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Abstract

Stochastic learning of Deep Neural Network (DNN) parameters is highly sensitive to train-
ing strategy, hyperparameters, and available training data. Many state-of-the-art solutions
use weight regularization to adjust parameter distributions, prevent overfitting, and support
generalization of DNNs. None of the existing regularization techniques have ever exploited
a typical distribution of numerical datasets with respect to the first non-zero (or significant)
digit, called Benford’s Law (BL). In this paper, we show that the deviation of the significant
digit distribution of the DNN weights from BL is closely related to the generalization of
the DNN. In particular, when the DNN is presented with limited training data. To take
advantage of this finding, we use BL to target the weight regularization of DNNs. Extensive
experiments are performed on image, tabular, and speech data, considering convolutional
(CNN) and Transformer-based neural network architectures with varying numbers of pa-
rameters. We show that the performance of DNNs is improved by minimizing the distance
between the significant digit distributions of the DNN weights and the BL distribution
along with L2 regularization. The improvements depend on the network architecture and
how it deals with limited data. However, the proposed penalty term improves consistently
and some CNN-based architectures gain up to 15% test accuracy over the default training
scheme with L2 regularization on subsets of CIFAR 100.

1 Introduction

The advent of Deep Neural Networks (DNNs) has revolutionized several domains by exploiting their adapt-
ability and robust learning capabilities without requiring full model interpretability. Although the number
of large datasets in DNN research is constantly increasing, many industrial applications must deal with
smaller, manually collected datasets. In addition, the choice of hyperparameters significantly affects the
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training stability and overall performance.
A notable area of research is weight regularization. Over the years, numerous studies have shown how ex-
plicit weight regularization described in Van Laarhoven (2017), such as L2 or L1 regularization, can improve
learning by imposing penalties to encourage smaller or sparser weight distributions. Implicit regularization
techniques, such as Mixup by Zhang et al. (2018) or Cutmix by Yun et al. (2019), modify the input data to
achieve similar effects. These strategies highlight the importance of weight regularization in improving the
learning capabilities of DNNs. However, they are scale dependent and need to be fine-tuned for individual
domains.
This paper explores a remarkable aspect of DNNs - the distribution of the first significant digits of their
weights, a phenomenon closely related to Benford’s Law (BL). Discovered independently by Newcomb (1881)
and Benford (1938), BL describes a counterintuitive but common pattern in numerical data across several
domains: Lower significant digits occur more often than higher ones.
This scale-invariant pattern described by BL has been observed in various domains, such as physical constants
by Shao & Ma (2010) and stock prices by Ley (1996). In machine learning, the properties of BL have been
exploited to detect anomalies in input data by O’Mahony et al. (2023) and synthetically generated images
by Bonettini et al. (2021), underlining its relevance. Their motivation is derived from the observation that
natural datasets tend to exhibit the pattern of BL, while synthetic data does not demonstrate this pattern.
Sahu et al. (2021) show that the link between BL and DNN weights is based on their mutual relationship to
thermodynamics. In particular, the probability of energy states in closed systems is such that smaller energy
states are more likely to occur than larger ones. This pattern is consistent with that observed for BL.
Despite the highlighted correlations between DNNs and the Benford distribution, research has only focused
on observing whether the collected significant digits of trained weights follow BL. The authors of Sahu
et al. (2021) propose to use the correlation between significant digits of the weights and BL to estimate the
generalization error of DNNs. A high correlation is then used as a stopping criterion for Early Stopping,
a mechanism that stops training when performance on a holdout validation dataset does not increase for
a predefined number of consecutive epochs. This feature of BL is closely related to its relevance for bias
detection in numerical data, such as synthetic images. In particular, data, especially with limited quantity, is
always biased because it represents a small snapshot of the real world. In the same way, this bias is reflected
in the weights of DNNs. Consequently, a DNN trained with limited training data is expected to deviate
from the ideal case of bias-free learning. One potential solution to enhance the performance of the DNN is
to bias the weights towards the ideal case of bias-free learning by incorporating a penalty term into the loss
function.
To date, no research has been published on the use of BL as a regularization technique. To analyze the
effects of BL on DNNs weights regularization, this paper:

1. demonstrates the relation between ML datasets and BL

2. introduces a way to approximate BL via gradient-based optimization,

3. analyzes the effect of Benford regularization in training DNNs with reduced datasets compared to
their standard L2 regularized training scheme.

