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Background
The advent of single-cell sequencing technologies has ushered in a new era of biologi-
cal research, enabling scientists to deconvolve cellular heterogeneity in unprecedented 
detail [1–3]. This granularity has illuminated intricate cellular dynamics across myriad 
biological processes. To harness the full potential of this data deluge, a suite of compu-
tational tools has been developed, propelling advancements in fields as diverse as cancer 
biology, neurobiology, and drug discovery [4–11]. However, many of these tools are tai-
lored to specific data modalities, such as scRNA-seq [12] or scATAC-seq [13, 14], often 
providing a piecemeal view of the cellular landscape.

As the single-cell sequencing paradigm matures, we are seeing the convergence of mul-
tiple data modalities, offering a holistic view of cellular states [15–20]. Effective single-cell 
multi-omics data integration remains challenging, particularly when integrating unmatched 
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data. Many single-cell multi-omics measurements are unmatched, profiling varied cell pop-
ulations across modalities and thus missing the matched multimodal profiling of the same 
cells.

Existing methods have emerged to tackle this data integration challenge, each with its 
own set of advantages and drawbacks. Current methods for single-cell multi-omic data 
integration exhibit several limitations. A significant number of these methods are designed 
to process data where different modalities originate from the same set of cells with matched 
information. Examples include scMoGNN [21], SAILERX [22], scMVP [23], MIRA [24], 
SCALEX [25], scMDC [26], and scAI [11]. However, these methods are often limited by 
their reliance on matched multi-omics data, which is not always readily available or fea-
sible to obtain. Additionally, many existing methods are supervised or semi-supervised, 
requiring pre-annotated datasets, such as predefined cell types, for effective data integra-
tion analysis. This prerequisite poses a limitation when pre-annotated data is not available, 
thus restricting the applicability of these methods in various contexts. Examples of such 
methods include scJoint [10] and Portal [27]. Even the methods capable of handling both 
matched and unmatched single-cell multi-omics data suffer from various limitations. For 
instance, methods like Seurat [28] and Harmony [9] hinge on finding commonalities across 
modalities, while others, such as scglue [29], uniPort [30], sciCAN [31], and scDART [32], 
explore nonlinear transformations or lean into deep learning. Many of these techniques 
face issues ranging from information loss to noise susceptibility [33].

Furthermore, due to the cost and difficulty in experiments, there is often a significant 
scarcity of matched single-cell multi-omics data that comprehensively profiles cellu-
lar states. Instead, we typically have abundant data for the most dominant modality (like 
scRNA-seq) but limited or no profiling for other modalities (e.g., epigenetics). The presence 
of other matched single-cell multi-omics data offers the potential for cross-modal genera-
tion of missing modalities from the more abundant ones by transferring knowledge learned 
from the reference.

Here, we introduce scCross. At its foundation, scCross excels in its function of single-
cell multi-omics data integration, bringing unparalleled precision to the assimilation of 
diverse data modalities. While preserving its primary proficiency in this arena, the most 
distinctive feature of scCross emerges: its prowess in cross-modal single-cell data genera-
tion. This capability, layered atop its integration strength, unlocks transformative potentials 
for researchers to bridge disparities between abundant and scant modalities. Building on 
these two principal functionalities, scCross further showcases its versatility by simulating 
single-cell multi-omics data with high fidelity. Moreover, the tool unveils opportunities 
for in silico perturbations within and across modalities, enabling researchers to postulate 
and evaluate potential cellular interventions. By capturing and elucidating intricate cellular 
states, scCross equips the scientific community with a thorough grasp of cellular dynamics 
across modalities. scCross stakes its claim as a vanguard in single-cell multi-omics integra-
tion, generation, and simulation.

Results
Overview of scCross

scCross employs the variational autoencoder (VAE)-generative adversarial network 
(GAN) deep generative framework to integrate single-cell multi-omics datasets, generate 
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cross-modal data, simulate multi-omics data, and perform in silico perturbations within 
and across modalities (Fig. 1 and Additional file 1: Fig. S1). The methodology begins by 
training modality-specific variational autoencoders (VAEs) to capture low-dimensional 
cell embeddings for each data type, supplemented by the integration of gene set score 
vectors as representative features. With these embeddings learned, they are integrated 
into a common latent space. The harmonization of the modalities’ data distributions 
then ensues. The generative adversarial network (GAN) refines this process, with a 
discriminator network juxtaposed against the VAE generator. This structure ensures a 
robust multi-modal data integration and confirms the alignment between the actual and 
generated single-cell inputs.

Venturing beyond mere integration and other functions, the model is specifically 
designed to facilitate cross-modal data generation. The bidirectional aligner is crucial 
for this cross-modal generation, as it decodes the shared latent embedding into a dis-
tinct modality, relying on the cell embedding sourced from the other modalities. This 
ambition of the model requires a dual alignment: a congruent data distribution and a 
meticulous coordination of individual cells across modalities. Mutual nearest neighbor 
(MNN) cell pairs are strategically employed as alignment anchors, guiding this intricate 
process. The optimization of the neural network aims to minimize discrepancies across 

Fig. 1 Architecture of the scCross framework. scCross employs modality-specific variational autoencoders 
to capture cell latent embeddings zR , zS , zA , ..., for each omics type. During single-cell data integration, the 
method leverages biological priors by integrating gene set matrices GSR , GSS , GSA , ..., as additional features 
for each cell. The framework then harmonizes these enriched embeddings into shared embeddings z using 
further variational autoencoders and critically, bidirectional aligners. Bidirectional aligners are pivotal for the 
cross-modal generation, depicted by brown arrows signifying the transition from scRNA-seq to scATAC-seq. 
Mutual nearest neighbor (MNN) cell pairs ensure precision during alignment. Discriminator Dz maintains the 
integration of different omics and discriminators DgeR , DgeS , DgeA , ..., maintain the integrity and consistency of 
generated data. scCross offers a powerful toolbox for single-cell data integration, facilitating cross-modal data 
generation, single-cell data self-augmentation, single-cell multi-omics simulation, and in silico perturbations, 
making it versatile for a plethora of single-cell multi-omics challenges
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modalities, especially those evident between MNN pairs. Once trained, the model ena-
bles the generation of single-cell data across modalities, encoding data from one modal-
ity into the latent space, and subsequently decoding it into another. It can also simulate 
multi-omics data and facilitates in silico perturbations within and across modalities, 
revealing potential modulations of cellular states. By merging single-cell multi-omic data 
into a unified latent space and enabling information flow across modalities, scCross sets 
the stage for various multi-omic tasks.

scCross improves single‑cell multi‑omics integration over established methods

Single-cell multi-omics data has emerged as a transformative tool that comprehen-
sively captures cellular states, offering profound insights into cellular identity and func-
tion. Effective integration of the multi-omics data produces cell embeddings crucial for 
diverse analyses. These embeddings are pivotal for precise cell clustering and identifi-
cation, and they support numerous downstream tasks. Metrics such as the Adjusted 
Rand Index (ARI) [34] and Normalized Mutual Information (NMI) [35] are invaluable 
in evaluating the quality of these embeddings, reflecting the proficiency of an integration 
method in retaining biological information.

We benchmarked scCross against several state-of-the-art single-cell data integra-
tion methods, including Seurat v4 [28], scglue [29], uniPort [30], sciCAN [31], scDART 
[32], and Harmony [9]. Our analysis utilized three gold-standard datasets derived from 
recent single-cell multi-omics sequencing, encompassing simultaneous scRNA-seq 
and scATAC-seq profiling. These datasets are matched mouse cortex [36], matched 
mouse lymph nodes [37], and matched mouse atherosclerotic plaque immune cells 
(GSE240753). Additionally, we benchmarked the methods on another unmatched data-
set, which includes scRNA-seq [38], scATAC-seq sourced from the 10X Genomics web-
site, and an snmC-seq dataset [39].

Against this landscape, scCross stands as a leading method in single-cell multi-omics 
data integration, showcasing comparable or better performance relative to other meth-
ods (Fig. 2 and Additional file 1: Figs. S2–S5). This distinction is evident from two pri-
mary angles. Firstly, scCross excels in downstream cell clustering, as demonstrated by its 
outstanding ARI, NMI, and cell type average silhouette width [29, 40] metrics across all 
benchmark datasets (Fig. 2a). Secondly, its prowess in cell mixing is apparent, seamlessly 
blending cells from different modalities. Effective cell mixing is indicative of high-quality 
integration and the method’s ability to represent the intricate nuances of each modality. 
Please refer to the “Methods” section for a detailed description of the evaluation metrics.

To further underline our model’s capacity for omics mixing, we assessed the FOS-
CTTM (Fraction of Samples Closer than the True Match) score [41], a metric quantify-
ing the alignment error in single-cell multi-omics data integration. This score provides 
insights into how closely related cells from one omics modality are to those from another 
in the integrated latent space. A lower FOSCTTM score signals a more accurate inte-
gration, as the true match is typically closer than many of the other potential matches. 
On all three matched datasets, scCross consistently achieved the comparable or better 
FOSCTTM on all sizes of subsampled datasets, underscoring its alignment capabilities 
(Fig. 2b).
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Moreover, as detailed in Additional file 1: Fig. S6a–b, scCross demonstrates efficient 
consumption of computational resources in terms of both time and memory. This 
efficiency is particularly critical as the scale of single-cell data increases. For large 
datasets with more than 10,000 cells, our method surpasses the performance of most 
benchmarked tools in terms of running time and memory cost, demonstrating the 
computational effectiveness of scCross.

