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Abstract
Text-to-image (T2I) models are often touted001
for their supposed ability to create composi-002
tional images with many components. How-003
ever, these models can fail to generate all en-004
tities when presented with prompts containing005
just two or three entities. In this work, we seek006
an explanation of such failures with respect to007
the training data. We introduce the training008
appearance ratio, which compares the number009
of training images depicting specific entities010
vs. the number of training captions mention-011
ing those same entities, and examine how well012
this measure correlates with generation success013
rates. We find positive and significant correla-014
tions between these ratios and successful image015
generations. Furthermore, our proposed mea-016
sure yields stronger correlations with model017
success rates than existing training data fre-018
quency measures. These associations suggest019
that our measure (training appearance ratio)020
better captures the relationship between train-021
ing data and generation success.022

1 Introduction023

When asked to generate an image of “a bicy-024

cle and a skateboard”, Stable Diffusion, a popular025

text-to-image (T2I) model (Rombach et al., 2022),026

succeeds only 8% of the time. Despite “bicycle”027

and “skateboard” being common objects that are028

generated separately nearly 100% of the time, the029

model fails to generate both jointly. The inability030

of models to handle such simple cases showcase031

their weak compositional capabilities.032

In this work, we aim to explain models’ fail-033

ures with respect to their training data properties.034

Drawing from previous works that have shown that035

pretraining data frequencies correlate with model036

performance (Razeghi et al., 2022; Kandpal et al.,037

2023; Udandarao et al., 2024), we first seek to repli-038

cate such findings for our setup of generating multi-039

ple common entities. However, our results indicate040

that simple caption frequencies correlate poorly041

(a) Generated images for the prompt “a bicycle and a
skateboard”. The model (SD1.5) mostly generates one
of the two objects (primarily bicycles).

(b) Training images where either skateboard or bicycle
are shown, but not both. Many of these images depict
parks and outdoors spaces that are suitable for both
skateboarding and bicycling, but only include one.

Figure 1: Examples of generated/training images where
prompts/captions mention “skateboard” and “bicycle”,
but corresponding images do not include both.

with models’ generation success rates. Upon dig- 042

ging into the training data, we observe that captions 043

mentioning entities may pair with images that only 044

showcase a subset of those entities, or none at all, 045

as shown in Figure 1b. For instance, there are 046

more than 9,000 captions in LAION2B-en (Schuh- 047

mann et al., 2022) that mention both “bicycle” and 048

“skateboard”, but only 9% of corresponding images 049

actually contain both objects. These findings in- 050

dicate that captions alone provide an inaccurate 051

measure of how often entities are actually depicted 052

in training images. 053

Based on these findings, we adjust our frequen- 054

cies to only consider training examples for which 055

both the captions and images contain all specified 056

entities (Udandarao et al., 2024). While these ad- 057

justed frequencies correlate better with models’ 058

generation success rates, they do not account for 059

how T2I models are trained and used in practice 060

(i.e., images are conditioned on texts). Therefore, 061

we consider the ratio between entities appearance 062
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in training images vs. captions, which explicitly063