Benford regularization has particular relevance for applications where a complex dataset is insufficient for
a DNN or a DNN has limited capacity for a large dataset. To this end, our experiments utilize subsets of
common image (CIFAR10/100) and audio datasets to emphasize the bias in the dataset. In this manner,
we are able to draw comparisons between CNN-based architectures, such as DenseNet and ResNext, and
Transformer architectures, including tiny ViT and tiny Swin Transformer, with respect to their performance
on random subsets of the data. The findings reveal consistent enhancements due to the Benford regularization
when employed in conjunction with L2 regularization, as opposed to L2 regularization alone. In particular,
CNN-based architectures benefit from additional Benford regularization in subsets of the datasets with
improvements of up to 15%. Similarly, Transformer models exhibit enhancements, achieving up to 3%
improvement through the integration of Benford and L2 regularization on the entire dataset.
Furthermore, experiments were conducted with small and hardware-optimized MobileNetV3 models on the
Imagenet1K dataset. It was observed that the larger-capacity model demonstrated a greater improvement in
performance when utilizing Benford regularization, in comparison to the smaller model. The experimental
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results indicated an interaction between enhanced performance, model capacity, and data availability when
employing Benford regularization.
The remainder of the manuscript is structured as follows. First, an investigation is conducted into related
research on weight regularization and BL in connection to DNNs. Subsequently, an outline is presented of
the relation between BL and physics, with an illustration of a close connection to DNNs. The proposed
method introduces a differentiable approximation of the Benford distribution and demonstrates how BL
can be approximated via gradient descent. The following experiments are performed on the public image
datasets CIFAR10/100 (Krizhevsky, 2009), and Imagenet1K (Russakovsky et al., 2015). These experiments
evaluate the performance of well-known DNNs trained from scratch with different dataset sizes. To complete
the experiments, the regularizer is evaluated on different data domains, such as speech and tabular data.
Following a thorough discussion of the experiments and their results, the limitations of the presented work
are assessed. Finally, the paper concludes with an overview of its findings.

2 Considered problem and related work

Research on weight regularization focuses on specific favorable weight distributions. The goal of these
approaches is to make DNN training stable while ensuring robustness against overfitting and noise in the
data. This section discusses state-of-the-art research that employs regularization and data augmentation for
DNNs, and related work that features BL with respect to DNNs.

Regularization and data augmentation are of practical importance when training DNNs to avoid
overfitting and foster numerical stability. Weight regularization, like L2 or L1, aims to reduce the norm of
the weights by adding a penalty to the loss function. L2 regularization is mainly implemented as weight
decay as described in Loshchilov & Hutter (2019). Alongside L2 regularization, the focus of seminal work is
on implicit regularization, such as data augmentation methods reviewed by Shorten & Khoshgoftaar (2019)
like Mixup by Zhang et al. (2018) or Cutmix by Yun et al. (2019). Such techniques do not directly constrain
the weights, but they affect their distribution. Data augmentation distorts the input data to make the
network robust against different conditions, such as lighting conditions for camera images, thus improving
generalization. To achieve this, Mixup fuses two training samples and their respective label via a convex
combination to learn smooth decision functions. Cutmix extends the approach and cuts out a patch from
an input image and replaces the patch with information from a different training sample. The targets are
adjusted proportionally to number of switched pixels. An alternative regularization method, SAM by Foret
et al. (2019), reduces the sharpness of the loss landscape via second order gradient smoothing. Generalization
is achieved by finding parameters that lie in a neighborhood with a low loss instead of suboptimal sharp
minima. At last, Early Stopping is one of the most common methods in DNN research. It describes a
mechanism to stop the training when a monitored metric, like validation error, stops improving (Yao et al.,
2007). In particular, Early Stopping does not change the weights by adding a penalty or changing the input
data, so it is of relevance for training DNNs in any data domain and is commonly used. In the work of Sahu
et al. (2021), the deviation to BL has been used as metric when to stop the training. This metric makes a
validation dataset obsolete, which in turn can be used as additional training data.

The distribution of significant digits has not yet been used to regularize the weights of DNNs via
gradient-based optimization. To date, BL has been used to analyze the characteristics and the liability
of the data. In Bonettini et al. (2021), the authors use the significant digits of the cosine transformation
coefficients of an image to detect whether it was generated by a Generative Adversarial Network (GAN).
Similarly, BL has been used in O’Mahony et al. (2023) to discriminate between natural and corrupt data,
leveraging it as a filter to detect out-of-distribution data or anomalous data points. These methods monitor
whether the collected data or generated images follow BL and are motivated by the observation that natural
datasets are known to obey BL. As demonstrated by Sahu et al. (2021), the distribution of significant digits
is a predictor of the generalization of DNNs to the validation data and can function as an Early Stopping
criterion. Notably, the incorporation of BL into the optimization process has been overlooked, consequently
missing significant aspects of the Benford distribution.
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3 Motivation
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Figure 1: Comparison of significant digit distribution
of DCT/FFT coefficients in public image and speech
datasets, the union of datasets, and Benford’s Law.

