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ABSTRACT

We consider the problem of Sampling Transition Paths: Given two metastable
conformational states of a molecular system, e.g. a folded and unfolded protein,
we aim to sample the most likely transition path between the two states. Sampling
such a transition path is computationally expensive due to the existence of high
free energy barriers between the two states. To circumvent this, previous work has
focused on simplifying the trajectories to occur along specific molecular descriptors
called Collective Variables (CVs). However, finding CVs is non trivial and requires
chemical intuition. For larger molecules, where intuition is not sufficient, using
these CV-based methods biases the transition along possibly irrelevant dimensions.
In this work, we propose a method for sampling transition paths that considers
the entire geometry of the molecules. We achieve this by relating the problem to
recent works on the Schrödinger bridge problem and stochastic optimal control.
Using this relation, we construct a path integral method that incorporates important
characteristics of molecular systems such as second-order dynamics and invariance
to rotations and translations. We demonstrate our method on commonly studied
protein structures like Alanine Dipeptide, and also consider larger proteins such as
Polyproline and Chignolin.

1 INTRODUCTION

Modeling non-equilibrium systems in natural sciences involves analyzing dynamical behaviour that
occur with very low probability known as rare events, i.e. particular instances of the dynamical system
that are atypical. The kinetics of many important molecular processes, such as phase transitions,
protein folding, conformational changes, and chemical reactions, are all dominated by these rare
events. One way to sample these rare events is to follow the time evolution of the underlying
dynamical system using Molecular Dynamic (MD) simulations until a reasonable number of events
have been observed. However, this is highly inefficient computationally due to the large time-scales
involved in MD simulations, which are typically related to the presence of high energy or entropy
barriers between the metastable states. Thus, the main problem is: How can we efficiently sample
trajectories between metastable states that give rise to these rare but interesting transition events?

Numerous enhanced sampling methods such as steered MD (Jarzynski, 1997), umbrella sampling (Tor-
rie and Valleau, 1977), constrained MD (Carter et al., 1989), transition path sampling (Dellago and
Bolhuis, 2009), and many more, have been developed to deal with the problem of rare events in
molecular simulation. Most of these methods bias the dynamical system with well-chosen geometric
descriptors of the transition (analogous to lower dimensional features), called collective variables
(CVs), that allow the system to overcome high-energy transition barriers and sample these rare events.
The performance of these enhanced sampling techniques is critically dependent on the choice of these
CVs. However, choosing appropriate CVs for all but the simplest molecular systems is fraught with
difficulty, as it relies on human intuition, insights about the molecular system, and trial and error.

A key alternative to sampling these rare transition paths is to model an alternate dynamical system
that allows sampling these rare trajectories in an optimal manner (Ahamed et al., 2006; Jack, 2020;
Todorov, 2009) or by learning an optimal RL policy for such a transition system Rose et al. (2021).

In this paper, we consider the problem of sampling rare transition paths by developing an alternative
dynamical system using path integral stochastic optimal control (Kappen, 2005; 2007; Kappen and
Ruiz, 2016; Theodorou et al., 2010). Our method models this alternative dynamics of the system
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by applying an external control policy to each of the atoms in the molecule. We learn the external
control policy such that it minimizes the amount of external work needed to overcome the lowest
energy barrier and transition the molecular system from an initial meta-stable state to a final one.
The method does not require any knowledge of CVs to sample these rare trajectories. Furthermore,
we draw connections between sampling rare transition paths and the Schrödinger bridge problem
(Schrödinger, 1931; 1932). Subsequently, we show that stochastic optimal control is well suited to
solving these problems by extending the work of Kappen and Ruiz (2016) for molecular systems by
incorporating Hamiltonian dynamics and equivariance constraints in our path integral SOC method.

Our main contributions in this paper are:

• We demonstrate the equivalence between the problem of sampling transition paths, the
Schrödinger bridge problem, and path integral stochastic optimal control (SOC) (§2).

• We develop PIPS, a path integral SOC method that incorporates second order Hamiltonian
dynamics with clear physical interpretations of the system (§3).

• In contrast to earlier work, PIPS does not require any knowledge of CVs, which is important
for modeling large and complex molecular transitions for which CVs are unknown (§2-3).

• Due to considering second order Hamiltonian dynamics, PIPS seamlessly integrates with
common molecular dynamics frameworks such as OpenMM (Eastman et al., 2017).

• We demonstrate the efficacy of PIPS on conformational transitions in three molecular
systems of varying complexity, namely Alanine Dipeptide, Polyproline, and Chignolin (§4).

2 PRELIMINARIES AND PROBLEM SETUP

Consider a system evolving over time where π(x) is the distribution of states x and πi(xi|xi−1) a
Markovian transition kernel. The distribution of trajectories generated by such a system is given by:

π
(
x(τ)

)
:= π(x0) ·

τ∏
i=1

πi(xi|xi−1). (1)

where x(τ) defines a trajectory of states of length τ discretized over time into an ordered sequence of
states x(τ) = {x0,x1, · · · ,xτ}.

The problem of sampling transition paths involves sampling trajectories from this distribution,
π
(
x(τ)

)
, with the boundary condition that the initial state x0 and terminal state xτ are drawn from

pre-specified marginal distributions π0 and πτ , respectively. These marginal distributions describe
the stable states of the molecular system located at the local minimas of the free energy surface
e.g. these stable states can be reactants and products of chemical reactions, or native and unfolded
states of protein. Thus, these marginal distributions defining the stable states can be viewed as Dirac
delta distributions. Unfortunately, these stable states are often separated by high free energy barriers
making the trajectories, x(τ), sampled starting from x0 to terminate in the target state xτ unlikely.

In this paper, we construct a sampling approach that generates trajectories that are still likely under
the distribution π

(
x(τ)

)
while also adhering to the boundary conditions by crossing the high free

energy barrier by incorporating relevant inductive biases of the system. Formally, we find an alternate
dynamical system π̂

(
x(τ)

)
with marginals π0 and πτ that is as close to π

(
x(τ)

)
as possible, i.e.