Effective integration is vital for successful downstream activities such as cross-
modal generation, multi-omics simulation, and in silico perturbation. Stellar per-
formance in these subsequent tasks speaks to the exemplary data integration and 
information retention capabilities of scCross. Notable differences between modalities 
in the combined latent space can obstruct generation, simulation, or in silico pertur-
bation, underscoring the necessity of seamlessly merging all modalities into a unified 
space.

Fig. 2 Benchmarking superiority of scCross in single-cell multi-omics data integration. a A comprehensive 
comparative analysis showcases the comparable or better performance of scCross against other integration 
methods. Metrics such as average ARI, NMI scores, and ASW for cell types provide insights into clustering 
quality on the integrated single-cell multi-omics datasets, signifying the retention of biological characteristics 
after integration. Additionally, the ASW for omics layers and graph connectivity metrics shed light on the 
effective mixing of different omics post-integration. The datasets studied include the unmatched and 
matched mouse cortex, matched mouse lymph nodes, and matched mouse atherosclerotic plaque immune 
cells. “NA” indicates cases where results were not obtainable (e.g., methods do not support three omics 
integration or only obtain non-numeric outputs). b FOSCTTM scores further underscore the exceptional 
performance of scCross on subsampled datasets of varying sizes, demonstrating its consistent comparable 
or better performance over other integration techniques. This section delves into datasets like the matched 
mouse cortex, matched mouse lymph nodes, and matched mouse atherosclerotic plaque immune cells
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With the advent of high-throughput single-cell technologies, there’s an increasing 
demand for methods that can effectively process large-scale single-cell multi-omics 
data, often comprising millions of cells [29, 42]. In our evaluation of scCross’s integra-
tive capabilities, we tapped into over four million human single-cell atlases, consisting 
of gene expression data for four million cells [43] and chromatin accessibility data for 
0.7 million cells [44]. The challenge with such large-scale integration lies not just in 
the data volume but also in handling extensive heterogeneity, low per-cell coverage, 
and imbalances in cell type compositions [29]. Moreover, there is a common pitfall 
where existing methods tend to blend minority cell types with the majority, skewing 
accurate representation and estimation of these pivotal cell groups [45].

scCross addresses these challenges effectively and retains a significant amount of 
biological data. Unlike existing methods, this approach can differentiate and repre-
sent minority cell populations distinctly from the dominant ones. Thanks to the mini-
batch neural networks [46], scCross achieves sublinear time complexity and roughly 
linear memory consumption, as highlighted in Additional file 1: Fig. S6c. Through the 
strategic use of the generative adversarial network and MNN prior, scCross brings 
together gene expression and chromatin accessibility data into a comprehensive 
multi-omics human cell atlas [44], distinguishing the minority cell populations from 
the majority as demonstrated in Additional file 1: Fig. S7a–b.

In scglue’s analysis by Cao et al. [29], notable discrepancies between cell type labels 
across omics modalities were uncovered. Cells labeled as Astrocytes in scATAC-seq 
data were found to be aligned with Excitatory neuron clusters in scRNA-seq, suggest-
ing a potential mislabeling in the scATAC-seq dataset, which was inferred from bio-
marker analysis. Furthermore, a cluster identified as astrocytes/oligodendrocytes in 
scATAC-seq was divided and realigned to separate Astrocytes and Oligodendrocytes 
clusters in scRNA-seq, as indicated by blue cycles in Additional file  1: Fig. S8a–b. 
These discrepancies identified by scglue were also replicated by scCross, shown in the 
blue-highlighted clusters in Additional file 1: Fig. S7b and Additional file 1: Fig. S8c. 
Our analysis further confirms the potential inaccuracy of the Astrocytes annotation 
in scATAC-seq data, as its top marker genes are not consistent with the biomarkers 
of Astrocytes in scRNA-seq data (Additional file 1: Fig. S8d). Both scglue and scCross 
demonstrate the ability to detect and address potential discrepancies in cell annota-
tions across different omics datasets.

Compared to methods such as scglue [29], scCross demonstrates enhanced capa-
bility in identifying minority cell type populations. This is particularly evident in the 
case of critical minority populations like Extravillous trophoblasts [47–49]-key cells 
in placental development and function-and Microglia [50–52], which are the primary 
immune cells in the brain involved in neuroinflammation and tissue repair. These 
cells are crucial in reproductive and neural systems, respectively. These critical popu-
lations are often prone to over-integration with majority cell types in other method 
like scglue [29] (Additional file 1: Fig. S8a). However, as highlighted by the red cycle 
in Fig. S8B, scCross distinguishes them, further validating the integration prowess of 
our approach. Comprehensive benchmark comparisons between scCross and scglue 
[29] for this dataset are available in Additional file 1: Fig. S8e. Alternative approaches 
such as Seurat v4 [28], uniPort [30], sciCAN [31], scDART [32] and Harmony [9] have 
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not demonstrated their effectiveness in integrating large-scale single-cell multi-omics 
data with millions of cells.

Given its intrinsic modularity, scCross is not limited to merely a binary omic inte-
gration but boasts the capability to consolidate multiple omic layers (e.g., more than 
3), attesting to its comprehensive applicability. To showcase this extensive integration 
potential, we employed scCross on single-cell multi-omics data of the adult mouse cor-
tex, encompassing three distinct modalities: gene expression [38], chromatin accessibil-
ity, and DNA methylation [19].

In Fig. 3a–d, scCross exemplifies its prowess in aligning the cell types across the three 
modalities. The alignment is significantly enriched by the incorporation of common 
genes MNN prior and specific gene sets, thereby ensuring that corresponding cell types 
from various omic layers converge harmoniously within the latent space. Such alignment 
not only amplifies the clarity of cell type demarcation across the omic layers but also 
paves the way for enhanced cell typing efficacy. scCross demonstrates its proficiency in 
navigating triple-omics datasets, providing a shared cell embedding that effectively dis-
tinguishes between cell types for each modality, as depicted with RNA in Fig. 3a. This 
clear separation is mirrored in the ATAC-seq and snmC-seq modalities, where cell types 
also form distinct groupings in Fig. 3b and c, respectively. The embedding further shows 
its strength by closely aligning identical cell types across different modalities, which are 
visible as clusters in the same regions of the UMAP space. Adding to this, Fig. 3d illus-
trates the embedding’s capacity for mixing cells from different modalities in the shared 
space, facilitating the study of cross-modality interactions without the loss of cell-type-
specific clustering. This nuanced approach ensures that while cell types from different 
modalities interweave, they still maintain the fidelity of their distinct embeddings.

Upon establishing the shared cell embeddings, our evaluation centered on the coher-
ence of cell type-specific markers across modalities to validate the alignment accuracy. 

Fig. 3 Efficient integration of three omics layers in the mouse cortex by scCross. a–c UMAP visualizations 
display the aligned cell embeddings, clustering, and cell type annotations for scRNA-seq (a), snmC-seq (b), 
and scATAC-seq (c), on the shared joint latent space, exemplifying the coherence in cellular representations 
across modalities. d A comprehensive UMAP presentation underlines the flawless intermixing of cells from 
distinct modalities within the shared latent space, reflecting a true amalgamation of multi-omics information. 
e An UpSet plot emphasizes the alignment potency of our model, revealing through a three-way biomarker 
comparison that the distinct modalities are seamlessly integrated within the latent space. Leveraging a 
three-way Fisher’s exact test [53], our model is showcased to either match or surpass scglue [29] in the 
alignment of over half of the cell types, with standout results accentuated by a red outline
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As depicted in Fig. 3e, there is a pronounced intersection of markers for each cell type 
between modalities, substantiating the precision of our cell type alignments. This sig-
nificant overlap was confirmed by a three-way Fisher’s exact test, with three cell types 
showing a staggering FDR below 10−100 , and four additional cell types displaying FDRs 
between 10−100 and 10−50 . All cell types, with the sole exception of mIn-1, had FDR 
values indicating strong significance below the 0.05 benchmark. This degree of marker 
congruence emphasizes the successful integration of the omics layers, as our approach 
identifies consistent key markers across different modalities for equivalent cell types. 
In comparison to scglue, our analysis uncovered a greater number of overlapping gene 
markers in the majority of cell types (9 out of 13), further reinforcing our model’s effi-
cacy in multi-omic data integration.

scCross empowers cross‑modal single‑cell data generation

Single-cell multi-omics data offers deep insights into the complexities of cellular states. 
Yet, factors such as cost and experimental challenges often impede our capability to fully 
harness its advantages, leading to some modalities being less explored than others. In 
this context, scCross emerges as a crucial tool, focused on bolstering cross-modal single-
cell data generation to tap into the vast potential of single-cell multi-omics. It achieves 
this by seamlessly integrating knowledge across modalities, drawing from established 
reference single-cell multi-omics datasets encompassing all desired modalities or from 
multi-omic datasets where the underrepresented modalities were insufficiently profiled.

