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Abstract

Utilising pre-trained biomedical foundation models (BMFMs) for inference on
multi-omic data from small cohorts, represents a promising and practical route
to demonstrate advantage of this technology for real-world drug discovery tasks.
Here, we show this via an innovative and unique BMFM inference workflow, where
BMFMs provide discernible advantage for predicting patient drug response from
omics data. We utilise open-source, fine-tuned, multi-omics BMFMs for inference
to enable downstream feature selection and engineering. Firstly, predicting drug-
target binding affinity (BA), enabling ranking and prioritisation of gene targets and
associated SNPs, and secondly, using patient SNPs to mutate reference proteins and
assess their impact on prednisolone BA. BMFM-derived features were composed
and used alongside non-BMFM features to predict patient-specific prednisolone
response using an explainable ML approach. We demonstrate superior predictive
power of BMFM-derived feature sets, and downstream explainability distinguished
SNPs that were most influential for personalised drug response prediction.

1 Introduction

By modeling and capturing the interactions between multi-omics data types, biomedical foundation
models (BMFMs) offer a powerful approach to increase understanding of complex biological systems
and disease mechanisms. As such, they have the potential to improve and accelerate many drug
discovery and development applications, enabling evaluation of drugs within the context of a more
realistic biological system. However, the use of these technologies for real-world drug discovery ap-
plications is often hindered by compute availability, computational complexities and the requirement
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for interdisciplinary expertise to build and train models. Although fine-tuning a model is significantly
less computationally and resource intensive, the need for GPU and specialised expertise can similarly
render this option as inaccessible to researchers.

This work addresses this need by utilizing pre-trained, fine-tuned, public BMFMs for inference only,
using derived inferences to engineer new BMFM-based features that we then utilised in explainable
machine learning (ML) workflows to predict patient drug response from omics data. This offers an
accessible and practical solution to utilizing the power of BMFMs for drug discovery tasks.

The ability to stratify patients based on their response to a specific drug is key to facilitating the
recommendation of interventions or treatments that are personalised to the individual, and could help
mitigate high failure rates during Phase II/III trials [1]. Here, we focus on predicting drug response
for inflammatory bowel diseases (IBDs) using data derived from surgically resected diseased tissues
from IBD patients. From these tissues REPROCELL Europe Ltd derived multi-omic (genomic,
transcriptomic) data for 104 patient samples, and measured inflammatory cytokine TNFa level with
and without prednisolone, using a proprietary lab assay, as a proxy for preclinical drug efficacy [2].

We exploit the multi-modality and multi-task BMFM called MAMMAL (Molecular Aligned Multi-
Modal Architecture and Language), pre-trained on large-scale biological datasets including proteins
and small-molecules, and fine-tuned and evaluated on diverse downstream tasks, including a drug-
target binding affinity (BA) task that we use here [3]. Firstly, MAMMAL was used to predict drug
BA for all unique human proteins with our drug of interest, prednisolone. Proteins were subsequently
ranked by BA, allowing identification of priority drug target proteins. Missense patient-specific SNPs
(those that result in a different amino acid being encoded in a protein) were then used to mutate
the priority drug target proteins, resulting in a patient-specific set of mutated proteins. MAMMAL
was used again to predict prednisolone BA for all mutated proteins, and patient-specific BAs were
calculated via comparison to BA of the reference protein.

BMFM-derived feature sets were composed and used alongside non-BMFM feature sets to predict
patient-specific prednisolone response using an explainable ML approach. Results revealed superior
predictive power of the BMFM-derived feature sets for predicting patient-specific drug response
and identification of biologically informative predictive features via explainability methods. We
demonstrate the downstream application of BMFMs to gain advantage for a small patient cohort.
Moreover, we use only pre-trained, fine-tuned FMs to showcase the benefits of existing public
multi-omic BMFMs. In doing so, we aim to expand contexts for FM use for non-experts and for
those with limited computational resource.