π̂∗(x(τ)) := argmin
π̂(x(τ))∈D(π0,πτ )

DKL

(
π̂
(
x(τ)

)
∥π

(
x(τ)

))
(2)

where D(π0, πτ ) is the space of path measures with marginals π0 and πτ . This problem of learning an
alternative dynamical system is also known as the Schrödinger Bridge Problem (SBP) (Schrödinger,
1931; 1932). We, thus, take inspiration from recent computational advances for solving SBP (Vargas
et al., 2021a; De Bortoli et al., 2021) to develop our solution in §3 to solve the problem of sampling
transition paths that can efficiently cross the high free energy barriers. Additionally, in this work, we
propose an alternative approach to solving SBP using path integral stochastic optimal control that
lends itself well to modelling the chemical nature of our problem.

In the next section, we will set the stage for this novel approach by first relating the problem of
sampling transition paths as a path integral stochastic optimal control problem. Subsequently, we will
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establish an equivalence between learning an alternative dynamical system for sampling transition
paths, Schrödinger bridge problem, and stochastic optimal control.

2.1 SAMPLING TRANSITION PATHS THROUGH STOCHASTIC OPTIMAL CONTROL

The original dynamics of the system, as given in eq. (1), can be reformulated as a stochastic process:

dxt = f(xt, t) dt+G(xt, t) · dεt, t ∈ [0, τ ] (3)

where f : Rd × R+ → Rd and G : Rd × R+ → Rd×d are deterministic functions representing the
drift and volatility of the system. The stochastic process εt is a Brownian motion with variance ν.

As we stated before, the system dynamics in Equation (3) is insufficient for sampling molecular
transition paths as they do not adhere to the boundary conditions imposed by the problem. We, thus,
add an external bias potential (or control) u(xt, t) ∈ Rd×R+ to the system that pushes the molecule
over the transition state barriers. We can write the dynamics of this new system as follows:

dxt = f(xt, t) dt+G(xt, t) ·
(
u(xt, t) dt+ dεt

)
, t ∈ [0, τ ] (4)

Given a trajectory x(τ) = (x0, · · · ,xτ ) ∈ Rτ×d generated through the SDE in eq. (4), we define
the cost of this trajectory under control u following Kappen (2007); Theodorou et al. (2010) as:

C(x(τ),u, εt) =
1

λ

(
φ(xτ ) +

τ∑
t=0

1

2
u(xt, t)

TRu(xt, t) + u(xt, t)
TRεt

)
(5)

where φ denotes the terminal cost, λ is a constant and R is the cost of taking action u in the current
state and is given as a weight matrix for a quadratic control cost. The goal then becomes to find the
optimal control u∗ that minimizes the expected cost in Equation (5):

u∗ = argmin
u

Eτ,εt

[
C(x(τ),u, εt)

]
(6)

where the expectation is taken over trajectories τ sampled using the SDE under control u. Before
proceeding further, a couple of remarks are in order:

Remark 1. We note that the control u(xt, t) in Equation (4) does not operate directly on the
system dynamics but is controlled through the same control matrix G as the Brownian motion. This
formulation is highly crucial for our method, PIPS, to incorporate system specific second order
Hamiltonian dynamics as we will show in Section 3.

Remark 2. The last term in the cost function in eq. (5) relating the Brownian motion and the control
is unusual and devoid of a clear intuition. However, this term plays an important role when relating
the cost to a KL-divergence which we will establish next. Additionally, as discussed in Thijssen and
Kappen (2015), the additional cost vanishes under expectation (Eτ,εt [u(xt, t)

TRεt] = 0) and thus,
does not influence the optimal control u∗ given by eq. (6)

Relation to sampling transition paths: Interestingly, the objective in Equation (6) is exactly related
to the problem of sampling transition paths as given in Equation (2). As Kappen and Ruiz (2016)
establish, Equation (4) defines a probability distribution πu

(
x(τ)

)
over trajectories x(τ) through:

πu
(
x(τ)

)
=

τ∏
t=0

N (xt+1|µt,Σt) (7)

with µs = xs + f(xs, s) dt+G(xs, s)(u(xs, s) dt) and Σs = G(xs, s)
T νG(xs, s).

For different u, these distributions are related through the Girsanov Theorem (Cameron and Martin,
1944). As shown in appendix B, if we make the common assumption that the control cost R and the
variance of the Brownian motion ν are inversely correlated as λR−1 = ν, we can obtain:

log
πu

(
x(τ)

)
π0

(
x(τ)

) =
1

λ

τ∑
t=0

1

2
u(xt, t)

TRu(xt, t) + u(xt, t)
TRεt (8)
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where π0
(
x(τ)

)
denotes the distribution over trajectories with no control i.e. u = 0 (§eq. (1)). This

assumption of relating the control cost and the variance of the Brownian motion is a common trait of
control problems referred to as Path Integral Stochastic Optimal Control (Kappen, 2005).

We observe that the right-hand side of eq. (8) can also be found in the definition of the control cost in
eq. (5), including the additional cost term related to the Brownian noise. As Kappen and Ruiz (2016)
show, we can thus use eq. (8) to rewrite the objective in Equation (6) as:

πu∗ = argmin
πu

Ex(τ)∼πu

[ 1
λ
φ(xτ )

]
+ DKL

(
πu

(
x(τ)

)
∥π0

(
x(τ)

))
(9)

This objective is an approximation of the Schrodinger Bridge formulation in Equation (2) where
the constraints on the marginal distributions are replaced by a regularization term in the form of the
terminal cost. Therefore, when the terminal cost dominates the KL-divergence term above, it enforces
the target boundary constraints of the problem. Before we discuss an algorithm to learn this optimal
policy in Equation (9) next, we end this part with a remark:
Remark 3. This connection between the Schrödinger Bridge Problem and stochastic optimal control
has been previously established (Chen et al., 2016; Pavon et al., 2021). However, through the
formulations in Equations (2) and (9), we also establish the equivalence between sampling transition
paths, Schrödinger bridge problem, and stochastic optimal control. This allows us to utilize solutions
for finding the optimal control in Equation (9) for the aforementioned problems.

Optimal Control Policy: Kappen and Ruiz (2016) introduced the Path Integral Cross Entropy (PICE)
method for solving Equation (9). The PICE method derives an explicit expression for the optimal
policy and distribution πu∗ when λ = νR given by:

πu∗ =
1

η(x, t)
πu

(
x(τ)

)
exp(−C(x(τ),u)) (10)

where η(x, t) = Ex(τ)∼π0
[exp(− 1

λφ(xτ )] is the normalization constant. This establishes the optimal
distribution πu∗ as a reweighing of any distribution induced by an arbitrary control u. Similar to
importance sampling, depending on the choice of the proposal distribution πu, the estimator variance
can greatly differ. Thus, the objective is to find the u that best approximates u∗.

