {b} and dep num← dep num− 1

16: if dep num = |pool| then
17: add b→ a to Gnece

d for all b ∈ pool;
18: else
19: with probability 0.5, add RNG→ a to Gnece

d and dep num← dep num− 1
20: pool← pool \ {RNG}
21: add b→ a to Gnece

d for dep num randomly select elements b in pool.
22: return Gnece

d ⋄ op(Gnece
d) = s is exact

E.2.4 CONSTRUCTION OF Gd

Finally, once we have Gnece
d the necessary dependency graph, we are left to add unnecessary depen-

dency edges (and unnecessary parameters) to form the complete Gd.

During this process, we shall add all the remaining instance parameters from Gs into Gd. When
adding each of them, we randomly select the parameters that it shall depend on from all the previ-
ously known parameters.23 Note that during this process, we may also introduce new, unnecessary
abstract parameters, see the full pseudocode in Algorithm 5.

Remark E.5. Gd consists of all the instance and query parameters in Gs and the abstract parameters
they may (recursively) depend on. There may exist abstract parameters that can be described in Gs

that are not present in Gd; but all the instance parameters in Gs shall be present in Gd.

22If an instance parameter a is the i-th element in Topo, then max op(a) = min{3,max{1, i− 1}}. (Recall
we require each instance parameter to depend on at most 4 vertices in the dependency graph and this amounts
to no more than 3 operations.)

23In fact, we do slightly smarter than the most naive approach. If one simply lets each newly added unneces-
sary parameter to depend, randomly among all the parameters that have already been added to Gd, then those
unnecessary parameters will likely appear towards the end of the topological order. For such reason, we give it
0.5 probability to depend only on a set IndList, which consists of newly-added, unnecessary parmaeters, that
do not depend on Gd. This way, the unnecessary parameters can also appear to the front of the tropologic order.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 5 Gd = DrawUnnecessary(Gs, G
nece
d)

1: IndList← ∅;
2: while ∃ instance parameter in Gs not yet in Gd do
3: K ← all params in Gd + all abstract params computable using parameters in Gd;
4: randomly select an instance parameter a in Gs not yet in Gd; and add a to Gd;
5: if with half probability then
6: pool← IndList ∪ {RNG}; IndList← IndList ∪ {a};
7: else
8: pool← K ∪ {RNG};
9: dep num← 1

10: while dep num < min{4, |pool|} do
11: with 0.5 probability, dep num← dep num+ 1; otherwise break
12: if dep num = |pool| then
13: selected← pool
14: else
15: selected← {}
16: with probability 0.5, add selected = {RNG} and dep num← dep num− 1
17: pool← pool \ {RNG}
18: selected← selected ∪ dep num random elements from pool

19: for each b ∈ selected do
20: If b ̸∈ Gd then recursively add b and its dependencies to Gd;
21: Add b→ a to Gd.
22: return Gd

E.3 GENERATE ENGLISH: PROBLEM, QUESTION AND SOLUTION

At this point, we have constructed a dependency graph Gs where each instance parameter a ∈ Gs

may depend on between 1 and 4 other vertices (could be abstract, instance parameters or RNG).
We have not yet introduced how a should be computed, and we do this using a random process
GenSentence(Gd, a) in Algorithm 6.

Algorithm 6 GenSentence(Gd, a)

1: str ← “The number of [name of a] equals”
2: pool← {b ∈ Gd : ∃(b→ a) ∈ Gd}.
3: if RNG ∈ pool then
4: str ← str + “ [random int between 0 and 22]”; and pool← pool \ {RNG}
5: If |pool| > 0, str ← str + “ more than” or “ times” each with probability 0.5.
6: if |pool| = 1 then
7: str ← str + “ [name of b]” for pool = {b}.
8: else if |pool| = |{b, c}| = 2 then
9: str ← str + “ the sum of [b] and [c]” or “ the difference of [b] and [c]” each w.p. 0.5.

10: else
11: str ← str + “ the sum of .., .., and ..” with a random order of all elements from pool.

Problem description. The problem description simply consists of listing over all instance param-
eters a ∈ Gd and call GenSentence(Gd, a). We then randomly shuffle the sentences to make the
problem hard. Please note the descriptions of abstract parameters are not present in the problem
description, because they are inherited from the hierarchical categorization. This is our attempt to
make our math data also capture some English meaning, that is the model also needs to learn what
items are in each category, and which category is above another category, etc. This is some knowl-
edge that cannot be learned by reading one problem — it must be learned after reading sufficiently
many data.

Question description. Our query parameter can be either an instance or abstract parameter, and
it is the last element in Topo. We use a single sentence to ask for its value “How many ... does

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

... have?” and we put this question either at the front or at the end of the problem description
(depending on the data type).

Solution description. We generate the solution text, by going over all the (instance or abstract)
parameters in Topo in its correct order, and generate a single sentence to compute each parameter.
This process is straightforward but notationally heavy, we describe it below by examples.

• Given any instance parameter a ∈ Topo, suppose for instance a is 7 times the sum of parameters
b, c, d. Because of the topological order, the parameters b, c, d must have already defined with
variable names, denoted as varb, varc, vard. Then we define solution string of a as

“Define [name of a] as var0; var1 = varb + varc = · · · ; var2 = var1 + vard = · · · ;
so var0 = 7× var2 = · · · .”

Here, the arithmetic computation is decomposed into 2-ary operations step by step separated
with semicolons (so opGd

(a) is exactly the number of semicolons). The var0, var1, var2 are
three new (but distinct) random variables and their names are between a-z or A-Z and have 52
possible random choices. The “· · · ” ignores the math calculations.

• Given an abstract parameter a ∈ Topo, suppose for instance a = b× c+ d× e+ f × g then we
similarly define its solution text as

“Define [name of a] as var0; var1 = varb × varc = · · · ; var2 = vard × vare = · · · ;
“var3 = varf × varg = · · · ; var4 = var1 + var2 = · · · ; so var0 = var3 + var4 = · · · .”

Above, once again var0, var1, var2, var3, var4 are new (but distinct) random variable names
from a-z or A-Z, and we break down the computation into 2-ary operations.

With the above examples in mind, and combining those with real examples in Figure 10, it should
be very clear how the solution texts are generated.
Remark E.6. op(Gnece

d) is equal to the total number of semicolons in the solution text, because it
represents the total (and minimum!) number of arithmetic operations needed to compute the final
query parameter.

E.4 PUTTING ALTOGETHER

We put together our data generation process for the structure graph Gs and the dependency graph
Gd (along with Gnece

d , Topo) in Algorithm 7.

