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Abstract
Traditionally, a debate usually requires a man-001
ual preparation process, including reading002
plenty of articles, selecting the claims, iden-003
tifying the stances of the claims, seeking the004
evidences for the claims, etc. As the AI de-005
bate attracts more attention these years, it is006
worth exploring the methods to automate the007
tedious process involved in the debating sys-008
tem. In this work, we introduce a compre-009
hensive and large dataset, which can be ap-010
plied to a series of argument mining tasks, in-011
cluding claim extraction, stance classification,012
evidence extraction, etc. Our dataset is col-013
lected from over 1k articles related to 123 top-014
ics. Near 70k sentences in the dataset are fully015
annotated based on their argument properties016
(e.g., claims, stances, evidences, etc.). We fur-017
ther propose two new integrated argument min-018
ing tasks associated with the debate prepara-019
tion process: (1) claim extraction with stance020
classification (CESC) and (2) claim-evidence021
pair extraction (CEPE). We adopt a pipeline022
approach and an end-to-end method for each023
integrated task separately. Promising experi-024
mental results are reported to show the values025
and challenges of our proposed tasks, and mo-026
tivate future research on argument mining. 1027

1 Introduction028

Debating has a long history and wide application029

scenarios in education field (Stab and Gurevych,030

2014; Persing and Ng, 2016; Stab and Gurevych,031

2017), political domain (Lippi and Torroni, 2016;032

Duthie et al., 2016; Menini et al., 2018), legal ac-033

tions (Mochales and Moens, 2011; Grabmair et al.,034

2015; Teruel et al., 2018), etc. It usually involves035

tons of manual preparation steps, including read-036

ing the articles, selecting the claims, identifying037

the claim stances to the topics, looking for the evi-038

dences, etc. Since the machine has shown promis-039

ing potential in processing large quantities of infor-040

mation in many other natural language processing041

1Our code and data are available at *URL*.
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Figure 1: A flow chart showing the debating prepara-
tion process.

tasks, it is also worthwhile to explore the meth- 042

ods for automating the manual process involved in 043

debating. 044

Argument mining (AM), as the core of a debat- 045

ing system (Bar-Haim et al., 2021), has received 046

more attention in the past few years. Several AM 047

tasks and datasets have been proposed to work 048

towards automatic AI debate, such as: context 049

dependent claim detection (CDCD) (Levy et al., 050

2014), claim stance classification (CSC) (Bar-Haim 051

et al., 2017) , context dependent evidence detection 052

(CDED) (Rinott et al., 2015), etc. All the above 053

tasks are essential elements for AM and they are 054

mutually reinforcing in the debating preparation 055

process. In this work, we aim at automating the 056

debating preparation process as shown in Figure 057

1. Specifically, providing with the debating topic 058

and several related articles, we intend to extract 059

the claims with its stance, and also the evidences 060

supporting the claims. 061

However, none of the existing works can facil- 062

itate the study of all these tasks at the same time. 063

Motivated by this, we introduce a comprehensive 064

dataset to support the research of these tasks. We 065

create our dataset by first collecting over 100 top- 066

ics from online forums and then exploring over 1k 067

articles related to these topics. All the sentences 068

in those articles are fully-annotated following a set 069

of carefully defined annotation guidelines. Given 070
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a specific topic, the annotators have to distinguish071