Regularization and data augmentation are two prac-
tical techniques with the potential to enhance the
training and generalization of DNNs. However,
these techniques must be customized to the spe-
cific data being utilized, which can lead to a non-
universal approach.
In various domains, researchers have observed that
the significant digits of datasets often follow a pe-
culiar pattern, as shown in Figure 1, known as
BL. Despite its widespread occurrence, the under-
lying reason behind BL remains a mystery (Wang
& Ma, 2023). Interestingly, random samples from
randomly selected distributions have been shown to
converge to BL (Hill, 1995). This finding is also sup-
ported by the original work of Benford, who noted
that while some datasets deviate from BL, their
union closely aligns with it (Benford, 1938), under-
lining that unbiased data tend to adhere to BL. To
further explore this phenomenon, we analyzed the
frequency spectrum of several image datasets com-
monly used for DNN training. The coefficients of
the Discrete Cosine Transformation (DCT) and Fast
Fourier Transformation (FFT) are known to follow
BL, as evidenced by previous studies, see Benford

(2021). As shown in Figure 1, not all frequencies of these datasets follow BL. However, the union of all
datasets exhibits a strong correlation, providing further evidence that data from various unbiased distribu-
tions obey BL. Mathematically, the law is fulfilled when the frequency P (d) of any significant digit d is given
as

P (d) = logb

(
1 + 1

d

)
, (1)

where b is the base of the number system. Alternatively, the authors in Berger & Hill (2015) demonstrate that
a sequence satisfies BL if and only if “the fractional parts of its decimal logarithm are uniformly distributed
between zero and one", as shown in Eq. 2

P (d) = log10

(
1 + 1

d

)
iff log10(X) mod 1 ∼ U(0, 1), (2)

where X represents arbitrary numerical data. The described law is of particular interest because it is scale-
and base-invariant, as shown by Berger & Hill (2021). To measure the deviation from BL, we compute the
Kullback-Leibler (KL) divergence by (Kullback & Leibler, 1951) between the significant distribution of the
weights and BL (BL KL), formally defined in Eq. 3

KL(Q ∥ BL) =
9∑

d=1
Q(d) log

(
Q(d)
P (d)

)
, (3)

where Q(d) is the observed frequency of the d-th significant digit in the DNN weights. In the experimental
section, we show that networks trained with more data have weights closer to BL.
These observations are associated to theoretical results from Iafrate et al. (2015) on the partitioning of
numbers, a subject within the realm of number theory, and its relation to BL.

A partitioning process describes how a fixed quantity is distributed. To illustrate, partitioning describes
the energy states of particles in closed systems, see Iafrate et al. (2015) and is employed in the field of com-
binatorics to describe the partitioning of an integer into positive smaller integers. Common DNN structures,
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such as CNNs, employ fixed filters that partition the input. Transformers, on the other hand, are employed
to extract information from partitioned input data. Formally, we define a quantity X that is divided into
smaller parts:

X =
∑

j

njxj , (4)

with parts nj of size xj . The goal is to find the distribution p(n) that explains how often we observe a part
of size x in the subset that adds up to X. Intuitively, it is obvious that smaller numbers occur more often,
which can be easily verified by inspecting the subsets that add up to ten: [{9, 1}, {8, 2}, {8, 1, 1}, ..., {1, ..., 1}].
An illustrative example from Kafri (2009) describes the system of Eq. 4 with a number X, represented as
“boxes" with N non-interacting balls. The question is how many boxes have exactly n balls, which in turn
gives information about the probability of integers in a number. The combination of different boxes then
forms a number. As the probability of a ball being in a box is the same for all boxes, the distribution of balls
obeys BL. This result is further generalized by Iafrate et al. (2015), showing that the distribution of parts
approximately follows a simple power law p(n) ∼ 1/x. The significant digit distribution Pd of the inverse
power distribution obeys BL, as shown in Eq. 5

Pd =
∫ (d+1)10p

d10p dx/x∫ 10p+1

10p dx/x
= ln(1 + 1/d)

ln(10) = log10

(
1 + 1

d

)
. (5)

The approaches of Iafrate et al. (2015) and Kafri (2009) assume equal probabilities for each ball to fall in
a box or the parts of each size. This assumption is based on the maximum entropy principle by Jaynes
(1957). Whenever no further information about a probability distribution is given, the maximum entropy
principle is the most unbiased assumption. Finding probability distributions that maximize the entropy
is used in machine learning research for regularization in Haarnoja et al. (2018) and Chiang et al. (2005).
Like partitioning, DNNs for classification adopt a top-down strategy that involves the division of the input
into a smaller feature space by partitioning it with the trained weights. In DNNs, the number of features
represents the parts, and the weights represent their respective sizes. With sufficient training data, we expect
an unbiased partitioning of the input space into the feature space, resulting in weights that are approximately
Benford distributed. However, in the absence of training data, the parts are biased towards fewer features
with larger weights, leading to a deviation from BL. This provides an explanation for the data obtained from
Figure 2, where the lack of information in the training data leads to less diversity in the feature space and,
thus, to an increase in the distance to BL.
This motivates to find a way to exploit BL for weight regularization in DNNs. Specifically, our goal is to
constrain the significant digit distribution of the weights closer to BL in order to improve the test error
independently of the task, focusing on smaller subsets of datasets. To the best of our knowledge, this is
the first method that incorporates BL into the optimization process of neural networks via gradient-based
optimization.