While tools like scglue have their merits in single-cell multi-omics data integration, 
they inherently lack the capability for cross-modal generation. Specifically, scglue’s 
entire framework emphasizes its unsuitability for cross-modal data generation, espe-
cially when noting that its decoder is designed to process embeddings from the input of 
the same modality. Contrastingly, scCross is architected to bridge such analytical gaps. 
To showcase its prowess and endorse its robustness and evaluate the method’s perfor-
mance in situations with limited or partial single-cell data of another modality of inter-
est, we divided the matched mouse cortex dataset [36] into two parts—20% for training 
and the remainder for testing. Leveraging the model trained on the limited matched 
(20%) single-cell data, we applied the method to cross-generate the single-cell RNA-seq 
for the other missing 80% single-cell RNA-seq. The results, depicted in Fig. 4a-e, shed 
light on scCross’s ability not only to generate but also to uphold the biological nuances 
of the original data. The UMAP visualization [54] in Fig. 4a showcases both the origi-
nal and generated scRNA-seq data clustering closely, hinting at a high similarity in their 
distributions. A compelling confirmation of this is observed in Fig.  4b, where the cell 
type proportion between the original and generated datasets demonstrates a correlation 
of 0.89 with a p-value of 0.001311. In Fig. 4c, the gene expression of the top 5 genes for 
each cell type between both datasets remains largely consistent, with a correlation of 
0.93 and a p-value of 5.356× 10−177 . The remarkable similarity between the actual data 
and the crossed modality-generated data is apparent in those downstream analysis out-
comes. Cell-cell interaction patterns, when analyzed through the CellChat tool [55] as 
seen in Fig. 4d, not only closely emulate those in the original dataset but also provide a 
window into potential interactions, leveraging insights from the scATAC-seq data of the 
other modality. This is quantitatively expressed by a correlation coefficient of 0.82 and a 



Page 9 of 34Yang et al. Genome Biology          (2024) 25:198  

compellingly significant p-value of 1.356× 10−20 . Furthermore, pathway analysis based 
on the top 100 marker genes for each cell type, conducted with the ToppGene platform 
[56] and depicted in Fig. 4e, reinforces the crossed data’s relevance for robust biologi-
cal interpretation. This analysis maintains a high correlation of 0.85 with a p-value of 
2.531× 10−13 . The integrity of the crossed data is further substantiated by UMAP 

Fig. 4 Performance of scCross in cross modal single-cell data generation: emphasis on similarity between 
actual and cross-generated data. a–e Results when the model was trained on the partial dataset: (a) UMAP 
visualization emphasizes the overlapping distribution between the original and cross-generated scRNA-seq 
data. b Comparison of cell type proportions reveals a robust correlation of 0.89 (P = 0.001311). c Expression 
levels of the top 5 genes per cell type exhibit a correlation of 0.93 ( P = 5.356× 10−177 ). d Cell-cell interaction 
metrics show congruity across cell types with a correlation of 0.82 ( P = 1.356× 10−20 ). e Ratios of genes in 
the most significant pathways for each cell type validate a correlation of 0.85 ( P = 2.531× 10−13 ) between 
the original and cross-generated datasets. f, g Results when the model was trained on independent reference 
multi-omics datasets: (f) UMAP visualization illustrates the clustering resemblance between the original and 
cross-generated matched mouse scRNA-seq data. g Cell type proportions underscore a correlation of 0.89 
(P = 0.001504) between the original and cross-generated scRNA-seq data



Page 10 of 34Yang et al. Genome Biology          (2024) 25:198 

analyses presented in Additional file 1: Figs. S9–S12, which cover a comprehensive set 
of benchmark datasets, both matched and unmatched. Collectively, these analyses affirm 
the crossed data’s exceptional ability to mirror the biological intricacies and preserve the 
analytical properties of the actual data.

The task becomes more challenging when training and testing on different datasets. 
scCross’s capability for cross-modality generation was further rigorously tested in a sce-
nario devoid of any direct training set for the missing modality. Utilizing an unmatched 
reference single-cell multi-omics dataset containing both RNA-seq and ATAC-seq data 
from the same samples [38], scCross was trained to harness and transfer this integrated 
knowledge. It was then tasked with generating single-cell RNA-seq data from single-
cell ATAC-seq data alone, sourced from another matched multi-omics dataset [36]. 
The authenticity of this cross-generated RNA-seq data was critically assessed against 
the actual RNA-seq dataset, with the UMAP overlap in Fig. 4f serving as a visual testa-
ment to scCross’s crossmodal generation precision. The correlation in cell type composi-
tion between the cross-generated RNA-seq data and the actual RNA-seq data further 
substantiates scCross’s performance, achieving a correlation of 0.89 and a p-value of 
0.001504 as illustrated in Fig. 4g. The practicality and relevance of scCross’s output are 
reinforced through various downstream analyses, detailed in Additional file 1: Fig. S13. 
This showcases scCross’s ability to not just mimic, but also potentially extrapolate and 
fill in gaps in single-cell omics profiles, reinforcing its role as a potent tool for advancing 
biological insights in the absence of comprehensive multi-omic datasets.

Intra‑modal simulation of matched single‑cell multi‑omics data

Another capability of scCross is its ability to generate matched single-cell multi-omics 
data. This computational prowess opens the door to numerous practical applications. 
One immediate use is in benchmarking existing single-cell multi-omics integration 
methods, especially in scenarios where true matched single-cell multi-omics data is lack-
ing for accurate evaluations. Moreover, the simulated data can also serve as a basis for 
deciphering intricate inter-omics relationships, predicting states of unmeasured omics, 
or filling in the gaps in studies with incomplete modalities.

One of the standout features of scCross is its tailored generation capability, targeting 
specific cell types of interest across various omics layers. This becomes indispensable 
when focusing on rare cell populations, which often are underrepresented in sequenced 
datasets. The limited number of cells in these populations poses challenges for in-depth 
analysis and examination. Here, scCross provides a valuable solution. By simulating data 
up to 5X the original count, as shown in panels Fig. 5a and b, scCross can substantially 
upscale the representation of these rare populations, enabling more robust and compre-
hensive statistical analyses.

Panel Fig.  5a illustrates the simulated single-cell RNA-seq data of Ast cells in  the 
matched mouse cortex dataset, both at its original count and a 5X upscale with the 
whole original matched mouse cortex dataset as cluster background. Panel b mirrors this 
information for the scATAC-seq data. The high-quality cell clustering shown in these 
panels testifies to the effectiveness of our simulation approach. Other cell types in  the 
matched mouse cortex dataset also give out the same results (Additional file 1: Fig. S14).
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To showcase the efficacy of scCross in simulating single-cell multi-omics data for 
rare cell populations, we targeted the Astrocyte (Ast) cells within the dataset, aug-
menting their representation by a fivefold increase. This upscaling was performed 
to better understand the potential implications of such rare cell types in subsequent 
analyses. We then conducted a comparative study between the original and the 
simulated dataset, centering on the enriched Gene Ontology (GO) terms and path-
ways linked to the Ast cell marker genes prior to and following their expansion. In 
Fig. 5c, the enriched terms are ranked and displayed, with particular attention to the 
leading terms. The two principal terms, “Vascular transport” [57] and “Transport 
across blood-brain barrier” [58], were found to be closely associated with the physi-
ological roles of the Ast cells. The pathway “NOTCH1 regulation of endothelial cell 

Fig. 5 Intra-modal simulation of matched single-cell multi-omics data. a UMAP visualization showcasing 
the prowess of scCross in simulating the scRNA-seq data of rare Ast cells in matched mouse cortex dataset 
(highlighted by gray cycles), presented at 1X and 5X their original count with the whole original dataset 
as cluster background. The 5X scale highlights the model’s capability to upscale the representation of 
underrepresented populations like Ast cells. b Parallel to panel (a), this UMAP visualization delineates the 
simulated scATAC-seq data for Ast cells at the same 1X and 5X scales (highlighted by gray cycles), reinforcing 
the model’s consistent performance across omic modalities. c The analysis contrasts the Gene Ontology (GO) 
terms and pathways enriched among the top biomarkers of the original Astrocyte (Ast) cells (scRNA-seq) 
with those of its 5X augmented simulated equivalent. The comparison underscores the model’s proficiency 
in amplifying key biological signals within the framework of multi-omics data simulation. d RRHO plot 
emphasizing the significant correlation between the original Ast scRNA-seq data and its 1X simulated 
counterpart. This highlights the model’s accurate capture of key biomarker genes during the simulation. 
e FOSCTTM integration metrics underscore the potential of the 1X simulated Ast cells’ single-cell multi-omics 
data (encompassing both scRNA-seq and scATAC-seq) as an evaluative benchmark. Both scCross and scglue 
are compared; however, the inherent bias towards scCross due to the data’s origin should be acknowledged. 
f UMAP visualization displaying the robust cell mixing achieved by both scglue and scCross when processing 
the 1X simulated Ast cells’ single-cell multi-omics data, providing a vivid demonstration of their respective 
capabilities
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calcification” shows significance only in the 5x upscaled Ast cell simulated data, but 
not in the original dataset. These findings were verified to be associated with the sign-
aling processes in Ast cells [59], thereby further substantiating the potential effective-
ness of scCross in enhancing rare cell populations. Further validating the simulation’s 
accuracy, Fig. 5d compares the simulated data against the actual dataset for these rare 
Ast cells. The RRHO plot therein confirms that scCross preserves the key attributes of 
the Ast cells, thereby substantiating the simulated data’s fidelity for this specific sub-
set within the larger dataset.