PICE, subsequently, achieves this by minimizing the KL-divergence between the optimal controlled
distribution πu∗ and a parameterized distribution πuθ

using gradient descent as follows:

∂DKL(πu∗ |πuθ
)

∂θ
= −1

η
Ex(τ)∼πuθ

[exp(−C(x(τ),uθ))

τ∑
t=0

(Rεt ·
∂uθ

∂θ
)] (11)

Similar to the optimal control in eq. (10), the gradient used to minimize the KL-divergence is found
by reweighing for each sampled trajectory, x(τ), the gradient of the control policy uθ by the cost of
said trajectory. Algorithm 1 in the appendix provides a method for finding this gradient and training
the policy uθ. Thus, PICE provides an iterative gradient descent method to learn a parameterized
policy uθ and subsequently a distribution over paths x(τ). We can then use this learned control, uθ,
to approximate the solution for sampling transition paths as well as the Schrödinger bridge problem.

In this section, we set up our main problem of sampling transition paths and established its relationship
to both the Schrödinger bridge problem and stochastic optimal control. Subsequently, we discussed an
iterative gradient descent based method for solving the optimal control problem. In the next section,
we will extend this iterative algorithm to consider the entire geometry of the molecular system by
incorporating Hamiltonian dynamics using an augmented state space xt, and symmetries by learning
a policy network uθ.

3 PATH INTEGRAL OPTIMAL CONTROL FOR SAMPLING TRANSITION PATHS

We consider a molecule consisting of n atoms with an initial and final configuration r0 ∈ R3×n and
rτ ∈ R3×n i.e. we are given a vector defining the 3D positions of each atom in the molecule. Thus, a
direct method to sample transition paths r(τ) for this problem is to learn a control uθ acting directly
on the positions r of the molecule using the iterative gradient descent method discussed in Section 2.

4



Under review as a conference paper at ICLR 2023

However, the collective behaviour of the atoms and molecules are governed by classical molecular
dynamics i.e. Newtonian equations of motion:

dr = v(t) dt, and, dv = a(t) dt (12)

where v(t) ∈ R3×n is the velocity and a(t) ∈ R3×n is acceleration given by a(t) = ∇rU(r)/m
where U(r) is the potential energy of the system and m is the mass. The potential energy of a system
is defined by a parameterized sum of pairwise empirical potential functions, such as harmonic bonds,
angle potentials, inter-molecular electrostatic and Van der Waals potentials. In our work, we compute
this potential energy using the OpenMM framework (Eastman et al., 2017). Therefore, in light of
Equation (12), we need to adapt the dynamical system defined in Equation (4) to incorporate these
molecular dynamics.

Incorporating second order dynamics: Formally, we incorporate the second order dynamics of the
system defined above by considering an augmented state space: Let x0 := (r0,v0) ∈ R3×n ×R3×n

be the initial configuration of the system defining the initial positions and velocities of each atom and
xτ := (rτ ,vτ ) be the final configuration. We, thus, model the dynamical system in Equation (4) as:(

drt
dvt

)
︸ ︷︷ ︸

dxt

=

(
vt

−∇rtU(rt)

)
︸ ︷︷ ︸

f(xt,t)

dt+

(
03n

I3n

)
︸ ︷︷ ︸
G(xt,t)

·
(
u(xt, t) dt+ dεt

)
, t ∈ [0, τ ] (13)

Due to the choice of G(xt, t) in Equation (13) above, the additional bias force, u(xt, t), applied to
the system only influences the acceleration and velocity of the atoms and does not act directly on the
positions of the atoms. drt is solely influenced by the velocity vt, thus conforming to the classical
molecular dynamics of the system as given in Equation (12).

Unfortunately, this new dynamical system in Equation (13) leads to a singular covariance matrix,
Σt in eq. (7) due to the choice of G. However, due to the conditional independence of rt+1 given
(rt,vt), we are able to factorize the distribution in Equation (7) which circumvents the singularity of
the covariance matrix. Due to space constraint, we provide details and derivations in Appendix B.1.
Remark 4. We note here that second order dynamics have been considered before for stochastic
optimal control by Kappen (2007) for a synthetic spring experiment in one dimension and SBP by
Vargas et al. (2021a) for modelling motion. Our formulation of incorporating second-order dynamics
here is distinct and more practical than these previous works. Courtsey of eq. (13), we have a clear
physical interpretation of the control u as an external physical force by limiting it to act linearly on
the velocity v. This is interesting for downstream applications of the sampled transition paths such
as reconstructing free-energy surfaces. Additionally, it also simplifies incorporating the control with
MD simulation software like OpenMM which we will discuss in detail in section 4.

Invariance to rotations and translations: Secondly, the molecules in consideration are invariant
w.r.t. translations and 3D rotations i.e. the molecular orientations achieved along a transition path need
to incorporate this equivariance w.r.t. the SE(3) group. For this purpose, we need to make the terminal
cost function, φ(xτ ), in Equation (5) to be equivariant. We enforce this by defining the terminal cost
as the exponentiated pairwise distance between atoms which is commonly used distance metric (Shi
et al., 2021) that is invariant to rotations and translations i.e. φ(rt) = exp

∑n
i,j

(
dij(rt)− dij(rτ )

)2
where dij(rt) = ∥(rt)i − (rt)j∥22.

Physics inspired policy network (uθ): The main learnable component of our PIPS method (as
described by eq. (13)) for sampling transition paths is the policy network uθ. Following the discussion
above and formalized in Equation (13), we can interpret the control uθ as an additive bias force
applied to the system. In this work, we consider two different design approaches to modelling
uθ. In our first approach, we model uθ as a neural network that predicts the bias force on the
system in which case the velocity evolves as dv = (∇rtU(rt) + uθ,t) dt. Alternatively, in our
second approach, we model uθ as a network predicting the bias potential energy. In this case, the
corresponding force, F (rt) ,applied to the system is calculated by backpropagating through the
network, F (rt) := ∇rtuθ,t. The change in velocity is then given by dv =

(
∇rtU(rt) +F (rt)

)
dt.