4 Approach

This section presents a framework for incorporating BL into neural network regularization. To this end, we
propose a differentiable approximation of BL that can be used to optimize the significant digit distribution of
the DNN weights. The significant digits of the weights are updated via gradient descent to close the distance
to BL. To further improve the proposed approach, we utilize derived error functions on BL for exponential
functions, thereby facilitating the relaxation of the optimization problem.
The approximation of BL is more tractable with the right-hand side of Eq. 2 as it depends on the input data
x and not on the significant digits. The modulo 1 operator is equivalent to the fractional part of a number.
The fractional part of any positive number x is defined as

frac(x) = x − ⌊x⌋, (6)

where ⌊·⌋ is the floor function and ⌊x⌋ denotes the next lower integer value of x. This function has disconti-
nuities at zero and one, but the gradient can be numerically approximated in those regions. To approximate
the uniform distribution of the fractional part with gradient optimization, we utilize quantile regression
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described in Koenker & Hallock (2001). Quantile regression has been used lately in Reinforcement Learning
(RL) to learn arbitrary distributions (Dabney et al., 2018). Specifically, we compare the quantiles of the
weights to the quantiles of a uniform distribution U(0, 1). In terms of the cumulative distribution function
(c.d.f.), the quantile p defines the probability that a random variable X evaluates smaller or equal to a
threshold x, as shown in Eq. 7

FX(x) = Pr(X ≤ x) = p. (7)

The quantile function Q(p) is defined as the inverse c.d.f, presented in Eq. 8.

Q(p) = F −1
X (p) =

{
x(k), k = n(p) if n(p) is an integer
1
2 (x(k) + x(k+1)), k = ⌊n(p)⌋ if n(p) is not an integer

(8)

Here, x(1), x(2), . . . , x(n) denote the ordered weights in ascending order and n is their total number. The ⌊·⌋
denotes the floor function. The expression n(p) is the index of the p-th quantile, and the value of k is the
integer part of n(p). If n(p) is not an integer, the p-th quantile is defined as the average of the k-th and
(k + 1)-th ordered observations. The p-th quantile of the standard uniform distribution U(0, 1) is already
given by p. To measure the deviation from the standard uniform distribution, we compare the quantiles of
the weight distribution to the quantile value, as shown in Eq. 9

LBL(K, θ) = 1
K

K∑
k=1

(
Q̂(k, θ) − k

)2
, (9)

where K is the number of quantiles and Q̂(k, θ) denotes the k-th quantile of the weights θ. For an accurate
approximation of the standard uniform distribution, the number of quantiles used for the regression is
essential. The best estimation can be achieved when the number of quantiles is equal to the number of
weights in the DNN. Since, quantiles are computed based on the Quickselect algorithm by Hoare (1961),
which has an average complexity of O(n), computing them for becomes infeasible for DNNs with millions of
parameters. Thus, whenever needed, the quantile regression is computed for each layer sequentially. This
loss formulation is closely related to isotonic regression for DNN calibration in Niculescu-Mizil & Caruana
(2005).
In Algorithm 1, we illustrate a PyTorch-style pseudocode of the quantile regression steps. Finally, the
quantile regression loss is added to the objective function and consequently not limited to classification
tasks.
Nevertheless, to enhance the stability of the proposed loss, we integrate the error function from Engel &
Leuenberger (2003). The authors show that exponential functions of the form λe−λx obey BL within error
bounds independent of λ and x. The error on BL for the exponential function is defined as:

Er(f) =
+∞∑
−∞

e−λd10n

(1 − e−λ10n

) − log10(1 + 1
d

). (10)

According to the calculation in Engel & Leuenberger (2003), the error is bound within Er(f) ≤ 0.03. This
result can be incorporated into the proposed Benford regularizer given that the unnormalized probability
density of a classification network is defined as:

p(x, θ) = e(f(x,θ)/τ), (11)

where f(x, θ) defines the neural network output and τ is the temperature. Therefore, losses within the error
bound are neglected.