The utility of this simulated data extends beyond mere generation. Panels Fig. 5e and 
f spotlight its potential applications. The panels underscore that the generated single-
cell multi-omics data (1X simulated Ast) are “matched” since cells from distinct modali-
ties derive from a consistent joint latent space. Panel e showcases the potential of using 
simulated data as an effective ground-truth to appraise single-cell data integration 
techniques. This perspective is reinforced in the panel f’s UMAP scatter plot, revealing 
exceptional cell mixing across modalities by both scglue and scCross. However, when 
examining the comparison in panel e, caution is advised. Since these simulated datasets 
originate from the scCross model, there might be a slight bias in favor of scCross. Nev-
ertheless, this comparison underscores that these simulated datasets can serve as robust 
matched single-cell multi-omics benchmarks for examining a range of other integration 
methods especially when ground truth is experimentally unattainable.

Beyond the cross-generational capabilities from one modality to another and the 
intra-modal simulation, our exploration extended to intra-modal augment the inputs 
within the same modality, leveraging the inherent reconstruction and augmentation 
strength of the VAE-GAN framework [23, 29, 30]. This captivating line of inquiry uncov-
ered that the data underwent an augmentation phase, which in turn enriched its quality 
and expanded its informational depth. Detailed results and visualizations can be found 
in Additional file 1: Fig. S15.

scCross enables multi‑omics in silico perturbation for exploring potential cellular state 

intervention

In our endeavor to showcase the capabilities of scCross, we highlight its expertise in 
conducting in silico multi-omic perturbations. These capabilities not only enable the 
exploration of potential intervention strategies for cellular state manipulation but also 
provide insights into the intricacies of molecular responses, particularly those seen in 
COVID-19 infections using the single-cell multi-omic dataset derived from a compre-
hensive study [20].

We began by measuring the scaled cosine distance between the in silico perturbed 
latent matrix of COVID-19 cells and that of healthy cells (Fig. 6a) in the joint latent space 
produced by scCross. This allowed us to pinpoint signature marker genes that bridge 
these two conditions (i.e., diseased vs. healthy) via in silico perturbations (see “Meth-
ods” section for details). The identified critical disease-associated marker genes from 
this in silico perturbation, presented in Fig. 6b, are in line with recent findings. A nota-
ble observation was the down-perturbation of CCL3 in COVID-19 samples, suggesting 
its overexpression in COVID-19 patients. This concurs with prior studies that identified 
CCL3’s role in inflammatory macrophages and its contribution to inflammatory tissue 
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damage and respiratory issues in COVID-19 patients [60–62]. Furthermore, the GO 
and pathway outcomes from the down-perturbation gene findings, showcased in Fig. 6c, 
unveiled significant associations with immune responses. Aspects like signaling receptor 
binding, immunoglobulin receptor binding, antigen binding, humoral immune response, 
adaptive immune response, and immunoglobulin complex are highlighted. These obser-
vations align well with the recognized impact of immune responses and chemokine acti-
vations in the context of COVID-19 [61]. The performance on the COVID-19 adverse 
outcome pathway [63], Network map of SARS-CoV-2 signaling pathway [64], and SARS-
CoV-2 innate immunity evasion and cell-specific immune response pathway [65] further 
validates scCross’s potential in pinpointing signature genes between disease conditions 
within the same modality.

Fig. 6 scCross empowers in silico multi-omic perturbation as demonstrated in the COVID-19 dataset. 
a UMAP visualization of COVID-19 scRNA-seq and ADT data clusters. b Signature genes for in silico 
perturbation bridging COVID-19 and healthy states. c Pathways and GO terms of the top differential genes 
detected by scCross (down-perturbation gene findings), with -log(p-value) indicating significance, compared 
with t-test and wilconxon. d Gene comparison between scCross-derived perturbed protein data and 
common-gene based on scRNA-seq to protein translation. e RRHO plot comparing crossmodal perturbed 
and original COVID-19 protein data against healthy samples. f Heatmap aligning original and scCross-derived 
perturbed COVID-19 protein data
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The aforementioned intra-modality perturbation analysis also enables us to identify 
critical cell subpopulations, reflecting known mechanisms in COVID-19. By applying in 
silico perturbations to repress highly variable genes in the COVID-19 group for each 
cell population (with more than 100 cells) and calculating the average distance diver-
gences before and after perturbation for the top 10 genes, we found that NK_56hi cells 
were the most significantly affected (Additional file 1: Fig. S16). NK_56hi cells, crucial 
in COVID-19 development, exhibit superior cytokine production and cytotoxicity com-
pared to their circulating counterparts [66]. Their presence indicates an essential role in 
early antiviral responses and modulation of adaptive immune responses. Additionally, a 
2021 study showed that CD56bright NK cells in COVID-19 patients have a distinct tran-
scriptional profile with upregulated proinflammatory genes and pathways, highlighting 
their involvement in the hyperactive immune response and antiviral immunity [67].

To further demonstrate our method’s cross-generation-powered cross-modal in silico 
perturbation between two different biological conditions (healthy controls vs. COVID-
19 patients), we trained our model on healthy control single-cell multi-omics data (RNA 
and protein). We then applied this model to the RNA modality of COVID-19 patients, 
enabling it to infer the disease-perturbed COVID-19 protein modality in silico. This 
approach showcases the model’s ability to perform cross-generation even under differ-
ent cellular conditions. The results of this more challenging scenario, depicted in Fig. 6d-
f, affirm that our method is capable of effectively inferring the protein modality under 
disease perturbation, highlighting its robustness and versatility in in silico cross-modal 
perturbation studies.

Figure  6d delves into scCross’s potential in performing cross-modality in silico per-
turbations. By specifically perturbing the gene expression of signature genes that poten-
tially transition healthy cells to a COVID-19-like state in the healthy scRNA-seq data 
and utilizing cross-generation, we generate perturbed protein data (ADT) across modal-
ities to simulate the COVID condition. This perturbed ADT, when juxtaposed with the 
healthy protein data, yielded differential proteins (List A). This list was then contrasted 
with the actual differential protein list (List B) obtained from single-cell ADT compari-
sons between healthy and COVID datasets. The profound overlap between the two lists 
showcases the accuracy of cross-modal in silico perturbations using scCross. Only three 
of the top 100 differentially expressed genes in scRNA-seq corresponded with those 
identified in single-cell protein measurements. This misalignment underscores the pit-
falls of the naive strategy, which assumes that a gene differential at the RNA level is 
similarly differential at the protein level. Such discrepancies emphasize the efficacy and 
critical importance of scCross in these analyses.

Figure  6e, with its RRHO plot, further magnifies the similarity between the cross-
modal perturbed ADT and the actual ADT COVID dataset. The heatmap in Fig.  6f 
underlines this alignment, with a p-value of 1.839× 10−51 (via the Wilcoxon test) 
cementing the proximity between the perturbed protein data and actual single-cell pro-
tein measurements. Conclusively, the data presents a compelling case for scCross’s abil-
ity to manage in silico perturbations across modalities, reiterating its value in intricate 
multi-omic cellular state explorations.

Empowered by its cross-modal generation and perturbation capabilities, scCross 
reveals novel biological insights that would otherwise be unattainable. For instance, 



Page 15 of 34Yang et al. Genome Biology          (2024) 25:198  

the cross-modal generation capability of scCross enables the identification of critical 
marker proteins from single-cell RNA-seq data that would otherwise be missed with-
out the matched single-cell protein modality measurement, such as CD38 and CLEC12A 
(Additional file  2: Table  S1). CD38, involved in NAD metabolism, plays a pivotal role 
in COVID-19 pathogenesis and is upregulated in endothelial cells during SARS-CoV-2 
infection [68, 69]. Notably, CLEC12A, identified through our in silico cross-modal per-
turbation analysis, could not be detected even with ground-truth single-cell multi-omics 
measurements of both healthy and COVID-19 samples. CLEC12A is linked to COVID-
19 by potentially disrupting viral spike protein entry and supporting CD4/CD28 T cell 
survival. Targeting CLEC12A and other C-type lectins may enhance immune responses 
against COVID-19. These findings underscore scCross’s power in revealing novel bio-
logical insights and therapeutic targets, thereby highlighting its potential to advance our 
understanding of complex diseases and uncover new avenues for treatment [70, 71].

Discussion
The ever-evolving domain of single-cell analyses, complemented by multi-omics strat-
egies, continues to redefine our understanding of intricate cellular dynamics. Yet, 
seamlessly integrating these multi-omics dimensions has remained a challenge. In this 
context, our scCross method emerges, revolutionizing the way we perceive and amal-
gamate single-cell multi-omics data. The rigorous testing and evaluations underscore 
its superior performance, enabling more accurate and comprehensive multi-omics data 
integration.

But beyond mere integration, scCross introduces the concept of cross-modal genera-
tion. This capability allows researchers to derive data from one modality using another, 
once the model has been trained on a reference single-cell multi-omics dataset encom-
passing both source and target modalities. Given the often prohibitive cost and experi-
mental challenges of single-cell multi-omics data acquisition, such functionality is 
crucial. Often, scientists have extensive data in one modality (e.g., RNA-seq) but limited 
or no profiling in others. With scCross, the knowledge acquired from a comprehensive 
multi-omics dataset can be channeled to generate data in other modalities from a given 
single modality, filling gaps in our understanding and providing a more complete view of 
cellular states.