2 Methods

2.1 BMFM selection and inference

For all inference tasks the open-source MAMMAL model was used (https://huggingface.co/ibm-
research/biomed.omics.bl.sm.ma-ted-458m). This model was fine-tuned and evaluated on eleven
diverse downstream tasks, where it reached a new state of the art (SOTA) in nine tasks and was
SOTA comparable in two tasks [3]. The specific task that we used was for drug-target binding affinity
(BA) prediction. Binding affinities (BAs) of every unique reference protein in the human GRCh38
reference genome (and by proxy their associated genes and SNPs), with the SMILES representation
of our drug of interest prednisolone, were predicted using this fine-tuned MAMMAL FM. To derive a
representative set of unique human proteins in the GRCh38 reference, overlapping the requirements
of MAMMAL for sequence lengths under 1250bp, we focused on those proteins over 200aa in
length and less than 1240aa (37,517 of which 11,417 unique genes were represented so we selected
the primary protein isoform labeled ".1" for each gene). Each of the 11,417 proteins was run in
turn through the MAMMAL drug-target BA model for inference to assess its BA to our target drug
prednisolone. The SMILES representation that we used for our target drug of interest prednisolone
was taken from Drugbank (https://go.drugbank.com/drugs/DB00860).

Proteins were then ranked by BA (Figure 1A) and the top 5% most tightly binding proteins were
selected, resulting in a feature set of 600 proteins. Missense SNPs were identified per patient from
the genomics data and were used to mutate the 600 proteins (python package Bio.seq.MutableSeq),
resulting in a per-patient mutated protein set. BAs of mutated proteins with prednisolone were then
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predicted using the fine-tuned MAMMAL model. A final patient-specific BA was then calculated by
subtracting the reference BA from the patient mutated protein BA.

2.2 Drug response prediction

To determine if using BMFM inference for feature selection and engineering improved prediction
of drug response, we collated three separate feature sets. Feature set (1) consisted of raw SNP
data, comprising unique SNPs per person converted to either; 2 (homozygous alternate allele), 1
(heterozygous) or 0 (homozygous reference if no SNP was recorded for that patient at that position).
Feature set (2) consisted of the the raw SNPs in feature set (1) filtered to contain only those overlapping
the top 600 proteins with the strongest BAs to prednisolone as derived using BMFM inference. Feature
set (3) consisted of patient-specific differences in prednisolone BAs with respect to the reference
protein set, for the top 600 binding proteins. Accordingly, positive patient-specific BAs indicated
proteins with predicted increased prednisolone BA compared to the reference protein whilst negative
values indicated the opposite.

These three feature sets were then used to train ML classifiers to predict TNFa level (a proxy for
patient response to prednisolone), as a binary classification task where we predict high versus low
TNFa level response groups. As all human tissue data derived in the laboratory was normalized
against a patient-matched non-treated control group, lower TNFa levels (class 0), was interpreted as a
better patient response group to the test drug (reduced inflammation post-treatment). For prediction
of drug response using feature set (1) we also performed traditional feature selection of SNPs using
ANOVA F-values for each column of features in the training data in relation to the target for prediction.
For downstream ML (for the three feature sets) we used AutoXAI4Omics to compare a range of
classifiers (Random Forest, AdaBoost, KNN and AutoSKlearn) with a train/test split of 80/20 and a
random search for hyperparameter tuning. AutoXAI4Omics trains and tunes a model per classifier
and then selects a "best" tuned model using an algorithm to balance performance metrics such as
overfitting, performance on 5-fold cross validation (CV) and on held-out test data. Here we report the
defined best tuned model for each feature set. AutoXAI4Omics applies the explainable AI algorithm
SHAP (SHapley Additive exPlanations) to derived ML models.

3 Results and Discussion

The top 600 proteins as identified by our BMFM-inference guided feature selection contained the
two known main targets of prednisolone plus a range of additional biologically coherent targets.
Prediction of patient-specific drug response using our three feature sets revealed that the BMFM
inference derived BAs (feature set 3, test F1 0.91) considerably outperformed prediction using both
other feature sets on held out test data (Table 1); SNP data with traditional feature selection (feature
set 1, test F1 0.81) and SNP data filtered by BMFM-led feature selection i.e., most highly bound
proteins (feature set 2, test F1 0.82). Furthermore, feature set 3 showed reduced variation on CV
(Figure 1B). This demonstrates that the predicted change in prednisolone BA between the patient
SNP-mutated proteins and corresponding reference proteins has a promising ability to accurately
classify whether a patient will exhibit a high or low response to prednisolone treatment.

Table 1: Performance of ML classification of patients as class 0 - better, and class 1 - worse,
responders to prednisolone for feature set (1) raw SNP data, feature set (2) raw SNPs filtered for only
those overlapping with the top 600 proteins with the strongest BAs to prednisolone, and feature set
(3) patient-specific differences in prednisolone BAs with respect to the reference protein set. Train
F1 and Test F1(C0/C1/WM) denote the F1 scores on the training data and on the held-out test data
for class 0/class 1/weighted mean respectively. CV F1 (Med/SD) denote the median and standard
deviation of F1 scores after 5-fold CV during training.