Additionally, uθ or uθ can be implemented using recent advances in physics inspired equivariant
neural networks (Cohen and Welling, 2016; Satorras et al., 2021) that take into account the SE(3)
symmetry of the system. We provide details for training the control network uθ in Appendix A.
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τ Temp. EPD (↓) THP (↑) ETP (↓)
fs K nm× 10−3 % kJmol−1

Force Prediction 500 300 2.07 41.1 % 0.68
Energy Prediction 500 300 1.25 89.2 % -5.21

MD w. fixed timescale 500 300 7.92 0% -
500 1500 7.47 0% -
500 4500 6.33 0% -
500 9000 6.82 1.7 % 1019.83

MD w/ fixed timescale 34810 1500 1.88 100% 551.51
48683 4500 2.01 100% 1647.35

Table 1: Benchmark scores for the proposed method and extended MD baselines. From-left-to-right:
Time-horizon τ representing the trajectory length (note that we take one policy step every 1 fs),
simulation temperature, Expected Pairwise distance (EPD), Target Hit Percentage (THP), and Energy
Transition Point (ETP). ETP can only be calculate when a trajectory reaches the target. All metrics are
averaged over 1000 trajectories except for MD w/ fixed timescale which is ran only for 10 trajectories.

4 EXPERIMENTS

We evaluate our path integral stochastic optimal control method for sampling transition paths with
three different molecular systems, namely (i) Alanine Dipeptide, a small amino acid with well-
studied transition paths, (ii) Polyproline, a small protein with two distinct conformations with
different helix orientations, and (iii) Chignolin, an artificial mini-protein studied to understand the
folding process of proteins. We begin by detailing the experimental setup below.

Molecular Dynamics Simulation: As we discussed in section 3, we use the OpenMM framework
to simulate the molecular dynamics following Equation (13). Crucially, by considering the second
order dynamics, the control acts linearly on the molecular potential function in this formulation of
the molecular dynamics. This allows us to implement the resulting control as a bias potential that is
acting on the system in addition to the molecular potential. At every step of the Molecular Dynamics
this bias potential is calculated using our PyTorch implementation of the control and then passed
to OpenMM as a custom external force. Implementing the control this way thus allows us to use
the optimized configuration capabilities of OpenMM, such as forcefield definitions (the potential
function description) and integrators (for the time-discretization of our dynamics). We report the
molecule specific OpenMM configuration in appendix C. Generally, we run our simulations at 300K.

Policy Network, u(xt, t): We implement the policy network as a 6 layer MLP with ReLU activation
for all our experiments below. The width of the layers of the policy network is dependent on
the number of atoms in the molecule under consideration. We implement all code in Pytorch.
We ran the experiments on a single GPU (either an NVIDIA RTX3080 or RTX2080). Our code,
including a full stand-alone notebook re-implementation, is available here: https://github.
com/pips4anonymous/pips-anonymous.

4.1 ALANINE DIPEPTIDE

Alanine Dipeptide is an extensively studied molecule (Tobias and Brooks III, 1992; Rossky and
Karplus, 1979; Head-Gordon et al., 1991; Swenson et al., 2018) for developing and testing enhanced
sampling methods due to ready availability of its two CVs (ϕ, ψ). The conformation transition for
Alanine Dipeptide can thus be understood in terms of these two dihedral angles ϕ and ψ as displayed
in Figure 1A. Prior work has, thus, focused on transforming from the initial configuration (see
Figure 1A) to the final configuration (Figure 1E) by rotating these CVs. As we discussed previously, a
major advantage of our method is that we do not require the knowledge of CVs to sample a transition
path. However, in our experiment for Alanine Dipeptide, we will use these CVs to compare the
quality of the trajectory sampled by our method.

Setup: For our experiment, we consider both the design choices for the policy network, uθ(xt, t),
discussed in Section 3 i.e. directly predicting the force and predicting the energy. We trained the
policy networks for 15,000 roll-outs with a time horizon of 500 fs each consisting of 16 samples. A
gradient update was made to the policy network after each roll-out with a learning rate of 10−5. The
Brownian motion has a standard deviation of 0.1.
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Figure 1: Visualization of a trajectory sampled with the proposed method. Left: The sampled
trajectory projected on the free energy landscape of Alanine Dipeptide as a function of two CVs Right:
Conformations along the sampled trajectory: A) starting conformation showing the CV dihedral
angles, B-D) intermediate conformations with C being the highest energy point on the trajectory, and
E) final conformation, which closely aligns with the target conformation. Bottom: Potential energy
during transition. Letters represent the same configurations in the transition.

Baseline and evaluation metrics: We compare our method to MD simulations with extended time-
horizon and increased system temperatures to sample transition paths. To our knowledge, there are no
fixed quantitative metrics in the literature to compare different methods that sample transition paths.
Thus, we introduce here three metrics to evaluate the quality of transition paths: (i) Expected Pairwise
Distance (EPD) measures the euclidean distance between the final conformation in the trajectory and
the target conformation, reflecting the goal of the transition to end in the target state, (ii) Target Hit
Percentage (THP) assures that the final configuration is also close in terms of CVs by measuring the
percentage of trajectories correctly transforming these CVs, and (iii) Energy Transition Point (ETP)
which evaluates the capacity of each method to find transition paths that cross the high-energy barrier
at a low point by taking the maximum potential energy of the molecule along the trajectory. A good
trajectory will be one that passes through the minimal high-energy barrier and ETP aims to measure
this. We provide more details in Appendix C.2.1.

Results: We first visualize the trajectory generated by the energy prediction policy in Figure 1 and
defer the visualization for the force prediction policy to Appendix C.2.2. The trajectory in Figure 1
demonstrates that the control policy transforms the molecule from the initial position (A) to the
final position (E) by transitioning over the barrier with the least energy at (C). Interestingly, the
trajectory follows the expected transitions in the CVs without them being explicitly specified e.g. the
transition path visualized on the left in Figure 1 shows that the molecule first rotates the dihedral
angle associated with CV ϕ in (A → B), then gradually rotates along both ψ and ϕ in (B → C → D),
and finally rotates ψ in (D → E) to reach the final configuration. As expected, we observe that the
potential energy goes up during the transition until it reaches the top of the energy barrier (C). After
this point, the molecule settles down in its new low-energy state.