Further accentuating its ability, scCross showcases an array of functionalities tailored 
for the demands of modern cellular research. Its memory efficiency stands out, ensur-
ing that even datasets with millions of cells are integrated with finesse, making it apt for 
the vast cell atlases being assembled. Simultaneously, its prowess extends to its capacity 
for single-cell multi-omics data simulation. Through judicious sampling from the joint 
latent space and adjusting omic-decoders, it can simulate matched single-cell datasets 
across various modalities for the same consistent set of cells. This serves not only for 
data augmentation but also as a benchmarking tool, given the known ground truth in 
these simulated datasets. Building on these capabilities, scCross offers the powerful in 
silico perturbation functionality. As evidenced in cases like COVID-19 cellular dynam-
ics, it offers a fresh perspective to formulate and probe potential intervention strategies 
to modulate cellular states. Once primed with a reference multi-omics dataset, it can be 
harnessed on single-modality data, enabling intricate multi-omic in silico explorations. 
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Moreover, the power of in silico intra-modal and cross-modal perturbation lies in its 
ability to reveal novel biological insights that would otherwise be unattainable. This 
includes the identification of novel biomarkers and critical cell populations associated 
with diseases, providing additional layers of understanding and potential therapeutic 
targets.

The scCross method presents significant potential for the single-cell research com-
munity. Its distinct functionalities and reliable performance position it as a potentially 
valuable tool for researchers in the field of single-cell multi-omics analyses. scCross 
facilitates the integration of different modalities, supports comprehensive data genera-
tion, and enables detailed simulations and perturbations. These capabilities could con-
tribute substantially to advancing the study of complex biological systems.

Conclusions
scCross has the potential to significantly influence the field of single-cell multi-omics 
research. Its ability to bridge modalities effectively, along with capabilities in cross-
modal generation, multi-omics simulation, and augmentation, may enhance both the 
speed and depth of biomedical research. Additionally, its suitability for in silico explora-
tions offers practical applications beyond academic research, potentially assisting in the 
design of targeted experiments for cellular state manipulations and possibly hastening 
the translation of biomedical research into real-world applications.

Methods
Single‑cell data processing

The single-cell data employed in our study follows specific preprocessing pipelines tai-
lored to each modality. Initial procedures, such as cell calling, quality control, and other 
relevant steps, can follow standard single-cell data processing methods and are often 
performed by the original data sources [20, 36, 38, 39]. Within our workflow, these 
matrices are further transformed to produce cell vectors optimized for neural network 
input. Besides, these matrices’ feature sets are denoted as Sk , where k ranges from 1 to K. 
K symbolizes the number of distinct omics data types collected. For example, in scRNA-
seq, Sk represents a gene list, while in scATAC-seq, it represents a set of chromatin 
regions. Profiling matrices from the kth modality is represented as Xk . Individual cells 
from this modality are given by x(n)k  , and Nk indicates the sample size.

For single-cell transcriptomic data, specifically scRNA-seq, we adopt Scanpy [12] 
(v.1.8.2). The cell-by-gene expression matrix experiences normalization, log-transfor-
mation, and scaling. Dimensionality reduction follows, with PCA, as realized in Scanpy 
[72], being our method of choice. On the epigenetic data front, modalities like scATAC-
seq and snmC-seq demand distinct processes. SnmC-seq data transitions through a 
sequence of normalization, log-transformation, scaling, and PCA, utilizing epiScanpy 
[73] (v.0.4.0). Given the inherent sparsity of the scATAC-seq data matrix, dimensionality 
reduction employs the LSI (Latent Semantic Indexing) function of scCross, grounded in 
the latent semantic indexing algorithm [17, 74].

To facilitate the calculations of gene sets matrix and common gene MNN priors, it 
is crucial to have a consistent gene-centric representation across different modalities. 
Due to the inherent nature of MNN priors, the single-cell data from diverse modalities 
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needs to be translated into activities associated with genes. To achieve this uniform rep-
resentation, we employ the geneactivity function in epiScanpy [73] (v.0.4.0), transform-
ing various omics data types (like scATAC-seq and snmC-seq) into gene activity. The 
gene-formed data (gene expression/gene activity score) of each modality k is represented 
with ẋk . It is obvious that ẋk = xk when kth modality is scRNA-seq.

It’s noteworthy that our model’s applicability isn’t confined to the discussed modali-
ties. For any modality, the transformation of each cell into a real-valued vector is a must. 
Often, normalization is required to address technical nuances, such as variations in 
library size among cells. For modalities not tackled in this work, we advocate adhering 
to the modality-specific standard single-cell preprocessing protocol when generating the 
input vectors.

Curating gene sets from Gene Ontology and pathway terms

In our study, gene sets GS are tapped as an avenue to integrate functional biological pri-
ors, enhancing the representation learning of cells across different modalities. This, in 
turn, bolsters the effectiveness of single-cell data integration and generation efforts, as 
these tasks are fundamentally rooted in effective cell embeddings.

We utilize a rich collection of gene sets, comprising 7481 sets from the GO Biologi-
cal Process ontology (denoted as c5.go.bp in MSigDB [75]), 2922 gene sets curated from 
pathway databases (c2.cp in MSigDB [75]), and 335 sets of transcription factor targets 
sourced from [76]. Gene sets related to biological processes bear the prefix “GOBP,” 
while those derived from pathway databases are assigned prefixes echoing their respec-
tive sources, such as KEGG [77], WP [78], and REACTOME [79].

To effectively harness the gene sets, GS , each gene set is characterized based on the 
genes it contains. In the context of scRNA-seq data, a gene set is represented by the 
expression levels of its constituent genes. This provides a direct quantification of the 
gene set’s activity within a cell, crucial for grasping cellular states and functions. How-
ever, with non-transcriptomic modalities, such as scATAC-seq, where direct gene 
expression values are absent, we resort to the geneactivity function from epiScanpy [73] 
(v.0.4.0). This tool calculates a gene activity matrix, serving as an effective surrogate for 
gene expression. Using this matrix, we can obtain the binary matrix x̃k , which is the cor-
relation of genes in gene expression/activity matrix and genesets in the databases we 
mentioned above. We utilize the approach of [80] where we set the correlation of a gene 
to a geneset to 1 if the gene is contained in the geneset, 0 otherwise. Then, we obtain the 
cell by geneset matrix with the function:

where GSk means the cell by geneset feature matrix of modality k. These geneset scores, 
once extracted, are integrated with the processed input features, contributing to solid 
single-cell representation learning and multi-omics integration (Additional file  1: Fig. 
S17).

Deep generative neural network structure

To learn cell embeddings from omics data, we employ a variational autoencoder (VAE).

(1)GSk = ẋk · x̃k
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Our model initially projects xk into a low-dimensional latent space, zk , utilizing a 
variational approach. The encoder function is formulated as:

Sampling directly from this distribution during the training process can be prob-
lematic for backpropagation because it introduces stochasticity. To overcome this, we 
use the reparameterization trick, which involves expressing zk as a deterministic 
function of MLPenk ,µ CONCATE(GCN(xk ,Gk),GSk);φenk  and 
MLPen

k ,σ2

(

CONCATE(GCN(xk ,Gk),GSk);φenk
)

 , and a noise variable ǫ drawn from a 
standard normal distribution:

Here, q(zk | xk ,GSk;φenk ) describes the encoder part of the VAE for the kth modal-
ity, CONCATE means concatenating two matrices together. It uses a graph convolu-
tional network (GCN) to model the latent space zk given the observed data xk.

The graph Gk is constructed using the k-nearest-neighbor algorithm and serves as 
the adjacency matrix for the GCN.

The data likelihoods p(xk | zk; θk) , which represent the data decoders, are con-
structed using a multilayer perceptron. The specific formulation of the data likelihood 
depends on the distribution of the omics data. In the case of count-based scRNA-
seq and scATAC-seq data, our model utilizes the negative binomial (NB) distribution. 
The NB distribution is defined as follows:

In the equation above, µ, θ ∈ R
|Sk |
+  are the mean and dispersion of the negative 

binomial distribution. Additionally, α ∈ R
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The set of learnable parameters in this context is θk = {α, β, θ} . Meanwhile, φdek 
denotes the set of learnable parameters in the multilayer perceptron decoder of the kth 
omics layer, MLPdek . The flexibility of this model also allows for the incorporation of 
many other distributions.

Finally, the optimization process aims to maximize the evidence lower bound:

This equation represents the loss function that the VAE optimizes, where m means 
the length of  the latent space vector which is 50 and θ =

⋃K
k=1 θk , φen =

⋃K
k=1 φenk , 

φde =
⋃K

k=1 φdek are the combined sets of the encoder and decoder parameters, respec-
tively. It incorporates both the data likelihood and a Kullback-Leibler (KL) divergence 
term to enforce a meaningful latent space for each of the K modalities.

Multi‑omics data integration, crossmodal generation and simulation

To harmonize the latent embeddings produced from different omics modalities, we 
implement a cross-modal bidirectional alignment method utilizing multi-layer percep-
trons (MLPs):

Employing reparameterization trick, the above equation can be written as follows:

This reparameterized form shows the process of encoding zk to z . It reflects that latent 
variable z is sampled from the normal distribution showed in the formula above.

Similarly, this can also be reparameterized as:

In these equations, MLPal_enk denotes the aligner encoder, which converts the latent 
embedding of the kth omics layer to a collective latent space. On the other hand, 
MLPal_dek represents the aligner decoder, which translates the unified latent space 
embedding back to the latent space of the kth omics modality. This alignment process 
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is key to converting single-cell multi-omics data into a shared latent representation, 
denoted as z . By establishing such a common latent space, we facilitate an effective inte-
gration of disparate omics data.