whether the given sentence is a claim to this topic072

and identify the relation between the selected claim073

and the topic (i.e., support or contest). Then given074

the claims, the annotators have to browse the con-075

texts to find evidences supporting the claims. With076

all the labeled information, researchers can work077

towards these primary argument mining tasks si-078

multaneously.079

To better coordinate these individual tasks to-080

gether, we propose two new integrated tasks: claim081

extraction with stance classification (CESC) and082

claim-evidence pair extraction (CEPE). Instead083

of treating the existing tasks (i.e., CDCD, CSC,084

CDED) as individual ones, the two proposed tasks085

can integrate the relevant primary tasks together,086

which are more practical and more effective in the087

debating preparation process. The CESC task can088

be divided into two subtasks: the claim detection089

task and the stance classification task. Intuitively,090

we conduct experiments on the CESC task with091

a pipeline approach to combine the two subtasks.092

As the two subtasks are mutually reinforcing each093

other, we also adopt an end-to-end classification094

model with multiple labels (i.e., support, contest,095

and no relation). The CEPE task is composed of096

the claim detection task and the evidence detection097

task. Similar to the annotation procedure, we ap-098

ply a pipeline method to tackle this problem by099

first detecting the claims given the topics and then100

identifying the corresponding evidences of each101

claim. We also use a multi-task model to extract102

both claims and evidences as well as their pairing103

relation simultaneously. We conduct extensive ex-104

periments on our dataset to verify the effectiveness105

of our models and shed light on the challenges of106

our proposed tasks.107

To summarize, our contributions include:108

• We introduce a fully-annotated argument min-109

ing dataset and provide thorough data analysis.110

This is the first dataset that supports compre-111

hensive argument mining tasks. We will release112

the dataset to the community.113

• We are the first to propose the CESC and CEPE114

tasks, which are practical task settings in the115

argument mining field and able to enlighten116

future research on this.117

• We conduct preliminary experiments for all pro-118

posed tasks with the new dataset. We will also119

release the experiment code and detailed set-120

tings to the community.121

2 Related Work 122

In recent years, there is a tremendous amount of 123

research effort in the computational argumenta- 124

tion research field (Eger et al., 2017; Bar-Haim 125

et al., 2021), such as argument components iden- 126

tification (Levy et al., 2014; Rinott et al., 2015; 127

Lippi and Torroni, 2016; Daxenberger et al., 2017), 128

argument relation prediction (Chakrabarty et al., 129

2019), argument pair extraction (Cheng et al., 2020, 130

2021), argument quality assessment (Habernal and 131

Gurevych, 2016; Wachsmuth et al., 2017; Gretz 132

et al., 2020; Toledo et al., 2019), listening compre- 133

hension (Mirkin et al., 2018), etc. 134

Meanwhile, researchers have been exploring 135

new datasets and methods to automate the debat- 136

ing preparation process, such as project debater 137

(Slonim et al., 2021), etc. Bilu et al. (2019) work 138

on argument invention task in the debating field to 139

automatically identify which of these arguments 140

are relevant to the topic. Li et al. (2020) explore 141

the role of argument structure in online debate per- 142

suasion. Levy et al. (2014) introduce a dataset with 143

labeled claims and work on the task of context- 144

dependent claim detection (CDCD). Bar-Haim 145

et al. (2017) modify Aharoni et al. (2014)’s dataset 146

by further labeling the claim stances and tackle 147

the problem of stance classification of context- 148

dependent claims. Rinott et al. (2015) propose a 149

task of detecting context-dependent evidences that 150

support a given claim (CDED) and also introduce 151

a new dataset for this task. 152

Unlike previous works with a specific focus on 153

only one argument mining task, we introduce a 154

comprehensive dataset that is able to support dif- 155

ferent tasks related to the debating system. Such a 156

dataset not only enlightens future research on argu- 157

ment mining but also shows strong potential for var- 158

ious practical applications. Another difference is 159

that existing tasks (e.g., CDCD, CDED, CSC, etc.) 160

could be considered as subtasks in the emerging 161

wider field of argumentation mining (Levy et al., 162

2014). While in this paper, we propose two inte- 163

grated tasks (i.e., CESC and CEPE) incorporating 164

the existing subtasks in the debating system, which 165

takes a step forward to automatic AI debate. 166

3 Our Dataset 167

We introduce a large and comprehensive dataset to 168

facilitate the study of several essential AM tasks 169

in the debating system. We describe the collection 170

process, annotation details and data analysis here. 171
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Topic: Will artificial intelligence replace humans Claims Stances Evidences

1
Job opportunities will grow with the advent of AI; however, some jobs might be lost
because AI would replace them.

C_1 +1

2 Any job that involves repetitive tasks is at risk of being replaced. C_2 +1

3
In 2017, Gartner predicted 500,000 jobs would be created because of AI, but also
predicted that up to 900,000 jobs could be lost because of it.

E_1 | E_2

4 The number of industrial robots has increased significantly since the 2000s. E_3
5 The low operating costs of robots make them competitive with human workers. E_3

6
In the finance sector, computer algorithms can execute stock trades much faster than a
human, needing only a fraction of a second.

E_3

7
As these technologies become cheaper and more accessible, they will be implemented
more widely, and humans might be increasingly replaced by AI.

C_3 +1

8
According to Harvard Business Review, most operations groups adopting RPA have
promised their employees that automation would not result in layoffs.

C_4 -1 E_4

9 AI is incredibly smart, but it will never match human creativity. C_5 -1

Table 1: Sample topic and labeled claims with their stances and evidences. Note that different blocks refer to the
sentences from different articles, and we only extract claim-evidence pairs from the same article. For clarity, we
label the indices in ascending order, which may not reflect the real indices in the dataset.

