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ABSTRACT

Multilayer perceptrons (MLPs) with ReLU-like activation functions form a high-
dimensional, piecewise linear function space characterized by “knots”—points
of non-differentiability. The density of such knots within a given input domain
measures the MLP’s capacity for function approximation. Despite the simplic-
ity of this concept, knots remain underexploited in enhancing the practical per-
formance of MLPs. This paper introduces Knot Gathering Initialization (KGI),
a novel method that amplifies the local expressiveness of MLPs by increasing
the knot density within the input domain prior to training. As an initialization
technique, KGI is lightweight, data-independent, and hyperparameter-insensitive.
The concept of knots, and hence KGI, can be directly generalized to smooth ac-
tivation functions from different angles, including geometry, information trans-
mission, and spectral analysis. We demonstrate the effectiveness of KGI across
diverse tasks, including curve and surface fitting, image classification, time series
regression, physics-informed operator learning, representation disentanglement,
and large language model pretraining. These experiments unexceptionally show
that KGI improves both the accuracy and convergence speed of MLPs, whether
used standalone or as components of larger architectures. Promising future direc-
tions include: 1) the natural extension of KGI to convolutional and graph convo-
lutional layers, as well as Low-Rank Adaptation for finetuning; and 2) applying
knot gathering throughout training, rather than just at initialization.

1 INTRODUCTION

A neural network represents a high-dimensional, nonlinear function parameterized by its weights.
Training involves optimizing these weights to approximate a target function or distribution in terms
of a loss function. The ability of a neural network to approximate complex functions is referred to as
its expressive power, or expressiveness (Raghu et al., 2017; Bengio & Delalleau, 2011). While ex-
pressiveness can be largely inferred from the number of weights, more advanced theories—such as
the universal approximation theorems (Hornik, 1991), capacity measures (Shalev-Shwartz & Ben-
David, 2014), and the concept of knots in piecewise linear networks (Montufar et al., 2014)—pro-
vide deeper insights, which will be discussed further in the Related Work section. The simplest
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Figure 1: Schematic of KGI. This method aims to initialize MLPs with a higher density of knots
within the input domain (illustrated as [0, 1]). It enhances local expressiveness before training,
leading to improved accuracy and faster convergence.
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way to elevate expressiveness is to expand network size, but this approach requires more data and
computational resources for training. Alternatives may include improving network architectures, ac-
tivation functions, and loss functions. Regularization techniques, on the other hand, aim to control
expressiveness to balance approximation and estimation errors (i.e., to mitigate overfitting), such as
dropout (Srivastava et al., 2014) and weight decay (Loshchilov & Hutter, 2019).

A key consideration in expressiveness is the input domain. For instance, if the input x ∈ [0, 1]m,
the neural network is expected to be sufficiently expressive only within the hypercube [0, 1]m. This
notion of local expressiveness is critical for training dynamics and is closely tied to techniques that
stabilize the data flow through the network, such as weight initialization, weight normalization, and
hidden state normalization (Glorot & Bengio, 2010; Salimans & Kingma, 2016; Ioffe & Szegedy,
2015). Beyond model improvements, local expressiveness can also be enhanced by partitioning the
input domain for parallel training (Meng et al., 2020). These approaches will be further discussed
in the Related Work section. While they have demonstrated practical effectiveness, their underlying
mechanisms often remain implicit. This paper aims to explicitly and interpretably harness local
expressiveness to improve network performance.

We are inspired by two key ideas: the quantification of knots in multilayer perceptrons (MLPs)
(Montufar et al., 2014), and the Kolmogorov-Arnold Networks (KANs) (Liu et al., 2023). Neural
networks with piecewise linear activation functions, such as ReLU, inherently represent piecewise
linear functions. Pascanu et al. (2013) and Montufar et al. (2014) were the first to quantify the
total number of knots in MLP, conveying that knots can serve as a local measure of expressiveness,
although they did not estimate such numbers within a compact set. KAN, an innovative architecture
based on the Kolmogorov-Arnold representation theorem (Kolmogorov, 1957), features learnable
activation functions on the edges between neurons. In KANs, each edge defines a univariate function
anchored by a set of B-spline bases, whose arrangement (location and density) dynamically adjusts
to the input range, thereby localizing expressive power. In contrast, knot distributions in MLPs
remain unpredictable, which may explain why KANs achieve higher accuracy with fewer parameters
in low-dimensional tasks.

