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Abstract

In comparative linguistics, colexification refers
to the phenomenon of a lexical form conveying
two or more distinct meanings. Existing work
on colexification patterns relies on annotated
word lists, limiting scalability and usefulness
in NLP. In contrast, we identify colexification
patterns of more than 2,000 concepts across
1,335 languages directly from an unannotated
parallel corpus. We then propose simple and
effective methods to build multilingual graphs
from the colexification patterns: ColexNet and
ColexNet+. ColexNet’s nodes are concepts
and its edges are colexifications. In ColexNet+,
concept nodes are additionally linked through
intermediate nodes, each representing an ngram
in one of 1,334 languages. We use ColexNet+
to train

−−−−−−−→
ColexNet+, high-quality multilingual

embeddings that are well-suited for transfer
learning. In our experiments, we first show
that ColexNet achieves high recall on CLICS, a
dataset of crosslingual colexifications. We then
evaluate

−−−−−−−→
ColexNet+ on roundtrip translation,

sentence retrieval and sentence classification
and show that our embeddings surpass several
transfer learning baselines. This demonstrates
the benefits of using colexification as a source
of information in multilingual NLP.

1 Introduction

Multilingual representations are beneficial in natu-
ral language processing (NLP) due to their ability
to transfer knowledge across languages (Artetxe
and Schwenk, 2019; Conneau et al., 2020; Fan
et al., 2021). Typically, such representations are
learned through pre-training Large Language Mod-
els (LLMs) (Brown et al., 2020; Chowdhery et al.,
2022; Touvron et al., 2023) or multilingual word
embeddings (Ammar et al., 2016; Lample et al.,
2018; Dufter et al., 2018). However, LLMs require
enormous amounts of data to train, limiting their
use mostly to high-resource and medium-resource
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Figure 1: A subgraph of ColexNet+. Circles (<air>,
<storm>, . . . ): concept nodes. Rectangles (otq:$ndöhi$,
lwo:$yamo$, . . . ): ngram nodes (each prefixed by its
ISO 693-3 code). Ngram nodes realize colexifications,
e.g., <air> and <storm> are linked, through translations
in the parallel corpus, to the Querétaro Otomí ngram
“ndöhi” (i.e., otq:$ndöhi$).

languages (Zhou et al., 2023). Alternatively, multi-
lingual word embeddings are widely used in NLP
because of their simplicity and good performance
(Ammar et al., 2016; Lample et al., 2018; Jawan-
puria et al., 2019). However, most existing multilin-
gual embeddings are learned through word-context
information, without leveraging global cooccur-
rence information in individual languages or across
languages, which can help distinguish distinct
meanings conveyed by a lexical form. Therefore,
we see a pressing need in NLP for massively multi-
lingual word embeddings that span a large number
of languages (1,335 in our case) and that specifi-
cally account for global occurrence and are a good
basis for crosslingual transfer learning.

Colexification has gained increasing attention
in comparative linguistics and crosslingual NLP.
According to François (2008), a language colex-
ifies two distinct meanings if it expresses them
with the same lexical form. Different languages
have different colexification patterns. For exam-
ple, while English has separate words for <hand>



and <arm>1, Russian ‘рукa’ colexifies these two
concepts. Most prior work explores colexification
(Floyd et al., 2021; Brochhagen and Boleda, 2022;
List, 2023) using manually curated crosslingual
datasets that consist of multilingual word lists such
as CLICS (List, 2018; List et al., 2018; Rzymski
et al., 2020). However, relying on these datasets
has several limitations: extension to more lan-
guages and more concepts can be challenging;
these datasets contain lists of lemmata and (in a
corpus-based approach for low-resource languages
without morphological resources) cannot easily be
used for the processing of occurrences in context.

To overcome these limitations and boost crosslin-
gual transfer learning especially for low-resource
languages, we use the Parallel Bible Corpus (PBC)
(Mayer and Cysouw, 2014), which has verse-level
aligned translations of the Bible in 1,335 languages,
to identify colexification patterns (a verse in PBC
roughly corresponds to a sentence). With the iden-
tified patterns between a wide range of concepts,
we propose novel algorithms that efficiently build
large-scale multilingual graphs. To the best of our
knowledge, this is the first work that constructs
graphs of colexification and trains multilingual rep-
resentations for crosslingual transfer learning di-
rectly from a parallel corpus on a large scale. We
show that the graphs capture the links between
concepts across languages and that the derived
multilingual representations considerably improve
crosslingual transfer on downstream tasks. Previ-
ous work on building monolingual graphs (Jauhar
et al., 2015; Ustalov et al., 2017) or multilingual
graphs (Harvill et al., 2022; Jafarinejad, 2023;
Chen et al., 2023) is different as it (1) does not
consider words in context and only uses lemmata,
(2) is based on external sense inventories such as
WordNet (Miller, 1995) and BabelNet (Navigli and
Ponzetto, 2012; Navigli et al., 2021), which are not
available for many low-resource languages, and
(3) does not investigate the crosslingual transfer-
ability of the multilingual representations on NLP
downstream tasks such as sentence retrieval or clas-
sification in a crosslingual scenario.

The contributions of this work are as follows: (i)
We present ColexNet, a graph of concepts based
on colexification patterns that are directly extracted
from a parallel corpus. (ii) By extending ColexNet,
we further present ColexNet+, a large-scale multi-

1We represent a concept (from any language) by surround-
ing an English word that refers to the concept with “<>”.

lingual graph that additionally contains ngrams in
1,334 languages that instantiate those patterns. (iii)
We contribute to crosslingual transfer learning, by
using ColexNet+ to generate multilingual embed-
dings:

−−−−−−−→
ColexNet+. We show that

−−−−−−−→
ColexNet+ out-

performs several baselines on roundtrip translation,
verse retrieval, and classification. (iv) We evaluate
ColexNet on CLICS and show that we identify a
large portion of the ground-truth colexifications. (v)
Going beyond many works on crosslingual trans-
fer that focus on transfer from English, we sys-
tematically investigate the effect of the source lan-
guage on successful transfer with

−−−−−−−→
ColexNet+: we

use 1,245 languages as sources and experiment on
1,245 × 1,245 transfer directions. (vi) We make our
code, graphs, and embeddings publicly available.2

2 Related Work

There are many ways to learn multilingual word
embeddings. One common way is to first learn
monolingual embeddings on each language sep-
arately through, e.g., Word2Vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), or fast-
Text (Bojanowski et al., 2017), and then map them
into the same space (Artetxe et al., 2017; Lample
et al., 2018; Artetxe et al., 2018). Another group of
methods uses parallel corpora to directly learn bilin-
gual embeddings (Hermann and Blunsom, 2014;
Chandar et al., 2014; Levy et al., 2017). Our work
is related to that of Dufter et al. (2018), which
also learns embeddings on the PBC, but does not
take advantage of colexification, i.e., the explicit
modeling of relations between colexified concept-
s/ngrams. We use S-ID (Levy et al., 2017) and
embeddings from Dufter et al. (2018) as baselines.

One of the best-known and widely used multilin-
gual resources is BabelNet (Navigli and Ponzetto,
2012; Navigli et al., 2021). BabelNet has been
used for learning or enhancing embeddings (Ia-
cobacci et al., 2015; Camacho-Collados and Pile-
hvar, 2018; Conia and Navigli, 2020; Levine et al.,
2020; Harvill et al., 2022; Chen et al., 2023) for
lexical-level tasks such as semantic word similarity
and word sense disambiguation (Speer and Lowry-
Duda, 2017; Conia and Navigli, 2020; Procopio
et al., 2021; Navigli et al., 2022). Our focus is on
the coverage of many more languages (i.e., larger
scale in terms of languages) for crosslingual trans-
fer learning. While hand-curated lexica often have

2https://github.com/cisnlp/
ColexificationNet

https://github.com/cisnlp/ColexificationNet
https://github.com/cisnlp/ColexificationNet


better quality than automatically learned resources,
they are not available for most of our languages. Ul-
timately, the two approaches should be combined.

Colexification was introduced by Haspelmath
(2003) in the context of grammatical semantics.
François (2008) then used colexification as the
foundation for studying semantic change crosslin-
guistically. CLICS (List, 2018; List et al., 2018;
Rzymski et al., 2020) is a crosslingual database
that facilitates research on colexification. Lan-
guages can differ in their colexification patterns,
which are influenced by many factors such as hu-
man cognition, language family, and geographic
area (Jackson et al., 2019; Xu et al., 2020; Segerer
and Vanhove, 2022). An empirical study by Bao
et al. (2021) indicates that no pair of concepts is
colexified in every language. On the other hand,
a recent investigation on conceptualization from
the PBC shows some concepts are more likely
to be involved in colexification than others (Liu
et al., 2023). Such universal colexification patterns
across languages reflect crosslinguistic similarities
(Youn et al., 2016; Georgakopoulos et al., 2022).
Therefore, by integrating colexification patterns of
as many languages as possible, we can generate
multilingual representations that are suitable for
massively crosslingual transfer learning.

3 Methodology

3.1 Data

We use 1,335 Bible translations from the PBC cor-
pus (Mayer and Cysouw, 2014). Each translation
is from a different language (identified by its ISO
639-3 code). Prior work (Asgari and Schütze, 2017;
Dufter et al., 2018; Weissweiler et al., 2022) has
used subsets of the corpus. In contrast, we follow
Conceptualizer (Liu et al., 2023) and use all par-
allel verses between English and other languages.
This gives us better coverage of concepts and the
contexts in which they occur.

3.2 Colexification pattern identification

Concept Pool. Conceptualizer (Liu et al., 2023)
uses a small manually selected group of focal con-
cepts, i.e., concepts of interest (83 in total) and
constructs a set of strings to represent each concept.
For example, it uses {$belly$, $bellies$} to
represent the focal concept <belly>, where $ is the
word boundary. Manually defining the sets is not
feasible when a large number of concepts are to
be explored. Thus, in this work, we lemmatize the

English corpus and regard each lemma as a concept.
The set of all lemmata forms the concept pool F .

Conceptualizer. Conceptualizer (Liu et al.,
2023) creates a bipartite directed alignment graph
between source language concepts and target lan-
guage strings. It consists of a forward pass (FP)
and a backward pass (BP). This kind of two-step
workflow is also used in extracting semantic rela-
tions (Dyvik, 2004) and paraphrases (Bannard and
Callison-Burch, 2005) from bilingual parallel cor-
pora. A key difference compared with this prior
work is that Conceptualizer works on the ngram
level instead of the token level; this facilitates the
extraction of any associations hidden inside words.
In Conceptualizer, FP first searches for target lan-
guage ngrams highly associated with a given fo-
cal concept; BP then searches for English ngrams
highly correlated with the target ngrams identified
in FP. The association is measured using χ2 score.
The process can detect if the conceptualization of
the focal concept diverges in any language. For ex-
ample, starting from concept <hand>, FP finds the
Russian ngram ‘рук’, and BP then finds two En-
glish ngrams ‘hand’ and ‘arm’. This indicates that
the conceptualization of these concepts diverges in
English and Russian. The divergence of conceptual-
ization in the lexical forms indicates a difference in
their colexification patterns: Russian colexifies the
concepts <hand> and <arm> (in the word ‘рук’)
while English does not.

Forward Pass. Let f be a focal concept in F and
Vf the set of verses in which f occurs. FP identifies
a set of ngrams T in target-language l where each
ngram can refer to concept f , i.e., T = FP(f, l).
We exhaustively search all ngrams t within all to-
kens3 in the parallel corpus in target language l for
high correlation with Vf . This procedure is simi-
lar to Östling and Kurfalı (2023)’s subword-level
alignment, but we align concepts in English and
subwords in other target languages. E.g., we start
from <hand> and find that the Russian ngram ‘рук’
has the highest correlation with V<hand>, which in-
dicates ‘рук’ can refer to <hand>. Like Conceptu-
alizer, we use χ2 as a measure of correlation and
iterate FP until the cumulative coverage T =

⋃
t

of focal concept f exceeds a threshold α = 0.9,
but for a maximum of M = 3 iterations. See §A
for a discussion of these hyperparameters.

3Similar to the setting in Conceptualizer (Liu et al., 2023),
we use $ to denote token boundaries; e.g., $k, $ke, $ke$, k,
ke, ke$, e, e$ are all valid ngrams of token $ke$.



Backward Pass. BP is essentially the same as
FP, but the search direction is reversed. Let VT be
the set of verses in which at least one ngram in T
(identified in FP for target language l and concept
f ) from target language l occurs. We exhaustively
search all concepts c from the concept pool F for
high correlations with VT . Let C = BP(T, l) be the
final set of identified concepts. If |C| = 1 and c ∈
C ∧ c = f , this indicates the ngrams can only refer
to the concept f according to the bilingual context.
Alternatively, if |C| > 1, this indicates language
l colexifies concepts in C through ngrams T . For
example, by performing BP on ngram ‘рук’, we get
<hand> and <arm> as the result, which indicates
Russian colexifies <hand> and <arm>. Notably,
since we consider ngrams instead of tokens on the
target language side, this allows us to also identify
partial colexification patterns in BP, i.e., patterns
that do not involve an entire word, but rather part
of it. We show such examples in §B.

3.3 ColexNet

We run FP and BP for all 1,806 focal concepts in
the English concept pool F that have frequency
between 5 and 2000 and for every language l in
our set of 1,334 target languages L (excluding En-
glish). This allows us to uncover the colexifica-
tion patterns in 1,334 languages. We formalize
the relations of the colexification patterns as an
undirected graph, where each node is a concept
represented by an English lemma and each edge in-
dicates that at least one language colexifies the two
connected concepts. Formally, let G(F, E , wc, wn)
be a weighted undirected graph on vertices F , i.e.,
the concept pool, where E is a set of undirected
edges; wc is an edge weighting (counting) function:
F ×F → Z+, which returns, for a pair of concepts,
the number of languages colexifying them; wn is
an edge record function, which returns all ngrams
that colexify a given pair of concepts. We show the
graph construction in Algorithm 1.

In this study, we use a threshold λ to control the
confidence of the colexification edges: we remove
an edge e if wc(e) < λ. The intuition is that:
if two concepts f1 and f2 are colexified in many
languages, we can be more certain that the edge
between f1 and f2 is correctly identified. Looking
at it the other way around, if two concepts are
only colexified in a few languages, this might be
a wrongly identified pattern because of verse-level
misalignment, free translation, or other errors in

Algorithm 1: ColexNet & ColexNet+
Input: set of languages L, concept pool F , minimum

number of languages threshold λ;
Output: ColexNet G1, ColexNet+ G2;

1 G1 ← graph with F as nodes and no edges E1;
2 G2 ← graph with no nodes V and no edges E2;
3 V ← F ;
4 set wc(·) = 0 and wn(·) = ∅ by default;
5 for l ∈ L do
6 for f ∈ F do
7 T ← FP(f, l);
8 C ← BP(T, l);
9 V ← V ∪ T ;

10 for c ∈ C do
11 E1 ← E1 ∪ (f, c);
12 wc((f, c))+ = 1;
13 wn((f, c))← wn((f, c)) ∪ T ;
14 end
15 end
16 end
17 for e ∈ E1 do
18 if wc(e) < λ then
19 remove e from E1;
20 end
21 end
22 for e ∈ E1 do
23 (f1, f2)← e;
24 for v ∈ wn((f1, f2)) do
25 E2 ← E2 ∪ (f1, v) ∪ (v, f2);
26 end
27 end
28 remove nodes in G1 and G2 that have zero degree;
29 return G1, G2

the data. See Table 4 for the influence of different
λ on graph statistics. In addition, we remove zero-
degree nodes to filter out isolated concepts.