In particular, we use global parameters ipmax and opmax: the former controls the maximum number
of instance parameters, and the latter controls the maximum number of solution operations. We
select n,m, s based on opmax (to ensure that 1 ≤ n ≤ m ≤ s ≤ opmax), and d, e, w0, w1 based on
ipmax and s. We also provide a boolean switch force and when force = true, we shall force s =
opmax so that the generated math problem will have its solution to be of exactly opmax operations.

We define datasets

• iGSMop≤opmax,ip≤ipmax as the process of invoking DrawAll(opmax, ipmax, force = false).

• iGSMop=opmax,ip≤ipmax as the process of invoking DrawAll(opmax, ipmax, force = true).

Using this language:

• The training data iGSM-med is iGSMop≤15,ip≤20;

• The eval data of iGSM-med additionally includes iGSMop=op,ip≤20 for op ∈
{15, 20, 21, 22, 23};

• The training data iGSM-hard is iGSMop≤21,ip≤28;

• The eval data of iGSM-hard additionally includes iGSMop=op,ip≤28 for op ∈
{21, 28, 29, 30, 31, 32}.

Remark E.7. During training (regardless of pretrain or finetune for probing tasks), we only use
those data whose hash value of their solution template (see Footnote 9) is < 17 (mod 23), and
during evaluation we only use those whose hash value is ≥ 17 (mod 23). This ensures a strict
separation between train and test data (even in terms of their solution templates).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Remark E.8. In Algorithm 7, we chose s = min{t0, t1}, where t0 and t1 are two random integers
between 1 and opmax. This choice encourages more easier math problems in the pretrain data, which
we found improves the model’s learning.

Algorithm 7 DrawAll(opmax, ipmax, force) generation

1: s← min{t0, t1} for t0, t1 being two random integers from 1 and opmax
2: If force = true then s← opmax.
3: n← max{t0, t1} for t0, t1 being two random integers from 1 and s
4: m← random integer between n and s
5: d← a random choice among {2, 3, 4} with distribution according to softmax(weight)

⋄ for weight = [−(rel − 0.2)2,−(rel − 0.5)2,−(rel − 0.8)2] for rel = s−1
ipmax−1

6: t0, t1 ← two random choices among {2, 3, 4} with distribution according to softmax(weight)
7: w0 ← min{t0, t1} and w1 ← max{t0, t1}.
8: e← min{t0, t1, (d− 1)w2

1} for t0, t1 being random integers between (d− 1)w0 and ipmax
9: Gs ← DrawStructure(e, d, w0, w1)

10: Gnece2
d ← DrawNecessary1(Gs, n,m)

11: (Gnece3
d , Topo)← DrawNecessary2(Gnece2

d) ⋄ if fail, go to Line 9; if fail for 1000 times, go to
Line 1

12: Gnece
d ← DrawNecessary3(Gnece3

d , Topo, s) ⋄ if fail, go to Line 1
13: Gd ← DrawUnnecessary(Gs, G

nece
d)

14: return (Gd, G
nece
d , Topo) ⋄ and generate English descriptions following Section E.3

F EXPERIMENT DETAILS

Model. We use the GPT2 architecture (Radford et al., 2019), replacing its absolute positional em-
bedding with modern rotary positional embedding (Su et al., 2021; Black et al., 2022), still referred
to as GPT2 for short. (We also played with the Llama architecture, especially with gated MLP lay-
ers, and did not see any benefit of using it. This GPT2 performs comparably to Llama/Mistral at
least for knowledge tasks (Allen-Zhu & Li, 2024b).)

Let GPT2-ℓ-h denote an ℓ-layer, h-head, 64h-dim GPT2 model. We primarily use GPT2-12-12
(a.k.a. GPT2-small) in this paper, but in Section 6 we explore larger models with different widths
and depths. Our size-1 models are GPT2-4-21, GPT2-8-15, GPT2-12-12, GPT2-16-10, GPT2-20-9,
roughly the same size as GPT2-small. Our size-2 models are GPT2-4-30, GPT2-8-21, GPT2-12-17,
GPT2-16-15, GPT2-20-13, roughly twice the size of GPT2-small.

We use the default GPT2Tokenizer, and a context length of 768/1024 for language model pretraining
on iGSM-med/iGSM-hard and a context length of 2048 for evaluation.

Data size. For both pretraining and finetuning, we did not limit the amount of training data; we
generated new data on-the-fly. We do not explore sample complexity in this paper, such as the
number of math problems needed to achieve a certain level of accuracy, as it would complicate the
main message of this paper.

F.1 PRETRAIN EXPERIMENT DETAILS

Pretrain parameters. We used the AdamW optimizer with mixed-precision fp16, β = (0.9, 0.98),
cosine learning rate decay (down to 0.01x of peak learning rate in the end), and 1000 steps of linear
ramp-up. We used a mixture of V100/A100 GPUs, but the GPU specifications are not relevant
here.24 For all of our pretrain experiments:

• On the iGSM-med datasets, we used a (peak) learning rate 0.002, weight decay of 0.05, batch
size of 512, context length of 768, and trained for 100, 000 steps.

• On the iGSM-hard datasets, we used a (peak) learning rate 0.002, weight decay of 0.03, batch
size of 256, context length of 1024, and trained for 200, 000 steps.

24A 128-GPU job with batch size 1 each would be identical to a 32-GPU job with batch size 4 each.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Our pretrain data is constructed by randomly generating math problems (and solutions), concate-
nating them together, and truncating them (in the right) to fit within the 768 or 1024-sized context
window. If a problem is longer than the context window size, we discard it (this happens very rarely).

Test-time parameters. When evaluating on test data, we discard problems (with ground-truth
solutions) longer than 768 tokens for iGSM-med (or 1024 for iGSM-hard), but allow the generation
process to use up to 2048 tokens. This ensures that all problems evaluated during test time can be
correctly answered within 768 or 1024 tokens (not to say 2048). We did this for a purpose;25 for
readers interested in the test-time performance without discarding such problems, see Appendix G.

We use either beam=1 and dosample=False (greedy) or beam=4 and dosample=True (beam-search
multinomial sampling) to present test accuracies. We discover it is better to keep dosample=False
while beam=1 and dosample=True while beam=4. We also tried larger beam sizes and found no
further improvements.

Accuracy statistics. Our main accuracies are presented in Figure 3, where each entry is averaged
over 4096 math problems of that type. Our accuracies are not simply from comparing the answer
integers (between 0 and 22); instead we have written a parser to make sure the model’s intermediate
solution steps are fully-correct.

For the “redundancy” experiment Figure 3, we tested each model again with 4096 math problems
in each case and presented the results among fully-correct solutions. For this figure, we present
beam=1 for cleanness and the results for beam=4 are almost completely identical.