5 Experiments

In this section, an evaluation of the Benford regularization is conducted on various datasets and model archi-
tectures. The baseline consists of networks trained with L2 regularization, as this is an integral component
of their original training scheme. The Benford regularizer is then evaluated on top of the L2 regularization,
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Algorithm 1: PyTorch-style pseudocode of computing the quantile loss for Benford regularization
# W - flattened model weights of shape Nx1
def quantile_loss_BL(W):

# Number of quantiles is equal to the number of weights N
n_quantiles = W.shape[0]
# Compute fractional part
W = remainder(log10(W),1)
# Define quantile steps between 0 and 1
quantile_steps = linspace(start=0, end=1, steps=n_quantiles)
# Compute quantiles for the weights
W_quantiles = quantile(W, quantile_steps)
# Uniform quantiles are the quantile steps
uniform_quantiles = quantile_steps
# Compare the quantiles with Mean Squared Error
bl_loss = mse_loss(W_quantiles, uniform_quantiles)

return bl_loss

which contributes to numerical stability.
To this end, we train all networks from scratch on subsets of publicly available image datasets such as MNIST
(LeCun, 1998), CIFAR 10/100 (Krizhevsky, 2009) and ImageNet1K (Russakovsky et al., 2015). In order to
show invariance to different model architectures, we evaluate the Benford regularizer on CNN and Trans-
former models. The Transformer models used throughout the experiments have 3 times more parameters
than the CNN-based networks, rendering them predisposed to overfitting on limited datasets. At the same
time, they have a larger capacity which is relevant when the experiments use the entire dataset. In addition
to images, the experiments evaluate the performance of the M5 model from Dai et al. (2017) on the Google
Speech Commands dataset (Warden, 2018) and a two-layer MLP on the tabular Iris dataset (Fisher, 1936).
The hyperparameters used for training are defined in the respective sections. All reported results for CIFAR
10/100 are obtained from 15 different seeds and the mean and standard deviation are reported in the respec-
tive tables. Due to limited computational resources, the results from ImageNet1K experiments are obtained
from 3 different seeds. Thus, we illustrate the mean and standard deviation on the validation performance.
Afterward, the table presents the test accuracy of the model with the highest validation performance.
The implementation is based on PyTorch™ v2.0 (Paszke et al., 2019) and as processing unit, we used two
NVIDIA® Tesla® A30 GPUs. The implementation is publicly available. 1

5.1 MNIST experiments

In order to demonstrate that a reduction in the quantity of training data results in an increase in the KL
divergence, and consequently, a greater deviation from the expected value, an evaluation was conducted
on LeNet (Lecun et al., 1998) in conjunction with Benford and L2 regularization across various subsets of
MNIST. The Benford regularizer was scaled to a value of 0.1, and the mean test error curves across five
seeds are presented in Figure 2. The results indicate that with fewer data points, greater improvements can
be achieved through Benford regularization. In addition to the substantial enhancement in test performance
when training with only 1% of the data, the efficacy of this regularization diminishes as more data is
incorporated into the training process. Concerning the discrepancy from BL, the proposed regularization
effectively mitigates the BL KL divergence. However, it does not fully compensate for the absent data.
Networks with reduced BL KL demonstrate superior performance. It is noteworthy that the convergence
speed of the BL regularized network is accelerated when utilizing only 10% and 1% of the data. However,
during training, the BL KL values of both networks become comparable. This observation underscores a
discernible correlation between the BL KL and the test error, thereby highlighting the significance of the
proposed regularizer in facilitating convergence speed.

1https://github.com/juliusott/benford_regularizer
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Figure 3: Comparison between Benford’s Law and
significant digits of DenseNet121 weights trained
with L2 and Benford regularization and with L2 reg-
ularization alone on CIFAR 10.