incorporates this conditioning, and formalize this064

measure to be the training appearance ratio. We065

find that this ratio exhibits stronger correlations066

with models’ generation capabilities across vari-067

ous combinations of models, prompts, and entities068

(ρ = 0.43 vs. 0.27 for 2 entities, and ρ = 0.31 vs.069

0.19 for 3 entities, averaged). These stronger cor-070

relations show that our measure better associates071

success in generating images with the training data.072

In summary, our work demonstrates that models073

are poor at basic compositional generations, and074

proposes a new training data measure that corre-075

lates better with models’ success rates than existing076

approaches. Our findings suggest that simple train-077

ing appearance ratios can help better understand078

model behavior, and lay the foundation for future079

work that investigates concrete explanations for080

model failures and successes.081

2 Explaining Successes Through Training082

Data Statistics083

T2I models often fail to generate images follow-084

ing simple prompts with multiple common enti-085

ties. Our main goal in this study is to investi-086

gate whether models’ ability to faithfully gener-087

ate images based on prompts can be attributed088

to statistics from their training data. To address089

this objective, we need to first define how we mea-090

sure and compare training data statistics and image091

generation success. Consider a training dataset092

D = {(x1, y1), (x2, y2), ..., (xN , yN )} consisting093

of N (image, caption) pairs. We also assume a094

prompt p that instructs the model to generate some095

entities e = {e1, e2, ..., ek}, where ∀i, ei ∈ p. To096

identify relevant examples from D we select train-097

ing captions that mention the entities e specified098

in p. For example, for the prompt “a bicycle and a099

skateboard”, we query from D and choose image-100

caption pairs whose captions include the entities101

“bicycle” and “skateboard”.102

Note that while entities e may appear in a cap-103

tion yi, the image xi corresponding to that caption104

may not contain all entities (sometimes even none),105

as depicted in Figure 1, and as was observed in106

Udandarao et al. (2024).1 Since raw counts pro-107

vide a biased estimation of entity occurrences in108

images, we propose measuring the proportion of109

captions whose images also contain all specified110

entities.111

1Table 5 (Appendix) shows example image-caption pairs.

We define this quantity to be the training appear- 112

ance ratio (tare,ic): 113

tare,ic =
|De,i|
|De,c|

114

where De,c is the subset of D whose captions 115

contain entities e, and De,i is the subset of D whose 116

captions and images contain entities e. A higher 117

value of tare,ic indicates that image-caption pairs 118

that mention a set of entities in captions also tend 119

to include those entities in images. 120

After computing tare,ic, we generate images for 121

prompt p using a T2I model to obtain generated 122

images Ge,p. We calculate the proportion of images 123

that depict all entities, which we call the generation 124

appearance ratio (gare,ip). 125

gare,ip =
|Ge,i|
|Ge,p|

126

Similar to above, Ge,i is the subset of generated 127

images whose prompts and images contain enti- 128

ties e. We then examine whether the generation 129

appearance ratio of generated entities that are ex- 130

plicitly specified in prompts (gare,ip) correlates 131

with corresponding ratios from the training data 132

(tare,ic). While previous works highlight correla- 133

tions between model behavior and frequencies in 134

the data (Razeghi et al., 2022; Kandpal et al., 2023; 135

Udandarao et al., 2024), we hypothesize that train- 136

ing appearance ratios exhibit stronger associations 137

with model generation capabilities, since tare,ic 138

directly captures discrepancies in how often enti- 139

ties occur in training images vs. texts (similar to 140

how gare,ip captures discrepancies in how often 141

entities occur in generated images vs. prompts). 142

In other words, we argue that tare,ic more closely 143

matches what we measure at generation, resulting 144

in stronger correlations as we show in Section 4. 145

3 Experimental Setup 146

Entities We select entities from the MS COCO 147

dataset (Lin et al., 2014) classes in addition to 148

manually added entities (e.g., fruits, vegetables) 149

as shown in Table 3 (Appendix), resulting in 84 150

entities. We intentionally focus on frequent entities 151

that models succeed in generating individually. 152

Automated Image Evaluation To determine 153

whether an image contains specified entities, we 154

utilize an automated approach. We use visual ques- 155

tion answering (VQA) and employ PaliGemma 156
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(Google, 2024) as our VQA model. More specifi-157