3.4 ColexNet+

ColexNet only contains concepts that are expressed
in English lemmata and cannot be directly used to
learn multilingual representations for the target lan-
guages. Therefore, we propose ColexNet+, a large
multilingual graph expanded from ColexNet by
including target language ngrams that instantiate
the colexification patterns identified in ColexNet.
Specifically, we replace each edge (f1, f2) with a
set of new pairs of edges: (1) find the set of ngrams
wn((f1, f2)) that colexify concepts f1 and f2 (in
any language) and (2) for each ngram v in the set,
insert new edges (f1, v) and (v, f2). To define
a clean bipartite structure, we do not include the
original (f1, f2); this guarantees that only concept-
ngram edges and no concept-concept edges occur.
In addition, any two related concepts (i.e., there is
an edge connecting the two concepts in ColexNet)
are always implicitly connected through ngram
nodes in ColexNet+ that associate the two con-



cepts. Figure 1 shows a subnetwork of ColexNet+
consisting of a few concepts and ngrams in dif-
ferent languages that colexify them. The graph
construction is shown in Algorithm 1.

As ColexNet+ is expanded from ColexNet, this
allows us to only include pairs of edges expanded
from reliable edges (wc(e) ≥ λ) in ColexNet. The
number of nodes and edges included in ColexNet+
is thus influenced by λ. The higher λ, the fewer
nodes and edges will be in ColexNet+. §A presents
statistics and performance for different values of λ.

3.5 Multilingual Embedding learning
To capture the semantic relations among the nodes
and the structure of ColexNet+, we use Node2Vec
(Grover and Leskovec, 2016) to generate node rep-
resentations. Let v be the node that a random walk
currently resides in, t the node that the walk has tra-
versed in the last step, and x the node that the walk
will visit in the next step. Node2Vec calculates the
unnormalized transition probability from v to x as
πvx = αpq(t, x) · w((v, x)) for sampling the next
node x in the graph, where w((v, x)) is the weight
of the undirected edge (v, x),

αpq(t, x) =


1
p if dtx = 0

1 if dtx = 1
1
q if dtx = 2

and dtx is the shortest path distance between t and
x. The transition probability determines if either
a new node or an already-visited node (regardless
of a concept or ngram node) will be sampled. In
ColexNet+, dtx ̸= 1 for any nodes t and x, because
a concept (resp. ngram) node will not connect with
other concept (resp. ngram) nodes. We set return
parameter p = .5 and in-out parameter q = 2 in
the hope of encoding more “local” information,
as this setting approximates breadth-first sampling
according to Grover and Leskovec (2016).

Below, we show that the multilingual representa-
tions trained this way have some desirable proper-
ties, e.g., representations of ngrams from different
languages that refer to the same concept can be
highly cosine-similar, which is important for zero-
shot crosslingual transfer learning.

4 Experiments

To evaluate our proposed methods, we conduct
the following experiments: (1) colexification iden-
tification; (2) roundtrip translation; (3) verse re-
trieval; and (4) verse classification. Experiment (1)

evaluates the colexification patterns we identify in
ColexNet. Experiments (2), (3) and (4) evaluate
the learned multilingual embeddings

−−−−−−−→
ColexNet+.

4.1 Baselines

To evaluate the effectiveness of
−−−−−−−→
ColexNet+, our

multilingual embeddings, we consider several pre-
viously proposed strong multilingual embeddings
as baselines for downstream tasks. The dimen-
sion of all embeddings (ours and the baselines) is
set to 200 for a fair comparison. In addition, we
consider three non-embedding baselines: bag-of-
words (BOW), XLM-R (Conneau et al., 2020) and
Glot500-m (ImaniGooghari et al., 2023). The first
is a random baseline and is expected to perform the
worst because a BOW model is only trained on the
English corpus, which does not directly transfer to
other languages. The latter two are strong multi-
lingual pretrained models. XLM-R is pretrained
on 100 languages while Glot500-m is a continued-
pretrained version of XLM-R on the Glot500-c
corpus (ImaniGooghari et al., 2023) that includes
more than 500 languages. We choose the base ver-
sion of these multilingual pretrained models. We
introduce the embedding baselines below.

S-ID embedding. Levy et al. (2017) show that
S-ID embeddings, which leverage the sentence ID
feature, are effective in learning good multilingual
embeddings from parallel corpora. We use pairs
of a verse ID identifier and a token in this verse as
input to Word2Vec (Mikolov et al., 2013) to train S-
ID embeddings. For example„ the pairs (01049027,
Wolf) and (01049027,狼) will be presented in the
data because ‘狼’ (resp. ‘Wolf’) occurs in Chinese
(resp. German) in verse number 01049027. This is
a strong baseline because the verse number is an
abstract representation of the context. Therefore
it encourages words occurring across languages in
the same verse to have similar embeddings.

CLIQUE & N(t) embedding. CLIQUE embed-
dings (Dufter et al., 2018) are learned on cliques
extracted from PBC. Each clique is a set of tokens
from different languages that refer to the same con-
cept. The embeddings are then learned from token-
clique pairs. Additionally, to take the connections
between concepts into account, Dufter et al. (2018)
consider the neighbors (tokens that are connected
with the current node in the dictionary graph) of
each token and train embeddings on those pairs of
neighbors, which we refer to as N(t) embedding.



Eflomal-aligned embedding. We construct an
alignment graph of words by using Eflomal
(Östling and Tiedemann, 2016) and learn embed-
dings on the graph as another strong baseline.
Specifically, we align the English Bible with Bibles
in all other target languages. We define the edge set
of the graph as the set of all edges that connect an
English word with its aligned target language word
(if there are at least two such alignments). Finally,
we use Node2Vec (same hyperparameters as for
ColexNet+) to learn multilingual embeddings.

4.2 Colexification identification
We first evaluate how well ColexNet performs at
identifying colexification patterns. We use CLICS
(List, 2018; List et al., 2018; Rzymski et al., 2020),
a database of colexifications, as the gold standard.
Each node in CLICS is a concept expressed in En-
glish. In ColexNet, we use English lemmata as ex-
pressions of concepts whereas CLICS also includes
short noun phrases. We only consider the common
concepts, i.e., concepts that are expressed as En-
glish words and occur in both CLICS and ColexNet.
For each start concept s in the common concepts
P , let T (s) be the neighbors in CLICS, i.e., a set
of concepts that have a colexification relation with
s and C(s) be the neighbors in ColexNet. Then we
compute the recall for s as |T (s) ∩ C(s)|/|T (s)|.
To have a global view of the performance, we re-
port the micro average recall (MicroRec.):

MicroRec. =
∑

s∈P |T (s) ∩ C(s)|∑
s∈P |T (s)|

macro average recall (MacroRec.):

MacroRec. =
∑
s∈P

|T (s) ∩ C(s)|
|T (s)||P |

and the average number of incorrect (not present in
CLICS) colexifications per concept (#aw_colex):

#aw_colex =
∑
s∈P

|C(s)− T (s)|
|P |

#aw_colex has a similar function to precision. We
do not use precision as a measure because it can
underestimate the performance, as many patterns
included in ColexNet can actually be correct (see
§B for examples). The #aw_colex measure can bet-
ter and more directly reflect how the exact number
of “incorrect” patterns per concept changes with
respect to the value of λ. Results are shown in
Table 1.

λ P MicroRec. MacroRec. #aw_colex

1 1220 0.71 0.80 580.87
5 1056 0.63 0.77 84.34

10 1001 0.58 0.73 42.04
20 935 0.54 0.70 22.91
50 833 0.48 0.66 10.69

100 761 0.42 0.62 5.78

Table 1: The number of common concepts (P ) in
ColexNet and CLICS, Micro and Macro average re-
call, as well as the average number of colexification
patterns per concept that are not in CLICS (#aw_colex)
for different thresholds λ (the minimum number of lan-
guages for keeping a colexification edge).

If the constraint λ is stricter, fewer concepts and
fewer edges (both colexification edges contained
and not contained in CLICS) will be included in
ColexNet. Thus, we observe a consistent drop in
both micro and macro recall. On the other hand,
we observe a decrease in #aw_colex when we in-
crease λ, as CLICS edges are less likely to be re-
moved than edges missing from CLICS: many lan-
guages can share the same colexification patterns
for some concepts whereas edges not in CLICS
will not be shared across many languages. This
can be verified by the steepness of the decrease in
#aw_colex. From λ = 1 to 5, around 500 edges
not in CLICS are removed for each concept. When
λ > 5, the speed decreases, suggesting the iden-
tified colexification edges are more reliable. In
summary, high recall indicates that we successfully
identify many ground-truth colexifications directly
from PBC. It is important to note that CLICS’ cov-
erage is far from complete for low-resource lan-
guages: for many of them, fewer than 100 concepts
are included in CLICS. Therefore, #aw_colex gives
some indication of performance or discrepancy be-
tween CLICS and ColexNet, but many of the edges
not in CLICS are actually correct. On the other
hand, ColexNet is not immune to semantic errors
(Peirsman and Padó, 2008), such as antonyms, hy-
pernyms, or hyponyms, due to co-occurrence or
free translation. See §B for a detailed analysis of
the identified colexifications.

4.3 Roundtrip translation

We additionally use roundtrip translation (Dufter
et al., 2018) to assess the quality of multilingual
representations. Let [l0, l1, l2, ..., lR] be a sequence
of languages where l0 = lR is the source language
and li ̸= l0 ∀1 ≤ i ≤ R − 1 different intermedi-
ate languages. Roundtrip translation starts with a
word w0 in l0 and iteratively finds the word wr in



roundtrip translation verse retrieval verse classification

top-1 top-5 top-10 top-1 top-5 top-10

BOW - - - 0.02 0.05 0.06 0.09

S-ID (Levy et al., 2017) 0.10 0.21 0.25 0.17 0.29 0.35 0.32
CLIQUE (Dufter et al., 2018) 0.22 0.63 0.79 0.41 0.62 0.70 0.44
N(t) (Dufter et al., 2018) 0.22 0.53 0.65 0.28 0.46 0.55 0.47

XLM-R (Conneau et al., 2020) - - - 0.04 0.07 0.09 0.15
Glot500-m (ImaniGooghari et al., 2023) - - - 0.11 0.17 0.21 0.22

Eflomal-aligned 0.24 0.58 0.70 0.61 0.76 0.81 0.48
−−−−−−→
ColexNet+ 0.44 0.85 0.93 0.65 0.80 0.84 0.49

Table 2: Results of different multilingual embeddings on roundtrip translation, verse retrieval, and verse classification
tasks. Each number for roundtrip translation (top-k accuracy, k ∈ {1, 5, 10}) is the average of 10 runs with 3
randomly selected intermediate languages. Each number in verse retrieval (top-k accuracy, k ∈ {1, 5, 10}) and
verse classification (macro F1) is the average over all available languages (1,250 for verse retrieval, 1,245 for verse
classification). We also report the performance of BOW, XLM-R, and Glot500-m. The first serves as a random
baseline whereas the latter two are strong multilingual model baselines. The performance reported for Glot500-m is
different from the original paper as it was evaluated on a subset of languages the model supports, while we evaluate
the model on all languages that

−−−−−−−→
ColexNet+ supports, making comparison easier. Bold: best result per column.

language lr (1 ≤ r ≤ R) that is closest to word
wr−1 in language lr−1 in the embedding space. If
w0 = wR, this indicates that the R− 1 “intermedi-
ate” words have representations similar to w0 and
represent the meaning of w0. We compute the per-
centage of roundtrips for w0 that are successful, i.e.,
w0 = wR (top-1 accuracy). In addition, we also
report top-5 and top-10 accuracies (i.e., w0 is in
the k (k = 5 or k = 10) nearest neighbors). We set
R = 4, l0 = English and take 1,654 English words
that occur in all embedding spaces as the starting
point w0. For each trial, we randomly select three
intermediate languages and then compute results
for each of the 1,654 w0. We run this experiment
ten times and report averages. We ensure that the
intermediate languages are different in each trial.

4.4 Verse retrieval

Similarly to Glot500-m, we use 500 English-
aligned verses from PBC for verse retrieval. 1,250
languages are used (we remove 85 languages that
cover fewer than 400 out of the 500 verses). We rep-
resent each verse as the average of the embeddings
of its units. Given a verse ve in English, we find the
most cosine-similar verses vl in target language l.
We then compute top-1, top-5 and top-10 accuracy
for the returned ranking (i.e., the correct verse is
in the top-1, top-5, top-10 nearest neighbors) and
average first over verses and then languages.

4.5 Verse classification

We evaluate our multilingual embeddings on
Taxi1500 (Ma et al., 2023). It provides 860/106/111

verses for train/valid/test sets in more than 1,500
languages. Each verse is annotated with one of six
classes: ‘recommendation’, ‘faith’, ‘description’,
‘sin’, ‘grace’, and ‘violence’. We use a subset of
1,245 languages, those covered by both Taxi1500
and

−−−−−−−→
ColexNet+. We perform zero-shot transfer by

training a logistic classifier on English train and
evaluating on the test set of the other 1,244 lan-
guages. Similar to verse retrieval, we represent a
verse as the average of its embeddings. We report
macro F1, first averaged over verses (per language)
and then averaged over languages.

4.6 Results & Discussion
Table 2 shows that

−−−−−−−→
ColexNet+ BOW, S-ID,

CLIQUE, N(t), Glot500-m and Eflomal-aligned
on all three tasks: roundtrip translation, verse re-
trieval, and verse classification.

−−−−−−−→
ColexNet+ shows

a large improvement over the baselines, especially
for roundtrip translation and verse retrieval. The
bad performance of BOW is expected, as previ-
ously mentioned, because the English vocabulary
does not necessarily transfer to other languages.−−−−−−−→
ColexNet+’s improvement over S-ID is probably
due to the fact that there is only verse ID informa-
tion provided to serve as verse-level context infor-
mation in S-ID. Token-level alignment information,
however, is not available to S-ID. In other words,
using abstract context identifiers alone cannot pro-
vide enough information to learn good multilingual
embeddings for crosslingual transfer. When com-
paring

−−−−−−−→
ColexNet+ with XLM-R and Glot500-m,

we see a clear improvement in either verse retrieval



or verse classification. The major reason is that
both XLM-R and Glot500-m are not trained on all
languages that are supported by

−−−−−−−→
ColexNet+. Due

to a lack of data in some low-resource languages,
it is difficult to train a good language model in
those languages. In contrast,

−−−−−−−→
ColexNet+ demon-

strates the possibility of multilingual embeddings:
with a small multilingual corpus where we can ex-
tract colexifications, it is already enough to support
large-scale zero-shot transfer for the low-resource
languages by training embeddings.