For the “depth matters” experiment Figure 7, because we care about the (relatively small) accuracy
differences across models, we pretrain using two different random seeds, and evaluate with both
beam=1/4; we then present the best accuracies in each entry with respect to the 2 seeds and 2 beam
choices. The accuracies are again over 4096 math problems.

F.2 V-PROBING

Our V-probing was first introduced in Section 4.1 with more details given in Section C. It is a fine-
tuning process upon the pretrained language model, with an additional linear head on the output
layer, and a small rank-r update on the input (embedding) layer. The pretrained model is freezed,
and only this linear head and the rank-r update are trainable parameters during the fine-tuning.

Recall we use r = 8 in this paper (in contrast, the hidden dimension of GPT-12-12 is 768). This
small value of r ensures if probing accuracy is high, it mostly comes from the pretrained model and
not the additional trainable parameters.

For V-probing, we use the same configurations as pretrain, except that:

• For V-probing on the iGSM-med datasets, we used a learning rate of 0.002 (with no ramp-up,
linear decay down to 0), weight decay of 0.01, batch size of 256, and trained for 100, 000 steps.

• For V-probing on the iGSM-hard datasets, we used a learning rate of 0.002 (with no ramp-up,
linear decay down to 0), weight decay of 0.01, batch size of 128, and trained for 100, 000 steps.

V-probing statistics. In Figure 6(a), Figure 6(b), Figure 11, Figure 9(a), and Figure 9(b), we tested
at least 4096 random problem-parameter pairs in each cell. In Figure 9(a) and Figure 9(b), when
evaluating probing results on GPT-2 model’s generated correct or wrong solutions, we used beam=1
and dosample=False (greedy) for generation. (Results are similar for beam=4.)

In our layer-wise nece(A) probing experiments (Figure 8 and Figure 13), we tested at least 73728
random problem-parameter pairs in each case and then divided the results into bins based on the
parameter A’s distances to the queries.

25It ensures that if a model fails to solve a hard problem with a large op at test time, it is mostly not due to
token-length generalization failure (which could be due to rotary embedding), but due to the failure to generalize
from small op training data to large op test data.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

G ADDITIONAL EXPERIMENTS WITH TOKEN-LENGTH GENERALIZATION

As discussed in Section F.1, in the main body of this paper, when evaluating models on the iGSM
test set, we allowed a context length of 2048 tokens but intentionally discarded problems (with
ground-truth solutions) exceeding 768 tokens for iGSM-med or 1024 tokens for iGSM-hard.

This approach was taken because we pretrained the model with a context length limit of 768 or
1024. To perform controlled experiments, we aimed to separate “length generalization” from “op
generalization”. For instance, in Figure 3, we observe that a model pretrained on iGSM-hardop≤21

shows degraded performance when generalizing to iGSM-hardop=28. Since both (train and test)
datasets have a maximum token length of 1024, this degradation is primarily due to the increased
solution difficulty op, not the increased token length.

After our paper appeared, some readers expressed interest in understanding the model’s performance
when both difficulties (i.e., increasing op and token length) arise. In this section, we repeat most
experiments without enforcing the test-time maximum token length of 768 or 1024. We refer to this
as “token-length generalization” to distinguish it from our original results.

To begin with, let us show the length distribution difference on our iGSM-med and iGSM-hard
datasets in Figure 14, either with or without such truncation to 768 or 1024 tokens.

op 15 op=15 op=20 op=21 op=22 op=23 op 21 op=21 op=28 op=29 op=30 op=31 op=32

no truncation | problem len

no truncation | solution len

no truncation | total length

truncate by 768/1024 | problem len

truncate by 768/1024 | solution len

truncate by 768/1024 | total length

iGSM-med iGSM-hard

in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)

222.7±106.5 284.2±89.1 320.4±84.3 328.3±85.4 332.4±79.1 339.1±81.0 280.8±140.1 368.7±112.7 417.5±111.7 433.4±117.8 440.8±118.2 441.5±115.0 451.3±113.6

109.1±71.6 295.6±20.5 386.1±25.1 403.1±24.6 421.5±25.7 437.3±26.8 151.2±98.8 404.1±24.3 526.7±30.6 546.7±32.3 562.5±30.9 578.6±32.6 596.2±32.9

331.8±137.7 579.8±97.8 706.5±97.1 731.4±95.7 753.9±91.8 776.4±93.3 432.0±184.9 772.8±122.4 944.2±127.1 980.1±133.5 1003.3±132.8 1020.1±129.9 1047.5±129.0

225.3±105.0 276.0±78.3 281.2±51.4 282.2±50.1 280.5±44.8 275.9±39.7 266.5±136.3 357.1±99.5 368.4±66.3 368.1±66.9 365.0±58.1 361.6±54.9 357.5±50.3

112.1±71.5 295.1±20.1 379.6±21.2 395.9±21.7 411.2±21.5 425.9±21.6 153.3±99.1 403.4±23.8 518.2±26.9 535.7±27.5 551.0±25.7 566.0±26.2 581.2±25.8

337.3±134.2 571.0±86.6 660.8±59.9 678.2±56.7 691.7±50.4 701.8±44.8 419.8±189.0 760.5±108.9 886.5±76.1 903.8±75.6 916.0±66.0 927.6±60.6 938.7±55.3

Figure 14: After discarding problems that exceed 768/1024 token length, the average problem length decreases.

We repeat Results 2-3 in Figure 15. The results show that with increasing problem (and solution)
length, the model’s out-of-distribution accuracies further decrease. However, among correctly gen-
erated solutions, the model still mostly generates correct solutions at test time.

We also repeat Results 4-6 in Figure 16. These results indicate no significant difference in our
probing results, confirming that our statements about the model’s mental process hold even for
problems with increased length.

op
15

op=15
op=20

op=21
op=22

op=23

op=20 (re
ask)

op
15

op=15
op=20

op=21
op=22

op=23

op=20 (re
ask)

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op=28 (re
ask)

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op=28 (re
ask)

beam1 - nosample
beam4 - dosample

iGSM-med_pq iGSM-med_qp iGSM-hard_pq iGSM-hard_qp
in-dist out-of-dist (OOD) in-dist out-of-dist (OOD) in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)

100 99.1 90.6 86.4 80.4 73.1 92.0 100 99.2 89.8 85.9 78.2 69.9 91.5 100 98.7 88.4 84.3 78.5 73.0 67.9 89.7 100 99.0 89.0 84.0 81.1 74.3 68.8 89.1
100 99.2 91.0 87.1 80.7 73.9 92.0 100 99.2 89.5 86.3 78.8 71.0 91.5 100 98.7 87.9 84.2 79.1 73.0 68.0 89.7 100 99.0 89.7 84.1 81.1 74.8 69.7 89.2