cally, we ask the model whether an image contains158

a given entity, which is done for all entities in the159

prompt, and consider an image to contain all en-160

tities if the model answers “yes” for every entity.161

Note that PaliGemma achieves 91% on human an-162

notated images, as discussed in Appendix A.5.163

Entity Caption Occurrences We use WIMBD164

(Elazar et al., 2024) to retrieve counts of entities165

from the training data. Specifically, we extract166

captions that mention a set of entities (De,c), and167

randomly sample up to 1, 000 image-caption pairs.168

Based on the corresponding images, we calculate169

the proportion of images that depict the specified170

entities to measure tare,ic. We multiply the number171

of captions (|De,c|) by the ratios computed previ-172

ously, tare,ic, to estimate the number of training173

examples that both mention entities in captions and174

include them in images.175

Prompts We prompt the model to generate im-176

ages with one, two, and three entities using the177

prompts shown in Table 4 in Appendix A.2. For178

each prompt, we generate 50 images using different179

random seeds, resulting in 100 images total for sin-180

gle entity prompts and 200 images total for double181

and triple entity prompts.182

Data & Models We focus on Stable Diffusion183

(Rombach et al., 2022), a popular set of text-to-184

image models. Specifically, we use SD1.1 and185

SD1.5, which are both trained on 2.3 billion image-186

caption pairs filtered to contain only English cap-187

tions (LAION2B-en). Additionally we use SD2.1,188

which is trained on LAION-5B (Schuhmann et al.,189

2022), a dataset of 5.9 billion multilingual image-190

captions pairs (including LAION2B-en). Notably,191

these are the only two T2I training datasets indexed192

in the WIMBD tool, which is important because193

working with such massive datasets without proper194

tooling is incredibly challenging.195

4 Results196

Generation Appearance Ratios How good are197

models at compositional generation? To answer198

this question, we examine generation appearance199

ratios (gare,ip), which capture the success rate of200

generating images with all specified entities, for dif-201

ferent models and number of entities (Table 1). We202

find that all models successfully generate single en-203

tities > 96% of the time, validating that models are204

capable of generating common individual entities.205

Model 1 Entity 2 Entities 3 Entities

SD1.1 0.98 0.44 0.18
SD1.5 0.99 0.50 0.21
SD2.1 0.96 0.66 0.32

Table 1: Generation appearance ratios (gare,ip) for dif-
ferent models and # of entities, averaged across prompts.

However, models exhibit massive drops when gen- 206

erating two and three entities – for example, both 207

SD1.1 and SD1.5 models generate two entities <= 208

50% of the time. Although SD2.1 is notably better 209

at generating two entities (at nearly 66%), it still 210

struggles in this simple compositional setting. In 211

summary, we see that models fail increasingly as 212

prompts depict more entities. We do not go beyond 213

3 entities, since Stable Diffusion generates four 214

entities < 5% of the time. 215

Correlations between Model Behavior and 216

Training Data Statistics We wish to explain 217

model success rates in generating various entities 218

with respect to the training data. To do so, we 219

first analyze frequency-based approaches, building 220

on related work that explores the impact of train- 221

ing data in different settings (Razeghi et al., 2022; 222

Udandarao et al., 2024). We then show that our pro- 223

posed measure (tare,ic) is more strongly correlated 224

with model behavior. 225

Baselines: Frequency-based Approaches As 226

baselines, we compute Pearson’s correlation be- 227

tween gare,ip and (1) frequencies of entities in cap- 228

tions and (2) estimated frequencies of entities in 229

images (counts multiplied by tare,ic). Following 230

Udandarao et al. (2024), we compute the log10 of 231

frequencies to capture log-linear associations, and 232

refer to the resulting correlations as ρcap and ρim. 233

Results are presented in the first two sections of 234

Table 2 for various models and number of entities, 235

averaged across prompts. 236

We find that ρcap is not statistically significant 237

(significance level < 0.01) across all combinations 238

of models, prompts, and number of entities except 239

for SD1.1 with one entity. For the overwhelming 240

majority of cases, raw captions counts do not cor- 241

relate with gare,ip. These results are unsurprising, 242

since raw caption counts are poor indicators of how 243

often entities actually occur in training images. We 244

observe negative correlations for ρcap in the three 245

entity case, which is somewhat surprising, but these 246

values are not statistically significant. In contrast, 247

ρim exhibits consistently positive correlations for 248
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(a) 1 Entity (b) 2 Entities (c) 3 Entities