CLIQUE, N(t), and Eflomal-aligned achieve
similar performance on roundtrip translation (top-
1). However, when k becomes larger (k = 5 or 10),
we see that CLIQUE performs better than N(t)
and Eflomal-aligned. This is not surprising, since
CLIQUE specifically creates cliques of tokens that
are translations of each other in different languages.
Therefore the representations of translations should
be similar. Eflomal-aligned also achieves good
performance on roundtrip translation when k is
large (k = 5 or 10) and very close performance to−−−−−−−→
ColexNet+ in verse retrieval / classification. There
are a few possible explanations. First, the word
alignments are noisy in Eflomal-aligned because
it operates on the token level and any information
hidden inside each token (i.e., ngrams inside each
token) cannot be extracted and utilized (see the
discussion also in Liu et al. (2023)). Therefore,
by increasing k in roundtrip translation, the influ-
ence of such alignment noise is offset, resulting
in better results. Second, as we use the average
of embeddings of tokens in a verse as the verse
representation in verse retrieval / classification; this
can mitigate the impact of unimportant tokens.

For verse classification, we find that different em-
beddings achieve similar performance except for
S-ID. On the one hand, this phenomenon indicates
that S-ID, though it learns from abstract context
information, cannot align words from different lan-
guages that refer to the same concepts well, thus
preventing transfer from English to low-resource
languages. On the other hand, it might indicate
that classification is a less difficult task: it does not
require the model to have equally good alignment
for all concepts as the model can achieve good
results just by aligning important concepts. Never-
theless,

−−−−−−−→
ColexNet+ still achieves better results than

other baselines, suggesting it has better zero-shot
transferability. See §E for complete results.
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Figure 2: Degree centrality (left), betweenness centrality
(middle) and degree distribution (right) of ColexNet.

5 Analysis

5.1 Analyses on ColexNet
Basic statistics. We find that ColexNet has one
very large connected component along with a few
small connected components. See a visualization
of the largest community in ColexNet (λ = 50)
in Figure 4 in the Appendix. Therefore, in the
largest community, there is always a path in the
colexification graph between two concepts even
if they are less related. Figure 2 shows degree/
betweenness centrality and degree distribution of
ColexNet. From the figure, we can infer that the
connectivity can be attributed to (1) a small group
of concepts that are involved in many colexification
patterns and (2) a small group of edges serving as
“bridges” to connect concepts that are rarely colex-
ified in some languages. Therefore, ColexNet, a
graph built by the identified colexification patterns
across many languages, approximately forms a
small-world or scale-free (Barabási and Bonabeau,
2003) network. See §A.2 for graph-related statis-
tics of ColexNet under different λ.

Communities. We use the Louvain algorithm
(Blondel et al., 2008) to find communities in
ColexNet. We identify 288 communities. Each
community forms a cluster of semantically related
concepts. Figure 3 gives the example of commu-
nity#29: it contains several concepts related to
<wind>, <storm> and <wave>. We see that <wind>
is often colexified with <blow> (wind blows), with
<wave> (waves are caused by wind) and with <vio-
lent> (winds can be fierce). At the center of a com-
munity, we often find a densely connected clique,
indicating their connections are strong in many lan-
guages. Some concepts, located at the fringe of the
community and connected with one of the densely-
connected concepts in the center, are less related to
the semantic field of the community and serve as
“bridges” to connect with other communities. See
§C for further details of the identified communities.

5.2 Transfer learning beyond English
NLP research in general and even typological
studies are frequently conducted from an English-
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Figure 3: Community #29. Line thickness indicates the
number of languages that instantiate a colexification.

centric perspective. To reduce this bias and further
verify our multilingual embeddings’ transfer capa-
bility, we additionally use all available languages
(1,245 languages) as the query / train languages
for retrieval and classification tasks. To this end,
we conduct large-scale experiments that contain
1,245 × 1,245 transfer directions. The setup is the
same as in §4, where each language takes the role
of English as the query / train language. We again
represent each verse as the average of the embed-
dings of its units. For each language, we calculate
the average top-k (k = 1, 5, or 10) accuracy for
verse retrieval and macro F1 for verse classification
over all other languages except the language itself.

In Table 3, we list the transfer performance of
three major languages that are typologically differ-
ent from English: Arabic (arb), Russian (rus), and
Chinese (zho); and three languages that achieve the
worst overall performance: Apinayé (apn), Mündü
(muh), and Salt-Yui (sll). See §F for complete
results for all languages. For high-resource lan-
guages, the performance is close to that achieved
for English (see Table 2), indicating that the ngrams
are well-aligned and

−−−−−−−→
ColexNet+ has good transfer

ability. Chinese performs better than Arabic and
Russian. The possible reasons are as follows: (1)
Both Arabic and Russian are morphologically rich
whereas Chinese is not. Morphological variation
makes finding aligned ngrams in the forward pass
harder, with a negative impact on performance; (2)
To prevent bad tokenization for Chinese, we al-
low all ngrams (unlimited-length combination of
continuous characters) in a verse to be candidates
in the forward pass. This setting gives ngrams
more freedom and thus better results are expected.
For the three low-resource languages, we find that
they diverge morphologically and typologically

verse retrieval verse classification

top-1 top-5 top-10

arb 0.56 0.72 0.78 0.47 (0.07)
rus 0.55 0.72 0.78 0.48 (0.07)
zho 0.60 0.77 0.82 0.49 (0.05)

apn 0.21 0.38 0.46 0.38 (0.07)
muh 0.22 0.39 0.48 0.38 (0.07)
sll 0.24 0.42 0.51 0.39 (0.08)

avg. 0.46 0.64 0.71 0.44 (0.08)

Table 3: Verse retrieval/classification for three high-
resource languages, the three worst performing lan-
guages, and average over all languages (avg.). We also
report BOW results for verse classification (in parenthe-
ses), which serves as the random baseline. In contrast
to the good performance for Arabic (arb), Russian (rus)
and Chinese (zho), Apinayé (apn), Mündü (muh) and
Salt-Yui (sll) each pose specific difficulties for inducing
reliable colexification patterns.

from most high-resource languages. Apinayé and
Mündü seem to frequently use several consecutive
whitespace-tokenized syllables to express a single
concept, which makes finding the correct align-
ments much harder. Salt-Yui, on the other hand,
seems to be highly ambiguous because the writing
does not reflect its contrastive tones (Irwin, 1974).
We hypothesize such ambiguity can negatively in-
fluence performance. See §F for an analysis of the
factors that can influence transfer performance.

6 Conclusion

In this work, we present the multilingual graphs
ColexNet and ColexNet+, based on colexifications
extracted from a highly parallel corpus. Compar-
ing with CLICS, we show that we identify many
gold-standard patterns in ColexNet. In addition,
we analyze the structure of ColexNet and show it
nearly forms a scale-free graph, with many com-
munities of semantically related concepts. Most
importantly, we contribute to crosslingual trans-
fer learning by inducing multilingual embeddings−−−−−−−→
ColexNet+ that are learned on ColexNet+. Our
experiments indicate that

−−−−−−−→
ColexNet+ largely repre-

sents concepts across languages in the same seman-
tic space. We show that

−−−−−−−→
ColexNet+ outperforms

several approaches, including multilingual embed-
dings and pretrained models, on three downstream
tasks. This indicates that embeddings learned from
colexification graphs improve crosslingual transfer,
especially for low-resource languages for which
it is often infeasible to pretrain good models. Fi-
nally, our embeddings exhibit robust transfer per-
formance across many different source languages.



Limitations

Theoretically, one could identify, explore, and ana-
lyze colexification patterns from any parallel cor-
pora and construct graphs of colexifications using
the methods proposed in this paper. We use the
PBC, a genre-specific parallel corpus in this work,
which can limit some of the concepts to religions.
Nevertheless, the goal of this work is to explore
colexification patterns in as many languages as pos-
sible, including a lot of low-resource languages,
without relying on any external resources. There-
fore, the PBC corpus is a good fit for us.

We conduct extensive experiments to verify the
crosslingual transfer capability of the multilingual
embeddings learned on ColexNet+. However, some
experiments are in-domain (the evaluation tasks
are still related to the Bible), e.g., verse retrieval
and verse classification. The major reason is that
we want to test the embedding’s performance on
all our supported languages. Unfortunately, as far
as we know, evaluation datasets that cover such a
wide range of languages, including low-resource
languages, are missing in the community. Some
datasets, for example, Tatoeba4, support hundreds
of languages but contain many concepts, e.g., pizza,
that do not occur in the Bible. Therefore, we do
not evaluate our embeddings on those datasets.
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A Choice of hyperparameters and
discussion

A.1 Forward/backward pass
Two hyperparameters in the forward pass and back-
ward pass when searching for the colexification
patterns can influence the results, i.e., (1) the maxi-
mum number of iterations M for a given concept
in each language and (2) the threshold α for the
minimum cumulative coverage of the set of iden-
tified ngrams. We set M = 3 and α = .9 as
default values for all involved computations. We
are different with Conceptualizer (Liu et al., 2023)
in the setting of M . Conceptualizer sets M to 5
whereas we set it to 3. The major reasons are as fol-
lows. We are searching for colexification patterns
with high accuracy. This requires us to identify the
target-language ngrams that instantiate the colex-
ifications with high certainty. Based on empirical
explorations, we find that when M is large (e.g.,
> 3), we can include less accurate or even unre-
lated ngrams (because those ngrams are rare and
occur in the same verse where the concept occurs,
which is also discussed by Liu et al. (2023)). By
setting M = 3 in the forward pass, we will be
more confident that the identified target-language
ngrams are highly correlated with the concept and
this setting achieves the best performance for a few
examples in our manual inspection. As for the min-
imum cumulative coverage threshold α, we directly
follow the setting in Conceptualizer, i.e., 0.9, to en-
sure that the forward pass and backward pass find
enough ngrams/concepts while guaranteeing the
quality of the associations.

A.2 ColexNet/ColexNet+ construction
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have an important hyperparameter λ: the minimum
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λ #nodes #edges degree #components

1 5870 1000937 170.61 1
5 4028 122798 30.48 1
10 3562 58031 16.29 1
20 3133 30175 9.63 2
50 2591 13607 5.25 9
100 2221 7634 3.44 60

Table 4: Basic statistics of ColexNet under different
thresholds λ. We report the number of nodes (#nodes),
the number of edges (#edges), the average degree per
node (degree), and the number of connected components
(#components).

λ #nodes #edges degree

1 3,613,546 15,251,571 4.22
5 3,611,704 12,197,241 3.37
10 3,611,238 11,227,402 3.11
20 3,610,809 10,369,418 2.87
50 3,610,267 9,235,395 2.56
100 3,609,897 8,314,760 2.30

Table 5: Basic statistics of ColexNet+ under different
thresholds λ. We report the number of nodes (#nodes),
the number of edges (#edges), and the average degree
per node (degree).

number of languages for a colexification edge to be
included. As shown in Table 4, different λ can in-
fluence the number of nodes and edges in ColexNet
as well as the number of connected components. It
is clear that both #edges and degree decrease dra-
matically from λ = 1 to 5, which might indicate:
(1) increasing λ decreases the number of incor-
rectly identified colexification patterns (e.g., due to
verse-level misalignment); (2) some colexification
patterns might be specific to very few languages.
Because of many plausible incorrect edges between
concepts, when λ = 1, 5 or 10, ColexNet forms a
large connected graph. When λ is larger (e.g., 50
or 100), the graph is no longer connected because
many less reliable edges are removed from it.

The influence of λ also apply to ColexNet+,
since edges being removed in ColexNet also im-
pact ColexNet+: pairs of edges that are expanded
from removed edges from ColexNet are then not
included in ColexNet+. We show the number of
nodes and edges as well as the average degree
in ColexNet+ under different λ in Table 5. The
changes in degree with the increase of λ are not
as prominent as in ColexNet (shown in Table 4).
This is mainly because the number of nodes in
ColexNet+ is far more than that in ColexNet. Most
of the nodes are only associated with around 3 other
nodes in ColexNet+, which indicates that many
ngrams from target languages colexify about three

Figure 4: Visualization of the largest community which
contains 2,581 nodes out of 2,591 nodes in ColexNet.
Each node is a concept and each edge indicates that two
concepts are colexified in at least 50 languages.

concepts, because most of the nodes in ColexNet+
belongs to the ngram nodes. Each concept, how-
ever, can be frequently associated with more than
3 concepts in ColexNet, as we noticed the average
degree of ColexNet (λ =50) is around 5.

The number of nodes and edges also influences
the random walks which we used for sampling, thus
influencing the quality of multilingual embeddings
trained on ColexNet+ using Node2Vec (Grover and
Leskovec, 2016). Therefore, we conduct exper-
iments using embeddings trained on ColexNet+
under different λ. Same as §4, we conduct experi-
ments on roundtrip translation, verse retrieval, and
verse classification tasks. For roundtrip translation,
we again set l0 = English and use 2,221 words
that occur in all embeddings as the start points. For
verse retrieval (resp. classification), we also use En-
glish as the query (resp. train) language, and report
top-k accuracy (resp. macro F1 score), averaged
over all languages. Results are shown in Table 6.

We see there are different trends between the
changes in λ and changes in performance for differ-
ent tasks: (1) the performance of roundtrip transla-
tion is positively correlated with λ and the best re-
sult is achieved when λ =100; (2) the performance
of verse retrieval is also positively correlated with λ
; (3) the performance of verse classification is gen-
erally negatively correlated with λ where the best
result is achieved when λ =1. Those trends can
be explained as follows. Roundtrip translation and
verse retrieval, compared with verse classification,
require better alignment quality among concepts
and ngrams. When λ is small, some incorrect edges
are included in the graph. These edges induce



λ Roundtrip translation verse retrieval verse classification

top-1 top-5 top-10 top-1 top-5 top-10

1 0.29 0.66 0.78 0.51 0.68 0.74 0.51
5 0.34 0.71 0.82 0.58 0.74 0.79 0.49
10 0.36 0.74 0.84 0.59 0.75 0.81 0.48
20 0.38 0.77 0.87 0.63 0.78 0.83 0.48
50 0.40 0.81 0.91 0.65 0.80 0.84 0.49
100 0.42 0.84 0.93 0.66 0.81 0.85 0.45

Table 6: Results of multilingual embeddings trained on ColexNet+ under different λ. Each number for roundtrip
translation (top-k accuracy, k = [1, 5, 10]) is the average of 10 runs with 3 randomly selected intermediate languages.
Each number in verse retrieval (top-k accuracy, k = [1, 5, 10]) and verse classification (macro F1) is the average
over all available languages. Bold (underlined): best (second-best) result per column.

noises for sampling, therefore slightly noisy em-
beddings are obtained, negatively influencing the
performance. As for verse classification, the results
suggest that when we have fewer out-of-vocabulary
ngrams in the embeddings (higher λ induces fewer
ngrams in ColexNet+), slightly better performance
is achieved. Moreover, λ seems to have a more
obvious impact on roundtrip translation and verse
retrieval than on verse classification. In summary,
the results verify our choice of λ =50, a relatively
large number, in the main content of this paper, as
it offers very competitive results compared to other
choices while not losing many interesting patterns.