Next, in Table 1, we compare the performance of the trajectories sampled using the force and energy
predicting policy networks with MD simulations on the metrics introduced before. We find that
the trajectories generated by both the policy networks outperform the MD baselines, but the more
physics-aligned energy predicting policy performs best under our metrics. This policy network
consistently reaches the target conformation both in terms of full geometry and the CVs orientation.
Furthermore, our policy network generates these trajectories in a significantly shorter time than
temperature enhanced MD simulations without a fixed timescale. When we do limit MD to run
for the same timescale as the proposed method, we found that, in contrast to the proposed method,
temperature enhanced MD simulations are unable to generate successful trajectories.

4.2 POLYPROLINE HELIX

Polyproline is a helix-shaped protein structure that consists of repeating proline residues. Polyproline
helix can form two different conformations namely Polyproline-I (PP-I) and Polyproline-II helix
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Figure 2: Visualization of the Polyproline transformation from PP-II to PP-I. From-top-to-bottom 5
stages of the transition, ψ CVs, ϕ CVs, ω CVs, and Potential Energy. For the CVs multiple instances
of the same dihedral angles can be found in a single molecule. Stars indicate target CV states. Colored
bonds represent the bonds involved in the ω CV.

(PP-II) (Moradi et al., 2009; 2010). These conformations can be distinguished by their respective
helix rotation. PP-I forms a compact right-handed helix due to its peptide bonds having cis-isomers
while PP-II has trans-isomer peptide bonds and forms a left-handed helix. Furthermore, the backbone
of the polyproline helix also contains two different dihedral angles. We will refer to these peptide
bonds and dihedral-angles as the ω, ϕ and ψ CVs respectively. Polyproline can have varying lengths
due to its repeated structure. In our experiment, we consider the polyproline trimer with 3 proline
residues transitioning from PP-II to PP-I.

Setup: The policy network was trained over 500 rollouts with 25 samples each using a learning rate
of 3× 10−5 and a standard deviation of 0.1 for the Brownian motion.

Results: We visualize the transformation of the three collective variables (ω, ϕ, ψ) as well as the
corresponding potential energy of the conformation in Figure 2 for a sampled transition path from
our trained policy network. The ω CV admits the biggest change for the transition from PP-I going
from 180◦ to 0◦. We observe that the transition path sampled by our method aligns with the expected
changes in CVs in spite of our method not containing any knowledge about these CVs. Figure 2 shows
that the peptide bonds transition from a trans-isomer to a cis-isomer state at steps 450 and 3,000. We
notice the biggest changes in CVs at these steps in Figure 2. We also note that in addition to the
change in the peptide bonds, the final conformation differs from the initial in one of the ψ-dihedral
angles. Technically, PP-I has ψ-dihedral angles similar to PP-II, but as a result of the inherent noise of
MD our target conformation was sampled with a slight rotation here as well. Interestingly, our method
successfully learned to sample transition paths terminating in a similar perturbed state. This indicates
that our proposed method is resilient to target states not having a minimal-energy configuration.

4.3 CHIGNOLIN

Chignolin is a small β-hairpin protein constructed artificially to study protein folding mecha-
nisms (Honda et al., 2004; Seibert et al., 2005). Due to its small size, its folding process is easier to
study than larger scale proteins while being similar enough to shed light on this complex process. In
contrast to Alanine Dipeptide and Polyproline, there is no agreement on the transition mechanism de-
scribing the folding of Chignolin. Both the CVs involved (Satoh et al., 2006; Paissoni and Camilloni,
2021), as well as the sequence of steps (Harada and Kitao, 2011; Satoh et al., 2006; Suenaga et al.,
2007; Enemark et al., 2012) describing the folding process have multiple different interpretations.
Thus, methods that do not require prior knowledge of CVs are particularly useful to study this protein.

Setup: We sample transition paths between the folded and unfolded state of the Chignolin protein
using a total time horizon of 5000 fs. Note that the typical folding time of Chignolin is recorded to be

8
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Figure 3: Visualization of the Chignolin folding process. Top: 5 stages of the folding process, Middle:
Pairwise distance wrt to the target conformation of the molecule, Bottom: Potential Energy.

0.6 µs (Lindorff-Larsen et al., 2011). The policy network is trained over 500 rollouts of 16 samples
with a learning rate of 1× 10−4 and standard deviation of 0.05 for the Brownian motion.

Results: In Figure 3, we visualize the transition of Chignolin at 5 different timesteps during the
transition path. We observe that to transition the protein from its low energy unfolded state to
the folded conformation, the proposed method guides the protein into a region of higher energy.
This increase is initially more steep (0→1500) than in the later stages. Additionally, most of the
finer-grained folding (2500→4000) occurs with a high potential energy before settling into the lower-
energy folded state. We notice that for the restricted folding time we use in our experiments (5000 fs
vs 0.6 µs), the molecule does not end at the final configuration but reaches close to it as shown by the
plot on pairwise distance. Furthermore, the learned policy network is able to transition through the
high energy transition barrier in this restricted time. We do not encounter this for molecules with a
shorter natural transition time (as illustrated by the potential energy of Alanine Dipeptide in fig. 1).

5 DISCUSSIONS, LIMITATIONS, AND FUTURE WORK

In this work, we proposed a path integral stochastic optimal control method for the problem of
sampling rare transition paths for molecular systems that incorporates the Hamiltonian dynamics and
equivariance of the system. In passing, we showed an equivalence between the problem of sampling
transition paths, stochastic optimal control, and the Schrödinger bridge problem. We empirically
tested our method on three different molecular systems of varying sizes and demonstrated that it was
able to sample transition paths on the full geometry of the system without biasing along CVs.

One observed limitation of the proposed method is that for molecules with long natural transition
times, we observe the transitions to not converge to the configuration of minimal energy after crossing
the high-energy transition barrier. We hypothesize that this is due to the method operating on a
reduced time horizon (e.g. 5000 fs instead of 0.6 µs in the case of Chignolin), or due to the terminal
control cost function not requiring the velocity to be zero at the end of the transition. Nevertheless,
we note that the method is successful in transitioning the molecules over the high energy barriers as
exemplified by the known CVs changing appropriately.