Feature Set Train F1 Test F1(C0) Test F1 (C1) Test F1 (WM) CV F1 (Med) CV F1 (SD)

1 1.000 0.75 0.86 0.81 0.79 0.19
2 1.000 0.80 0.83 0.82 0.80 0.18
3 0.975 0.88 0.92 0.91 0.79 0.07
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Figure 1: Performance and explainability. (A) Histogram to show derived BAs with prednisolone
for all reference proteins after MAMMAL inference. (B) Box plots show F1 scores of hyper-tuned
ML models during 5-fold CV for the feature sets (C) Global SHAP dot plot, explainability output
relating to the best performing model (Random Forest) to predict class 0. The y-axis ranks the relative
importance of the proteins on the model from high to low impact, from top to bottom, and plotted
against their SHAP impact values (x-axis). Rows are BAs per protein, dots are patient samples, and
dot colour represents the feature value (difference in BA of the patient compared to the reference
value) of that sample for the corresponding feature. Colour bar groups proteins by superfamily.

For the BMFM-predicted BA model (feature set 3), we computed SHAP explainability to understand
for which proteins the change in BAs due to SNP mutations was most influential for predicting drug
response. Deriving this information is our main reason for generation of the model i.e., to assist
biological investigations. This analysis revealed for that for prediction of class 0 (good drug response),
a higher BA of protein GABRQ (gamma-aminobutyric acid receptor subunit theta) had a positive
influence in predicting a good drug response, while a lower BA had a negative influence in predicting
a good drug response (Figure 1C). Examination of this protein revealed the presence of one SNP
(chrX:152652814, A/T) in 19 patients, which resulted in a change in protein sequence (Ile478Phe) and
decreased the protein-drug BA (pKd) compared to the reference, whilst all other patients exhibiting
zero SNPs had no change in BA (0). In consideration of this, the higher BAs for GABRQ represent
the unmutated protein whilst lower BAs represent reduced prednisolone BA due to the effect of the
SNP. (Figure 1C). This SNP, and its resulting lower prednisolone BA, negatively impacts prediction
of a good drug response, suggesting a possible link to poor response to prednisolone.

GABRQ is a subunit of GABA-A receptors, ionotrophic channels expressed in both the enteric and
central nervous systems, where they bind primary antagonist GABA (gamma-aminobutyric acid)
[4, 5]. Corticosteroids like prednisolone are not direct ligands of GABA-A receptors [6], however
several studies have documented that certain corticosteroids exhibit indirect regulatory effects on
GABA-A, likely by influencing the gut microbiota-brain axis [7–9] or influencing production of other
GABA receptor modulators [10, 11]. In the gut GABA receptor activation has also been shown to
inhibit pro-inflammatory cytokine secretion and increase anti-inflammatory cytokine production [12,
13], highlighting it’s role in regulating intestinal inflammation.

SHAP analysis also revealed a number of olfactory receptors (including OR52E5, OR4D2,
OR2T11, OR10D3 and OR8G5, (Figure 1C)) were influential in predicting drug response.
For the most predictive olfactory receptor OR52E5, a higher prednisolone BA was an impor-
tant predictor of good drug response. For protein OR52E5, 38 patients had >=1 of 4 SNPs
(chr11:5901063,5901270,5901402,5901477) that changed protein sequence (Phe96Cys, Ile165Thr,
Asp209Gly, Pro234Leu) and resulted in decreased prednisolone BA. Patients with increased pred-
nisolone BA were those with no SNPs and therefore expressing the unmutated OR52E5 protein.
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This suggests that mutations in this protein may reduce a patients response to prednisolone treate-
ment. Olfactory regulators have been associated with regulation of intestinal inflammation and cell
differentiation, and IBD patients often have decreased olfactory function [14].

4 Conclusions

Our work utilised BMFM inference for feature selection and to engineer features that allowed accurate
prediction of patient drug response, and suggested novel associations between specific SNPs and
personalised drug response to prednisolone. In ML our cohort is considered small and findings are
therefore tentative, though sample number was relatively high for an ex vivo study of human fresh
tissues. Further work is required to confirm and validate these associations, however this demonstrates
the potential of using BMFM inference to enhance personalised medicine discoveries. To the best of
our knowledge, comparison to related works suggests that this is a novel approach for BMFM-enabled
feature generation for drug response prediction. Furthermore, using a protein model for a primarily
genomics analysis, we show the possibility to extend BMFM application beyond its intended trained
modalities.
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