Figure 2: Correlations between generation appearance ratios (gare,ip) and training appearance ratios (tare,ic) for 1,
2, and 3 entities, shown for SD1.1 and prompt 1. We bin examples into 10 equally-sized groups or deciles based on
tare,ic and compute median tare,ic and gare,ip values for each bin, which correspond to the navy blue points.

two and three entities, and is statistically signif-249

icant across all prompts and models in the two250

entity case. When comparing ρim values for two251

and three entities, we observe a clear reduction in252

ρim across models (0.08 absolute decrease). This253

reduction may be due to models exhibiting poor254

generation capabilities as a whole for three enti-255

ties. Overall, these findings indicate that frequency-256

based measures may not be effective in capturing257

the generation success for multiple entities.258

Proposed Measure: Training Appearance Ra-259

tios We present correlation results between260

gare,ip and tare,ic in the last section of Table 2261

(ρratio). We find that all models exhibit positive,262

but not statistically significant correlations for sin-263

gle entities. Since we select frequently occurring264

entities by design, we can expect models to gener-265

ate them successfully irrespective of tare,ic.266

For prompts with two and three entities, we267

observe positive and statistically significant cor-268

relations across all models, prompts, and num-269

ber of entities. Both Figures 2b (two entities,270

and 2c (three entities) show linear associations be-271

tween generation and training appearance ratios.272

These associations become much clearer when data273

points are binned into deciles based on tare,ic, with274

ρratio=0.95 for 2 entities and ρratio=0.90 for 3 en-275

tities. We observe some variability across prompts276

with σ ≤ 0.07 for two entities and σ ≤ 0.06 for277

three entities. Similar to ρim, we see a decrease in278

ρratio going from two to three entities (0.12 abso-279

lute decrease). That being said, ρratio consistently280

exhibits statistical significance and higher values281

relative to ρim. Overall, these results suggest ρratio282

is a stronger indicator of successful generations for283

compositional prompts depicting multiple entities.284

Corr Model
Number of Entities

1 2 3

ρcap
SD1.1 **0.37 0.06 -0.12
SD1.5 0.12 0.07 -0.06
SD2.1 0.20 0.02 -0.06

ρim
SD1.1 **0.40 **0.31 0.20
SD1.5 0.18 **0.28 0.17
SD2.1 0.26 **0.23 0.21

ρratio
(ours)

SD1.1 0.17 **0.47 **0.34
SD1.5 0.29 **0.42 **0.28
SD2.1 0.23 **0.40 **0.30

Table 2: Pearson’s correlation coefficients between gen-
eration appearance ratios and various training data mea-
sures: (1) frequency of entities in captions (ρcap) as a
baseline, (2) estimated frequency of entities in images
(ρim) as another baseline, and (3) our proposed mea-
sure (ρratio), averaged across prompts. We compute the
log10 of frequencies for (1) and (2) to capture log-linear
associations. ** indicates correlations are statistically
significant (significance level < 0.01) for all prompts.

5 Conclusion 285

This work studies the connection between mod- 286

els’ generation success and training appearance 287

ratios. Although numerous studies have shown that 288

model performance strongly correlates with the fre- 289

quency of entities (Razeghi et al., 2022; Kandpal 290

et al., 2023; Udandarao et al., 2024), we show that 291

for image generation, successful generations corre- 292

late better with our proposed ratios. Our findings 293

are complemented by Seshadri et al. (2023), who 294

also show that model generations are associated 295

with ratios from the training data in the context of 296

gender-occupation biases. Our results emphasize 297

the need for improving data quality by limiting 298

image-caption mismatches and further necessitates 299

open access to pretraining corpuses to be able to 300

characterize model behaviors and their flaws. 301
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Limitations302