There are many exciting directions for future work. Most importantly, we are excited to see how
research from other machine learning fields can be used to develop, possibly more efficient, methods
for sampling trajectories between molecular conformations. Given the vast literature on Stochastic
Optimal Control theory, Schrodinger Bridge samplers, and other topics such as Covariance Control
(Yin et al., 2021; Hotz and Skelton, 1987) and Reinforcement Learning (Das et al., 2021) we hope that
our path-integral based method can serve as a starting point for machine learning based solutions for
the problem introduced in our work. Following this, these approaches and their sampled trajectories,
could be used for solving related problems in chemistry. For example, our experiments showed that
the molecules transitioned along the CVs correctly in spite of not having any information about the
CVs. It will be interesting to see if we can infer these CVs from the learned policy and dynamics of
the systems. Lastly, our method can have implications for training diffusion models within a fixed
time-scale by additionally learning the control policy to transform one distribution into another. First
explorations of this line of thinking are presented in (Vargas et al., 2021b; Zhang and Chen, 2021).
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A ALGORITHMS

A.1 LEARNING

Algorithm 1: Training Policy uθ

Input: r0, rT : Initial and target molecular positions,
U(·): Potential Energy function,
φ(·): Terminal cost,
uθ(·, ·): Initial parameterized policy,
N : Number of trajectories sampled per update,
τ : Time horizon,
ν: Variance of Brownian noise,
R: Control cost matrix,
µ: Learning rate,
dt: Time discretization step

while not converged do
▷ Generate trajectories with current policy uθ

λ← Rν ;
n← 0 ;
while n < N do

▷ Initialize initial trajectory state
(rn,0,vn,0, t)← (r0,0, 0);
while t < (τ/dt) do

▷ Sample Brownian noise and action
εn,t ∼ N (0, ν);
un,t ← uθ(rn,t, t);
▷ Update positions and velocity
rn,t+1 ← rn,t + vn,t · dt;
vn,t+1 ← vn,t −

(
∇rn,tU(rn,t) + un,t + εn,t

)
· dt;

t← t+ 1;
end
▷ Determine trajectory cost and gradient
Cn ← 1

λ
(φ(rn,τ ) +

∑τ
i=0 u

T
n,iRun,i + uT

n,iRεn,i);
∆θn ← exp(−Cn) +

∑τ
i=0

∂un,i

∂θ
;

n← n+ 1 ;
end
▷ Determine gradient normalization and perform policy update
η ←

∑N
i=0 exp(−Ci);

θ ← θ + µ
η

∑N
i=0 ∆θi;

end

A.2 SAMPLING

Algorithm 2: Sampling using parameterized control uθ

Input: r0: Initial molecular positions,
U(·): Potential Energy function,
uθ(·, ·): Trained parameterized policy,
τ : Time horizon,
dt: Time discretization step

▷ Initialize initial trajectory state
(rt,vt, t)← (r0,0, 0);
while t < (τ/dt) do

▷ Determine action
ut ← uθ(rt, t);
▷ Update positions and velocity
rt+1 ← rt + vt · dt;
vt+1 ← vt − (∇rtU(rt) + ut) · dt;
t← t+ 1;

end
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B STOCHASTIC OPTIMAL CONTROL

In this section we expand on Section 2.1. Specifically, we expand on the derivation of the Stochastic
Optimal Control (SOC) objective in terms of a KL-divergence (appendix B.1) and the derivation of
the iterative gradient descent procedure (appendix B.2). Note that the derivations presented here are a
rephrasing of those given in (Kappen and Ruiz, 2016) using notation similar to the remainder of the
paper. One difference to prior work can however be found in the relation between the distribution
over uncontrolled and controlled dynamics.

Let us start by restating the objective of Path Integral Stochastic Optimal Control. Given a control u
and the Brownian motion εt with variance ν, Equation (4) defines a trajectory x(τ) = (x0, . . . ,xτ ) ∈
Rr×d. We can define the cost for said trajectory as

C(x(τ),u, εt) =
1

λ

(
φ(xτ ) +

τ∑
t=0

1

2
u(xt, t)

TRu(xt, t) + u(xt, t)
TRεt

)
(14)

where φ denotes the terminal cost, λ is a constant and R defines a weighted control cost.

This is a restatement of Equation (5), included here to make future reference easier. We note a number
of important observations.

1. Following eq. (4), we observe that the control u acts linearly on the dynamics of the system.
2. The cost of the control itself is quadratic, weighted by the matrix R.
3. Under expectation the final term vanished; Eε[u(xt, t)

TRεt] = 0

The first two observations are what classify the current control problem in the family of Path Integral
Stochastic Optimal Control (Kappen, 2005) and are a requirement to be able to derive the explicit
expression for the optimal control policy given in eq. (10). The third observation, while unusual in
the context of SOC, is needed to rewrite the SOC objective in terms of the KL-divergence as we will
see next. Additionally, if we restate the SOC-objective

u∗ = argmin
u

Eτ,εt [C(x(τ),u, εt)] (15)

we observe that observation 3 shows that the additional cost does not change the optimal control u∗.

Lastly, we note that the family of Path Integral Stochastic Optimal Control problems assumes that
λ = Rν. This assumption is needed both for rewriting the SOC objective as a KL-divergence and to
find an explicit expression for the solution.

B.1 SOC OBJECTIVE AS A KL-DIVERGENCE

As noted in the main body of the paper, an adjustment needs to be made to Equation (7) due to the
incorporation of the second-order dynamics. For this purpose we restate eq. (13) as

xt+1 =

(
rt+1

vt+1

)
=

(
rt
vt

)
+

(
vt

−∇rt
U(rt)

)
︸ ︷︷ ︸

f(xt,t)

dt+

(
03n

I3n

)
︸ ︷︷ ︸
G(xt,t)

·
(
u(xt, t) dt+ dεt

)
, (16)

with t ∈ [0, τ ]. We observe here that given rt and vt , rt+1 and vt+1 are conditionally independent.
As such we can derive a factorized probability distribution πu

(
x(τ)

)
over trajectories x(τ) as

πu
(
x(τ)

)
= πr

u

(
x(τ)

)
· πv

u

(
x(τ)

)
(17)

with

πr
u

(
x(τ)

)
=

τ∏
t=0

1[rt+1=rt+vt](rt+1) (18)

πv
u

(
x(τ)

)
=

τ∏
t=0

N (vt+1|µt,Σt). (19)
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Here, the normal distribution describing the transition probabilities for the velocity compo-
nent is similar to eq. (4) with µs = vs + fv(xs, s) dt + Gv(xs, s)(u(xs, s) dt) and Σs =
Gv(xs, s)

T νGv(xs, s). With fv and Gv we denote the components of f and G acting on the
velocity, respectively −∇rt

U(rt) and I3n.