(a) Repetition of Figure 3 but including token-length generalization.

op
15

op=15
op=20

op=21
op=22

op=23
op

15
op=15

op=20
op=21

op=22
op=23

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op
21

op=21
op=28

op=29
op=30

op=31
op=32

avg unnecessary operation
avg unnecessary operation (reask)
avg unnecessary parameter
avg unnecessary parameter (reask)

iGSM-med_pq iGSM-med_qp iGSM-hard_pq iGSM-hard_qp
0.00 0.00
0.02 0.12 0.17 0.18 0.19 0.21 0.03 0.16 0.19 0.21 0.20 0.20 0.08 0.48 0.58 0.52 0.65 0.61 0.64 0.09 0.37 0.49 0.49 0.64 0.49 0.62
0.00 0.00
0.02 0.10 0.13 0.14 0.14 0.15 0.02 0.13 0.16 0.17 0.16 0.16 0.07 0.37 0.40 0.36 0.44 0.40 0.44 0.07 0.29 0.35 0.35 0.44 0.33 0.42

(b) Repetition of Figure 3 but including token-length generalization.

Figure 15: We repeat Results 2-3, allowing test-time problems to exceed the 768- or 1024-token maximum
length used in the training set.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

op
15

op=15
op=20

op=21
op=22

op=23
op

21
op=21

op=28
op=29

op=30
op=31

op=32
op

15
op=15

op=20
op=21

op=22
op=23

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op
15

op=15
op=20

op=21
op=22

op=23
op

21
op=21

op=28
op=29

op=30
op=31

op=32

baseline - majority guess
pretrained model probing (pq)
pretrained model probing (qp)
random model probing (pq)
random model probing (qp)

can_next(A) dep(A,B) known(A)
iGSM-med iGSM-hard

in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)
iGSM-med iGSM-hard

in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)
iGSM-med iGSM-hard

in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)
57.4 59.9 57.0 56.7 55.7 55.6 61.7 65.3 61.4 61.3 59.2 58.5 58.4 84.6 82.2 83.0 83.5 83.5 83.7 82.6 79.5 80.2 81.3 82.2 82.8 82.7 87.0 77.6 75.0 74.8 74.5 74.3 84.8 73.5 71.7 72.1 72.4 71.8 71.7
99.9 99.5 99.2 99.1 99.0 98.9 99.8 99.4 98.7 98.7 98.5 98.4 98.1 99.7 99.3 99.0 98.9 98.8 98.8 99.6 99.0 98.5 98.4 98.7 98.5 98.3 100 100 100 100 100 100 100 100 99.9 99.9 99.9 99.8 99.6
99.6 99.0 98.7 98.5 98.3 98.1 99.9 99.4 98.9 98.8 98.7 98.6 98.4 99.3 98.9 98.6 98.5 98.5 98.5 99.7 99.4 99.0 99.0 99.1 99.0 98.9 100 100 100 100 99.9 99.9 100 100 99.8 99.8 99.8 99.7 99.5
65.8 62.0 62.6 62.3 63.0 63.3 63.1 59.3 60.6 60.5 62.0 62.2 62.3 84.6 82.2 83.0 83.5 83.5 83.7 82.6 79.5 80.2 81.3 82.2 82.8 82.7 87.2 78.4 75.8 75.4 74.7 74.6 85.4 76.0 73.8 73.6 73.0 72.8 71.9
65.7 61.9 62.5 62.2 62.7 63.1 63.0 59.2 60.8 60.9 61.8 62.3 62.6 84.6 82.2 83.0 83.5 83.5 83.7 82.6 79.5 80.2 81.3 82.2 82.8 82.7 87.3 78.7 76.3 76.0 75.3 75.4 85.8 76.4 75.1 74.7 74.6 74.2 73.6

op
15

op=15
op=20

op=21
op=22

op=23
op

21
op=21

op=28
op=29

op=30
op=31

op=32
op

15
op=15

op=20
op=21

op=22
op=23

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op
15

op=15
op=20

op=21
op=22

op=23
op

21
op=21

op=28
op=29

op=30
op=31

op=32

baseline - majority guess
pretrained model probing (pq)
pretrained model probing (qp)
random model probing (pq)
random model probing (qp)

nece(A) nece_next(A) value(A)
iGSM-med iGSM-hard

in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)
iGSM-med iGSM-hard

in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)
iGSM-med iGSM-hard

in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)
74.7 54.8 50.1 50.4 51.4 52.1 70.3 53.1 56.9 56.4 55.5 55.6 56.7 94.9 93.5 93.1 92.9 92.9 92.8 94.5 93.0 92.6 92.2 92.7 93.0 92.5 86.5 82.5 81.7 77.8 79.2 77.8 86.7 81.9 75.2 77.0 75.6 71.0 80.4
99.8 99.8 98.8 98.0 96.7 94.8 99.6 99.6 99.2 98.9 98.5 97.8 96.9 99.9 99.5 99.1 99.0 98.8 98.7 99.7 99.3 98.9 98.6 98.4 98.4 98.3 100 100 100 100 100 100 100 100 99.8 99.8 99.7 99.5 99.4
99.8 99.9 99.6 99.5 99.2 98.9 99.8 99.8 99.7 99.7 99.6 99.5 99.4 99.5 99.2 98.5 98.2 98.2 98.0 99.7 99.7 99.4 99.4 99.3 99.3 99.2 100 100 100 100 100 100 100 100 99.8 99.8 99.7 99.6 99.5
74.7 55.9 51.1 51.0 50.1 49.3 69.4 50.2 47.0 46.9 48.1 47.9 47.4 94.6 93.5 93.1 92.9 92.9 92.8 94.5 93.0 92.6 92.2 92.7 93.0 92.5 71.9 53.4 48.5 47.4 46.7 45.5 73.6 55.2 50.2 50.6 48.9 48.8 48.2
74.0 56.3 52.2 51.8 51.3 50.7 69.2 51.3 49.1 48.9 50.4 50.8 50.5 94.7 93.5 93.1 92.9 92.9 92.8 94.5 93.0 92.6 92.2 92.7 93.0 92.5 70.9 52.6 47.8 46.7 46.3 45.1 75.2 57.3 52.5 53.2 51.6 51.2 50.5

(a) Repetition of Figure 6(a) but including token-length generalization.