5.2 CIFAR experiments

In this study, we initially demonstrate the efficacy of the Benford regularizer on the CIFAR 10 and CIFAR
100 datasets. Both consist of 50, 000 training images and 10,000 test images with 10 and 100 different classes
respectively. A subset of 10, 000 images from the training data is used for validation. The evaluation of
different dataset sizes is conducted by maintaining the validation and test data sizes constant. To this end,
we present the results of CNN- and Transformer-based models introduced by Vaswani et al. (2017). For
this, the DenseNet by Huang et al. (2017) with depths 121 and ResNext with 29 layers by Xie et al. (2017)
represent the CNN family. Furthermore, the tiny version of the Swin Transformer by Liu et al. (2021) and
the Vision Transformer (ViT) for small datasets proposed by Lee et al. (2021) represent the Transformer
models. The input images are normalized to 32 × 32 images with a random crop and random horizontal flip
during training, and for testing, the images are only normalized. The CNN models are trained with an SGD
optimizer, initialized with 0.9 momentum and 5 ·10−4 weight decay, and an initial learning rate of 0.001. The
Transformer models utilize an Adam optimizer with an initial learning rate of 0.0001 and a cosine annealing
learning rate schedule. Each network is trained for 200 epochs, and the learning rate of the CNNs is divided
by 5 after [60, 120] epochs, following the settings in DeVries & Taylor (2017). For all models, the quantile
regression loss for each layer is computed, and the average is added as regularization with a scaling factor of
0.1. As demonstrated in Figure 3, the proposed Benford regularizer not only minimizes the BL KL but also
modifies the significant digits of the DNN weights to approach BL. In contrast, a network optimized with
L2 regularization only exhibits deviation from BL. The results in Table 1 and Table 2 report the mean and
standard deviation of the test error obtained over 15 seeds. The results show that the proposed Benford
regularizer improves the network performance when the number of data samples is limited. As an additional
illustration, Figure 4 show the improvements of the tiny ViT’s and DenseNet121’s test performance on the
subsets of CIFAR 10 and CIFAR 100 with the additional use of Benford regularization.
It is important to note that the ViT trained with L2 and Benford regularization on 80% of CIFAR 10
achieves a performance level comparable to that of the ViT trained on the entire dataset. Generally, the ViT
benefits from the L2 and Benford regularization across all dataset sizes. Given the substantially larger size
of Transformers in comparison to the evaluated CNN models, the overall test accuracy is lower. However,
the discrepancy between model size and dataset diversity elucidates the ViT’s benefits, both on subsets and
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Figure 4: The distribution of DenseNet121’s test accuracy in % (↑) trained on subsets of CIFAR 10 (a)
and CIFAR 100 (c) shows that it improves with BL regularization on all subsets but achieves the same
performance as L2 regularization on the full dataset, respectively. The distribution of tiny ViT’s test accuracy
on CIFAR 10 (b) and CIFAR 100 (d) improves on the subsets and on the full dataset over L2 regularization.

on the full dataset. Conversely, the effect of Benford regularization becomes negligible when the complexity
of the dataset surpasses the capacity of the model and the available data, as evidenced by the performance
of ViT on 10% of CIFAR 100.
In contrast, the CNN models exhibit enhancement of up to 15% on the subsets of CIFAR 100 and up to 10%
on subsets of CIFAR 10. Additionally, the Benford regularization imposes constraints on the full dataset for
the CNN models, where their performance approaches an optimal state for the respective architecture.

5.3 Imagenet experiments

In the final set of image classification experiments, the complexity of the task was amplified by employing the
ImageNet1K dataset (Russakovsky et al., 2015). The focal point of these experiments lies in the MobileNetV3
networks by Howard et al. (2019), which are optimized for mobile applications. In opposition to the preceding
experiments, this section emphasizes reduced models for extensive datasets. To this end, we have trained
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Table 1: Average test error in % (↓) and standard deviation on CIFAR 10. An evaluation of the L2
regularization with (L2+BL) and without Benford regularization on the full dataset and random subsets of
80%, 60%, 40%, and 10%. We highlight the respective results in bold when the performance difference is at
least one standard deviation.

Subset
Reg. 100% 80% 60% 40% 10%

Swin L2 15.70 ± 0.35 17.44 ± 0.48 20.39 ± 0.46 24.61 ± 0.55 42.72 ± 0.72
Transformer L2+BL 15.17 ± 0.42 16.66 ± 0.59 19.94 ± 0.41 24.55 ± 0.50 41.72 ± 0.53
Tiny ViT L2 18.91 ± 0.35 21.21 ± 0.35 23.86 ± 0.22 28.48 ± 0.41 42.34 ± 0.59

L2+BL 17.97 ± 0.40 19.51 ± 0.31 21.66 ± 0.22 26.6 ± 0.36 41.75 ± 0.59
DenseNet121 L2 5.61 ± 0.24 10.74 ± 0.81 12.86 ± 0.27 16.30 ± 0.80 33.65 ± 0.47

L2+BL 5.71 ± 0.245 7.6 ± 0.61 9.01 ± 0.27 12.04 ± 0.74 27.62 ± 0.64
ResNext29 L2 6.03 ± 0.19 12.88 ± 2.85 16.55 ± 0.35 22.10 ± 0.55 43.23 ± 0.39
2x64 L2+BL 6.03 ± 0.11 9.04 ± 0.29 10.49 ± 0.38 13.3 ± 0.55 32.35 ± 0.39

Table 2: Average test error in % (↓) and standard deviation on CIFAR 100. An evaluation of the L2
regularization with (L2+BL) and without Benford regularization on the full dataset and random subsets
using 80%, 60%, 40% and 10% of the training data. We highlight the respective results in bold when the
performance difference is at least one standard deviation.