The architecture of scCross operates on a two-step variational autoencoder (VAE) 
framework to encode omics layers into a merged space. Inverting this methodology, any 
encoded data in this unified space can be reverted to any particular omics layer’s latent 
representation using a dual-step decoding procedure. The benefit here is the cost-effi-
ciency: rather than requiring k! distinct encoder/decoder combinations to synchronize 
any two modalities, this method necessitates only a couple. This streamlined approach 
facilitates multi-omics simulations across any number of omics layers. Nevertheless, the 
method’s success heavily depends on the precise integration of data in the shared latent 
space. If discrepancies emerge in this unified space between modalities, the generated 
data will mirror those differences.

By leveraging a bi-directional aligner, the cross-modal generation of data from modal-
ity j to modality h can be conceptualized with the following equation:

where xh_cross means cross generated xh from xj . A visual representation of the described 
procedure is illustrated in Additional file 1: Fig. S1a. The process begins with the input 
vector from modality j, which undergoes dimensionality reduction and mapping to the 
joint latent space z. Subsequently, the decoder associated with modality h is employed to 
reconstruct z into the data vector for modality h.

Notably, when j is not equal to h, this process facilitates cross-modal generation, allow-
ing the transformation of information from one modality to another. Conversely, when 
j is equal to h, it becomes a mechanism for self-augmentation within the same modality. 
A visual representation of the described procedure is illustrated in Additional file 1: Fig. 
S1b.

Similarly, single-cell data simulations tailored to specific cellular states for a particular 
modality h are described as:

In this context, xsh_simu means simulated data of h modality for specific cellular states, 
xsk pertains to the feature matrices of specific cellular states for kth modality, GSs

k is the 
gene set matrices for kth modality of specific cellular states, zs′ represents the sample 
result of q

(
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)

, · · · , q
(

zK | xsK ,GSs
K ;φenh

)
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)

 . To simulate sin-
gle-cell multi-omics for a certain cell population. We first sample in the joint latent space 
to produce latent embedding vectors to represent cells from the specific cell population. 
The number of samples determines the number of simulated cells. The latent embed-
ding zh will then be converted back into the input vector xh via specific modality-specific 
decoder. A visual representation of the described procedure is illustrated in Additional 
file 1: Fig. S1c.
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The model’s fitting procedure seeks to maximize the evidence lower bound expressed 
as:

Here, the set of  the encoder and decoder parameters are expressed as 
φ =

⋃K
k=1{φenk ,φdek ,φal_enk ,φal_dek } and θ =

⋃K
k=1 θk , respectively.

High‑quality data integration and generation via generative adversarial learning

In the endeavor to ensure precise alignment of diverse omics data, we harness the poten-
tial of a generative adversarial learning strategy, a method that showcases its prowess in 
numerous prior studies [29, 81].

Central to our model is a discriminator, denoted as Dz , equipped with a K-dimensional 
softmax output, designed specifically for the seamless alignment of various omics lay-
ers [38, 82]. Functioning based on the latent space embeddings of cells, denoted as z, Dz 
endeavors to identify the omics layer origin of the cells. The training of this discrimina-
tor is steered by the minimization of the multi-class classification cross entropy:

Here, Dzk symbolizes the kth dimension of the discriminator output, while ψ refers 
to the suite of parameters, amenable to learning, within the discriminator. Contrarily, 
the data encoders are trained with the ambition to deceive this discriminator, a strategic 
move to fortify the alignment of cell embeddings stemming from distinct omics layers.

Furthermore, to bolster the generation of cross-modality data, we present unique dis-
criminators for each modality. This approach aids in refining the reconstruction of the 
data:

Within this context, δ =
⋃K

k=1 δk encapsulates the collection of learnable parameters 
in the discriminators. Additionally, Dgek

 represents the output from the kth discrimina-
tor, tailored to reinforce the congruence between the model-generated data x̂k and the 
real data xk for the kth omics layers. The terms ẑk and x̂k depict the data generated by the 
aligner decoder and VAE decoder for the kth modality, respectively.
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(20)LD(φ,ψ , θ , δ) = LDz(φ,ψ)+ LDge(φ, θ , δ)
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Common gene MNN prior to align cells in similar cellular states

For an effective alignment across various modalities, it is essential to harness common 
genes that span across modalities, such as gene expression in scRNA-seq and gene 
activity in scATAC-seq and snmC-seq. These genes serve as a pivotal anchor, ensuring 
consistency and coherence across modalities. While previous omics data integration 
methods have been successful in achieving a semblance of agreement in the data distri-
bution, the main challenge remains. The true test of alignment is whether embeddings 
of the same or similar cells across different modalities can be represented identically or 
similarly within the shared latent space.

Here, the effective multi-modal alignment is achieved by utilizing the mutual nearest 
neighbors (MNN) approach, which has been shown to effectively align cells of analogous 
cellular states across different omics data [83]. First, each modality is represented by a 
matrix, ẋ , comprised of cells by common genes. Subsequently, the MNN-corrected com-
mon genes matrix from each modality is processed using PCA. This produces a common 
gene prior, G, which encapsulates all modalities:

The alignment loss function, LMNN , is then formulated to minimize the difference 
between cosine similarities of latent embeddings of cells and their counterparts based on 
common gene priors, ensuring consistency in the joint space:

where z′h ∼ q
(

z | zh;φal_enh
)

 , z′j ∼ q
(

z | zj;φal_enj
)

 and �G are the cell embedding in the 

shared space for the modality h and j, respectively, generally set to 1, assists in scaling 
the difference between the two subtractions. In this equation, Gh and Gj refer to the com-
mon gene priors for modality h and j corresponding to the cells’ embedding z′h and z′j , 
respectively.

Besides, it is important to note that despite this transformation for training purposes, 
both the input and output data of our method in all functions remain in their origi-
nal feature forms. For instance, in the scenario of cross-generating from scRNA-seq to 
scATAC-seq, the resulting scATAC-seq data retains its original peak features, not the 
transformed genes. The MNN pairs computed based on the converged gene matrix (e.g., 
from the ATAC-seq peaks) serve only as anchors to align cells from two modalities bet-
ter. Nevertheless, the cells coming from each modality (e.g., single-cell ATAC-seq) are 
still represented by their original feature vector (e.g., peak vector) to avoid information 
loss. This approach ensures that the integrity and specificity of the original feature data 
are preserved throughout the integration process.

Overall training strategy

The training process for scCross unfolds over two distinct stages. Initially, the primary 
objective is the isolated training of a variational autoencoder (VAE) for each modality. 
This approach enables us to capture and understand the unique biological information 
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inherent within each modality before proceeding to their integration. The loss function 
for this first stage is represented as:

Transitioning to the second stage, the trained VAE models from the preliminary stage 
serve as a foundation. At this juncture, bi-directional aligners are incorporated, merging 
the modalities into a unified latent space. Discriminators also come into play during this 
stage, contributing to the integration of multi-omics data. The associated training losses 
for this stage are detailed as:

In these equations, the terms �D and �MNN dictate the relative contributions of the 
discriminator and the common gene MNN prior, respectively. To optimize the training 
of the scCross model, we utilize the stochastic gradient descent technique. Notably, the 
RMSprop optimizer, devoid of a momentum term, is selected to enhance stability during 
adversarial training.

Single‑cell multi‑omics data integration

As highlighted as among the best for single-cell multi-omics data integration in recent 
reviews [84, 85], We selected scglue [29], Seurat v4 [28], and uniPort [30] for our perfor-
mance comparison. These methods were specifically chosen because they accommodate 
both matched and unmatched datasets, similar to our approach. For instance, scglue 
[29] is noted for its superior performance compared to other integration methods such 
as UnionCom [86], Pamona [87], and several others. Seurat v4 [28] is renowned for its 
widespread use and has demonstrated enhanced performance over methods like totalVI 
[88] and MOFA+ [89]. uniPort [30] has been shown to excel in multi-omic data integra-
tion over alternatives including scglue [29] and Harmony [9], among others.

To further enhance our benchmarking, we have incorporated additional methods 
such as scDART [32] and sciCAN [31] due to their proven effectiveness in existing 
benchmarks. scDART [32], for example, outperforms LIGER [90], Seurat v3 [91], and 
UnionCom [86]. Similarly, sciCAN [31] demonstrates superior integration capabilities 
compared to methods like LIGER [90], Harmony [9], and ArchR [92]. We also included 
Harmony [9] to broaden the scope of our comparison.

We evaluate the agreement between the cell type labels and the Leiden algorithm [93] 
clusters obtained from the integrated dataset for each omic separately using Normal-
ized Mutual Information (NMI). NMI measures the overlap between two clusterings, 
with scores ranging from 0 (no overlap) to 1 (perfect agreement). We perform the Lei-
den clustering [93] with a resolution of 1 for all methods and datasets. We use the scikit-
learn [94] (v.0.22.1) implementation of NMI. The NMI scores in our benchmarking were 
individually calculated for each omic and then averaged across all omics to obtain a 
comprehensive evaluation.

(23)max
θ ,φ,ψ ,δ

L′
X (θ ,φen,φde)

(24)min
ψ ,δ

�DLD(φ,ψ , θ , δ)

(25)max
θ ,φ,ψ ,δ

LX (θ ,φ)+ �DLD(φ,ψ , θ , δ)− �MNNLMNN
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The Rand index is another metric that compares the overlap of two clusterings. We 
compare the cell type labels with the Leiden clustering [93] computed on the integrated 
dataset for each omic separately. An ARI of 0 or 1 corresponds to uncorrelated clus-
tering or a perfect match, respectively. We perform the Leiden clustering [93] with a 
resolution of 1 for all methods and datasets. We use the scikit-learn [94] (v.0.22.1) imple-
mentation of the ARI. The ARI scores in our benchmarking were individually calculated 
for each omic and then averaged across all omics to obtain a comprehensive evaluation.