op
15

op=15
op=20

op=21
op=22

op=23
op

21
op=21

op=28
op=29

op=30
op=31

op=32
op

15
op=15

op=20
op=21

op=22
op=23

op
21

op=21
op=28

op=29
op=30

op=31
op=32

op
15

op=15
op=20

op=21
op=22

op=23
op

21
op=21

op=28
op=29

op=30
op=31

op=32
op

15
op=15

op=20
op=21

op=22
op=23

op
21

op=21
op=28

op=29
op=30

op=31
op=32

pretrained model probing (pq)
pretrained model probing (pq) - reask
pretrained model probing (qp)
pretrained model probing (qp) - reask

can_next(A) on negative labels when A is unnecessary can_next(A) on positive labels when A is unnecessary dep(A,B) on negative labels when A is unnecessary dep(A,B) on positive labels when A is unnecessary
iGSM-med iGSM-hard iGSM-med iGSM-hard iGSM-med iGSM-hard iGSM-med iGSM-hard

99.8 99.3 98.7 98.5 98.4 98.0 99.8 98.8 97.3 97.0 96.8 96.5 96.1 99.8 99.4 99.1 99.1 99.0 99.0 99.8 99.2 98.8 98.7 98.4 98.6 98.2 99.6 99.3 99.2 99.2 99.2 99.2 99.5 98.9 98.8 98.8 98.9 98.8 98.8 99.6 99.5 99.3 99.2 99.0 99.1 99.3 99.3 99.2 99.0 99.0 99.0 99.0
99.9 99.7 99.6 99.6 99.5 99.4 99.9 99.7 99.5 99.5 99.4 99.3 99.3 99.9 99.8 99.7 99.7 99.7 99.6 99.8 99.6 99.6 99.5 99.5 99.5 99.4 99.6 99.2 98.8 98.8 98.8 98.7 99.6 98.6 98.3 98.1 98.2 98.0 98.0 99.6 99.6 99.3 99.3 99.1 99.2 99.4 99.3 99.1 99.1 99.1 99.0 99.0
99.5 98.8 97.6 97.6 97.2 96.7 99.8 99.1 98.2 98.1 98.0 97.7 97.5 99.6 99.0 98.8 98.8 98.7 98.6 99.8 99.0 98.0 97.6 97.5 97.3 96.9 99.3 99.0 98.9 98.9 99.0 98.9 99.7 99.3 99.2 99.1 99.2 99.2 99.3 98.9 98.3 97.6 97.5 97.2 97.2 99.5 99.1 98.9 99.0 98.9 98.9 98.8
99.7 99.3 99.0 98.9 98.8 98.8 99.8 99.6 99.4 99.5 99.4 99.3 99.4 99.8 99.6 99.5 99.4 99.4 99.3 99.9 99.7 99.5 99.5 99.3 99.5 99.2 99.3 98.9 98.6 98.6 98.7 98.6 99.7 99.2 98.9 98.8 98.8 98.7 98.7 99.0 98.3 97.6 97.4 97.3 97.2 99.5 99.3 99.2 99.1 99.1 99.0 99.0

(b) Repetition of Figure 6(b) but including token-length generalization.

op=15 op=20 op=21 op=22 op=23 op=21 op=28 op=29 op=30 op=31 op=32

on all parameters | pq

on all parameters | pq (reask)

on all parameters | qp

on all parameters | qp (reask)

on unnecessary parameter in model's output | pq (reask) | beam1

on unnecessary parameter in model's output | pq (reask) | beam4

on unnecessary parameter in model's output | qp (reask) | beam1

on unnecessary parameter in model's output | qp (reask) | beam4

nece(A)

iGSM-med iGSM-hard

99.8% 98.8% 98.0% 96.7% 94.8% 99.6% 99.2% 98.9% 98.5% 97.8% 96.9%

94.1% 94.6% 95.2% 95.0% 95.2% 89.6% 89.2% 88.6% 89.6% 89.1% 89.4%

99.9% 99.6% 99.5% 99.2% 98.9% 99.8% 99.7% 99.7% 99.6% 99.5% 99.4%

98.8% 98.3% 98.4% 98.3% 98.3% 96.2% 95.9% 95.5% 95.8% 95.8% 95.6%

33.7%
=91/270

35.1%
=197/561

35.3%
=167/473

41.2%
=178/432

42.4%
=201/474

19.6%
=231/1177

11.4%
=175/1539

14.5%
=228/1577

16.9%
=268/1589

19.9%
=326/1640

19.1%
=259/1355

34.1%
=93/273

35.5%
=199/560

34.3%
=161/470

40.7%
=184/452

39.7%
=176/443

18.7%
=213/1141

12.5%
=183/1463

16.1%
=251/1560

16.3%
=246/1512

20.6%
=332/1611

19.1%
=274/1433

18.2%
=64/351

23.1%
=161/697

18.7%
=123/656

28.8%
=143/497

19.5%
=127/651

21.0%
=212/1010

17.4%
=259/1485

15.5%
=221/1422

17.7%
=264/1488

18.3%
=271/1483

19.7%
=272/1381

16.9%
=58/343

23.9%
=161/673

20.5%
=129/628

26.1%
=126/482

19.2%
=119/621

20.7%
=214/1036

16.4%
=236/1435

16.8%
=235/1395

19.8%
=292/1476

17.8%
=264/1487

18.0%
=257/1426

(c) Repetition of Figure 9(a) but including token-length generalization.

op=20 op=21 op=22 op=23 op=28 op=29 op=30 op=31 op=32 op=20 op=21 op=22 op=23 op=28 op=29 op=30 op=31 op=32

on all parameters | pq

on all parameters | qp

on first wrong param | pq | beam1

on first wrong param | pq | beam4

on first wrong param | qp | beam1

on first wrong param | qp | beam4

can_next(A) nece_next(A)

iGSM-med iGSM-hard iGSM-med iGSM-hard

99.2% 99.1% 99.0% 98.9% 98.7% 98.7% 98.5% 98.4% 98.1% 99.1% 99.0% 98.8% 98.7% 98.9% 98.6% 98.4% 98.4% 98.3%

98.7% 98.5% 98.3% 98.1% 98.9% 98.8% 98.7% 98.6% 98.4% 98.5% 98.2% 98.2% 98.0% 99.4% 99.4% 99.3% 99.3% 99.2%
71.8%