3.1 Data Collection172

First, we collect 123 debating topics with a wide173

variety from online forums. For each topic, we174

explore around 10 articles from English Wikipedia175

with promising contents. The most number of176

articles explored for one topic is 16, while the177

least number is 2. This is because it is difficult178

to find enough resources for unpopular topics such179

as “Should nuclear waste be buried in the ground”.180

However, most topics (i.e., 91 topics) are relatively181

popular with more than 8 related articles collected182

for each of them. In total, there are 1,010 articles183

collected for all the topics. After we obtain all the184

relevant articles, we use NLTK package (Bird et al.,185

2009) to split the corpus into 69,666 sentences from186

these articles for further annotation.187

3.2 Data Annotation188

The annotation process is mainly separated into189

two stages: (1) detecting the claims given the top-190

ics, (2) detecting the evidences given the claims. A191

context-dependent claim (CDC), claim in short, is a192

general and concise statement that directly supports193

or contests the given topic (Levy et al., 2014). The194

annotators are asked to extract the claims by follow-195

ing this definition. Meanwhile, the annotators have196

to identify the stance of the extracted claim towards197

the given topic. In the second stage, the annotators198

have to read through the context surrounding the199

claims, and extract the evidences following the def-200

inition that a context-dependent evidence (CDE) is201

a text segment that directly supports a claim in the202

context of the topic. Since only the surrounding203

sentences are content-relevant in most cases, we 204

only search 10 to 15 sentences before and after the 205

claim sentence to label the evidences. Note that the 206

claim itself could be the evidence as well. 207

Professional data annotators are hired from a 208

data annotation company and are fully paid for 209

their work. Each sentence is labeled by 2 profes- 210

sional annotators working independently in the first 211

round. 69,666 sentences are labeled in total and the 212

Cohen’s kappa is 0.44 between the two annotators, 213

which is a reasonable and relatively high agreement 214

considering the annotation complexity. Whenever 215

there is any inconsistency, the third professional 216

annotator will judge the annotation result in the 217

confirmation phase to resolve the disagreement. 218

Table 1 shows a sample topic “Will artificial in- 219

telligence replace humans” and its labeled claims 220

with their stances and evidences. The claims are 221

labeled as “C_index” and the evidences are labeled 222

as “E_index”. For stances, “+1” represents the 223

current claim supporting the topic, while “-1” rep- 224

resents the claim contesting the topic. A claim and 225

an evidence form a claim-evidence pair (CEP) if 226

the indices match with each other under a specific 227

topic. An evidence can support multiple claims, 228

such as Sent 3, as an evidence, it supports two 229

claims, i.e. Sent 1 and Sent 2. Similarly, a claim 230

can have different evidences, such as Sent 7, as a 231

claim, it has three paired evidence sentences (i.e., 232

Sent 4 - 6). As mentioned, one sentence can be 233

considered as both the claim and the evidence. For 234

instance, in Sent 8, there is a clear and concise 235

statement “automation would not result in layoffs” 236
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Topics Articles
Articles

Claims Support Contest
Claims with

Evidences CEPs
with claims evidences

Levy et al. (2014) 32 326 - 976 - - - - -
Rinott et al. (2015) 39 274 274 1,734 - - 1,040 3,057 5,029*
Aharoni et al. (2014) 33 (12) 586 321 (104) 1,392 - - (350) (1,291) 1,476*
Bar-Haim et al. (2017) 55 - - 2,394 1,324 1,070 - - -
Ours 123 1,010 814 4,890 2,613 2,277 3,302 9,384 10,635

Table 2: Overall statistics comparison of the existing datasets and our dataset. Note that: (1) in Aharoni et al.
(2014)’s dataset, the numbers in the parenthesis refer to the evidences labeling data; (2) the numbers with * are
calculated by us since they are not shown in the original papers.

Ours

Avg. length of all sentences 21.05
Avg. length of claims 23.44
Avg. length of evidences 25.09

Avg. % vocab shared in each CEP 20.14%
Avg. % vocab shared in each sent pair 8.73%

Table 3: Dataset statistics on argument lengths and vo-
cabulary sharing.