In our work, there are two kinds of ASW. One is cell type ASW, another is omics layer 
ASW. Cell type ASW is used to evaluate the cell type resolution. It can metrix model’s 
clustering ability. Cell type ASW is defined as in a recent benchmark study [29, 40]:

where s(i)cell type is the cell type silhouette width for the ith cell, and N is the total number 
of cells. Cell type ASW has a range of 0 to 1. Higher values indicate better cell type clus-
tering resolution.

Omics layer ASW is used to evaluate the integration mixing ability among omics lay-
ers. It is defined as in a recent benchmark study[29, 40]:

where s(i)omics layer is the omics layer silhouette width for the ith cell, Nj is the number of 
cells in cell type j, and M is the total number of cell types. Omics layer ASW has a range 
of 0 to 1. Higher values indicate better integration mixing ability.

The graph connectivity metric [29, 40] is used to estimate the ability to mix different 
omics data:

where LCCj is the number of cells in the largest connected component of the cell k-near-
est neighbors graph (K = 15) for cell type j, Nj is the number of cells in cell type j and M 
is the total number of cell types. Graph connectivity has a range of 0 to 1. Higher values 
of graph connectivity indicate better mixing ability.

The FOSCTTM metric [29, 41] is used to evaluate the single-cell level alignment accu-
racy. It is computed on two datasets with known cell-to-cell pairings. Suppose that each 
dataset contains N cells, and that the cells are sorted in the same order, that is, the ith 
cell in the first dataset is paired with the ith cell in the second dataset. Denote x and y as 
the cell embeddings of the first and second dataset, respectively. The FOSCTTM is then 
defined as:
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where n(i)1  and n(i)2  represent the number of cells in the first and second datasets that are 
closer to the ith cell than their true matches in the opposite dataset. The Euclidean dis-
tance, denoted as d, is used to calculate the distance between cells. FOSCTTM ranges 
from 0 to 1, and lower values indicate higher accuracy.

To train the atlas level large-scale data, we made several adaptations to our training 
process. We employed the Leiden algorithm [93] to cluster the original scRNA-seq 
and scATAC-seq data and obtained the cluster numbers. Then, we aggregated and 
averaged the cells within each cluster to create a meta cell representing that clus-
ter. The common gene MNN prior for cells within each cluster was calculated based 
on these meta cells. To boost training efficiency, we utilized the MNN loss, calcu-
lated based on the meta cells instead of all cells, for the second stage of fine-tuning 
scCross (loss defined in Eq. 22). Finally, we utilized Scanpy [12] (v.1.8.2) to generate 
the UMAP visualization.

In the triple omics integration, as the snmC-seq data’s distribution is close to zero-
inflated log-normal (ZILN) distribution, we use that distribution in our data decoder:

In the equation above, µ ∈ R
|Sk |, σ ∈ R

|Sk |
+ , δ ∈ (0, 1)|Sk | are the log-scale mean, log-

scale standard deviation and zero-inflation parameters of the zero-inflated log-nor-
mal distribution, respectively. Additionally, α ∈ R

|Sk |
+ , β ∈ R

|Sk | are scaling and bias 
factors. The set of learnable parameters in this context is θk = {σ, δ, α, β} and φdek.

To further verify our model’s triple omics integration ability, we employ a nearest 
neighbor-based label transfer approach using the ATAC-seq dataset as the reference 
and test the cell similarity of cells with the same label in different omics by markers. 
For each cell in the scRNA-seq and snmC-seq datasets, we identify the five closest 
neighbors in the ATAC-seq dataset within the shared embedding space. We achieve 
label assignment through a majority voting system based on these neighbors. To con-
firm the accuracy of our alignment, we test for significant overlap in cell type marker 
genes across modalities. Initially, we convert features from all omics layers into gene-
centric representations with geneactivity function in epiScanpy [73]. Subsequently, 
we pinpoint cell type markers for each omics layer. We adopt a one-versus-rest Wil-
coxon rank-sum test to ascertain these markers, using a significance threshold of 
FDR < 0.05 . The significance of overlapping markers among the three omics datasets 
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is gauged using the three-way Fisher’s exact test [53]. Visualization of the significant 
markers, as well as a comparison of FDR with the scglue method [29], is facilitated by 
the UpSet plot [95].

Cross‑modal generation of single‑cell data

Cross-modal generation of single-cell data serves diverse application scenarios. Primar-
ily, our methodology focuses on training our model using a reference multi-omics data-
set encompassing both source and target modalities. Subsequently, this trained model 
facilitates the generation of the missing modality in an untrained dataset. An alternative 
application stems from cases with limited data for one modality. To demonstrate our 
method’s prowess, we train it on such partial datasets and leverage this for cross-modal 
generation.

Initially, we employ the unmatched mouse cortex dataset [38] to train our model. Post 
this preliminary training, we execute fine-tuning using the scATAC-seq component of 
the matched brain dataset [36]. We then project the scATAC-seq data from this matched 
dataset to its corresponding scRNA-seq, using the latter’s original data as a benchmark. 
To showcase the capability of our model in handling datasets with limited modalities, we 
design a simulation using the matched mouse cortex dataset [36]. The dataset is bifur-
cated: 20% is employed for model training, and the remaining serves for cross-gener-
ation and validation. This simulation essentially aims at highlighting how our model, 
when trained on single-cell multi-omics data with a restricted modality, can upscale and 
extract valuable insights from the limited data. After the training phase, we employ our 
model to cross-generate the scRNA-seq data from the available scATAC-seq modal-
ity, thereby demonstrating the model’s ability to effectively leverage the trained insights 
from the limited dataset.

The robustness of our cross-modal generation technique is underscored by a com-
prehensive downstream analysis. The generated data is first clustered using the Leiden 
algorithm [93]. With the assistance of Scanpy [12], we discern the top 100 differentially 
expressed genes (DEgenes) for each cell type in both the generated and original scRNA-
seq datasets. These DEgenes not only facilitate the transfer of cell type annotations 
from the original to the generated datasets but also serve as potential biomarker genes. 
Cell types with the majority of shared genes are aligned. Pathway enrichment further 
enriches our validation process. For each cell type, pathway associations rooted in the 
top 100 DEgenes are pinpointed via the ToppGene portal [56]. Concurrently, to deci-
pher the intricate interplay between cells, CellChat [96] is employed for detailed cell-
cell interaction analysis. To gauge the accuracy and resemblance between our generated 
and the original scRNA-seq data, we deploy an array of validation metrics. Pearson cor-
relation [97] coefficients provide insights into decomposition, cell-cell interactions, and 
pathway analyses.

Single‑cell multi‑omic data simulation

Our model’s training is grounded on the matched mouse cortex dataset [36]. Specifically, 
for our simulation exercise, we choose the cellular type Ast as the target cellular sta-
tus. Leveraging our model, we generate data sets at onefold (1X) and fivefold (5X) of the 
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original count of Ast cells’ single-cell multi-omics data. These data sets are subsequently 
visualized using both Scanpy [12] (v.1.8.2) and epiScanpy [73].

With the assistance of Scanpy [12], we discern the top 100 differentially expressed 
genes (DEgenes) for Ast cells in both the 5X simulated and original scRNA-seq data. GO 
and pathway enrichment in both data further enriches our validation process. GO and 
pathway associations rooted in the top 100 DEgenes are pinpointed via the ToppGene 
portal [56].

To assess the level of correlation between the differential gene signatures of the origi-
nal Ast cells and the simulated 1X Ast data against a background, we employ the RRHO 
methodology [98].

To further harness and validate the simulated 1X Ast single-cell multi-omics data, 
we input it into various integration techniques, notably our scCross and the externally 
established scglue [29]. The outcomes from these integrative analyses serve to demon-
strate the adeptness of the scCross model in generating high-quality matched single-cell 
multi-omics data for specific cellular states, which can be potentially leveraged to bench-
mark other single-cell multi-omics data integration methods.

In silico perturbations and explorations

In this section, we aim to showcase the in silico perturbation pipeline of scCross, using 
the single-cell multi-omics dataset of COVID-19 as an exemplar. This dataset, compris-
ing both scRNA-seq and ADT data (CITE-Seq), serves as a suitable backdrop for our 
demonstration, given its comprehensive nature that facilitates deeper insights into the 
disease  [20]. The preliminary step in our pipeline involves visualizing the scRNA-seq 
data of the COVID-19 dataset. We utilized the Scanpy package for this purpose  [12] 
(v.1.8.2), generating a UMAP plot depicted in Fig.  6. Concurrently, the same pack-
age aided in the identification of the highly variable genes. With these genes in focus, 
the scCross model, once trained on matched scRNA-seq and single-cell protein data-
sets [20], embarked on the in silico perturbation process. In our study, virtual perturba-
tions involved modulating the gene expression levels in the dataset, not by simply setting 
the expression to zero but through a nuanced approach. For upregulation, we incre-
mented the original counts of selected genes by enhancing the expression by 50% of the 
original counts, and for downregulation, we reduced the expression by 50% of the origi-
nal counts. This approach allowed us to simulate the potential effects of gene activation 
or suppression within the cellular environment, which is to imitate the real perturbing 
situation of wet lab perturbation studies [99, 100]. Each highly variable gene underwent 
a virtual perturbation on COVID-19 patient cells, and the model gauged and scored its 
influence on bridging the latent space gap between contrasting disease states, namely 
healthy and COVID-19 conditions. The influence of gene perturbations was quantita-
tively assessed by comparing the perturbed data with control or healthy datasets within 
the joint latent space produced by scCross. We specifically measured the cosine distance 
between the perturbed and control matrices. This metric provided a robust method to 
evaluate how perturbations alter the cell state, effectively pinpointing critical disease-
associated markers. The culmination of this process results in a ranked list of genes, with 
top scorers spotlighted as potential RNA bio-markers for COVID-19.
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To further visualize the ramifications of these perturbations, we employed the Seaborn 
Python package [101] (v.0.11.2). This involved computing the cosine distances in the latent 
space between COVID-19 and healthy cells during both upward and downward pertur-
bations (scaled by ±1 in log space) of each gene. The resultant visualization, available in 
Fig. 6b, exclusively displays genes that effectively narrowed the latent space divide.