=181/252
69.4%

=311/448
67.3%

=408/606
63.6%

=551/867
58.2%

=163/280
53.8%

=206/383
54.1%

=250/462
57.3%

=352/614
56.0%

=445/794
52.6%

=133/253
49.6%

=223/450
46.5%

=282/606
44.5%

=386/868
44.1%

=124/281
44.6%

=171/383
44.4%

=205/462
45.3%

=278/614
43.6%

=346/794
71.7%

=185/258
71.1%

=322/453
67.7%

=423/625
63.6%

=561/882
62.4%

=171/274
56.7%

=220/388
54.8%

=273/498
60.4%

=388/642
57.2%

=461/806
50.4%

=130/258
48.0%

=218/454
50.0%

=313/626
46.2%

=408/884
42.9%

=118/275
42.4%

=165/389
41.0%

=204/498
46.0%

=295/642
47.1%

=380/807
63.9%

=204/319
63.5%

=313/493
65.2%

=473/726
62.6%

=635/1014
52.4%

=162/309
50.4%

=197/391
52.5%

=272/518
52.2%

=340/651
55.8%

=436/782
45.9%

=147/320
50.5%

=249/493
54.1%

=393/727
52.3%

=531/1016
49.7%

=154/310
45.3%

=177/391
49.6%

=257/518
51.5%

=335/651
52.6%

=412/783
66.0%

=210/318
65.5%

=324/495
65.3%

=479/733
62.2%

=633/1017
52.6%

=172/327
50.0%

=189/378
53.5%

=272/508
51.1%

=336/657
53.9%

=419/778
48.9%

=156/319
51.5%

=255/495
53.3%

=391/733
51.6%

=526/1020
51.5%

=169/328
46.8%

=177/378
51.2%

=260/508
51.6%

=339/657
50.3%

=392/780

(d) Repetition of Figure 9(b) but including token-length generalization.

Figure 16: We repeat Results 4-6, allowing test-time problems to exceed the 768- or 1024-token maximum
length used in the training set.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

H FAILURE EXAMPLES ON GPT-4 / GPT-4O

In Figure 2, we conduct few-shot experiments using the latest versions of GPT-4 turbo (2024-04-09)
and GPT-4o (2024-05-13) models to evaluate their accuracies on our iGSM-medpq dataset, with
respect to different op ∈ {2, 3, . . . , 20}.
To ensure meaningful evaluation:

• We replaced mod23 with mod5 to ensure that any errors are not due to arithmetic mistakes.
We also provided a few arithmetic computation examples.

• We minimized English diversity to ensure that any errors are not due to misunderstanding the
problem description. Specifically,
– We fixed a simple categorization (School,Classroom,Backpack,Stationerys), with only four

items in each category.
– We provided an English background paragraph to fully describe the structure graph (i.e.,

which item has which subitem), as well as the number of items in each category. The math
problem is preceded by this background paragraph.

• We provided five-shot problem/solution examples to ensure that GPT-4 understands how to solve
such math problems step by step.

We did not verify each step of GPT-4’s solution but checked if the final output number (between 0
and 4) matched the correct answer. The accuracy results are presented in Figure 2. It shows that the
GPT-4o model is almost randomly guessing for op ≥ 11, and GPT-4 turbo for op ≥ 9.

Furthermore, Figure 17 shows that when the GPT-4/4o models fail to answer the math problems,
it is mostly not due to format errors or misunderstanding of the problem. Instead, just like
what we discovered in Section 5, GPT-4/4o fail also because they compute unnecessary parame-
ters (i.e., nece(A) = false) or compute parameters that are not yet ready to be computed (i.e.,
can next(A) = false). This further confirms that our findings do connect to practice, regarding
the model’s hidden reasoning process.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

You're an expert at solving elementary math problems
involving addition, subtraction, and multiplication. You
solve all the problems in a uniform format. All
calculations are done modulo 5. For example, 3 + 2 equals
0, 1 + 1 equals 2, 4 + 2 + 4 equals 0, 3 * 2 equals 1, and 3 *
1 equals 3. When providing your solution, please end with
'The final answer is <<x>>.' where x is your final answer,
an integer between 0 and 4. You must solve all the
problems using the same solution format.

Our scenarios involve up to four categories of objects:
schools, classrooms, backpacks and stationeries. Each
school may contain classrooms, each classroom may
contain backpacks, and each backpack may contain
stationeries. We can specify quantities, such as "the
number of dance studios at each Lakeshore High."
Assume that every entity with the same name has an
identical configuration; for example, each Lakeshore High
contains the same number of dance studios. Another
guiding principle is that what is not mentioned does not
exist: when we refer to classrooms at Lakeshore High, we
are only discussing the classrooms explicitly mentioned in
our scenario. Furthermore, if Lakeshore High is not even
mentioned, any classroom within it is automatically
considered to be non-existent (i.e. 0).

Background: ...
The problem description is: ...

Here is the solution:

Background: There are 3 types of Classrooms: Music Room, Film Studio and Dance Studio. There are 3 types of Backpacks: School Daypack, Messenger Backpack and Canvas Backpack. There
are 3 types of Stationerys: Calculator, Scissors and Ruler. Each Music Room can have Messenger Backpack. Each Film Studio can have School Daypack, Messenger Backpack and Canvas
Backpack. Each Dance Studio can have School Daypack, Messenger Backpack and Canvas Backpack. Each School Daypack can have Scissors. Each Messenger Backpack can have Calculator and
Scissors. Each Canvas Backpack can have Calculator and Ruler.

The problem description is: The number of each Film Studio's Messenger Backpack equals the sum of each School Daypack's Scissors, each Dance Studio's Messenger Backpack and each Film
Studio's School Daypack. The number of each Dance Studio's School Daypack equals the difference each Film Studio's Backpack minus each Music Room's Backpack. The number of each
School Daypack's Scissors equals each Music Room's Messenger Backpack. The number of each Canvas Backpack's Calculator equals each Dance Studio's Messenger Backpack. The number of
each Film Studio's Canvas Backpack equals 1 times as much as the difference each Messenger Backpack's Scissors minus each Messenger Backpack's Stationery. The number of each
Messenger Backpack's Scissors equals the sum of each Dance Studio's Canvas Backpack, each Dance Studio's Messenger Backpack and each Canvas Backpack's Ruler. The number of each Film
Studio's School Daypack equals 3 times as much as the difference each Music Room's Stationery minus each Canvas Backpack's Calculator. The number of each Messenger Backpack's
Calculator equals each Canvas Backpack's Ruler. The number of each Canvas Backpack's Ruler equals each Dance Studio's Canvas Backpack. The number of each Music Room's Messenger
Backpack equals 2 times as much as each Canvas Backpack's Calculator. The number of each Dance Studio's Canvas Backpack equals 2 more than the sum of each Canvas Backpack's Calculator
and each Dance Studio's Messenger Backpack. The number of each Dance Studio's Messenger Backpack equals 2. How many Backpack does Film Studio have?

Here is the solution:
1. Define Dance Studio's Messenger Backpack as D; so D = 2.
2. Define Canvas Backpack's Calculator as C; so C = D = 2.
3. Define Music Room's Messenger Backpack as M; so M = 2 * C = 2 * 2 = 4.
4. Define School Daypack's Scissors as S; so S = M = 4.
5. Define Canvas Backpack's Ruler as R; so R = D = 2.
6. Define Dance Studio's Canvas Backpack as A; so A = 2 + (C + D) = 2 + (2 + 2) = 2 + 4 = 1.
…
The final answer is <<4>>.

system user

assistant

user

assistant

…

Background: ...
The problem description is: ...