We compare properties in the training data with303

model behavior using correlational analysis and304

observe clear trends: higher training appearance305

ratios are associated with higher generation suc-306

cesses. However, we cannot assert that our mea-307

sure explains or definitively impacts model behav-308

ior without employing a causal approach, and leave309

this important direction to future work.310

Our results suggest that different entity combi-311

nations with similar training appearance ratios can312

have variable generation success rates. Although313

correlations between training appearance ratios and314

model success rates are consistently positive and315

significant in the two and three entity settings, they316

are weakly to moderately positive. These results317

suggest that simple training appearance ratios offer318

some insights into models’ generation capabilities,319

but do not provide the full story. Perhaps there are320

more nuanced training data measures to consider,321

or other factors beyond the data such as model322

scale, architecture, and training.323

Along these lines, it is worth noting that closed324

models such as DALL-E 2 (Ramesh et al., 2022),325

and especially DALL-E 3 (Betker et al., 2023), are326

much better at handling compositional prompts.327

While we do not know the exact factors that con-328

tribute to this improvement, we speculate that train-329

ing data quality and curation play a huge role. Per-330

haps the image-caption pairs used to train such331

models were filtered or augmented to have much332

higher training appearance ratios as a whole. How-333

ever, without access to such datasets, it is unclear334

whether training appearance ratios are a driving335

force behind more capable models.336

In addition, we focus on the specific setup of337

generating between 1-3 entities, which is a funda-338

mental aspect of compositional understanding. As339

we show, models fail considerably even in this sim-340

ple setting. However, there are other well-known341

failure modes (Ghosh et al., 2023; Huang et al.,342

2023; Rassin et al., 2023) in text-to-image gener-343

ation that should be considered. Furthermore, our344

study focuses exclusively on English prompts. We345

encourage researchers to study the association be-346

tween training data and text-to-image generation347

for other languages. This study is among the first348

to investigate text-to-image failure modes with re-349

spect to training data. We hope that this study350

motivates future work to further probe and expand351

on these findings.352
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A Appendix 456

A.1 Prompts 457

The prompts used for generating images are pre- 458

sented in Table 4. For each prompt, we have the 459

following number of instances (i.e., entity combi- 460

nations after filling in [E1], [E2], [E3]): we have 84 461

instances for 1 entity, 440 instances for 2 entities, 462

and 440 instances for 3 entities. 463

A.2 Image Generation 464

This work uses 3 Stable Diffusion versions: SD1.1 465

and SD1.5 (trained on LAION2B-en) and SD2.1 466

(trained on LAION-5B). We use the default gener- 467

ation parameters of 50 inference steps and a guid- 468

ance scale of 7.5. We specify a batch size of 4. 469

For a given instance of a prompt (i.e., filled in with 470

entities) and model version, we generate 50 images 471

using different random seeds. In total, our gener- 472

ations have taken ∼600 hours in total on a single 473

TITAN RTX GPU. 474

A.3 Entities 475

The entities used to fill in prompts are presented in 476

Table 3. We include 84 entities in total. The mini- 477

mum count in in the dataset is for the word “beet” 478

with 123,134 caption mentions for LAION2B- 479

en and 194,530 caption mention for LAION5B. 480

The maximum count is for the word “book” with 481

21,353,659 caption mentions in LAION2B-en and 482

28,379,268 for LAION5B. 483

A.4 VQA 484

For performing automated image evaluation, a com- 485

mon choice is to use CLIPScore (Hessel et al., 486

2021). However, CLIP (Radford et al., 2021), its 487

underlying model, struggles with compositional un- 488

derstanding (Hu et al., 2023; Yuksekgonul et al., 489

2023) and performs poorly for such prompts. As 490

a result, we turn to Visual Question Answering 491

(VQA). We ask a separate question for each entity 492

using the following format: “Is there a/an [entity] 493

in this image, yes or no?”, which is then asked for 494

all entities in the prompt. If the model responds 495

“yes” to each of the questions, we consider the im- 496

age to contain all specified entities. This approach 497

is used for both training and generated images. 498

A.5 Human Evaluation 499

We perform human evaluation to assess whether 500

our VQA approach is appropriate and effective for 501

evaluating the presence of entities in images. The 502
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Entities