B Investigation of identified
colexifications

In §4.2, we show that we identify many ground-
truth colexification patterns compared with CLICS.
However, there are quite a few colexification pat-
terns that are not present in CLICS. Therefore, we
conduct a qualitative investigation on those colexifi-
cation patterns. We classify each pattern (an colex-
ification edge in ColexNet between two concepts)
as one of the following categories: (1) full colexi-
fication (2) partial colexification and (3) incorrect
colexification.

Full colexification. Full colexification indicates
that a word in a language directly colexifies two
concepts. We list 4 examples of colexifications
not included in CLICS but verified by us. An ob-
vious example is that <ground> and <land> are
colexified in many languages, e.g., through土地 in
Japanese (jpn) and大地 in Chinese (zho). <early>
and <tomorrow> are frequently colexified in Turkic
languages, e.g.,

• Southern Altai (alt): $эртен

• Bashkir (bak): $иртән$

• Kyrgyz (kir): $эртен

• Nogai (nog): $эртен

Another interesting example is that <love> and
<wish> are frequently colexified, e.g., in Min
Nan Chinese (nan) through the word $ài (char-
acter: 愛), as the character means both <love>
and <wish>. Lastly, in Western Frisian (fry),
<dragon> and <snake> are colexified through the
word $draek$, for which we manually verify in
PBC. It is worth noting that there is another word
slang which denotes <snake> in Western Frisian.

Partial colexification. Partial colexification de-
notes the pattern that does not involve an entire
word, but rather part of it. The part can be a shared
root or a shared element in a compound. Since our
algorithm works on the character ngrams within a
word, we find many partial colexification patterns.
For example, <stand> and <build> are colexified in
Kazakh (kaz) through $тұр. In Kazakh, <stand>
is expressed by the word тұру while <build> by
тұрғызу. тұрғызу is actually derived from the
root тұр- plus a causative suffix -ғыз, so that
тұрғыз- means ‘to make something stand’, thus
meaning ‘build, erect’. Such partial colexifications
through a root can even include more than two
concepts, e.g., <morning>, <early>, and <next> in
many Turkic languages:

• Turkmen (tuk):
$ertesi→ <next>
$erte→ <morning>

• Turkish (tur):
$ertesi→ <next>
$erte→ <morning> <early>

• Uyghur (uig):
$әтиси$→ <next>
$әтигән → <morning>
$әти → <early>



types incorrect colex. languages ngrams context

<four> <twenty> cat $quatre$, $vint #66004004: ... vint-i-quatre setials més ...
co-occurrence <left> <right> nog $онъ$, $сол$ #01048013: ... онъ колы ... сол ...

<want> <know> nds $weete$, $well$ #46011003: Oba etj well , daut jie weete ...

free translation <man> <answer> cat $contest #40012048: Però ell va contestar ...
<hundred> <thousand> cmn 十万 #13005021: ... 以及人口十万...

Table 7: Examples of incorrectly identified colexifications in ColexNet.

Some concepts may be expressed using multiple
lexemes, forming a compound, and a part of the
compound may also occur in the expression of a
different concept. Note that, in some languages
(such as German), a compound is written together
without any space in between, whereas in some
other languages (such as English), there is a space
between each part. In either case, these are con-
sidered as compounds, since all the separate ele-
ments together constitute one concept. This can-
not be confused with co-occurrence, where the
two concepts themselves co-occur. For example,
in Tatar (tat), two colors: <purple> and <scar-
let> are partially colexified through $кызыл$, be-
cause <purple> is куе кызыл (literally ‘thick red’),
which contains a part кызыл meaning ‘red, scar-
let’. Such partial relation also frequently exists in
numbers. For example, empat belas (resp. 十
四), which means 14, and empat puluh (resp.
四十), which means 40, are partially colexified in
Indonesian (ind) (resp. Chinese (zho)), as empat
(resp. 四) means 4. Some languages, e.g., Chi-
nese and German, construct compounds without
inserting blanks between each lexeme, so we also
observe many partial colexifications in Chinese and
Germanic languages, e.g., :

• Chinese (cmn):
震→ <tremble>
地震→ <earthquake>

• Bavarian (bar):
bibn→ <tremble>
$erdbibn$→ <earthquake>

• German (deu):
$beben→ <tremble>
$erdbeben$→ <earthquake>

In summary, many identified colexification patterns
in ColexNet belong to this category, which is the
reason why we found many patterns that do not
exist in CLICS, since CLICS only includes full
colexification patterns.

Incorrect colexification. As an automatic sta-
tistical method, the results are not immune to er-
rors. Typically, we find the incorrectly identified
colexifications are mainly due to two reasons: (1)
co-occurrence and (2) free translation. We list
some incorrectly identified colexifications in Ta-
ble 7. Co-occurrence denotes that two particular
concepts tend to co-occur very often so that the al-
gorithm wrongly establishes connections between
the concept. For example, we found <four> and
<twenty> are associated in Catalan (cat) because
the ngrams $quatre$, $vint which refer to the
two concepts respectively co-occur very frequently
in PBC. Similarly, <left> and <right> for Nogai
(nog), and <want> and <know> for Low German
(nds) also belong to this type of error. Free trans-
lation means that the translation is not done word
by word so that the corresponding word for a spe-
cific concept does not occur in the same sentence.
In this case, the algorithm has no chance of find-
ing the corresponding ngram, which ideally would
align with the intended concept. Free translation is
very common in the Bible because of its religious
textbook nature. For example, in Catalan (cat),
the English verse #40012048 starts with “But to
the man who told him” but the Catalan translation
starts with “Però ell va contestar al qui deia això”,
which means “But he answered the one who said
this”, where the concept <man> does not occur in
Catalan and the concept <answer> does not occur
in English verse. Similarly, Chinese word 十万
means one hundred thousand, i.e., 100,000 (with
十 being 10 and万 being 10,000). As the formation
of the number expression in Chinese is different
from its English counterpart, the algorithm wrongly
associates <hundred> and <thousand>.

C Communities of ColexNet

There are 288 communities in total detected in
ColexNet (λ = 50) by Louvain community detec-
tion algorithm (Blondel et al., 2008). Two impor-
tant hyperparameters, i.e., resolution and random
seed are set to 0.1 and 114514 respectively. As



mentioned in §5, each community is a cluster of
concepts that are semantically related to each other.
We create a demonstration website to show the
subnetworks of each concept and the community
figures.5 For illustration purposes, we randomly se-
lect 15 communities that have more than 10 nodes
for illustration in this paper. See Visualizations of
those communities in Figure 5.

D Influence of language families & areas

We create subnetworks specific to each language
family and to each area. We consider six lan-
guage families that have more than 50 languages in
PBC: Austronesian (aust), Atlantic-Congo (atla),
Indo-European (indo), Nuclear Trans New Guinea
(nucl), Otomanguean (otom) and Sino-Tibetan
(sino). We consider five areas: South America
(SA), North America (NA), Eurasia, Africa and
Papunesia. We only keep the edges in ColexNet
that occur in each language family (resp. area)
for the subnetwork of each language family (resp.
area). To quantify agreement of community struc-
ture, we use adjusted rand index (ARI) (Hubert
and Arabie, 1985; Steinley, 2004), similar to (Jack-
son et al., 2019). We also compute ARI between
ColexNet and each subnetwork. Figures 6 and 7
show pairwise ARI for language families and ar-
eas. It is clear that any language family subnetwork
cannot represent the global colexification patterns
encoded in ColexNet, since no family’s ARI with
ColexNet is high. In addition, no two language fam-
ilies have a similar community structure according
to ARI: for the pair with the highest ARI, atla-aust,
ARI = 0.5. In comparison, area-specific subnet-
works generally have larger pairwise ARIs. The
two areas Africa and Papunesia have a very high
ARI of 0.76 and also high ARIs with ColexNet
(0.78 and 0.80). This can be explained by (1) there
are many languages in those two areas so there
are more possible colexifications included in the
subnetworks and (2) the diversity (in terms of colex-
ification) of languages spoken in these two areas
is high. In summary, relatively low ARIs between
families and areas also suggest many colexification
patterns are only specific to a small group of lan-
guages (either in a specific language family or in
an area).

5https://conceptexplorer.cis.lmu.de/

E English-centric transfer learning

We have shown the English-centric transfer per-
formance of verse retrieval and verse classification
averaged over languages in Table 2. We believe it is
also important to have a fine-grained view of the re-
sults for individual languages, to better understand
the crosslingual transfer capability of

−−−−−−−→
ColexNet+.

Therefore, we show the transfer performance (sen-
tence retrieval and sentence classification) of each
individual language clustered by its corresponding
language family in Figure 8. Globally, we see that
results not only vary across language families but
also vary within each language family. English

We find in Figure 8 (top) that, though a top-10 ac-
curacy higher than 0.5 is achieved for all languages,
the average retrieval accuracy in the Indo-European
language family is slightly better than in other fami-
lies which have many languages (e.g., Sino-Tibetan
or Otomanguean language family). We speculate
this is probably because other Indo-European lan-
guages can learn more accurate alignments as our
source language is English which also belongs to
the same family. Better alignments influence the
quality of embeddings in that language, therefore
having an impact on the transfer performance.

The trend in classification as shown in Figure
8 (bottom), however, is slightly different: average
F1 remains stable at around 0.5 for almost all lan-
guage families, with less variance in each language
family. This is evidence for our conjecture that clas-
sification is a less difficult task: apparently, good
performance can be obtained if only words refer-
ring to the most important concepts that are highly
associated with specific classes are aligned well.

In summary, good performance indicates that−−−−−−−→
ColexNet+ assigns similar representations to
ngrams that refer to the same concept, thus im-
proving crosslingual transfer.

https://conceptexplorer.cis.lmu.de/


$nakedness$

$cloak$

$belt$

$handkerchief$

$purple$

$gird$

$chorazin$

$fine$ $breastplate$

$put$
$linen$

$snow$

$wear$
$sackcloth$

$dress$

$length$

$flour$

$hair$

$clothe$

$mantle$

$robe$

$cloth$

$tunic$

$white$

$sheet$

$naked$$garment$

$wrap$

$bright$

$veil$

$wide$

$splendid$

$clothing$

$screen$

$whiten$

$shave$

(a) community #6

$astonishment$
$amazement$

$passion$

$strength$

$beelzebub$

$take$place$

$bethsaida$

$almighty$

$work$of$power$

$working$

$miracle$

$marvel$

$arm$

$power$of$god$
$powerful$

$bethany$

$wonderful$
$wonder$

$strong$

$warrior$

$sign$

$ecstasy$

$mighty$

$amazed$

$marvelous$

$weak$$power$
$act$

$astounded$
$astonish$

(b) community #26

$violent$

$sink$

$wind$
$wave$

$blow$

$violence$

$cheek$

$storm$

$tempest$

$slap$

$stormy$

$temp$

(c) community #29

$spit$

$strike$$stripe$
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Figure 5: Visualizations of 15 randomly selected communities that have more than 10 nodes from 288 communities
detected in ColexNet. Each community forms a cluster of concepts that are semantically related to each other. E.g.,
community #60 is related to the concept <hunger>; and community #73 is related to the concept <money>.
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Figure 6: Pairwise ARIs between language family-specific subnetworks. Each subfigure contains pairwise ARIs
between one family (indicated by the color: atla, aust, indo, nucl, otom, sino, base) and all other families (indicated
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Figure 7: Pairwise ARIs between area-specific subnetworks. Each subfigure contains pairwise ARIs between one
area (indicated by the color: Africa, Eurasia, Papunesia, NA, SA, base) and all other areas (indicated on the
edges). The ARIs are computed by averaging the results of 50 runs using the Louvain algorithm with different
random states. Pairs of the same area, e.g., Africa-Africa, are not shown because the ARI will always be 1 in such
cases. base is the graph including all edges, i.e., ColexNet. Note that the scale is adjusted for each area individually.
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F Beyond English-centric transfer

We show the complete transfer performance by
using any language as train/query language (1,245
languages in total, as we filtered some languages
which have a very small size of train or test set).
The results are shown in Table 10, 11, 12, 13, 14.

We hypothesize that the quality of identified
colexification can influence the transfer learning
performance. Some languages, because their mor-
phology, typology, or conceptualization are very
different from other languages, might pose diffi-
culties in finding reliable colexification patterns,
thus being detrimental to crosslingual transfer. To
this end, we compute the average colexification
patterns per ngram (avg_colex) for each language.
That is, for language l, we compute the average
number of neighbors of an ngram in ColexNet+.
The neighbors of an ngram node are concept nodes,
which indicates the concepts that this ngram can re-
fer to. The higher the avg_colex is for a language,
the more polysemous or ambiguous the ngrams
tend to be. Of course, the extracted colexification
patterns are not always correct due to verse-level
misalignment, free translation, or some language-
specific properties like morphology. Therefore the
metric avg_colex can, to some degree, indicate the
level of difficulty to find correct alignments.

We list the number of target-language ngrams
in ColexNet+ (#ngrams) as well as avg_colex for
the languages we show in §5.2: Arabic (arb), Rus-
sian (rus), Chinese (zho), Apinayé (apn), Mündü
(muh), Salt-Yui (sll) as well as the average over
all languages in Table 8. Three high-resource lan-
guages, which are typologically and morphologi-
cally different from each other, show similar trends
in their statistics: more ngrams are included in
ColexNet+ while avg_colex is less than the aver-
age. This might indicate that the languages are
less ambiguous and the colexifications extracted
are mostly reliable, which explains good crosslin-
gual performance when they are used as the train/-
query languages. On the contrary, the three worst-
performing languages have exactly the inverse
trend, which indicates it is harder to identify re-
liable colexifications, thus the performance is bad
when they are served as the source languages.

To further test our hypothesis, we compute the
Pearson correlation between the performance (clas-
sification F1 score and retrieval accuracy) and
avg_colex. The results are shown in Table 9. It
is evident that #ngrams is weakly positively cor-

language #ngrams avg_colex

arb 4,107 1.84
rus 3,574 2.21
zho 3,659 2.07

apn 2,119 2.91
muh 1,408 4.00
sll 2,118 2.93

avg. 2,702 2.64

Table 8: Number of target-language ngrams in
ColexNet+ (#ngrams) and the average number of colex-
ified concepts per ngram (avg_colex) for Arabic (arb),
Russian (rus), Chinese (zho), Apinayé (apn), Mündü
(muh), Salt-Yui (sll) as well as the average over all lan-
guages. We see that the lower three worst performing
languages have fewer #ngrams but larger avg_colex than
the average statistics over all languages.

c r1 r5 r10

#ngrams 0.20 0.28 0.25 0.24
avg_colex -0.18 -0.25 -0.21 -0.19

Table 9: Pearson correlations between #ngrams/
avg_colex and the transfer performance (c: classifica-
tion F1 score, r1: retrieval top-1 accuracy, r5: retrieval
top-5 accuracy, r10: retrieval top-10 accuracy). All val-
ues are statistically significant under p = 0.01.

related with the performance while avg_colex is
negatively correlated. However, it is important
to note that the correlation is not high: there are
quite a few languages that have small #ngrams but
large avg_colex perform quite well when they are
used as the source languages for large-scale trans-
fer. For example, Bislama (bis), whose #ngrams
is only 1,202 but avg_colex is 4.81, achieves good
performance: 0.41, 0.46, 0.66, 0.73 for classifica-
tion, retrieval top-1, top-5, and top-10 respectively.
We speculate this is because Bislama is highly in-
fluenced by English (Tryon, 1987), therefore the
patterns extracted are reliable since the concepts
are represented in English lemmata. We leave the
further exploration of finding reliable colexifica-
tions from a parallel corpus for future research.