contesting the given topic directly, which is consid-237

ered as a claim. There is also a text segment at the238

beginning of the sentence showing the testimony239

from an organization (i.e., “Harvard Business Re-240

view”) directly supporting this claim stated in the241

latter part of the sentence. Therefore, this sentence242

is labeled as an evidence as well. Last but not least,243

there are some claims without evidences found in244

the context in our dataset, such as Sent 9.245

3.3 Dataset Analysis246

We present the dataset statistics comparison with247

existing datasets in Table 2, and list the key dif-248

ferences below. First, as mentioned earlier, the249

existing datasets have their own focus on partic-250

ular tasks, and none of them can support all the251

essential argument mining tasks related to the de-252

bate preparation process. Levy et al. (2014) only253

label data for claims, Rinott et al. (2015) only fo-254

cus on detecting the evidences given the claims,255

Aharoni et al. (2014) only label a partial dataset for256

evidences, and Bar-Haim et al. (2017) only tackle257

the claim stance classification problem. In contrast,258

our dataset is fully annotated for all the key ele-259

ments related to argument mining tasks, including260

claims, stances, evidences, and relations among261

them. Although combining Aharoni et al. (2014)262

and Bar-Haim et al. (2017)’s datasets can obtain a263

comprehensive dataset with 12 topics supporting264

all the subtasks, in terms of the dataset size, our265

dataset is significantly larger than it and the existing266

datasets. We explore 123 topics in total, which is267

more than twice of Bar-Haim et al. (2017)’s dataset. 268

Accordingly, we obtain much more claims and ev- 269

idences by human annotation on all sentences in 270

the corpus, as compared to the previous datasets, 271

which could add potential value to the argument 272

mining community. 273

Table 3 shows more statistics of our dataset. In 274

terms of the sentence lengths in our dataset, the av- 275

erage number of words in a sentence is around 21. 276

The average length of sentences containing claims 277

is generally longer, and evidences are even slightly 278

longer than claims. However, since the length dif- 279

ferences are subtle, it shows the challenges to dis- 280

tinguish the claims and evidences using the length 281

differences among the sentences. We also calcu- 282

late the average percentage of vocabulary shared 283

between each claim-evidence sentence pair, which 284

is 20.14%; while the same percentage between any 285

two sentences from our corpus is only 8.73%. This 286

shows that extracting CEP is a reasonable task set- 287

ting as it has a higher percentage of vocabulary 288

sharing than other sentence pairs, but it is also chal- 289

lenging as the absolute percentage is still low. 290

4 Tasks 291

In the debating system, our ultimate goal is to au- 292

tomate the whole debate preparation process as 293

shown in Figure 1. With the introduced annotated 294

dataset, we can tackle all core subtasks involved in 295

the process at the same time. In this section, we 296

first review the existing subtasks, and then propose 297

two integrated argument mining tasks. 298

4.1 Existing Tasks 299

Task 1: Claim Extraction Similar to the CDCD 300

task proposed by Levy et al. (2014), this task is 301

defined as: given a specific debating topic and re- 302

lated articles, automatically extract the claims from 303

the articles. Claim extraction is a primary argu- 304

ment mining task as the claim is a key argument 305

component. 306

4



Task 2: Stance Classification As introduced by307

Bar-Haim et al. (2017), this task is defined as: given308

a topic and a set of claims extracted for it, deter-309

mine for each claim whether it supports or contests310

the topic. As shown in Table 2, the number of311

claims from two stances is approximately balanced312

(i.e., 53.4% are support and 46.6% are contest),313

which also indicates the high quality of our dataset314

and annotations.315

Task 3: Evidence Extraction In Rinott et al.316

(2015)’s work, this task is defined as: given a317

concrete topic, a relevant claim, and potentially318

relevant documents, the model is required to auto-319

matically pinpoint the evidences within these doc-320

uments. In this paper, we only explore the evi-321

dence candidate sentences from the surrounding322

sentences of the claims, as long-distance sentences323

may not be content-relevant in most cases.324

4.2 Integrated Tasks325

In order to further automate the debating prepara-326

tion process, exploring integrated tasks rather than327

individual subtasks is non-trivial. In this work, we328

introduce two integrated argument mining tasks as329

below to better study the subtasks together.330

Task 4: Claim Extraction with Stance Classi-331

fication (CESC) Since claims stand at a clear332

position towards a given topic, the sentences with333

clear stances should have a higher possibility to be334

the claims. Hence, identifying the stances of the335

claims is supposed to benefit the claim extraction336

task. By combining Task 1 and Task 2, we define337

the first integrated task as: given a specific topic338

and relevant articles, extract the claims from the339

articles and also identify the stance of the claims340

towards the topic.341

Task 5: Claim-Evidence Pair Extraction342

(CEPE) Since evidences are clearly supporting343

the corresponding claims in an article, claims and344

evidences are mutually reinforcing each other in345