airplane apple asparagus backpack banana
bear bed beet bench bicycle
bird boat book bottle bowl
broccoli bus cake car carrot
cat chair clock coconut corn
couch cow cup daisy dog
donut elephant fork garlic giraffe
grapes handbag horse hydrangea iris
kale keyboard kite knife laptop
lily lime mango microwave motorcycle
onion orchid oven peony pineapple
pizza pomegranate refrigerator remote rose
sandwich sheep sink skateboard skis
snowboard spoon strawberry suitcase sunflower
surfboard tie toaster toilet tomato
toothbrush train truck tulip tv
umbrella vase watermelon zebra

Table 3: List of 84 common entities used to study models’ ability to generate multiple entities.

# Entities Prompt

1
1. a/an [E1]
2. a photo of a/an [E1]

2

1. a/an [E1] and a/an [E2]
2. a photo of a/an [E1] and a/an [E2]
3. [E1], [E2]
4. a/an [E1] next to a/an [E2]

3

1. a/an [E1] and a/an [E2] and a/an [E3]
2. a photo of a/an [E1] and a/an [E2] and a/an [E3]
3. [E1], [E2], [E3]
4. a/an [E1] next to a/an [E2] and a/an [E3]

Table 4: Image generation prompts for single, double,
and triple entities. [E1], [E2], and [E3] are replaced with
various entities (e.g., elephant, zebra, and giraffe).

authors of this paper labeled 400 randomly selected503

generated images in the two entity setting, provid-504

ing annotations for entity1 and entity2. We find505

that PaliGemma predictions match human annota-506

tions in 90.88% of cases, which indicates strong507

performance. The biggest disagreements between508

human annotations and model predictions tend to509

be cases for which entities are similar in appear-510

ance and use cases (e.g., backpack and handbag),511

as well as large size differences (e.g., toothbrush512

and snowboard).513

A.6 Comparing Training Appearance Ratios514

As shown in Figure 3, training appearance ratios515

calculated using LAION2B-en and LAION5B are516

highly correlated. While this is perhaps not surpris-517

ing given that we focus exclusively on English and 518

LAION2B-en is a subset of LAION5B, it is worth 519

noting that these ratios are preserved across both 520

datasets for the entity combinations we consider. 521
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(a) Single Entity (ρ = 0.95) (b) Double Entities (ρ = 0.99) (c) Triple Entities (ρ = 0.99)

Figure 3: Correlations between training appearance ratios (tare,ic) for LAION2B-en and LAION-5B for 1, 2, and 3
entities. We observe strong correlations for all three.

(a) Generated images using SD2.1 with the prompt “a
toothbrush and a sink” (gare,ip=0.44).

(b) Training images whose captions mention both “sink”
and “toothbrush” (tare,ic=0.44).

Figure 4: We sample generated and training images for the prompt “a toothbrush and a sink”. Both the generation
and training appearance ratios are the same. We see that generated images depicting one entity tend to show sinks,
while training images depicting one entity show both toothbrush and sink individually.
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(a) Generated images using SD2.1 with the prompt “a
watermelon and a handbag” (gare,ip=0.48).

(b) Training images whose captions mention both
“watermelon” and “handbag” (tare,ic=0.46).

Figure 5: We sample generated and training images for the prompt “a watermelon and a handbag”. Both the
generation and training appearance ratios are very similar. We see that generated images seem to always depict
watermelons, and sometimes handbags (with appearances similar to a watermelon). While some training images are
watermelon handbags, other examples may depict accessories or watermelon-colored handbags.