Subset
Reg. 100% 80% 60% 40% 10%

Swin L2 45.96 ± 0.44 50.33 ± 1.82 54.94 ± 1.47 61.11 ± 1.13 78.08 ± 0.40
Transformer L2+BL 44.08 ± 0.47 48.09 ± 0.46 52.41 ± 0.77 58.87 ± 0.70 77.65 ± 0.34
Tiny ViT L2 46.26 ± 0.53 49.64 ± 0.52 54.21 ± 0.81 60.2 ± 0.40 76.33 ± 0.43

L2+BL 43.88 ± 0.36 48.43 ± 0.58 51.64 ± 0.80 57.89 ± 0.27 76.28 ± 0.47
DenseNet121 L2 22.71 ± 0.70 39.25 ± 0.47 44.55 ± 0.48 53.18 ± 0.49 77.09 ± 0.60

L2+BL 23.36 ± 0.08 29.7 ± 0.23 32.88 ± 0.46 39.51 ± 0.64 66.43 ± 0.72
ResNext29 L2 22.97 ± 0.14 43.02 ± 0.33 49.81 ± 0.39 59.11 ± 0.44 80.38 ± 0.31
2x64 L2+BL 22.62 ± 0.13 29.99 ± 0.35 35.28 ± 0.9 42.61 ± 0.46 74.5 ± 0.37

the small and large versions of MobileNetV3 on the Imagenet1K dataset with default data augmentation
techniques, including horizontal flipping, random cropping, and color jittering. We have scaled the Benford
regularization loss with a factor of 10−6, which has yielded optimal results. The networks were trained for
90 epochs, which was the convergence limit, with an initial learning rate of 0.1, which was divided by 10
after 30 and 60 epochs. Due to limited resources, networks were trained with a batch size of 256 images,
while networks proposed in the original work were trained with a batch size of 4096. As illustrated in Figure
7, the mean and standard deviation of the validation error were calculated over three runs, with the best
validation performance of each network used for testing. As shown in Table 3 and the validation error curve,
the proposed regularization method resulted in a significant improvement.

Table 3: Imagenet1K test accuracy in % (↑) for the MobileNetV3 networks.

Regularization
MobileNetV3 Large L2 66.96

L2+BL 67.82
MobileNetV3 Small L2 59.3

L2+BL 59.77
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Figure 5: Distribution of the test accuracy in % (↑)
trained on 100% and 50% subsets of Google Speech
Commands (Audio) dataset.
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Figure 6: Distribution of the test accuracy in % (↑)
trained on 100% and 50% subsets of the tabular IRIS
dataset.

5.4 Speech and tabular datasets
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Figure 7: Validation accuracy (↑) of MobileNetV3
small and large. Both models benefit from the Benford
regularization.

To further demonstrate the effectiveness of the Ben-
ford regularizer, we propose the evaluation of differ-
ent data domains. For this purpose, we train the
M5 model of Dai et al. (2017) on the Google Speech
Commands dataset (Warden, 2018). The datasets
contain recordings for a total of 85, 511 training,
10, 102 validation, and 4, 890 test recordings. For
training, we use the Adam optimizer with a weight
decay of 0.01 and an initial learning rate of 0.1 and
scale the Benford regularizer by a factor of 0.1. The
model is trained for 100 epochs, and the learning
rate is divided by 10 after 20 epochs, as described
in Dai et al. (2017). For the experiments on the
IRIS dataset (Fisher, 1936), we use a neural net-
work consisting of two fully connected layers with
10 and 3 neurons and a ReLu activation function
(MLP). The dataset consists of 150 samples, ran-
domly divided into 73 for training, 32 for valida-
tion, and 45 for testing. The model is trained for
1000 epochs with the Adam optimizer and an initial
learning rate of 0.001. The Benford regularization
is scaled by a factor of 0.001. The results in Table 4
show that the Benford regularization also improves
the performance of DNNs regardless of the data do-
main. Looking at Figure 5, in the case of the more

complex audio dataset, the Benford regularization improves the average performance of the model regard-
less of the dataset size. The enhancement in performance achieved through training on a mere 50% of the
audio data is substantial, with an average improvement of 10% and a reduced variability. For the more
straightforward IRIS dataset, Figure 6 presents a boxplot illustrating that the performance of the 50% sub-
set is enhanced by Benford and L2 regularization, while the performance of the full dataset remains nearly
unchanged. In this scenario, the network approaches an optimal state.
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6 Limitations

The experimental findings indicate that regularizing the DNN weights towards BL improves the overall
performance, particularly in scenarios with limited training data. The proposed regularization method con-
sistently enhances performance in conjunction with L2 regularization. As illustrated in Figures 2 and 3,
the network weights can be optimized to approach BL. Given the scale invariance of Benford regularization,
there are infinitely many ways to approximate it, which has led to the use of L2 and Benford regularization in
tandem. Furthermore, experimental findings have demonstrated that Benford regularization is constrained
by the amount of data, the complexity of the data, and the model capacity. In instances where the model
is unable to learn reasonable features, Benford regularization is ineffective in compensating for this defi-
ciency. Additionally, when the network is presented with sufficient data and it is near optimum, the Benford
regularization has limited effect on the distribution of the weights because it is already closely following
the Benford distribution. Since the applied error bounds are related to exponential functions, such as the
softmax function, the experiments were carried out on classification tasks. Energy-based models learn an
exponential energy function, which is used for generative modeling. This finding suggests that our approach
is transferable to generative modeling, but not to regression problems, necessitating further analysis in this
area.