the context. Therefore, we hypothesize the claim346

extraction task and the evidence extraction task347

may benefit each other. By combining Task 1 and348

Task 3, we define the second integrated task as:349

given a specific topic and relevant articles, extract350

the claim-evidence pairs (CEPs) from the articles.351

5 Approaches352

To tackle the two integrated tasks, we first adopt a353

pipeline approach to pipe the corresponding sub-354

tasks together by using sentence-pair classification 355

on each subtask. We also propose two end-to-end 356

models for the two integrated tasks. 357

5.1 Sentence-pair Classification 358

We formulate Task 1, Task 2, and Task 3 as 359

sentence-pair classification tasks. We train a 360

sentence-pair classifier based on pre-trained mod- 361

els such as BERT (Kenton and Toutanova, 2019) 362

and RoBERTa (Liu et al., 2019). The sentence 363

pairs are concatenated and fed into the pre-trained 364

model to get the hidden state of the “[CLS]” token. 365

Then, a linear classifier will predict the relation 366

between the two sentences. Specifically, for Task 1, 367

the topic and the article sentence are concatenated 368

and fed into the model. If they belong to the same 369

pair, the article sentence is considered as a claim, 370

and vice versa. For Task 2, the model predicts the 371

stance between a topic and a claim. Task 3 is simi- 372

lar to Task 1, where the model predicts if the given 373

claim and the article sentence form a pair, i.e., if 374

the sentence is an evidence of the claim. All these 375

three tasks can be considered as binary classifica- 376

tion tasks, and cross-entropy loss is used as the loss 377

function. 378

Negative Sampling For Task 1 and Task 3, the 379

binary labels are unbalanced as the number of 380

claims/evidences is far smaller than the total num- 381

ber of sentences. To overcome this difficulty, we 382

adopt negative sampling techniques (Mikolov et al., 383

2013). During the training of these two tasks, for 384

each claim/evidence sentence, we randomly select 385

a certain amount of non-claim/non-evidence sen- 386

tences as negative samples. These negative samples 387

together with all claims/evidences form a new train- 388

ing dataset for each task. 389

5.2 Multi-Label Model for CESC 390

Apart from the pipeline approach, we propose a 391

multi-label model for the CESC task. Instead of 392

handling the two subtasks separately, we concate- 393

nate the topic and article sentences to feed into 394

a pre-trained model and define 3 output labels 395

specifically for this task: support, contest, and no- 396

relation. Support and contest refer to those claims 397

with their corresponding stances to the topic, while 398

no-relation stands for non-claims. Since the sen- 399

tence pairs with no-relation labels are much more 400

than those with support/contest, we also apply the 401

negative sampling here for a more balanced train- 402

ing process. 403
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train dev test

# sents as claim candidates 55,544 7,057 7,065
# claims 03,871 0,492 0,527

# support claims 02,098 0,259 0,256
# contest claims 01,773 0,233 0,271

# claims with evidences 02,616 0,347 0,375
% claims with evidences 067.6% 70.3% 71.2%

# sents as evidences candidates 57,398 7,487 8,172
# evidences 07,278 0,909 1,108
Avg. # evidences per claim 002.78 02.62 02.95

Table 4: Dataset statistics split on train/dev/test sets.

5.3 Multi-Task Model for CEPE404

Inspired from Cheng et al. (2021)’s work, we adopt405

a multi-task model (i.e., an attention-guided multi-406

cross encoding based model) for the CEPE task.407

Provided with a sequence of article sentences and408

the topic, we first concatenate the topic and indi-409

vidual sentences as the claim candidates, and use410

the sequence of article sentences as the evidence411

candidates. We reformulate the claim extraction412

and evidence extraction subtasks as sequence label-413

ing problems. Then, the sequence of claim candi-414

dates and the sequence of evidence candidates go415

through the pre-trained models to obtain their sen-416

tence embeddings respectively. To predict whether417

two sentences form a claim-evidence pair, we adopt418

a table-filling approach by pairing each sentence in419

the claim candidates with each sentence in the evi-420

dence candidates to form a table. All three features421

(i.e., claim candidates, evidence candidates, ta-422

ble) update each other through the attention-guided423

multi-cross encoding layer as described in Cheng424

et al. (2021)’s work. Lastly, the two sequence fea-425

tures are used to predict their sequence labels, the426

table features are used for pair prediction between427

each claim and evidence. Compared to the pipeline428

approach, this multi-task model has stronger sub-429

task coordination capability, as the shared informa-430

tion between the two subtasks is learned explicitly431

through the multi-cross encoder.432

6 Experiments433

6.1 Experimental Settings434

We split our dataset randomly by a ratio of 8:1:1435

for training, development, and testing. The dataset436

statistics are shown in Table 4. In the training set,437

since the number of claims (3,871) and the number438

of non-claims (51,673) are not balanced with a ratio439

of 1:13.3, we conduct experiments by selecting440

different numbers of negative samples and evaluate441

the effectiveness of the negative sampling strategy.442

Models Macro F1 Micro F1 Claim F1

BERT-base-cased 72.08 92.51 48.08
RoBERTa-base 72.36 91.09 50.35

Table 5: Claim extraction performance.