Similarly, Equation (3) defines a probability distribution π0
(
x(τ)

)
, where now u = 0:

π0
(
x(τ)

)
= πr

0

(
x(τ)

)
· πv

0

(
x(τ)

)
(20)

with πr
u

(
x(τ)

)
= πr

0

(
x(τ)

)
and

πv
0

(
x(τ)

)
=

τ∏
t=0

N (xt+1|µ̂t, Σ̂t) (21)

with µ̂s = vs + fv(xs, s) dt and Σ̂s = Σs.

Because we are only interested in the relation between πu
(
x(τ)

)
and π0

(
x(τ)

)
, the same analysis

as in (Kappen and Ruiz, 2016) applies with πr
u

(
x(τ)

)
and πr

0

(
x(τ)

)
cancelling out. Following

Girsanov (Cameron and Martin, 1944), we get:

πu(x(τ)) = π0(x(τ)) exp
( τ∑

t=0

−1

2

uT
t G

T
t Gtut

Σt
+

Gtut(f t + vt − vt−1)

Σt

)
= π0(x(τ)) exp

( τ∑
t=0

−1

2

uT
t G

T
t Gtut

Σt
+

Gtut(Gt(ut + εt))

Σt

)
= π0(x(τ)) exp

( τ∑
t=0

1

2

uT
t G

T
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+

uT
t G

T
t Gtεt
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)
= π0(x(τ)) exp

( τ∑
t=0

1

2
uT
t G

T
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−1
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T
t Σ
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t Gtεt

)
= π0(x(τ)) exp

( τ∑
t=0

1

2
uT
t ν

−1ut + uT
t ν

−1εt

)
= π0(x(τ)) exp

( 1

λ

τ∑
t=0

1

2
uT
t Rut + uT

t Rεt

)
, (22)

where we use the assumption λ = Rν in the last step. We use shorthand notation to simplify
ut = u(xt, t), Gt = Gv(xt, t), and f t = fv(xt, t). From here we can obtain the relation in
Equation (8).

Now, as again show in (Kappen and Ruiz, 2016), we can use this relation to rewrite the cost in eq. (14)
as

C(x(τ),u, εt) =
1

λ
φ(xτ ) + log

πu
(
x(τ)

)
π0

(
x(τ)

) , (23)

and thus, the distribution over trajectories under optimal control u∗ can now be defined as
πu∗ = argmin

πu

Ex(τ)∼πu
[C(x(τ),u, εt)]

= argmin
πu

Ex(τ)∼πu

[ 1
λ
φ(xτ ) + log

πu
(
x(τ)

)
π0

(
x(τ)

) ]
= argmin

πu

Ex(τ)∼πu

[ 1
λ
φ(xτ )

]
+ Ex(τ)∼πu

[
log

πu
(
x(τ)

)
π0

(
x(τ)

) ]
= argmin

πu

Ex(τ)∼πu

[ 1
λ
φ(xτ )

]
+ DKL

(
πu

(
x(τ)

)
∥π0

(
x(τ)

))
(24)

This objective is an approximation of the Schrodinger Bridge formulation in Equation (2) where
the constraints on the marginal distributions are replaced by a regularization term in the form of the
terminal cost. When the expected terminal cost dominates the KL-divergence the found distribution
should be similar.
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B.2 ITERATIVE GRADIENT DESCENT

As mentioned earlier, the specific control problem we are considering here (linear acting control and
weighted quadratic control cost) is known as Path Integral Stochastic Optimal Control. Work on
this control problem has established that under the additional assumption that λ = Rν there exists
an explicit solution describing the optimal control u∗. While there are a number of different papers
establishing this result (Kappen, 2005; Theodorou et al., 2010; Kappen, 2007), we note that (Kappen
and Ruiz, 2016) is most in line with our work. As such, we refer the interested reader to this work to
find the proof for the following statement that defines the distribution over optimal trajectories as a
reweighing of the distributions over trajectories under no control:

πu∗ =
1

η
π0

(
x(τ)

)
exp(− 1

λ
φ(xτ )), (25)

where η = Ex(τ)∼π0
[exp(− 1

λφ(xτ )] is the normalization constant. Given the previously established
relation (eq. (8)) between π0 and πu, we can equivalently express the optimal control u∗ in terms of
any control u using importance sampling

πu∗ =
1

η

π0
(
x(τ)

)
πu

(
x(τ)

)πu(x(τ)) exp(− 1

λ
φ(xτ ))

=
1

η

1

exp
(

1
λ

∑τ
t=0

1
2u

T
t Rut + uT

t Rεt

)πu(x(τ)) exp(− 1

λ
φ(xτ ))

=
1

η
πu

(
x(τ)

)
exp(− 1

λ
φ(xτ )−

1

λ

τ∑
t=0

1

2
uT
t Rut − uT

t Rεt)

=
1

η
πu

(
x(τ)

)
exp(−C(x(τ),u, εt)) (26)

With an explicit expression for the optimal control policy given, the PICE method aims to find a
parameterized distribution πuθ∗ that is close to the optimal control in terms of KL-divergence

πu∗
θ
= argmin

πuθ

DKL

(
πu∗

(
x(τ)

)
∥πuθ

(
x(τ)

))
. (27)

Using the explicit expression for the optimal control, the KL-divergence is given as follows:

DKL

(
πu∗

(
x(τ)

)
∥πuθ

(
x(τ)

))
∝ −Eπu∗

[
log πuθ

]
= −Eπu∗

[
log π0(x(τ)) exp

( τ∑
t=0

−1

2

uθ(t)
TGT

t Gtuθ(t)

Σt
+

Gtuθ(t)(ft + xt − xt−1)

Σt

)]
∝ −Eπu∗

[ τ∑
t=0

−1

2

uθ(t)
TGT

t Gtuθ(t)

Σt
+

Gtuθ(t)(Gt(u
∗(t) + εt))

Σt

]
= Eπu∗

[ 1
λ

τ∑
t=0

1

2
uθ(t)

TRuθ(t)− uθ(t)
TRu∗(t)− uθ(t)

TRεt

]
=

1

η
Eπu

[
e−C(x(τ),u,εt)