To sum up, the quality of the colexification pat-
terns extracted for a language is closely related
to the transfer performance when it is served as
the train/query language. Due to various language-
specific properties, the model can have difficulties
in inducing reliable colexification patterns.



language classification retrieval language classification retrieval language classification retrieval

top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10

aai 0.46 0.47 0.65 0.72 aak 0.42 0.39 0.57 0.64 aau 0.45 0.47 0.67 0.74
aaz 0.40 0.39 0.58 0.65 abt 0.42 0.32 0.50 0.57 abx 0.44 0.52 0.70 0.76
aby 0.40 0.30 0.49 0.57 acd 0.44 0.39 0.58 0.66 ace 0.44 0.51 0.69 0.75
acf 0.43 0.52 0.71 0.77 ach 0.48 0.53 0.71 0.77 acn 0.44 0.51 0.70 0.76
acr 0.42 0.47 0.65 0.72 acu 0.43 0.39 0.58 0.66 ade 0.46 0.45 0.64 0.71
adh 0.47 0.53 0.71 0.77 adi 0.45 0.48 0.66 0.72 adj 0.43 0.42 0.61 0.68
adl 0.44 0.44 0.63 0.70 aeb 0.46 0.54 0.72 0.78 aeu 0.44 0.44 0.63 0.71
aey 0.46 0.47 0.65 0.72 afr 0.47 0.58 0.74 0.79 agd 0.43 0.38 0.58 0.66
agg 0.44 0.43 0.62 0.69 agm 0.44 0.39 0.57 0.64 agn 0.44 0.50 0.68 0.75
agr 0.41 0.43 0.62 0.69 agt 0.43 0.38 0.56 0.63 agu 0.42 0.40 0.59 0.66
agw 0.46 0.41 0.60 0.68 ahk 0.44 0.38 0.57 0.65 aia 0.42 0.44 0.63 0.71
aii 0.43 0.55 0.71 0.77 aim 0.42 0.41 0.61 0.68 aji 0.44 0.48 0.67 0.73
ajz 0.46 0.52 0.70 0.77 akb 0.43 0.51 0.70 0.76 ake 0.47 0.48 0.66 0.73
akh 0.46 0.31 0.49 0.58 ald 0.41 0.49 0.68 0.75 alj 0.45 0.46 0.65 0.73
aln 0.47 0.56 0.72 0.78 alp 0.41 0.41 0.60 0.68 alq 0.44 0.51 0.69 0.76
alt 0.47 0.58 0.75 0.81 alz 0.45 0.52 0.69 0.75 ame 0.40 0.40 0.58 0.66
amf 0.47 0.55 0.72 0.78 amh 0.44 0.55 0.73 0.78 amk 0.42 0.48 0.66 0.73
amm 0.43 0.39 0.59 0.66 amn 0.45 0.40 0.59 0.67 amp 0.40 0.34 0.52 0.60
amr 0.41 0.33 0.52 0.59 amu 0.42 0.46 0.64 0.71 ann 0.44 0.44 0.63 0.70
anv 0.44 0.42 0.61 0.68 aoj 0.45 0.41 0.60 0.67 aom 0.41 0.38 0.57 0.64
aon 0.42 0.39 0.58 0.66 aoz 0.51 0.52 0.70 0.76 apb 0.43 0.47 0.65 0.72
ape 0.39 0.40 0.60 0.67 apn 0.38 0.21 0.38 0.46 apr 0.44 0.40 0.60 0.68
apt 0.45 0.52 0.69 0.76 apu 0.45 0.44 0.62 0.69 apw 0.45 0.47 0.65 0.72
apy 0.42 0.35 0.53 0.61 apz 0.45 0.35 0.54 0.61 arb 0.47 0.56 0.72 0.78
are 0.41 0.41 0.59 0.67 arl 0.44 0.36 0.55 0.63 arn 0.41 0.48 0.67 0.73
arz 0.46 0.53 0.70 0.76 asg 0.42 0.41 0.60 0.67 aso 0.45 0.38 0.57 0.64
ata 0.46 0.44 0.64 0.71 atb 0.44 0.53 0.71 0.77 atd 0.45 0.44 0.64 0.71
atg 0.46 0.45 0.64 0.71 att 0.43 0.47 0.66 0.73 auc 0.45 0.38 0.57 0.64
auy 0.42 0.37 0.56 0.64 ava 0.46 0.52 0.70 0.76 avt 0.44 0.27 0.45 0.53
avu 0.42 0.29 0.48 0.56 awa 0.43 0.50 0.68 0.75 awb 0.41 0.42 0.60 0.67
awi 0.44 0.34 0.53 0.61 ayo 0.42 0.36 0.56 0.63 ayr 0.42 0.47 0.65 0.72
aze 0.47 0.53 0.70 0.76 azg 0.42 0.41 0.59 0.67 azz 0.45 0.45 0.64 0.71
bak 0.45 0.55 0.72 0.78 bam 0.47 0.57 0.74 0.80 ban 0.46 0.52 0.70 0.76
bao 0.47 0.39 0.58 0.66 bar 0.48 0.47 0.64 0.71 bav 0.47 0.42 0.62 0.69
bba 0.45 0.51 0.69 0.76 bbb 0.42 0.34 0.53 0.60 bbj 0.47 0.45 0.64 0.71
bbr 0.43 0.36 0.55 0.62 bch 0.44 0.44 0.64 0.71 bci 0.48 0.42 0.61 0.68
bcl 0.49 0.58 0.75 0.81 bcw 0.43 0.42 0.60 0.68 bdd 0.43 0.44 0.63 0.70
bdh 0.36 0.34 0.53 0.61 bef 0.46 0.34 0.53 0.60 bel 0.43 0.61 0.77 0.82
bem 0.45 0.52 0.70 0.76 ben 0.49 0.52 0.69 0.76 beq 0.47 0.56 0.73 0.79
bex 0.41 0.38 0.58 0.65 bfd 0.47 0.47 0.65 0.72 bfo 0.40 0.49 0.67 0.74
bgr 0.42 0.52 0.70 0.77 bgs 0.44 0.49 0.68 0.75 bgz 0.45 0.51 0.69 0.75
bhl 0.45 0.30 0.49 0.57 bhp 0.45 0.49 0.67 0.74 bib 0.41 0.46 0.65 0.72
big 0.48 0.38 0.56 0.64 bim 0.46 0.49 0.68 0.74 bis 0.41 0.46 0.66 0.73
biu 0.47 0.56 0.73 0.79 biv 0.42 0.46 0.64 0.71 bjr 0.45 0.33 0.52 0.60
bjv 0.40 0.37 0.57 0.65 bkd 0.47 0.49 0.68 0.75 bkq 0.44 0.33 0.51 0.59
bku 0.44 0.45 0.64 0.71 bkv 0.40 0.47 0.66 0.73 blh 0.40 0.43 0.63 0.70
blw 0.43 0.45 0.64 0.71 blz 0.45 0.54 0.72 0.78 bmb 0.46 0.56 0.73 0.79
bmh 0.41 0.32 0.51 0.59 bmq 0.43 0.45 0.65 0.71 bmr 0.46 0.46 0.65 0.72
bmu 0.46 0.44 0.63 0.70 bnj 0.41 0.47 0.67 0.74 bnp 0.47 0.41 0.60 0.67
boa 0.42 0.35 0.53 0.61 boj 0.41 0.41 0.60 0.68 bom 0.43 0.52 0.70 0.77
bon 0.45 0.38 0.58 0.66 box 0.43 0.46 0.66 0.73 bpr 0.42 0.50 0.69 0.75
bps 0.43 0.48 0.66 0.73 bqc 0.42 0.47 0.65 0.72 bqj 0.47 0.53 0.71 0.77
bqp 0.46 0.50 0.68 0.74 bru 0.43 0.40 0.60 0.68 bsc 0.44 0.54 0.72 0.78
bsn 0.41 0.31 0.47 0.54 bss 0.44 0.50 0.68 0.74 btd 0.47 0.50 0.68 0.75
bth 0.50 0.57 0.74 0.80 bto 0.50 0.57 0.74 0.80 btt 0.45 0.40 0.60 0.67
btx 0.47 0.57 0.74 0.80 bud 0.44 0.52 0.70 0.76 bug 0.47 0.52 0.70 0.76
buk 0.45 0.39 0.59 0.66 bul 0.46 0.57 0.74 0.79 bum 0.46 0.44 0.62 0.69
bus 0.45 0.51 0.69 0.75 bvr 0.41 0.38 0.57 0.65 bvz 0.41 0.32 0.51 0.59
bwq 0.46 0.48 0.67 0.74 bwu 0.46 0.42 0.61 0.69 bxr 0.45 0.54 0.71 0.77
byr 0.45 0.45 0.64 0.71 byx 0.43 0.29 0.48 0.56 bzd 0.44 0.45 0.64 0.71
bzh 0.39 0.39 0.59 0.66 bzi 0.42 0.46 0.65 0.72 bzj 0.46 0.48 0.66 0.73
caa 0.45 0.40 0.60 0.68 cab 0.42 0.49 0.66 0.73 cac 0.44 0.37 0.56 0.64
caf 0.44 0.42 0.61 0.68 cag 0.45 0.45 0.64 0.71 cak 0.43 0.41 0.60 0.68
cao 0.47 0.40 0.59 0.66 cap 0.42 0.44 0.63 0.70 caq 0.45 0.51 0.69 0.75
car 0.43 0.50 0.68 0.75 cas 0.45 0.44 0.64 0.71 cat 0.47 0.54 0.71 0.77
cav 0.37 0.33 0.52 0.60 cax 0.40 0.42 0.62 0.69 cbc 0.42 0.39 0.58 0.65
cbi 0.44 0.45 0.63 0.70 cbk 0.42 0.48 0.66 0.73 cbr 0.40 0.34 0.53 0.60
cbs 0.42 0.34 0.52 0.59 cbt 0.46 0.31 0.49 0.57 cbu 0.44 0.27 0.44 0.52
cbv 0.43 0.31 0.50 0.58 cce 0.48 0.56 0.73 0.79 cco 0.42 0.37 0.56 0.64
ceb 0.47 0.57 0.74 0.79 ceg 0.41 0.40 0.60 0.67 ces 0.47 0.57 0.73 0.79
cfm 0.48 0.44 0.63 0.70 cgc 0.47 0.46 0.65 0.72 cha 0.46 0.58 0.75 0.80
chd 0.42 0.42 0.60 0.67 che 0.45 0.44 0.63 0.70 chf 0.44 0.43 0.62 0.70
chk 0.46 0.50 0.69 0.76 chq 0.43 0.38 0.57 0.65 chr 0.46 0.51 0.69 0.75
chu 0.46 0.61 0.77 0.82 chv 0.48 0.53 0.71 0.77 chz 0.42 0.43 0.62 0.70
cjo 0.43 0.35 0.54 0.62 cjp 0.45 0.50 0.68 0.75 cjv 0.44 0.29 0.47 0.55
ckb 0.51 0.59 0.75 0.80 cko 0.44 0.46 0.65 0.72 cle 0.43 0.44 0.63 0.70
clu 0.44 0.51 0.69 0.75 cly 0.42 0.33 0.52 0.61 cme 0.41 0.42 0.61 0.68
cmn 0.49 0.60 0.76 0.82 cmo 0.41 0.46 0.65 0.73 cnh 0.47 0.45 0.63 0.70
cni 0.40 0.34 0.53 0.61 cnl 0.46 0.41 0.59 0.67 cnt 0.41 0.44 0.62 0.69
cnw 0.45 0.45 0.63 0.70 coe 0.43 0.34 0.53 0.61 cof 0.42 0.38 0.57 0.65
cok 0.45 0.39 0.58 0.66 con 0.40 0.43 0.62 0.69 cop 0.46 0.56 0.73 0.79
cor 0.50 0.60 0.76 0.81 cot 0.44 0.43 0.61 0.68 cpa 0.38 0.38 0.57 0.65
cpb 0.42 0.44 0.63 0.70 cpc 0.44 0.44 0.64 0.71 cpu 0.44 0.45 0.64 0.71
cpy 0.45 0.43 0.62 0.70 crm 0.44 0.54 0.71 0.77 crn 0.47 0.39 0.58 0.66
crq 0.42 0.40 0.59 0.66 crs 0.48 0.52 0.70 0.76 crt 0.43 0.41 0.60 0.67

Table 10: Transfer performance using other languages as the train/query language (Part I).