It turns out that using 5 random negative samples 443

for each claim performs the best. For each claim 444

with evidences, 10 to 15 sentences before and after 445

the claims are chosen to be the evidence candidates. 446

The negative sampling strategy is also applied for 447

the evidences candidates in the training set, where 448

the ratio of positive samples (i.e., 7,278 evidences) 449

to negative samples (i.e., 50,120 non-evidences) is 450

1:6.9. It turns out that using 1 negative sample for 451

each evidence is the best. 452

We implement the sentence-pair classification 453

model and the multi-label model for CESC with the 454

aid of SimpleTransformers (Rajapakse, 2019). The 455

multi-task model for CEPE is based on the imple- 456

mentation of the multi-task framework by Cheng 457

et al. (2021). All models are run with V100 GPU. 458

We train our models for 10 epochs. We experiment 459

with two pre-trained models: BERT (Kenton and 460

Toutanova, 2019) and RoBERTa (Liu et al., 2019). 461

Batch size is set as 128 for claim extraction and 462

stance classification, and 16 for evidence extrac- 463

tion. We use 1 encoding layer for the multi-task 464

model, and other parameters are the same as the 465

previous work. 2 466

For the claim and evidence extraction subtasks, 467

besides Macro F1 and Micro F1, we also report 468

the claim-class F1 and the evidence-class F1, re- 469

spectively. For CESC, we additionally report the 470

claim-class F1 of different stances (i.e., support and 471

contest). For the claim stance classification sub- 472

task, we report overall accuracy and F1 for each 473

class, as this task can be simply considered as a 474

binary classification problem with balanced labels. 475

For CEPE, we report precision, recall, and F1. 476

6.2 Main Results on Existing Tasks 477

Claim Extraction Performance Table 5 shows 478

the performance on Task 1. The classification 479

model with pre-trained RoBERTa-base performs 480

slightly better than with BERT-base-cased. Recall 481

that we adopt the negative sampling strategy for 482

these two models by randomly selecting 5 negative 483

samples during the training phase. We also com- 484

2More details about hyper-parameter settings (i.e., batch
sizes in the sentence-pair classification model, number of
layers in the multi-task model), runtime and performance on
the development set could be found in Appendix A.
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Figure 2: Effect of negative sampling for claim extrac-
tion with RoBERTa-base model.

Models Acc. Support F1 Contest F1

BERT-base-cased 73.43 73.08 73.78
RoBERTa-base 81.21 81.21 81.21

Table 6: Stance classification performance.

pare the performance of using different numbers of485

negative samples for each claim as shown in Figure486

2. Generally speaking, the model performs better487

as the number of negative samples increases from488

1 to 5, and starts to drop afterward. As the ratio489

is more balanced, i.e., from no sampling (1:13.3)490

to 5 negative samples, the F1 score increases as491

expected. As the number of negative samples de-492

creases further to 1, the ratio is even more balanced.493

However, it sacrifices the number of training data,494

which leads to worse performance.495

Stance Classification Performance Table 6496

shows the performance on Task 2. In both models,497

the F1 scores on each stance are very close to each498

other, which is as expected because the two stances499

are balanced as shown in Table 4. Although the pre-500

trained RoBERTa model outperforms the BERT501

model, there is still ample room for improvement502

as the accuracy of the RoBERTa model (81.21) is503

not relatively high for a binary classification task.504

One possible reason is that some claim sentences505

are too long to intuitively show the stances. For ex-506

ample, for the topic “Should vaccination be manda-507

tory”, a claim sentence “Young children are often at508

increased risk for illness and death related to infec-509

tious diseases, and vaccine delays may leave them510

vulnerable at ages with a high risk of contracting511

several vaccine-preventable diseases.” is classified512

as “+1” according to the human evaluation, but is513

predicted as “-1” from the RoBERTa model.514

Evidence Extraction Performance Table 7515

shows the performance on Task 3. Again, the516

RoBERTa model performs better than the BERT517

model. For this task, we experiment with two set-518

tings: (1) given the topic and the claim (T+C), (2)519

only given the claim (C), to identify the evidences520

Models Macro F1 Micro F1 Evi. F1

BERT-base-cased (T+C) 58.17 72.75 38.15
RoBERTa-base (T+C) 62.43 78.13 40.89

BERT-base-cased (C) 58.01 72.65 37.92
RoBERTa-base (C) 63.37 80.29 40.16

Table 7: Evidence extraction performance.

1 2 3 4 5 6.9
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Figure 3: Effect of negative sampling for evidence ex-
traction with BERT-base-cased (C).