Here is the solution:

user

assistant

five-shot
examples

GPT-4o on iGSM-medpq (op=20)

Failure reason: instant parameter “Canvas
Backpack’s Ruler” cannot be computed in step 5

add background to describe the
structure graph, to further help GPT-4

You're an expert at solving elementary math problems
involving addition, subtraction, and multiplication. You
solve all the problems in a uniform format. All
calculations are done modulo 5. For example, 2 + 4 equals
1, 4 + 4 equals 3, 3 + 4 + 1 equals 3, 4 * 2 equals 3, and 1 *
3 equals 3. When providing your solution, please end with
'The final answer is <<x>>.' where x is your final answer,
an integer between 0 and 4. You must solve all the
problems using the same solution format.

Our scenarios involve up to four categories of objects:
schools, classrooms, backpacks and stationeries. Each
school may contain classrooms, each classroom may
contain backpacks, and each backpack may contain
stationeries. We can specify quantities, such as "the
number of dance studios at each Lakeshore High."
Assume that every entity with the same name has an
identical configuration; for example, each Lakeshore High
contains the same number of dance studios. Another
guiding principle is that what is not mentioned does not
exist: when we refer to classrooms at Lakeshore High, we
are only discussing the classrooms explicitly mentioned in
our scenario. Furthermore, if Lakeshore High is not even
mentioned, any classroom within it is automatically
considered to be non-existent (i.e. 0).

Background: ...
The problem description is: ...

Here is the solution:

Background: There are 2 types of Schools: Lincoln High and Lakeshore High. There are 2 types of Classrooms: Music Room and Dance Studio. There are 2 types of Backpacks: Canvas Backpack
and Messenger Backpack. There are 2 types of Stationerys: Calculator and Stapler. Each Lincoln High can have Dance Studio. Each Lakeshore High can have Music Room and Dance Studio.
Each Music Room can have Canvas Backpack and Messenger Backpack. Each Dance Studio can have Canvas Backpack and Messenger Backpack. Each Canvas Backpack can have Calculator and
Stapler. Each Messenger Backpack can have Calculator and Stapler.

The problem description is: The number of each Messenger Backpack's Stapler equals 1. The number of each Lakeshore High's Dance Studio equals 2. The number of each Canvas Backpack's
Stapler equals the sum of each Dance Studio's Canvas Backpack and each Canvas Backpack's Calculator. The number of each Lakeshore High's Music Room equals the difference each
Messenger Backpack's Stapler minus each Music Room's Canvas Backpack. The number of each Lincoln High's Dance Studio equals 1 more than each Messenger Backpack's Stapler. The
number of each Messenger Backpack's Calculator equals each Messenger Backpack's Stapler. The number of each Music Room's Canvas Backpack equals each Dance Studio's Canvas
Backpack. The number of each Dance Studio's Messenger Backpack equals each Messenger Backpack's Stationery. The number of each Music Room's Messenger Backpack equals each Lincoln
High's Backpack. The number of each Dance Studio's Canvas Backpack equals each Messenger Backpack's Stationery. The number of each Canvas Backpack's Calculator equals 1 more than
each Music Room's Messenger Backpack. How many Calculator does Canvas Backpack have?

Here is the solution:
1. Define Messenger Backpack's Stapler as S; so S = 1.
2. Define Lakeshore High's Dance Studio as D; so D = 2.
3. Define Lincoln High's Dance Studio as L; so L = S + 1 = 1 + 1 = 2.
4. Define Messenger Backpack's Calculator as C; so C = S = 1.
5. Define Dance Studio's Canvas Backpack as B; so B = S = 1.
6. Define Music Room's Canvas Backpack as M; so M = B = 1.
7. Define Music Room's Messenger Backpack as N; so N = L = 2.
8. Define Canvas Backpack's Calculator as K; so K = N + 1 = 2 + 1 = 3 \mod 5 = 3.
9. Define Canvas Backpack's Stapler as P; so P = B + K = 1 + 3 = 4.
The final answer is <<3>>.

system user

assistant

user

assistant

…

Background: ...
The problem description is: ...

Here is the solution:

user

assistant

five-shot
examples

GPT-4o on iGSM-medpq (op=10)

Failure reason: instance parameter “Dance Studio's
Canvas Backpack” cannot be computed in step 5

add background to describe the
structure graph, to further help GPT-4

unnecessary
parameter

You're an expert at solving elementary math problems
involving addition, subtraction, and multiplication. You
solve all the problems in a uniform format. All
calculations are done modulo 5. For example, 4 + 4 equals
3, 1 + 3 equals 4, 2 + 1 + 4 equals 2, 2 * 2 equals 4, and 3 *
2 equals 1. When providing your solution, please end with
'The final answer is <<x>>.' where x is your final answer,
an integer between 0 and 4. You must solve all the
problems using the same solution format.

Our scenarios involve up to four categories of objects:
schools, classrooms, backpacks and stationeries. Each
school may contain classrooms, each classroom may
contain backpacks, and each backpack may contain
stationeries. We can specify quantities, such as "the
number of dance studios at each Lakeshore High."
Assume that every entity with the same name has an
identical configuration; for example, each Lakeshore High
contains the same number of dance studios. Another
guiding principle is that what is not mentioned does not
exist: when we refer to classrooms at Lakeshore High, we
are only discussing the classrooms explicitly mentioned in
our scenario. Furthermore, if Lakeshore High is not even
mentioned, any classroom within it is automatically
considered to be non-existent (i.e. 0).

Background: ...
The problem description is: ...

Here is the solution:

Background: There are 3 types of Backpacks: Canvas Backpack, School Daypack and Laptop Backpack. There are 3 types of Stationerys: Stapler, Scissors and Calculator. Each Canvas Backpack
can have Scissors. Each School Daypack can have Stapler and Calculator. Each Laptop Backpack can have Scissors and Calculator.

The problem description is: The number of each Canvas Backpack's Scissors equals each Laptop Backpack's Stationery. The number of each School Daypack's Stapler equals the sum of each
Canvas Backpack's Stationery, each School Daypack's Calculator, each Laptop Backpack's Calculator and each Laptop Backpack's Scissors. The number of each Laptop Backpack's Scissors
equals 4 times as much as the sum of each Laptop Backpack's Calculator and each School Daypack's Calculator. The number of each Laptop Backpack's Calculator equals 1 times as much as
each School Daypack's Calculator. The number of each School Daypack's Calculator equals 3. How many Stapler does School Daypack have?