language classification retrieval language classification retrieval language classification retrieval

top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10

crx 0.44 0.41 0.59 0.67 csk 0.45 0.54 0.72 0.78 cso 0.41 0.41 0.60 0.68
csy 0.47 0.47 0.65 0.72 cta 0.43 0.29 0.48 0.56 ctd 0.47 0.46 0.64 0.71
ctp 0.42 0.25 0.43 0.51 ctu 0.41 0.41 0.60 0.67 cub 0.44 0.40 0.59 0.66
cuc 0.47 0.47 0.65 0.72 cui 0.43 0.41 0.60 0.68 cuk 0.43 0.47 0.66 0.72
cul 0.45 0.40 0.59 0.67 cut 0.37 0.32 0.51 0.59 cux 0.44 0.39 0.58 0.66
cwe 0.49 0.54 0.71 0.77 cwt 0.45 0.54 0.72 0.77 cya 0.40 0.34 0.54 0.62
cym 0.49 0.52 0.70 0.76 czt 0.43 0.49 0.68 0.75 daa 0.43 0.45 0.64 0.72
dad 0.44 0.48 0.67 0.74 dah 0.43 0.38 0.57 0.65 dan 0.48 0.57 0.74 0.80
ded 0.47 0.47 0.66 0.73 des 0.45 0.40 0.57 0.65 deu 0.49 0.56 0.73 0.78
dgc 0.45 0.44 0.63 0.71 dgi 0.47 0.49 0.67 0.74 dgr 0.41 0.44 0.63 0.70
dgz 0.42 0.38 0.57 0.65 dhm 0.46 0.56 0.73 0.79 dig 0.45 0.50 0.69 0.75
dik 0.46 0.38 0.57 0.65 dip 0.44 0.47 0.66 0.72 dis 0.46 0.52 0.70 0.76
dje 0.47 0.56 0.74 0.80 djk 0.42 0.34 0.53 0.61 djr 0.44 0.42 0.61 0.68
dnj 0.45 0.35 0.53 0.61 dob 0.45 0.47 0.66 0.73 dop 0.43 0.42 0.61 0.68
dow 0.45 0.50 0.69 0.75 dtp 0.44 0.51 0.70 0.76 dts 0.46 0.52 0.70 0.77
due 0.45 0.48 0.67 0.74 dug 0.47 0.50 0.69 0.75 duo 0.43 0.43 0.63 0.70
dur 0.45 0.41 0.61 0.69 dwr 0.48 0.57 0.73 0.79 dww 0.43 0.49 0.68 0.75
dyi 0.44 0.50 0.68 0.75 dyo 0.49 0.52 0.71 0.77 dyu 0.46 0.49 0.68 0.74
ebk 0.47 0.54 0.72 0.78 efi 0.48 0.48 0.65 0.72 eka 0.48 0.48 0.67 0.74
ell 0.48 0.59 0.75 0.81 emp 0.41 0.47 0.66 0.73 enb 0.47 0.47 0.65 0.72
eng 0.49 0.65 0.80 0.84 enl 0.44 0.47 0.66 0.73 enm 0.46 0.59 0.75 0.81
epo 0.47 0.61 0.77 0.82 eri 0.42 0.42 0.61 0.68 ese 0.39 0.29 0.47 0.55
esi 0.44 0.52 0.70 0.77 esk 0.50 0.52 0.70 0.76 est 0.47 0.57 0.73 0.79
esu 0.46 0.54 0.72 0.78 etu 0.43 0.45 0.64 0.72 eus 0.50 0.59 0.75 0.81
ewe 0.50 0.50 0.68 0.74 eza 0.46 0.44 0.63 0.70 faa 0.44 0.36 0.54 0.61
fai 0.46 0.37 0.55 0.63 fal 0.43 0.52 0.70 0.77 fao 0.45 0.55 0.72 0.78
ffm 0.47 0.55 0.73 0.79 fij 0.44 0.50 0.70 0.76 fil 0.44 0.60 0.76 0.81
fin 0.46 0.59 0.76 0.81 fon 0.43 0.43 0.62 0.70 for 0.42 0.43 0.62 0.69
fra 0.47 0.56 0.73 0.78 fry 0.47 0.56 0.72 0.78 fub 0.47 0.54 0.71 0.78
fuf 0.46 0.56 0.73 0.79 fuh 0.50 0.55 0.73 0.79 fuq 0.47 0.56 0.73 0.79
fuv 0.46 0.54 0.71 0.78 gaa 0.46 0.53 0.70 0.76 gag 0.45 0.60 0.76 0.81
gah 0.46 0.40 0.58 0.66 gam 0.40 0.33 0.52 0.60 gaw 0.44 0.38 0.57 0.64
gbi 0.43 0.45 0.63 0.70 gbo 0.47 0.43 0.62 0.69 gbr 0.41 0.32 0.50 0.58
gde 0.43 0.50 0.68 0.75 gdg 0.45 0.45 0.64 0.71 gdn 0.44 0.40 0.59 0.67
gdr 0.45 0.48 0.67 0.74 geb 0.43 0.40 0.59 0.67 gej 0.46 0.51 0.68 0.75
gfk 0.45 0.46 0.65 0.72 ghe 0.49 0.54 0.72 0.78 ghs 0.43 0.33 0.51 0.59
gid 0.44 0.46 0.65 0.73 gil 0.48 0.51 0.69 0.75 giz 0.47 0.45 0.64 0.71
gjn 0.42 0.52 0.70 0.76 gkn 0.42 0.45 0.64 0.72 gkp 0.49 0.44 0.63 0.70
gle 0.47 0.48 0.66 0.72 gmv 0.46 0.55 0.72 0.78 gnb 0.46 0.49 0.67 0.74
gnd 0.37 0.37 0.57 0.65 gng 0.41 0.52 0.70 0.77 gnn 0.46 0.35 0.54 0.62
gnw 0.46 0.47 0.65 0.72 gof 0.46 0.57 0.73 0.79 gog 0.48 0.56 0.73 0.78
gor 0.47 0.52 0.69 0.75 gqr 0.41 0.38 0.58 0.66 grt 0.46 0.55 0.72 0.78
gso 0.47 0.48 0.67 0.73 gub 0.37 0.29 0.47 0.55 guc 0.40 0.38 0.56 0.64
gud 0.48 0.52 0.70 0.77 guh 0.43 0.40 0.58 0.66 gui 0.44 0.46 0.66 0.73
guj 0.44 0.46 0.64 0.71 guk 0.44 0.52 0.70 0.76 gul 0.45 0.48 0.66 0.73
gum 0.45 0.48 0.66 0.72 gun 0.41 0.49 0.67 0.74 guo 0.40 0.37 0.56 0.63
guq 0.43 0.40 0.60 0.67 gur 0.46 0.41 0.60 0.68 guw 0.49 0.55 0.71 0.77
gux 0.47 0.52 0.70 0.76 guz 0.46 0.53 0.70 0.76 gvc 0.42 0.41 0.60 0.67
gvf 0.43 0.30 0.49 0.57 gvl 0.49 0.44 0.63 0.71 gvn 0.43 0.37 0.55 0.63
gwi 0.42 0.39 0.58 0.65 gya 0.48 0.42 0.61 0.68 gym 0.40 0.39 0.58 0.66
gyr 0.46 0.44 0.63 0.70 hae 0.47 0.55 0.73 0.79 hag 0.43 0.42 0.62 0.70
hak 0.44 0.58 0.75 0.81 hat 0.47 0.41 0.61 0.68 hau 0.49 0.56 0.72 0.78
haw 0.42 0.50 0.69 0.75 hay 0.46 0.52 0.70 0.76 hch 0.44 0.51 0.69 0.75
heb 0.46 0.55 0.72 0.78 heg 0.45 0.36 0.55 0.63 heh 0.49 0.54 0.71 0.77
hif 0.46 0.45 0.63 0.70 hig 0.43 0.47 0.67 0.74 hil 0.47 0.60 0.77 0.82
hin 0.47 0.56 0.73 0.79 hix 0.41 0.40 0.59 0.66 hla 0.44 0.40 0.59 0.67
hlt 0.44 0.54 0.73 0.79 hmo 0.46 0.53 0.71 0.77 hne 0.48 0.55 0.72 0.78
hnj 0.50 0.45 0.64 0.72 hnn 0.42 0.50 0.68 0.75 hns 0.46 0.43 0.62 0.70
hop 0.45 0.49 0.67 0.74 hot 0.45 0.37 0.56 0.64 hra 0.44 0.49 0.67 0.74
hrv 0.46 0.58 0.75 0.80 hto 0.42 0.43 0.62 0.69 hub 0.44 0.37 0.56 0.64
hui 0.46 0.39 0.58 0.66 hun 0.49 0.57 0.73 0.79 hus 0.41 0.50 0.68 0.75
huu 0.41 0.35 0.54 0.62 huv 0.44 0.38 0.57 0.65 hvn 0.42 0.44 0.64 0.71
hwc 0.38 0.41 0.60 0.68 hye 0.46 0.56 0.73 0.79 ian 0.37 0.27 0.44 0.52
iba 0.46 0.58 0.75 0.81 ibo 0.47 0.46 0.65 0.72 icr 0.45 0.45 0.64 0.71
ifa 0.44 0.41 0.60 0.67 ifb 0.44 0.43 0.62 0.69 ifk 0.42 0.40 0.58 0.65
ifu 0.42 0.46 0.65 0.72 ify 0.48 0.32 0.50 0.58 ign 0.40 0.41 0.60 0.67
ike 0.47 0.55 0.72 0.78 ikk 0.44 0.54 0.72 0.78 ikw 0.44 0.53 0.71 0.77
ilb 0.48 0.57 0.74 0.80 ilo 0.47 0.56 0.73 0.78 imo 0.47 0.34 0.53 0.61
inb 0.47 0.45 0.64 0.71 ind 0.46 0.57 0.73 0.79 ino 0.42 0.39 0.58 0.66
iou 0.43 0.35 0.55 0.63 ipi 0.41 0.38 0.57 0.65 iqw 0.45 0.45 0.64 0.71
iri 0.40 0.46 0.65 0.72 irk 0.43 0.54 0.72 0.78 iry 0.45 0.53 0.71 0.78
isd 0.45 0.47 0.66 0.73 isl 0.46 0.58 0.75 0.80 ita 0.45 0.59 0.75 0.81
itv 0.46 0.56 0.74 0.79 ium 0.44 0.42 0.61 0.69 ivb 0.47 0.47 0.65 0.72
ivv 0.42 0.43 0.62 0.70 iws 0.39 0.35 0.54 0.62 ixl 0.41 0.41 0.59 0.67
izr 0.42 0.46 0.66 0.73 izz 0.45 0.47 0.66 0.73 jac 0.44 0.44 0.64 0.71
jae 0.45 0.49 0.68 0.75 jam 0.43 0.41 0.60 0.68 jav 0.47 0.48 0.67 0.73
jbu 0.45 0.37 0.56 0.64 jic 0.36 0.28 0.46 0.54 jiv 0.40 0.40 0.60 0.68
jmc 0.49 0.49 0.67 0.73 jpn 0.45 0.61 0.77 0.82 jra 0.43 0.53 0.72 0.78
jvn 0.46 0.45 0.63 0.70 kaa 0.45 0.54 0.71 0.77 kab 0.45 0.51 0.69 0.75
kac 0.41 0.41 0.60 0.68 kal 0.46 0.58 0.75 0.80 kan 0.44 0.60 0.77 0.82
kao 0.44 0.54 0.72 0.78 kaq 0.44 0.37 0.56 0.64 kat 0.46 0.59 0.76 0.81
kaz 0.45 0.55 0.72 0.78 kbc 0.40 0.47 0.66 0.73 kbh 0.46 0.47 0.65 0.72
kbm 0.42 0.33 0.52 0.60 kbp 0.43 0.51 0.69 0.76 kbq 0.43 0.44 0.62 0.70
kbr 0.43 0.53 0.71 0.76 kck 0.52 0.56 0.73 0.79 kdc 0.46 0.56 0.73 0.79
kde 0.48 0.59 0.75 0.81 kdi 0.45 0.54 0.72 0.78 kdj 0.45 0.57 0.74 0.80

Table 11: Transfer performance using other languages as the train/query language (Part II).



language classification retrieval language classification retrieval language classification retrieval