To further analyze the genes obtained from perturbation, we perform pathway analysis 
using the ToppGene website [56] with the down-perturbed genes that make the latent 
space closer. Additionally, we use the t-test [102] and Wilcoxon [103] tests, which are 
general methods for differential gene expression analysis, to generate the same num-
ber of DEgenes as our approach between COVID-19 patient cells and healthy cells. The 
pathway analysis is also performed using the ToppGene website [56]. We select several 
pathways highly associated with COVID-19 to demonstrate the effectiveness of our 
approach in identifying disease biomarkers via in silico perturbations (Fig. 6c).

Furthermore, we execute cross-generation of single-cell protein data using the scRNA-
seq dataset. For this procedure, we perturb the relevant genes identified in the prior 
analysis within the healthy scRNA-seq data. This gene perturbation leads to the creation 
of perturbed COVID-19 scRNA-seq data, which is subsequently harnessed for cross-
generation in order to produce a generated dataset representing single-cell COVID-19 
protein data.

To evaluate the correlation between the similarity of differential protein expressions 
in the original COVID-19 protein data and the perturbed, generated COVID-19 protein 
data against the backdrop of healthy protein data, we employ RRHO [98] as a visualiza-
tion technique.

In order to validate the degree of resemblance between the up-perturbed and cross-
generated single-cell protein data and the original dataset, we leverage the Scanpy pack-
age [12] (v.1.8.2). This comparison is performed within a comprehensive landscape 
encompassing all cells (Fig. 6f ). Pearson correlation [97], along with its associated p-val-
ues, is adopted to quantitatively affirm the similarity between these datasets.

Beyond this validation, our method also allows for quantitative measurement of dis-
tance shifts in another modality space, providing an alternative way to assess the influ-
ence of perturbed genes. By perturbing highly variable genes in samples from any 
condition and generating cross-modality data, we can calculate the distance between the 
perturbed matrices and the original matrices for the unperturbed data. This enables us 
to score and identify the genes that cause the most significant shifts across modalities. 
These genes could potentially serve as important markers for intervention candidates.

Batch effect correction

Batch effect intro modalities can be a hard problem to resolve when integrating multi-
modal datasets. Assuming b ∈ 1, 2, . . . ,B is the batch index, where B is the total number 
of batches in all modalities. To better address the problem, we utilize the batch effect 
correction method in [29], which transforms the traditional parameters α and β to batch-
specific parameters αb and βb in VAE data decoder:
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where θ ∈ R
B∗|Sk |
+ , α ∈ R

B∗|Sk |
+ , β ∈ R

B∗|Sk | , and θb, αb, βb are the bth row of θ, α, β . Other 
VAE decoders in different distributions can also be extended in similar ways. These for-
mulas represent the batch-specific scaling and bias factors out of MLP networks. The 
inclusion of parameters αb and βb alongside the Multi-Layer Perceptron (MLP) is moti-
vated by the formulas above, wherein each batch in training receives specific αb and βb 
values to adjust the data within that batch. These parameters, αb and βb , can vary for 
each batch b during training, allowing for the correction of batch effects inherent in the 
original dataset. Given that data within a dataset may originate from different samples 
and experimental batches, the presence of batch effects can hinder data integration. By 
incorporating αb and βb differences between batches can be corrected within the data 
matrix during the training process. Acting as training parameters, αb and βb automati-
cally scale and bias the data within each batch towards a unified common latent space. 
Without these parameters, batch effects would persist, potentially disrupting both inte-
gration and cross-generation processes.

Implementation details

In our model, we employ linear dimensionality reduction techniques such as PCA (Prin-
cipal Component Analysis) [72] for scRNA-seq data, gene information, and gene set 
information. For scATAC-seq data, we use LSI (Latent Semantic Indexing) [74] as the 
first transformation layers of the data encoders (while the decoders were still fitted in the 
original feature spaces). These canonical methods effectively reduce the model size and 
allow for modular input, enabling the use of advanced dimensionality reduction or batch 
effect correction methods as preprocessing steps for scCross integration.

To balance the losses in our model, we determine the value of lambda ( � ) for loss 
balancing. The lambda selection process can be found in Additional file 1: Fig. S6a–b 
(please refer to the supplementary materials of the corresponding publication).

Our model consists of two steps of training. In the first step, each omic layer’s VAE is 
trained separately for each modality. This step aims to obtain well-preserved bio-infor-
mation in the latent embeddings (represented as zk ) without interference from other 
modalities. In the second step, integration is performed by training all modalities’ zk 
together to achieve a unified latent space represented as z . This step enables the integra-
tion of different omic layers in the scCross model. The set of the best hyperparameters is 
presented in Additional file 1: Fig. S18a. The stability of scCross is demonstrated through 
comprehensive parameter and data corruption studies, as shown in Additional file  1: 
Fig. S18a–b. These analyses highlight the model’s robustness. Our experiments with the 
hyperparameter �p , which balances the VAE and GAN losses, found that a setting of 
0.05 consistently outperformed other tested values and is therefore set as the default in 
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our model. Similarly, for the “MNN” hyperparameter �MNN , which adjusts the balance 
between VAE and MNN losses, a setting of 0.04 yielded the best results and has been 
adopted as the standard setting. The model exhibits a maximum performance variance 
of approximately 0.2 for �p and 0.3 for �MNN across various settings, demonstrating con-
sistent stability under parameter adjustments, as detailed in Additional file 1: Fig. S18a. 
Furthermore, it maintains robust performance with minimal impact, even with a data 
corruption rate of 50% (i.e., half of the data was corrupted), as shown in Additional file 1: 
Fig. S18b. The loss curve of scCross in Additional file 1: Fig. S18c clearly demonstrates 
satisfactory convergence over the course of the training period. These stability tests were 
conducted using the matched mouse cortex dataset and are applicable to other datasets. 
As detailed in Additional file 1: Fig. S6a–b, scCross demonstrates efficient consumption 
of computational resources in terms of both time and memory. This efficiency is par-
ticularly critical as the scale of single-cell data increases. Beyond a dataset size of 10,000 
cells, our method either matches or surpasses the performance of all benchmarked tools 
in terms of computational efficiency. These comparisons were conducted on the Com-
pute Canada platform, utilizing a hardware environment of 1 x NVIDIA P100 Pascal 
GPU and 2 x Intel E5-2650 v4 Broadwell CPUs.
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for scRNA-seq and another for scATAC-seq). The datasets used in this study have been obtained from various sources. 
The matched mouse cortex dataset [36, 104] is obtained from the Gene Expression Omnibus (GEO) repository under 
the following accession numbers GSE126074. The matched mouse atherosclerotic plaque immune cells dataset [105, 
106] is got from the Gene Expression Omnibus (GEO) repository under the following accession numbers GSE240753. 
The matched mouse lymphonodus dataset [37, 107] is downloaded from the Gene Expression Omnibus (GEO) reposi-
tory under the following accession numbers GSE140203. The unmatched mouse cortex scRNA-seq dataset [38, 108] is 
publicly available on the Dropviz website at http:// dropv iz. org. The unmatched mouse cortex snmC-seq dataset [39, 109] 
is publicly available and obtained from the Gene Expression Omnibus (GEO) repository under the following accession 
numbers GSE97179. The unmatched mouse cortex scATAC-seq dataset is downloaded from the 10X Genomics website 
at https:// suppo rt. 10xge nomics. com/ single- cell- atac/ datas ets/1. 1.0/ atac_ v1_ adult_ brain_ fresh_ 5k. The human cell 
atlas dataset is obtained from the Gene Expression Omnibus (GEO) repository under the following accession numbers 
GSE156793 for scRNA-seq [43, 110] and GSE149683 for scATAC-seq [44, 111]. Lastly, the COVID-19 dataset [20, 112] used 
in the study is obtained from Sanger’s website at https:// covid 19. cog. sanger. ac. uk/ submi ssions/ relea se1/ haniff a21. 
proce ssed. h5ad. Detailed information for those datasets can be found in Additional file 2: Table S2 and detailed average 
benchmarking information for our integration evaluation across the methods section is available in Additional file 3: 
Table S3.
 The scCross framework is implemented in the “scCross” Python package, which is available under the MIT license at 
Github with the link https:// github. com/ mcgil lding lab/ scCro ss [113] and Zenodo with the link https:// doi. org/ 10. 5281/ 
zenodo. 12552 875 [114]. Examples of each dataset utilized in our study can be found in our Github repository.
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