Models Macro F1 Micro F1 Support F1 Contest F1

Pipeline 55.95 88.56 33.39 40.10
Multi-label 60.25 91.22 38.34 47.31

Table 8: CESC task performance.

from the candidate sentences. For the (T+C) set- 521

ting, we simply concatenate the topic and the claim 522

as a sentence, and pair up with the evidence can- 523

didates to predict whether it is an evidence of the 524

given claim under the specific topic. Comparing the 525

results of these two settings, adding the topic sen- 526

tences as inputs does not significantly improve the 527

performance further, which suggests that claims 528

have a closer relation with evidences, while the 529

topic is not a decisive factor to evidence extraction. 530

Here, 1 negative sample for each evidence sentence 531

is randomly selected. The comparison of different 532

numbers of negative samples is shown in Table ??. 533

Unlike the trend shown in the claim extraction task, 534

the model achieves the best performance when the 535

ratio is exactly balanced at 1:1. 536

6.3 Main Results on Integrated Tasks 537

For these two integrated tasks, we first use a 538

pipeline method to pipe the best performing model 539

on each corresponding subtask together, and then 540

compare the overall performance with the proposed 541

end-to-end models. 542

CESC Task Performance Table 8 shows the re- 543

sults of two approaches for the CESC task. For both 544

two methods, we randomly select 5 negative sam- 545

ples for each positive sample (i.e., claim) during 546

training. The pipeline model trains two subtasks 547

independently and pipes them together to predict 548

whether a sentence is a claim and its stance. Al- 549
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Models Precision Recall F1

Pipeline 16.58 22.11 18.95
Traversal 24.06 38.74 29.69
Multi-task 43.54 30.57 35.92

Table 9: CEPE task performance.

though it achieves the best performance on each550

subtask, the overall performance is poorer than551

the multi-label model. It shows that identifying552

the stances of the claims can benefit the claim ex-553

traction subtask, and such a multi-label model is554

beneficial to the integrated CESC task.555

CEPE Task Performance Table 9 shows the556

overall performance comparison among different557

approaches. Apart from the pipeline and the multi-558

task models as mentioned, we add another baseline559

model named “traversal”. In this model, all pos-560

sible pairs of “topic + claim candidate” and “evi-561

dence candidate” are concatenated and fed into the562

sentence-pair classification model. Both the traver-563

sal model and the multi-task model outperform564

the pipeline model in terms of the overall F1 score,565

which implies the importance of handling these two566

subtasks together. The better performance of the567

multi-task model over the traversal model demon-568

strates the strong subtask coordination capability569

of the multi-task architecture.570

6.4 Case Study571

We present a few examples in Table 10 to compare572

the prediction results from the pipeline approach573

and the multi-task method for the CEPE task.574

Given the topic “should we ban human cloning”,575

both models successfully identify the claim sen-576

tence. The first two sentences are not labeled as ev-577

idences supporting this claim based on the human578

annotation. The multi-task model labels these two579

sentences correctly, while the pipeline model pre-580

dicts them as evidences by mistake. We notice that581

phrases of giving examples (e.g., “countries like”)582

and numbers (e.g., “40 million”, “year 2060”) are583

very common elements in an evidence, which are584

the typical evidence types like demonstration with585

examples and digital evidences. We further explore586

the label predictions of these two sentences toward587

other claims and observe the pipeline approach588

classifies them as evidences as well. Without un-589

derstanding the true meaning of the sentences, the590

pipeline approach only learns the common words591

and the structure. For the third evidence candidate,592

both models correctly predict this sentence and the593

Topic: Should we ban human cloning Gold PL MT

Claim: Cloning humans could reduce the im-
pact of diseases in ways that vaccinations can-
not.

C C C

This method could help countries like Japan
who are struggling with low birth rates.

E

The Japanese culture could see a reduction
of up to 40 million people by the year 2060
without the introduction of cloning measures.

E

Human cloning could help us to begin curing
genetic diseases such as cystic fibrosis or tha-
lassemia.

E E E

Genetic modification could also help us deal
with complicated maladies such as heart dis-
ease or schizophrenia.

E E

Table 10: Examples of model predictions for CEPE
task. PL stands for the pipeline, and MT stands for the
multi-task. We select four sentences from the evidence
candidates to demonstrate the prediction results here.