top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10

kdl 0.41 0.42 0.61 0.69 kek 0.47 0.39 0.58 0.66 ken 0.47 0.46 0.65 0.72
kew 0.43 0.35 0.54 0.62 kez 0.43 0.46 0.65 0.72 kff 0.47 0.48 0.66 0.72
kgf 0.45 0.46 0.65 0.72 kgk 0.46 0.37 0.56 0.64 kgp 0.41 0.30 0.49 0.58
khk 0.47 0.57 0.74 0.80 khm 0.45 0.56 0.73 0.79 khs 0.44 0.32 0.51 0.59
khy 0.45 0.54 0.71 0.77 khz 0.46 0.50 0.69 0.75 kia 0.39 0.42 0.61 0.68
kik 0.48 0.54 0.71 0.77 kin 0.46 0.55 0.72 0.78 kir 0.46 0.53 0.70 0.76
kix 0.43 0.53 0.71 0.77 kjb 0.40 0.39 0.59 0.66 kje 0.42 0.38 0.58 0.66
kjh 0.46 0.52 0.70 0.76 kjs 0.43 0.37 0.56 0.64 kki 0.45 0.54 0.71 0.77
kkj 0.45 0.46 0.65 0.72 klv 0.43 0.49 0.67 0.74 kma 0.44 0.48 0.67 0.73
kmg 0.42 0.44 0.63 0.70 kmh 0.40 0.27 0.45 0.53 kmk 0.45 0.50 0.68 0.75
kmm 0.47 0.48 0.67 0.73 kmo 0.43 0.35 0.54 0.62 kmr 0.47 0.59 0.75 0.80
kms 0.41 0.32 0.51 0.59 kmu 0.40 0.39 0.59 0.66 kne 0.44 0.50 0.68 0.75
knf 0.44 0.52 0.71 0.77 kng 0.45 0.52 0.70 0.76 knj 0.40 0.44 0.63 0.71
knk 0.45 0.50 0.68 0.75 kno 0.37 0.34 0.53 0.61 knv 0.42 0.39 0.58 0.65
kog 0.40 0.41 0.60 0.67 kor 0.46 0.57 0.74 0.79 kpf 0.43 0.39 0.58 0.65
kpg 0.41 0.39 0.58 0.66 kpj 0.45 0.36 0.54 0.62 kpr 0.45 0.35 0.53 0.61
kpv 0.46 0.55 0.73 0.78 kpw 0.41 0.27 0.45 0.53 kpx 0.42 0.35 0.54 0.62
kpz 0.44 0.53 0.71 0.77 kqe 0.48 0.52 0.70 0.77 kqo 0.44 0.45 0.64 0.71
kqp 0.41 0.38 0.57 0.65 kqs 0.43 0.53 0.71 0.77 kqy 0.42 0.53 0.70 0.77
krc 0.47 0.57 0.74 0.79 kri 0.42 0.43 0.62 0.70 krj 0.43 0.57 0.74 0.80
ksc 0.45 0.45 0.64 0.71 ksd 0.46 0.50 0.68 0.75 ksf 0.48 0.51 0.69 0.76
ksr 0.43 0.44 0.63 0.70 kss 0.43 0.45 0.64 0.71 ksw 0.48 0.51 0.69 0.75
ktb 0.45 0.56 0.73 0.79 ktj 0.43 0.40 0.60 0.68 kto 0.42 0.41 0.61 0.68
ktu 0.47 0.55 0.72 0.78 kua 0.46 0.54 0.71 0.77 kub 0.44 0.40 0.60 0.67
kud 0.46 0.45 0.63 0.70 kue 0.47 0.42 0.62 0.69 kum 0.42 0.52 0.70 0.76
kup 0.41 0.31 0.49 0.57 kus 0.45 0.52 0.70 0.77 kvj 0.44 0.50 0.69 0.76
kvn 0.44 0.42 0.60 0.68 kwd 0.42 0.47 0.66 0.73 kwf 0.41 0.48 0.66 0.73
kwi 0.41 0.37 0.56 0.64 kwj 0.42 0.36 0.55 0.63 kxc 0.49 0.53 0.71 0.77
kxm 0.46 0.46 0.66 0.73 kxw 0.43 0.37 0.57 0.65 kyc 0.43 0.36 0.55 0.63
kyf 0.45 0.49 0.67 0.73 kyg 0.42 0.43 0.61 0.69 kyq 0.43 0.43 0.63 0.70
kyu 0.41 0.53 0.71 0.77 kyz 0.40 0.33 0.52 0.60 kze 0.47 0.39 0.58 0.65
lac 0.38 0.34 0.53 0.62 lai 0.46 0.57 0.75 0.80 laj 0.46 0.53 0.71 0.77
lam 0.43 0.56 0.73 0.78 lao 0.47 0.56 0.73 0.79 las 0.43 0.45 0.64 0.71
lat 0.46 0.57 0.74 0.80 lav 0.45 0.58 0.75 0.80 lbk 0.46 0.53 0.71 0.77
lcm 0.47 0.39 0.58 0.66 ldi 0.47 0.49 0.68 0.74 lee 0.48 0.44 0.63 0.70
lef 0.44 0.40 0.60 0.67 leh 0.46 0.51 0.69 0.75 lem 0.45 0.46 0.64 0.71
leu 0.47 0.45 0.65 0.72 lew 0.46 0.50 0.69 0.76 lex 0.46 0.41 0.60 0.68
lgm 0.43 0.55 0.72 0.78 lhi 0.44 0.39 0.59 0.67 lhm 0.43 0.49 0.68 0.74
lhu 0.48 0.42 0.62 0.70 lia 0.47 0.51 0.69 0.76 lid 0.43 0.35 0.54 0.62
lif 0.49 0.48 0.67 0.73 lin 0.47 0.53 0.71 0.77 lip 0.39 0.42 0.60 0.67
lit 0.49 0.58 0.75 0.81 ljp 0.48 0.54 0.71 0.78 lmk 0.45 0.52 0.69 0.76
lmp 0.46 0.47 0.66 0.74 lob 0.47 0.47 0.66 0.72 lol 0.48 0.50 0.68 0.74
lom 0.46 0.44 0.63 0.71 loz 0.48 0.52 0.70 0.76 lsi 0.42 0.40 0.59 0.67
lsm 0.47 0.52 0.70 0.76 lug 0.45 0.57 0.74 0.79 luo 0.46 0.50 0.68 0.74
lus 0.41 0.54 0.71 0.77 lwo 0.41 0.37 0.56 0.64 lww 0.45 0.31 0.50 0.58
lzh 0.47 0.62 0.77 0.82 maa 0.44 0.47 0.66 0.73 mad 0.46 0.52 0.70 0.76
maf 0.47 0.50 0.69 0.75 mah 0.46 0.50 0.69 0.75 mai 0.44 0.57 0.74 0.80
maj 0.45 0.50 0.69 0.75 mak 0.44 0.52 0.70 0.77 mal 0.45 0.56 0.72 0.78
mam 0.44 0.48 0.67 0.74 maq 0.40 0.41 0.59 0.67 mar 0.44 0.50 0.68 0.75
mau 0.45 0.40 0.59 0.67 mav 0.40 0.28 0.46 0.55 maw 0.45 0.47 0.66 0.73
maz 0.43 0.38 0.58 0.65 mbb 0.44 0.48 0.67 0.74 mbc 0.45 0.37 0.55 0.62
mbd 0.45 0.42 0.61 0.69 mbf 0.47 0.59 0.75 0.80 mbh 0.46 0.45 0.64 0.71
mbi 0.43 0.45 0.64 0.71 mbj 0.41 0.41 0.61 0.68 mbl 0.45 0.29 0.48 0.57
mbs 0.43 0.45 0.64 0.71 mbt 0.45 0.53 0.71 0.77 mca 0.45 0.48 0.67 0.74
mcb 0.39 0.39 0.58 0.65 mcd 0.42 0.33 0.51 0.59 mcf 0.41 0.22 0.39 0.47
mck 0.47 0.51 0.69 0.76 mcn 0.45 0.50 0.69 0.75 mco 0.40 0.42 0.60 0.68
mcp 0.45 0.50 0.68 0.75 mcq 0.45 0.42 0.62 0.69 mcu 0.44 0.39 0.58 0.66
mda 0.43 0.34 0.53 0.61 mdy 0.46 0.51 0.69 0.75 med 0.44 0.28 0.46 0.54
mee 0.43 0.48 0.67 0.73 mej 0.42 0.34 0.54 0.62 mek 0.42 0.43 0.63 0.70
men 0.45 0.48 0.67 0.73 meq 0.43 0.40 0.61 0.68 meu 0.46 0.48 0.67 0.74
mfe 0.47 0.54 0.71 0.77 mfh 0.46 0.40 0.59 0.66 mfi 0.45 0.43 0.62 0.69
mfk 0.44 0.44 0.63 0.70 mfq 0.45 0.48 0.66 0.73 mfy 0.45 0.44 0.62 0.69
mfz 0.43 0.43 0.62 0.69 mhi 0.44 0.40 0.59 0.66 mhl 0.44 0.38 0.57 0.64
mhr 0.45 0.57 0.74 0.79 mhx 0.45 0.39 0.59 0.66 mhy 0.43 0.52 0.70 0.76
mib 0.41 0.44 0.63 0.70 mic 0.46 0.44 0.63 0.70 mie 0.48 0.45 0.64 0.71
mif 0.44 0.45 0.64 0.71 mig 0.44 0.49 0.67 0.74 mih 0.43 0.35 0.55 0.63
mil 0.40 0.33 0.51 0.59 min 0.45 0.52 0.70 0.76 mio 0.39 0.32 0.52 0.60
miq 0.45 0.42 0.62 0.69 mir 0.38 0.34 0.51 0.59 mit 0.43 0.40 0.58 0.66
miy 0.42 0.42 0.62 0.70 miz 0.40 0.35 0.55 0.63 mjc 0.42 0.36 0.55 0.63
mjw 0.49 0.53 0.71 0.78 mkd 0.46 0.59 0.75 0.81 mkl 0.44 0.48 0.67 0.73
mkn 0.43 0.38 0.57 0.65 mks 0.44 0.38 0.58 0.66 mlh 0.48 0.43 0.63 0.70
mlp 0.45 0.40 0.59 0.67 mlt 0.49 0.57 0.74 0.79 mmn 0.44 0.43 0.62 0.70
mmo 0.46 0.41 0.59 0.67 mmx 0.41 0.44 0.63 0.70 mna 0.40 0.36 0.56 0.64
mnb 0.44 0.56 0.74 0.79 mnf 0.45 0.42 0.61 0.69 mnh 0.44 0.44 0.63 0.70
mnk 0.46 0.57 0.74 0.80 mnx 0.41 0.35 0.54 0.62 moc 0.44 0.48 0.65 0.72
mog 0.41 0.48 0.66 0.72 mop 0.41 0.40 0.59 0.67 mor 0.46 0.50 0.69 0.75
mos 0.46 0.44 0.63 0.70 mox 0.46 0.47 0.66 0.72 mpg 0.45 0.49 0.68 0.74
mpm 0.44 0.31 0.50 0.58 mps 0.41 0.26 0.43 0.52 mpt 0.41 0.35 0.53 0.61
mqb 0.47 0.38 0.58 0.66 mqj 0.45 0.53 0.71 0.77 mqy 0.46 0.49 0.68 0.74
mri 0.45 0.45 0.64 0.71 mrw 0.47 0.55 0.72 0.78 msa 0.47 0.58 0.75 0.81
msb 0.45 0.55 0.72 0.78 mse 0.48 0.44 0.63 0.70 msk 0.45 0.41 0.61 0.68
msm 0.43 0.49 0.67 0.74 msy 0.44 0.44 0.63 0.70 mta 0.44 0.44 0.63 0.70
mtg 0.44 0.36 0.55 0.63 mti 0.44 0.46 0.65 0.72 mtj 0.43 0.34 0.53 0.62
mto 0.40 0.47 0.66 0.73 mtp 0.47 0.50 0.68 0.74 mua 0.38 0.46 0.65 0.72
muh 0.38 0.22 0.39 0.48 mur 0.44 0.46 0.65 0.72 mux 0.42 0.37 0.55 0.63

Table 12: Transfer performance using other languages as the train/query language (Part III).



language classification retrieval language classification retrieval language classification retrieval

top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10

muy 0.43 0.43 0.62 0.69 mva 0.45 0.47 0.66 0.72 mvn 0.45 0.44 0.63 0.70
mvp 0.45 0.49 0.68 0.74 mwm 0.44 0.40 0.59 0.67 mwq 0.45 0.45 0.65 0.72
mwv 0.45 0.52 0.70 0.76 mww 0.40 0.45 0.65 0.72 mxb 0.39 0.42 0.61 0.69
mxp 0.44 0.37 0.56 0.63 mxq 0.43 0.45 0.64 0.71 mxt 0.43 0.37 0.56 0.64
mya 0.48 0.60 0.76 0.81 myb 0.43 0.48 0.67 0.73 myk 0.44 0.45 0.63 0.70
myu 0.41 0.38 0.58 0.65 myv 0.50 0.54 0.71 0.77 myw 0.40 0.41 0.60 0.68
myx 0.49 0.54 0.71 0.77 myy 0.44 0.33 0.51 0.59 mza 0.42 0.38 0.57 0.65
mzh 0.46 0.44 0.63 0.70 mzk 0.44 0.39 0.58 0.66 mzl 0.43 0.45 0.64 0.71
mzm 0.40 0.35 0.55 0.63 mzw 0.45 0.43 0.62 0.70 nab 0.38 0.34 0.53 0.61
naf 0.44 0.34 0.52 0.60 nak 0.42 0.32 0.51 0.59 nan 0.48 0.57 0.74 0.80
naq 0.49 0.57 0.74 0.80 nas 0.46 0.46 0.64 0.71 nav 0.46 0.50 0.69 0.76
nbc 0.45 0.54 0.72 0.78 nbe 0.46 0.55 0.72 0.78 nbl 0.50 0.57 0.73 0.79
nca 0.44 0.43 0.63 0.70 nch 0.45 0.47 0.65 0.72 ncj 0.42 0.45 0.63 0.70
ncl 0.44 0.40 0.58 0.66 nct 0.47 0.44 0.63 0.70 ncu 0.45 0.41 0.60 0.67
ndc 0.48 0.59 0.76 0.81 nde 0.49 0.56 0.73 0.79 ndi 0.43 0.46 0.65 0.72
ndj 0.45 0.55 0.72 0.78 ndo 0.46 0.55 0.72 0.78 ndp 0.51 0.52 0.70 0.76
nds 0.47 0.54 0.71 0.77 ndz 0.41 0.34 0.53 0.61 neb 0.42 0.43 0.62 0.69
nep 0.48 0.61 0.78 0.83 nfa 0.42 0.37 0.57 0.65 nfr 0.43 0.43 0.62 0.69
ngc 0.46 0.55 0.72 0.78 ngp 0.49 0.51 0.69 0.76 ngu 0.44 0.49 0.67 0.74
nhd 0.43 0.49 0.67 0.74 nhe 0.44 0.47 0.66 0.73 nhg 0.42 0.52 0.70 0.76
nhi 0.45 0.53 0.70 0.77 nho 0.47 0.39 0.59 0.66 nhr 0.47 0.54 0.72 0.78
nhu 0.45 0.46 0.65 0.72 nhw 0.42 0.47 0.66 0.72 nhx 0.41 0.47 0.66 0.73
nhy 0.46 0.51 0.69 0.75 nii 0.40 0.24 0.41 0.49 nij 0.48 0.50 0.68 0.75
nim 0.46 0.58 0.74 0.79 nin 0.44 0.36 0.55 0.63 niq 0.46 0.60 0.76 0.82
niy 0.43 0.51 0.69 0.75 njb 0.43 0.50 0.68 0.75 njm 0.43 0.50 0.67 0.74
njn 0.41 0.53 0.70 0.76 njo 0.45 0.56 0.73 0.78 njz 0.46 0.51 0.69 0.76
nko 0.45 0.50 0.69 0.75 nlc 0.43 0.38 0.57 0.64 nld 0.47 0.55 0.72 0.78
nma 0.44 0.53 0.70 0.76 nmf 0.44 0.51 0.69 0.75 nmo 0.48 0.50 0.68 0.75
nmz 0.40 0.48 0.67 0.73 nnb 0.46 0.59 0.76 0.81 nng 0.45 0.52 0.70 0.76
nnh 0.42 0.38 0.58 0.66 nno 0.46 0.55 0.72 0.78 nnp 0.48 0.48 0.66 0.73
nnq 0.46 0.53 0.71 0.77 nnw 0.42 0.43 0.63 0.70 noa 0.42 0.34 0.52 0.60
nob 0.48 0.58 0.74 0.80 nog 0.49 0.53 0.70 0.76 nop 0.42 0.41 0.60 0.68
not 0.42 0.37 0.56 0.64 nou 0.43 0.34 0.53 0.61 nph 0.46 0.56 0.74 0.79
npi 0.45 0.58 0.74 0.80 npl 0.46 0.49 0.67 0.73 npo 0.46 0.50 0.69 0.76
npy 0.44 0.49 0.67 0.74 nsn 0.46 0.46 0.65 0.72 nso 0.48 0.54 0.71 0.77
ntp 0.42 0.38 0.56 0.64 ntr 0.44 0.40 0.60 0.67 nus 0.47 0.50 0.68 0.74
nuy 0.48 0.44 0.63 0.70 nvm 0.45 0.34 0.52 0.59 nwb 0.42 0.39 0.58 0.65
nwi 0.44 0.39 0.58 0.66 nya 0.47 0.56 0.73 0.79 nyf 0.43 0.54 0.72 0.78
nyn 0.47 0.55 0.73 0.79 nyo 0.44 0.55 0.73 0.78 nyy 0.49 0.56 0.73 0.79
obo 0.47 0.50 0.68 0.75 oji 0.46 0.45 0.64 0.71 ojs 0.48 0.53 0.72 0.78
okv 0.43 0.32 0.51 0.59 old 0.45 0.50 0.68 0.74 omw 0.43 0.35 0.54 0.62
ong 0.42 0.31 0.50 0.58 ons 0.41 0.39 0.59 0.67 ood 0.44 0.36 0.55 0.63
opm 0.42 0.33 0.51 0.59 ory 0.44 0.52 0.69 0.76 oss 0.47 0.51 0.69 0.75
ote 0.47 0.43 0.62 0.69 otm 0.44 0.37 0.56 0.64 otn 0.40 0.42 0.61 0.68
otq 0.45 0.45 0.64 0.71 ots 0.43 0.31 0.49 0.57 ozm 0.47 0.46 0.65 0.72
pab 0.46 0.43 0.62 0.69 pad 0.42 0.41 0.61 0.68 pag 0.50 0.61 0.77 0.82
pah 0.41 0.39 0.59 0.66 pam 0.46 0.56 0.73 0.79 pan 0.47 0.54 0.72 0.78
pao 0.43 0.23 0.41 0.49 pap 0.47 0.58 0.75 0.80 pbb 0.42 0.39 0.58 0.65
pbc 0.46 0.47 0.66 0.73 pbi 0.41 0.44 0.63 0.70 pbl 0.48 0.52 0.70 0.76
pcm 0.48 0.48 0.67 0.73 pdc 0.47 0.53 0.71 0.77 pdt 0.48 0.52 0.70 0.77
pes 0.45 0.57 0.73 0.79 pib 0.45 0.57 0.75 0.80 pio 0.41 0.40 0.59 0.67
pir 0.46 0.39 0.58 0.65 pis 0.44 0.52 0.71 0.77 pkb 0.47 0.53 0.71 0.77
plg 0.42 0.47 0.66 0.73 pls 0.41 0.42 0.60 0.68 plu 0.44 0.42 0.61 0.68
plw 0.43 0.48 0.66 0.73 pmf 0.45 0.47 0.66 0.72 pne 0.45 0.45 0.65 0.72
poe 0.41 0.46 0.65 0.72 poh 0.47 0.39 0.59 0.66 poi 0.43 0.48 0.66 0.73
pol 0.47 0.57 0.73 0.79 pon 0.49 0.49 0.68 0.74 por 0.51 0.59 0.75 0.81
poy 0.45 0.56 0.73 0.79 ppk 0.48 0.50 0.69 0.75 ppo 0.46 0.38 0.57 0.65
prf 0.47 0.56 0.74 0.80 pri 0.46 0.45 0.65 0.72 prk 0.47 0.49 0.67 0.74
prs 0.44 0.55 0.73 0.78 pse 0.42 0.55 0.73 0.79 ptp 0.41 0.35 0.55 0.63
ptu 0.45 0.53 0.71 0.77 pua 0.45 0.45 0.63 0.71 pwg 0.44 0.46 0.66 0.73
pww 0.41 0.46 0.65 0.72 qub 0.43 0.37 0.56 0.64 quc 0.45 0.40 0.59 0.67
quf 0.40 0.41 0.59 0.66 qug 0.44 0.51 0.69 0.75 quh 0.47 0.53 0.70 0.77
qul 0.45 0.56 0.73 0.79 qup 0.48 0.38 0.57 0.65 quw 0.43 0.55 0.73 0.79
quy 0.45 0.50 0.69 0.75 quz 0.45 0.55 0.73 0.79 qvc 0.41 0.42 0.61 0.68
qve 0.45 0.49 0.67 0.74 qvh 0.41 0.34 0.52 0.60 qvi 0.48 0.51 0.70 0.76
qvm 0.40 0.34 0.52 0.60 qvn 0.43 0.41 0.59 0.66 qvo 0.44 0.46 0.64 0.70
qvs 0.40 0.41 0.59 0.66 qvw 0.42 0.45 0.64 0.71 qvz 0.43 0.42 0.60 0.68
qwh 0.47 0.48 0.66 0.72 qxh 0.40 0.36 0.55 0.62 qxn 0.44 0.47 0.67 0.73
qxo 0.42 0.32 0.50 0.58 qxr 0.42 0.50 0.69 0.76 rai 0.43 0.46 0.66 0.73
rim 0.47 0.51 0.69 0.76 rkb 0.40 0.30 0.48 0.56 rmo 0.42 0.40 0.59 0.67
rmy 0.46 0.52 0.69 0.75 ron 0.47 0.56 0.72 0.78 roo 0.46 0.42 0.61 0.68
rop 0.42 0.35 0.54 0.62 rro 0.43 0.49 0.67 0.74 ruf 0.44 0.55 0.73 0.79
run 0.50 0.54 0.72 0.78 rus 0.48 0.55 0.72 0.78 rwo 0.46 0.39 0.57 0.65
sab 0.37 0.28 0.47 0.55 sag 0.46 0.48 0.67 0.73 sah 0.46 0.53 0.71 0.77
sas 0.50 0.55 0.72 0.78 sba 0.45 0.40 0.59 0.66 sbd 0.44 0.41 0.60 0.68
sbl 0.43 0.51 0.69 0.76 sda 0.46 0.56 0.73 0.79 sey 0.43 0.43 0.63 0.70
sgb 0.42 0.43 0.61 0.69 sgw 0.45 0.51 0.70 0.76 sgz 0.41 0.38 0.57 0.65
shi 0.45 0.51 0.69 0.75 shk 0.44 0.48 0.67 0.73 shp 0.46 0.44 0.62 0.69
shu 0.45 0.50 0.69 0.75 sig 0.41 0.44 0.63 0.71 sil 0.43 0.44 0.64 0.71
sim 0.44 0.37 0.56 0.64 sin 0.48 0.49 0.66 0.73 sja 0.43 0.37 0.55 0.63
sld 0.46 0.47 0.66 0.73 slk 0.48 0.58 0.74 0.80 sll 0.39 0.24 0.42 0.51
slv 0.49 0.56 0.73 0.79 sme 0.47 0.62 0.78 0.83 smk 0.39 0.47 0.65 0.72
sml 0.45 0.50 0.69 0.76 smo 0.46 0.52 0.70 0.76 sna 0.49 0.56 0.73 0.79
snc 0.47 0.52 0.70 0.76 snd 0.44 0.55 0.73 0.78 snn 0.42 0.30 0.49 0.57
snp 0.43 0.42 0.61 0.68 snw 0.45 0.46 0.64 0.71 sny 0.38 0.30 0.49 0.57