Table 4: Average test error (↓) and standard deviation on tabular and speech datasets. An evaluation of the
Benford regularization on the full datasets and a random subset of 50%.

Subset
Regularization 100% 50%

M5 (Audio) L2 14.12 ± 0.39 17.14 ± 0.38
Benford 14.11 ± 0.31 16.04 ± 0.35

MLP (IRIS) L2 3.43 ± 0.049 5.5 ± 0.05
Benford 3.12 ± 0.046 4.22 ± 0.03

7 Conclusion and future work

While previous approaches only observed whether obtained data follows BL, this paper is the first to pro-
pose the Benford regularization, where BL is learned via gradient-based optimization. The motivation is
based on commonalities between DNNs, BL and thermodynamics and the intriguing features of BL. It is
scale invariant, thus independent of the data domain and is commonly used to detect bias and anomalies in
measured datasets. The proposed method applies Benford regularization in combination with L2 regulariza-
tion for numerical stability and presents substantial improvements. Extensive experiments were conducted
on random subsets of common image datasets CIFAR 10/100 with CNN and Transformer-based models of
varying number of parameters. The addition of Benford regularization boosted the performance up to 15%
on subsets of CIFAR 10 and up to 10% improvement on CIFAR 100 subsets. The limitations are observed
when the model either reaches the optimum or the dataset is too complex for the limited amount of data.
In these cases, the performance is the same as training with L2 regularization alone. Consequently, exper-
iments on low-capacity MobileNetV3 models are evaluated on the large and complex ImageNet1k dataset.
As expected, the larger capacity network benefits more from the additional Benford regularization as the
smaller version due to the larger amount of available data. This observation is further shown by additional
experiments on the tabular Iris and Google Speech commands datasets.
To summarize, our experiments demonstrate an interplay between model and dataset complexity, revealing
that Benford regularization yields the most significant improvements when a large-capacity model is paired
with limited data or a lower-capacity model is paired with abundant data. However, we observe that there
are limits to this approach, as overly complex models for simple data (e.g., Swin Transformer) or low-capacity
models for complex data (e.g., MobileNetV3 Small) cannot effectively leverage this regularization.
These results not only provide insights about model capacity but have practical implications for industrial
DNN applications where data collection is challenging and model sizes are constrained by hardware design.
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A Appendix

A.1 Ablation on weight decay parameters

In this set of experiments, the effect of weight decay magnitude on performance is studied. Due to the small
gap between the performance of L2 and regularized tiny ViT, this model is chosen for the ablation study. The
objective is to determine whether a stronger L2 regularization can close the gap to the regularized version
using BL. The CIFAR 100 experiments in Table 2 utilize a weight decay rate of 5 · 10−4. Consequently,
the experiments in Table 5 employ 10−4, 10−3, and 10−2 to assess the impact of varying weight decay
magnitudes. In general, the tiny ViT benefits from larger weight decay parameters, a phenomenon that
is also observed in the regularized version of the BL. In the final experiment, the L2 regularization was
removed. As anticipated, the elimination of L2 regularization led to a decline in the performance of the
regularized version of BL, given BL’s inherent scale invariance, which necessitates its use in conjunction
with L2 regularization. In summary, the efficacy of weight decay in enhancing performance when confronted
with constrained datasets is noteworthy. However, it does not surpass the regularized version of BL when
employing equivalent training parameters.

Table 5: Average test error (↓) and standard deviation on CIFAR 100 for different weight decay magnitudes.

Subset
decay rate 80% 40% 10%

Tiny ViT 10−4 49.34 ± 0.34 60.09 ± 0.58 76.23 ± 0.16
10−3 49.58 ± 0.73 59.69 ± 0.016 76.14 ± 0.27
10−2 48.76 ± 0.41 59.16 ± 0.47 75.83 ± 0.30

Tiny ViT + BL 10−4 47.84 ± 0.41 58.07 ± 0.26 76.37 ± 0.12
10−3 47.48 ± 0.46 58.18 ± 0.39 75.44 ± 0.37
10−2 47.02 ± 0.68 58.17 ± 0.69 75.39 ± 0.22

Tiny ViT + BL only 0 49.84 ± 0.41 59.82 ± 0.43 76.47 ± 0.14
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