extracted claim as a claim-evidence pair. However, 594

the pipeline model fails to identify the last evidence 595

candidate sentence as an evidence supporting the 596

extracted claim. This is plausibly because the claim 597

and the last evidence candidate sentence share few 598

vocabularies. Although “genetic modification” is 599

different from “cloning humans”, they still share 600

some similarities in terms of semantic comprehen- 601

sion in the context, thus the second sentence can 602

also support the claim. Compared to the pipeline 603

approach simply using the sentence-pair classifi- 604

cation on the current sentences step by step, the 605

multi-task model can learn a better sentence repre- 606

sentation by utilizing the context information and 607

coordinating two subtasks explicitly through the 608

attention-guided multi-cross encoding layer, which 609

finally leads to better performance. See Appendix 610

B for more examples. 611

7 Conclusions 612

In this paper, we introduce a comprehensive and 613

large dataset for argument mining to facilitate the 614

study of multiple tasks involved in the debating 615

system. Apart from the existing primary argument 616

mining tasks for debating, we propose two inte- 617

grated tasks to work towards the debate automation, 618

namely CESC and CEPE. We experiment with a 619

pipeline method and an end-to-end approach for 620

both integrated tasks. Experimental results and 621

analysis are presented as baselines for future re- 622

search, and demonstrate the value of our proposed 623

tasks and dataset. In the future, we will continue 624

studying the relations among the argument min- 625

ing subtasks and also explore more useful research 626

tasks in the debating system. 627
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A More Experimental Details763

A.1 Hyper-parameters764

We manually tune the hyper-parameters in our mod-765

els. Table 11 shows the results on claim extraction766

task with different batch sizes from 8 to 128. Here,767

we use the pre-trained RoBERTa-base model. 5768

negative samples are randomly chosen for each769

claim during training. When the batch size is 128,770

the model achieves the best performance.771

Models Batch size Macro F1 Micro F1 Claim F1

RoBERTa-base 8 68.44 91.24 41.65
RoBERTa-base 16 70.92 92.17 45.94
RoBERTa-base 32 71.59 90.97 48.82
RoBERTa-base 64 72.11 91.89 48.85
RoBERTa-base 128 72.36 91.09 50.35

Table 11: Claim extraction performance with different
batch sizes.

Table 12 shows the results of using different772

batch sizes ranging from 8 to 128 for the stance773

classification task. Each model (i.e., BERT and774

RoBERTa) achieves the best performance when the775

batch size is 128.776

Models Batch size Accuracy

BERT-base-cased 8 69.45
BERT-base-cased 16 68.50
BERT-base-cased 32 76.28
BERT-base-cased 64 65.09
BERT-base-cased 128 73.43
RoBERTa-base 8 70.97
RoBERTa-base 16 75.71
RoBERTa-base 32 78.37
RoBERTa-base 64 79.32
RoBERTa-base 128 81.21

Table 12: Results of different batch sizes for stance
classification task.

Table 13 shows the effect of using different777

numbers of layers in the multi-task model. More778

model details regarding each layer could be found779

in (Cheng et al., 2021)’s work. The multi-task780

model achieves the best F1 score when the number781

of layers is 1.782

Layers Precision Recall F1

1 43.54 30.57 35.92
2 44.79 26.60 33.38
3 45.65 22.64 30.27

Table 13: Effect of different numbers of layers used in
the multi-task model.

A.2 Runtime and Validation Performance 783

In Table 14, we present the running time and the 784

results on the development set of the multi-task 785

model on the CEPE task. As the number of layers 786

increases, it requires a longer training time. 787

Layers RT (min) Dev P. Dev R. Dev F1

1 15 33.31 20.66 25.50
2 22 39.81 18.68 25.43
3 29 40.59 18.36 25.28

Table 14: Runtime (RT) per epoch (minutes), the preci-
sion (P.), recall (R.) and F1 on the development set of
the multi-task model with differnt numbers of layers.

B More Case Study 788

Table 15 shows more example predictions gener- 789

ated by the pipeline approach and the multi-task 790

model for the CEPE task. In these examples, 791

the multi-task model identifies most of the claim- 792

evidence pairs while the pipeline method fails to 793

do so. For the second topic which is shown earlier 794

in Section 3.2, the pipeline model fails to detect the 795

claim sentence nor the evidence sentence. 796

Topic: Should we fight for the Olympics Gold PL MT

Claim: These often impose costs for years to
come.

C C C

Sydney’s Olympic stadium costs the city $30
million a year to maintain.

E E

Beijing’s famous “Bird’s Nest” stadium cost
$460 million to build and requires $10 million
a year to maintain, and sits mostly unused.

E E

Topic: Will artificial intelligence replace
humans

Claim: Any job that involves repetitive tasks
is at risk of being replaced.

C C

In 2017, Gartner predicted 500,000 jobs would
be created because of AI, but also predicted
that up to 900,000 jobs could be lost because
of it.

E E

Topic: Should we implement the network
real-name system

Claim: Real-name policy blurs the boundaries
between personal information and personal
privacy.

C C C

Due to the vague boundaries between privacy
and personal information, today people are
willing to distinguish this boundary between
online behavior and offline ID.

E

For example, as an Internet user, my words and
deeds on the Internet, personal information
published, such as political positions, belong
to my personal information.

E E

But once it matches my true identity, it is per-
sonal privacy. E E

Table 15: More example predictions of the CEPE task.
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