Table 13: Transfer performance using other languages as the train/query language (Part IV).



language classification retrieval language classification retrieval language classification retrieval

top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10

som 0.48 0.57 0.74 0.80 soq 0.47 0.43 0.62 0.69 sot 0.47 0.52 0.69 0.75
soy 0.45 0.48 0.67 0.74 spa 0.47 0.58 0.74 0.80 spl 0.38 0.25 0.42 0.50
spp 0.47 0.48 0.66 0.73 sps 0.44 0.42 0.60 0.67 spy 0.47 0.48 0.67 0.73
sqi 0.42 0.32 0.45 0.51 sri 0.42 0.43 0.62 0.69 srm 0.43 0.34 0.53 0.61
srn 0.48 0.50 0.68 0.74 srp 0.46 0.59 0.75 0.80 srq 0.41 0.31 0.50 0.59
ssd 0.47 0.38 0.58 0.65 ssg 0.41 0.37 0.56 0.64 ssw 0.47 0.57 0.74 0.80
ssx 0.45 0.39 0.58 0.65 stn 0.45 0.43 0.62 0.69 stp 0.39 0.27 0.45 0.53
sua 0.43 0.38 0.56 0.64 sue 0.42 0.36 0.56 0.64 suk 0.43 0.54 0.71 0.77
sun 0.43 0.48 0.66 0.73 sur 0.40 0.49 0.68 0.74 sus 0.39 0.51 0.70 0.77
swe 0.45 0.55 0.72 0.78 swg 0.48 0.57 0.73 0.79 swh 0.47 0.55 0.72 0.78
swk 0.45 0.57 0.75 0.80 swp 0.44 0.51 0.69 0.75 sxb 0.44 0.51 0.69 0.76
sxn 0.45 0.50 0.68 0.75 syc 0.49 0.53 0.70 0.76 szb 0.40 0.34 0.52 0.60
tab 0.45 0.51 0.69 0.75 tac 0.42 0.28 0.45 0.53 taj 0.47 0.46 0.65 0.72
tam 0.43 0.60 0.77 0.82 taq 0.44 0.48 0.66 0.73 tar 0.42 0.38 0.58 0.65
tat 0.46 0.56 0.74 0.79 tav 0.47 0.32 0.51 0.60 taw 0.39 0.33 0.52 0.60
tbc 0.47 0.38 0.58 0.65 tbg 0.41 0.35 0.54 0.62 tbl 0.43 0.45 0.64 0.72
tbo 0.45 0.46 0.66 0.73 tby 0.44 0.51 0.69 0.75 tbz 0.44 0.40 0.60 0.67
tca 0.44 0.41 0.60 0.67 tcc 0.49 0.52 0.69 0.76 tcs 0.40 0.43 0.63 0.70
tcz 0.45 0.52 0.69 0.76 tdt 0.45 0.53 0.71 0.77 tee 0.46 0.42 0.60 0.67
tel 0.46 0.54 0.72 0.78 tem 0.46 0.56 0.73 0.79 teo 0.49 0.57 0.74 0.79
ter 0.45 0.43 0.63 0.70 tfr 0.40 0.40 0.59 0.67 tgk 0.46 0.59 0.75 0.80
tgl 0.46 0.55 0.72 0.78 tgp 0.47 0.44 0.64 0.71 tha 0.49 0.54 0.72 0.78
thk 0.46 0.52 0.70 0.76 tih 0.47 0.51 0.69 0.76 tik 0.45 0.41 0.60 0.67
tim 0.44 0.30 0.49 0.57 tir 0.46 0.59 0.76 0.81 tku 0.42 0.44 0.63 0.70
tlb 0.47 0.51 0.69 0.75 tlf 0.44 0.30 0.48 0.56 tlh 0.50 0.58 0.75 0.80
tna 0.45 0.40 0.59 0.67 tnn 0.42 0.38 0.58 0.66 tob 0.43 0.39 0.59 0.67
toc 0.41 0.40 0.58 0.66 toh 0.49 0.54 0.71 0.77 toj 0.41 0.35 0.53 0.61
too 0.42 0.46 0.65 0.72 top 0.41 0.36 0.53 0.61 tos 0.40 0.39 0.58 0.65
tpi 0.42 0.48 0.68 0.75 tpm 0.41 0.31 0.51 0.59 tpp 0.45 0.50 0.68 0.74
tpt 0.44 0.45 0.63 0.70 tpz 0.46 0.38 0.58 0.66 tqb 0.39 0.29 0.47 0.55
trc 0.40 0.32 0.51 0.60 trn 0.43 0.47 0.66 0.73 trq 0.44 0.38 0.57 0.65
tsn 0.46 0.57 0.74 0.80 tsz 0.44 0.44 0.63 0.70 ttc 0.43 0.44 0.63 0.70
tte 0.45 0.46 0.65 0.72 tuc 0.42 0.39 0.58 0.66 tue 0.44 0.44 0.62 0.70
tuf 0.40 0.34 0.52 0.60 tui 0.43 0.38 0.57 0.65 tuk 0.46 0.52 0.70 0.76
tum 0.47 0.59 0.76 0.81 tuo 0.45 0.39 0.58 0.66 tur 0.45 0.55 0.72 0.78
twi 0.48 0.45 0.63 0.70 twu 0.44 0.47 0.66 0.73 txu 0.43 0.31 0.50 0.58
tyv 0.43 0.54 0.72 0.78 tzh 0.45 0.52 0.70 0.77 tzj 0.44 0.44 0.63 0.70
tzo 0.46 0.51 0.68 0.75 ubr 0.48 0.52 0.70 0.76 ubu 0.44 0.39 0.57 0.64
udu 0.46 0.44 0.62 0.70 uig 0.46 0.52 0.70 0.76 ukr 0.48 0.57 0.74 0.79
upv 0.44 0.42 0.61 0.68 ura 0.43 0.35 0.53 0.61 urb 0.39 0.33 0.53 0.61
urd 0.47 0.57 0.74 0.80 urk 0.45 0.49 0.69 0.76 usa 0.43 0.40 0.59 0.66
usp 0.38 0.46 0.65 0.72 uvl 0.42 0.39 0.59 0.67 uzb 0.44 0.57 0.74 0.80
vag 0.42 0.47 0.66 0.73 ven 0.47 0.55 0.72 0.78 vie 0.49 0.50 0.68 0.75
viv 0.44 0.47 0.66 0.72 vmy 0.44 0.49 0.68 0.74 vun 0.46 0.54 0.71 0.77
vut 0.45 0.47 0.66 0.73 waj 0.43 0.41 0.60 0.67 wal 0.48 0.53 0.71 0.77
wap 0.44 0.44 0.63 0.70 war 0.48 0.60 0.77 0.82 way 0.42 0.43 0.62 0.69
wbm 0.47 0.45 0.64 0.71 wbp 0.45 0.29 0.47 0.55 wca 0.41 0.33 0.52 0.60
wer 0.43 0.38 0.57 0.65 whk 0.46 0.49 0.67 0.74 wiu 0.44 0.36 0.55 0.63
wmw 0.49 0.55 0.72 0.78 wnc 0.40 0.34 0.53 0.60 wnu 0.41 0.29 0.48 0.57
wob 0.43 0.37 0.56 0.64 wol 0.45 0.52 0.69 0.76 wos 0.40 0.34 0.53 0.60
wrs 0.43 0.39 0.58 0.65 wsk 0.43 0.35 0.54 0.62 wuv 0.43 0.51 0.70 0.76
wwa 0.44 0.46 0.65 0.72 xal 0.46 0.49 0.67 0.74 xav 0.45 0.33 0.53 0.61
xbr 0.45 0.54 0.72 0.78 xed 0.43 0.49 0.68 0.75 xho 0.47 0.55 0.72 0.78
xla 0.42 0.37 0.56 0.64 xon 0.44 0.49 0.68 0.74 xrb 0.42 0.36 0.56 0.64
xsi 0.43 0.37 0.56 0.65 xsm 0.44 0.43 0.63 0.71 xsu 0.43 0.33 0.52 0.60
xtd 0.43 0.35 0.54 0.62 xtm 0.40 0.39 0.59 0.66 xuo 0.42 0.41 0.60 0.68
yaa 0.44 0.33 0.51 0.58 yad 0.45 0.42 0.60 0.67 yal 0.47 0.55 0.72 0.78
yam 0.42 0.39 0.59 0.67 yan 0.45 0.39 0.59 0.66 yaq 0.44 0.40 0.59 0.66
yby 0.43 0.34 0.53 0.61 ycn 0.44 0.32 0.51 0.59 yle 0.40 0.25 0.43 0.51
yli 0.42 0.35 0.54 0.62 yml 0.42 0.41 0.60 0.67 yon 0.40 0.44 0.63 0.70
yor 0.45 0.50 0.67 0.74 yrb 0.44 0.31 0.50 0.58 yre 0.45 0.36 0.56 0.64
yss 0.41 0.33 0.52 0.60 yua 0.46 0.54 0.72 0.78 yuj 0.38 0.39 0.57 0.65
yut 0.43 0.43 0.63 0.70 yuw 0.43 0.41 0.61 0.68 yuz 0.40 0.40 0.58 0.65
yva 0.47 0.45 0.65 0.72 zaa 0.41 0.40 0.61 0.68 zab 0.44 0.46 0.64 0.71
zac 0.40 0.42 0.62 0.69 zad 0.40 0.45 0.64 0.71 zae 0.45 0.45 0.64 0.71
zai 0.45 0.42 0.62 0.69 zam 0.43 0.35 0.55 0.63 zao 0.43 0.44 0.63 0.70
zar 0.43 0.47 0.66 0.73 zas 0.40 0.44 0.62 0.69 zat 0.44 0.46 0.65 0.72
zav 0.41 0.38 0.57 0.65 zaw 0.43 0.46 0.65 0.72 zca 0.44 0.36 0.55 0.63
zho 0.49 0.60 0.77 0.82 zia 0.43 0.35 0.54 0.62 ziw 0.50 0.56 0.73 0.79
zom 0.48 0.48 0.66 0.73 zos 0.44 0.44 0.62 0.69 zpc 0.41 0.39 0.58 0.65
zpi 0.45 0.47 0.66 0.73 zpl 0.45 0.41 0.60 0.68 zpm 0.42 0.34 0.53 0.60
zpo 0.46 0.41 0.60 0.68 zpq 0.37 0.39 0.58 0.66 zpt 0.43 0.43 0.63 0.71
zpu 0.43 0.38 0.57 0.65 zpv 0.43 0.40 0.59 0.67 zpz 0.46 0.38 0.57 0.65
zsm 0.47 0.56 0.73 0.79 zsr 0.46 0.48 0.67 0.73 ztq 0.39 0.43 0.63 0.71
zty 0.45 0.45 0.64 0.71 zul 0.46 0.55 0.72 0.78 zyp 0.45 0.49 0.68 0.74

Table 14: Transfer performance using other languages as the train/query language (Part V).