1

λ

τ∑
t=0

1

2
uθ(t)

TRuθ(t)− uθ(t)
TRu(t)− uθ(t)

TRεt

]
(28)

We use shorthand notation to simplify u(t) = u(xt, t), Gt = G(xt, t), and ft = f(xt, t). Line 1
we discard the constant term Eπu∗

[
log πu∗

]
. Line 2 we make use of the established relation between

πu and π0 for any control u. Line 3 we discard the constant term Eπu∗

[
log π0

]
and note that the

expectation is over trajectories sampled from πu∗ . Line 4 we rewrite using the assumption that
λ = Rν. Line 5 we use Equation (26) to rewrite the distribution over an arbitrary control u using.
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We can minimize this explicit expression using Gradient Descent, to do this, we derive the gradient
of the KL-divergence

∂DKL

(
πu∗

(
x(τ)

)
∥πuθ

(
x(τ)

))
∂θ

=
1

η
Eπu

[
e−C(x(τ),u,εt)

1

λ

τ∑
t=0

(Ruθ(t)−Ru(t)−Rεt)
∂uθ(t)

∂θ

]
. (29)

Finally, we note that the expectation is over trajectories of any distribution πu, and as such, this
distribution can also be chosen to be equal to the parameterized distribution πu = πuθ

. This gives us
the final gradient

∂DKL

(
πu∗

(
x(τ)

)
∥πuθ

(
x(τ)

))
∂θ

=
1

η
Eπuθ

[
e−C(x(τ),u,εt)

1

λ

τ∑
t=0

(Ruθ(t)−Ruθ(t)−Rεt)
∂uθ(t)

∂θ

]
(30)

= −1

η
Eπuθ

[
e−C(x(τ),uθ,εt)

1

λ

τ∑
t=0

Rεt
∂uθ(t)

∂θ

]
. (31)

C EXTENSION EXPERIMENTAL SECTION

C.1 OPENMM

General setup: We use the Velocity Verlet with Velocity Randomization (VVVR) integrator (Sivak
et al., 2013) within OpenMM at a temperature of 300K with a collision rate of 1.0 ps-1.

Alanine Dipeptide: We use the amber 99sb-ildn force field (Lindorff-Larsen et al., 2010) without
any solvent, a time-step of 1.0 fs for the VVVR integrator and a cutoff of 1 nm for the Particle Mesh
Ewald (PME) method (Essmann et al., 1995).

Polyproline Helix: We initialize OpenMM with the amber protein.ff14SBonlysc forcefield and
gbn2 as the implicit solvent forcefield. The VVVR integrator had a timestep of 2.0 fs and a cutoff of
5 nm for PME. The proposed method was ran for a total of 10.000 fs (resulting in 5,000 policy steps).

Chignolin: To sample transition paths between the folded and unfolded state of the Chignolin
protein, we initialize OpenMM using the same forcefield and VVVR integrator as for Polyproline
with the exception that we sample a new force from our policy network every 1.0 fs. We do this 5000
times for each rollout for a total time horizon of 5000 fs.

C.2 ALANINE DIPEPTIDE

C.2.1 DISCUSSION BASELINES AND EVALUATION METRICS

Metrics Three different metrics are used for the comparison covering multiple desiderata for the
sampled transition trajectories. For each metric we report the score over 1000 trajectories with the
exception of the Molecular Dynamics without fixed timescale baseline which is only ran until 10
trajectories are successfully generated.

Expected Pairwise Distance (EPD) The EPD measures the similarity between the final conformation
in the trajectory and the target conformation taking into account the full 3D geometry of the molecule.
Note that the expected pairwise distance for uncontrolled MD with the target as the starting conforma-
tion has a EPD of 2.25× 10−3. All trajectories with an EPD of less than this can thus be considered
to transition the molecule within one standard deviation of the target distribution.

Target Hit Percentage (THP): The second metric under which we evaluate the proposed Transition
Path Sampler measures the similarity of the final and target conformation in terms of the collective
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Figure 4: Visualization of a trajectory sampled with the proposed force prediction method. Left:
The sampled trajectory projected on the free energy landscape of Alanine Dipeptide as a function
of two CVs Right: Conformations along the sampled trajectory: A) starting conformation showing
the CV dihedral angles, B-D) intermediate conformations with D being the highest energy point on
the trajectory, and E) final conformation, which closely aligns with the target conformation. Bottom:
Potential energy during transition. Letters represent the same configurations in the transition.

variables. The THP measures the percentage of generated trajectories/paths that reach the target state.
As such, higher hit percentages are preferred. We determine a trajectory to have hit the target in CV
space when ϕ and ψ are both within 0.75 of the target.

Energy Transition Point (ETP): The final metric looks at the potential energy of the transition
point—the conformation in the trajectory with the highest potential energy. This directly evaluates
the capability of the method to find the transition path that crosses the boundary at the lowest saddle
point.

Baselines We compare the proposed Transition Path Sampling method with extended Molecular
Dynamics simulation using different time-scales and temperature points. As discussed earlier, there
are currently no other methods available for Transition Path Sampling using the full 3D geometry of
the molecules.

Molecular Dynamics with fixed timescale: This set of baselines is limited to the same timescale
as the proposed Transition Path Sampler, 500 femtoseconds, but uses varying temperatures. With
higher temperatures we should have a higher probability of crossing the barrier and hitting the target
configuration.

Molecule Dynamics without fixed timescales: In contrast to the other set of baselines, the MD simu-
lation for this set is not limited to 500 femtoseconds, but is instead ran until the target conformation
is reached. We consider a trajectory to have reached its target if the following two conditions have
been met: 1) the current conformation classifies as having hit the target under the conditions of the
metric described above and 2) the current conformation is within one standard deviation of the target
distributions mean.

By running the MD simulations until the target is reached we aim to gain intuition into the speed-up
that it achieved by the fixed timescale of the proposed Transition Path Sampler.

C.2.2 ADDITIONAL RESULTS: VISUALIZATION FORCE PREDICTION

We observe that the force predicting policy has learned a different trajectory then the energy predicting
model presented in the main body of the paper. While different, both of the trajectories pass the high
energy barrier in a locally low point. Previous work on finding transition path has also observed that
multiple viable paths can be found for Alanine Dipeptide (Hooft et al., 2021).
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