Here is the solution:
Define School Daypack's Calculator as C; so C = 3.
Define Laptop Backpack's Calculator as L; so L = 1 * C = 1 * 3 = 3.
Define Laptop Backpack's Scissors as S; so S = 4 * (L + C) = 4 * (3 + 3) = 4 * 6 = 4.
Define Canvas Backpack's Scissors as B; so B = S = 4.
Define School Daypack's Stapler as P; so P = B + C + L + S = 4 + 3 + 3 + 4 = 14 % 5 = 4.

The final answer is <<4>>.

system user

assistant

user

assistant

…

Background: ...
The problem description is: ...

Here is the solution:

user

assistant

five-shot
examples

GPT-4-turbo on iGSM-medpq (op=10)

Failure reason: instance parameter “Canvas
Backpack's Scissors” cannot be computed in step 5

add background to describe the
structure graph, to further help GPT-4

Background: There are 4 types of Schools: Lakeshore High, Lincoln High, Riverview High and Central High. There are 3 types of Classrooms: Drawing Studio, Film Studio and Music Room. There
are 3 types of Backpacks: Laptop Backpack, Messenger Backpack and Canvas Backpack. There are 2 types of Stationerys: Calculator and Scissors. Each Lakeshore High can have Film Studio.
Each Lincoln High can have Drawing Studio and Music Room. Each Riverview High can have Drawing Studio. Each Central High can have Film Studio and Music Room. Each Drawing Studio can
have Laptop Backpack. Each Film Studio can have Messenger Backpack and Canvas Backpack. Each Music Room can have Canvas Backpack. Each Laptop Backpack can have Scissors. Each
Messenger Backpack can have Calculator. Each Canvas Backpack can have nothing.

The problem description is: The number of each Riverview High's Drawing Studio equals 3. The number of each Lincoln High's Music Room equals 4 times as much as the sum of each Music
Room's Canvas Backpack, each Central High's Music Room and each Central High's Film Studio. The number of each Laptop Backpack's Scissors equals 2. The number of each Central High's
Film Studio equals 2 more than the sum of each Music Room's Canvas Backpack and each Central High's Music Room. The number of each Drawing Studio's Laptop Backpack equals each Film
Studio's Messenger Backpack. The number of each Lincoln High's Drawing Studio equals the sum of each Riverview High's Backpack, each Laptop Backpack's Stationery, each Film Studio's
Messenger Backpack and each Drawing Studio's Laptop Backpack. The number of each Film Studio's Messenger Backpack equals 2. The number of each Lakeshore High's Film Studio equals
each Film Studio's Messenger Backpack. The number of each Film Studio's Canvas Backpack equals each Film Studio's Messenger Backpack. The number of each Central High's Music Room
equals 4. The number of each Music Room's Canvas Backpack equals 4. The number of each Messenger Backpack's Calculator equals each Lincoln High's Music Room. How many Backpack
does Lakeshore High have?

You're an expert at solving elementary math problems
involving addition, subtraction, and multiplication. You
solve all the problems in a uniform format. All
calculations are done modulo 5. For example, 4 + 4 equals
3, 2 + 4 equals 1, 3 + 3 + 3 equals 4, 3 * 3 equals 4, and 2 *
2 equals 4. When providing your solution, please end with
'The final answer is <<x>>.' where x is your final answer,
an integer between 0 and 4. You must solve all the
problems using the same solution format.

Our scenarios involve up to four categories of objects:
schools, classrooms, backpacks and stationeries. Each
school may contain classrooms, each classroom may
contain backpacks, and each backpack may contain
stationeries. We can specify quantities, such as "the
number of dance studios at each Lakeshore High."
Assume that every entity with the same name has an
identical configuration; for example, each Lakeshore High
contains the same number of dance studios. Another
guiding principle is that what is not mentioned does not
exist: when we refer to classrooms at Lakeshore High, we
are only discussing the classrooms explicitly mentioned in
our scenario. Furthermore, if Lakeshore High is not even
mentioned, any classroom within it is automatically
considered to be non-existent (i.e. 0).

Background: ...
The problem description is: ...

Here is the solution:

Here is the solution:
Define Film Studio's Messenger Backpack as m; so m = 2.
Define Film Studio's Canvas Backpack as c; so c = m = 2.
Define Central High's Music Room as M; so M = 4.
Define Central High's Film Studio as F; so F = 2 + c + M = 2 + 2 + 4 = 3.
Define Lakeshore High's Film Studio as L; so L = m = 2.
Define Lakeshore High's Backpack as B; so B = m + c = 2 + 2 = 4.
The final answer is <<4>>.

system user

assistant

user

assistant

…

Background: ...
The problem description is: ...

Here is the solution:

user

assistant

five-shot
examples

GPT-4-turbo on iGSM-medpq (op=5)

Failure reason: abstract parameter “Lakeshore High's
Backpack” can’t be computed yet; it equals L x “Film

Studio's Backpack (= m + c)” but it is not computed yet.

add background to describe the
structure graph, to further help GPT-4

unnecessary
parameters

Figure 17: Failure examples for GPT-4/GPT-4o on iGSM-medpq . They make mistakes similar to what we
discover in this paper, that is to compute unnecessary parameters in the solutions (i.e., nece(A) =
false), as well as computing parameters that are not yet ready to compute (i.e., can next(A) =
false).

31

	1 Introduction
	2 Result 1: Data Generation
	2.1 Step 1: Graph Construction and Problem Generation
	2.2 Step 2: Solution Construction (CoT)
	2.3 Difficulty Control
	2.4 Train and Test Datasets

	3 Result 2-3: Summarize Model's Behavior Process
	4 Result 4-5: Discover Model's Mental Process
	4.1 V-Probing: A Nearly-Linear Probing Method
	4.2 Probing Results and Findings

	5 Result 6: Explain Model's Mistakes
	6 Result 7-8: Depth vs. Reasoning Length
	7 Conclusion
	A Missing Result 6: Explain Model's Mistakes
	B Result 1 — An Example in iGSM-hard with op=21
	C Results 4-5 — Details on V-probing
	C.1 Probing Data Preparation

	D Result 8 — Additional Figure
	E Result 1 Details — Math Data Generation
	E.1 Generate Structure Graph
	E.1.1 Attach English

	E.2 Generate Dependency Graph
	E.2.1 Construction of Gdnece1, Gdnece2
	E.2.2 Construction of Gdnece3
	E.2.3 Construction of Gdnece
	E.2.4 Construction of Gd

	E.3 Generate English: Problem, Question and Solution
	E.4 Putting Altogether

	F Experiment Details
	F.1 Pretrain Experiment Details
	F.2 V-probing

	G Additional Experiments With Token-Length Generalization
	H Failure Examples on GPT-4 / GPT-4o