(a) Generated images using SD2.1 with the prompt “a
giraffe and a bear” (gare,ip=0.46).

(b) Training images whose captions mention both “giraffe”
and “bear” (tare,ic=0.43).

Figure 6: We sample generated and training images for the prompt “a giraffe and a bear”. We observe that while the
generation and training appearance ratios are highly similar, the ways in which entities are depicted at generation
and training differ quite noticeably (e.g., training images mostly show toys or cartoons).
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(a) Generated images using SD1.5 with the prompt “a
motorcycle and a bench” (gare,ip=0.08).

(b) Training images whose captions mention both
“motorcycle” and “bench” (tare,ic=0.08).

Figure 7: We sample generated and training images for the prompt “a motorcycle and a bench”. The generation and
training appearance ratios are identical. At generation, the model generates images of motorcycles individually
a clear majority of the time. The training data, however, also includes images of benches individually as well as
images without either entity.

(a) Generated images using SD1.5 with the prompt “a photo
of a bus and a horse” (gare,ip=0.18).

(b) Training images whose captions mention both
“motorcycle” and “bench” (tare,ic=0.21).

Figure 8: We sample generated and training images for the prompt “a photo of a bus and a horse”. The generation and
training appearance ratios are very close. At generation, the model often generates buses individually, specifically
red buses. While training images also depict buses individually in several cases, they seem to capture a more diverse
set of buses.
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(a) Generated images using SD1.5 with the prompt
“elephant, daisy” (gare,ip=0.24).

(b) Training images whose captions mention both “elephant”
and “daisy” (tare,ic=0.30).

Figure 9: We sample generated and training images for the prompt “elephant, daisy”. The generation and training
appearance ratios are fairly close. At generation, the model mostly depicts elephants individually, and they look
reasonably realistic. In training images, we mainly see artistic renditions of elephants.

(a) Generated images using SD1.5 with the prompt “boat,
chair” (gare,ip=0.16).

(b) Training images whose captions mention both “boat”
and “chair” (tare,ic=0.19).

Figure 10: We sample generated and training images for the prompt “boat, chair”. The generation and training
appearance ratios are fairly close. At generation, the model primarily depicts a boat or chair, often individually, in
an outdoor setting. In training images, while we see some entities in outdoor setting, many just depict a chair in a
staged setting.
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Image Caption VQA Predictions

How To Make An Asparagus Bed asparagus: yes, bed: no

Bluetooth Speaker Panda with Remote Shutter Release White
4.3x4.5cm

panda: yes, remote: no

Candy apple Red Volkswagen bus for couple and bridal party at water-
front wedding

apple: no, bus: yes

Sweet potato, coconut and tomato lentil dahl in a bowl beside a bowl
of cherry tomatoes

coconut: no, tomato: yes

Extreme BMX Bicycle Riding in Concrete Skateboard Park - Bar spin
to tire tap Stock Footage

bicycle: yes, skateboard:
no

Lily the Borzoi chasing other dog lily: no, dog: yes

LED Waterproof RGB Colorful Wedding Party Vase Base Light Sub-
mersible+Remote

vase: no, remote: yes

An elephant cow taking a dust bath with her calf (Kruger National
Park, South Africa).

elephant: yes, cow: no

Collapsible Chair From Skis Ski Woodcraft Pinterest chair: yes, skis: no

Jungle Animal Shapes - Cake Toppers or Party Decorations monkey
giraffe lion elephant tiger zebra snake hippo baby shower birthday
party

cake: no, giraffe: yes

Table 5: Example training images and captions for which captions mention two specified entities (captions may
mention other entities as well), but images only depict one of the specified entities clearly. Specified entities are in
bold. One potential explanation for such occurrences is the ambiguity of words (e.g., “Lily” is both a name and a
flower). Another explanation is that a combination of entities may have their own meaning (e.g., “asparagus bed” is
not the same as “asparagus” + “bed”). 12
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