Combining these two ideas, we aim to improve MLP performance by increasing the number of
knots within the input domain, as illustrated in Figure 1. We are generalizing the concept of knots
to smooth activation functions (such as GELU and Tanh) is straightforward but rigorous. In this
paper, we focus on the weight initialization stage, introducing a method we call Knot-Gathering
Initialization (KGI). As an initialization technique, KGI introduces no overhead to training and is
compatible with all previously mentioned techniques. To ensure a thorough evaluation, we focus
on MLPs in this study. In Discussion section, we will explore KGI’s potential extension to the
training stage, as well as its applicability to convolutional and graph convolutional neural networks
(CNNs and GCNs; LeCun et al., 1998; Kipf & Welling, 2017), and parameter-efficient finetuning
with Low-Rank Adaptation (LoRA; Hu et al., 2022). The main contributions of this paper include:

1. The concept of amplifying local expressiveness by gathering knots into the input domain.
2. A lightweight implementation of this concept through weight initialization, with significant

and interpretable effectiveness.

The remainder of this paper details our method, starting with an in-depth literature review, followed
by our methodology and experimental results, and concluding with discussions on broader implica-
tions and future directions.

2 RELATED WORK

The central idea of this paper is to enhance the local expressiveness of neural networks through
weight initialization. In this section, we review fundamental theories on expressiveness and method-
ologies for its enhancement, focusing on the role of knots and initialization techniques.

2.1 EXPRESSIVENESS OF NEURAL NETWORKS

Universal approximation First established by Cybenko (1989) and expanded by Hornik (1991),
the Universal Approximation Theorem (UAT) underpins the theoretical capability of neural net-
works. Given sufficient neurons, it asserts that an MLP with a single hidden layer can approximate
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any continuous function on a compact set. Further studies have extended UAT to deep networks,
showing the influence of network depth and activation functions (Lu et al., 2017; Hanin & Sellke,
2019). UATs have also been proven for specialized architectures such as ResNet (Lin & Jegelka,
2018) and DeepONet (Lu et al., 2021). Nevertheless, UATs do not quantify expressiveness due to
unbounded approximation error and are not concerned with estimation error or generalization.

Capacity measures Various capacity measures have been proposed for a more quantified under-
standing of expressiveness. The earliest and most fundamental measure could be the VC dimen-
sion (Vapnik & Chervonenkis, 2015), which counts the maximum number of data points a model
can shatter or perfectly classify. Based on the VC dimension, the PAC (probably approximately
correct) learning theorems provide a framework to constrain the generalizability of learning algo-
rithms (Shalev-Shwartz & Ben-David, 2014). Extensions such as the fat-shattering and shattering
coefficients generalize the VC dimension to real-valued functions and distinct labelings (Kearns &
Schapire, 1994; Anthony et al., 1999). Beyond these combinatorial measures, Rademacher com-
plexity offers a data-dependent perspective, assessing how well a model can fit random noise, with
lower values indicating better generalizability (Bartlett & Mendelson, 2002). Last, the tensor rank
of layers, particularly in networks with multiplicative interactions, reflects its capacity to model
complex, multilinear interactions (Cohen et al., 2016).

Linear regions or knots In piecewise linear networks, such as those using ReLU activation func-
tions, the input space is partitioned into regions where the network behaves as a linear function.
The number of these linear regions, or knots between them, correlates with the network’s capacity
to represent complex functions. This thought may date back to Pascanu et al. (2013) and Mont-
ufar et al. (2014) who, respectively, found the upper and lower bounds of this number for MLPs,
considering impacts of width, depth, and activation functions. Further studies have explored the
combinatorial structure of knots in different architectures, such as CNNs and networks with varying
types of activation functions (Serra et al., 2018; Arora et al., 2018). More recent work has provided
dynamic analyses of how these knots evolve during training and how architectural choices influence
their number and distribution (He et al., 2018; Hanin & Rolnick, 2019). These insights are crucial
to understanding the network design trade-offs and optimizing the expressiveness of deep learning
models (Raghu et al., 2017; Bengio & Delalleau, 2011).

Knots offer distinct advantages over other capacity measures due to their locality and simplicity.
First, they are a local measure that enables the assessment of a network’s capacity within specific
input domains. Second, the position of knots can be directly linked to the network’s weights and
biases without relying on more abstract theoretical concepts (e.g. shattering). These properties make
knots a pragmatic tool for quantifying and enhancing model performance, which inspires our work.

2.2 ENHANCING LOCAL EXPRESSIVENESS

Weight initialization Weight initialization is critical for training neural networks, significantly
affecting both convergence speed and final model performance (Narkhede et al., 2022). Early ap-
proaches, such as random initialization, were prone to vanishing or exploding gradients, especially
in deep networks (Bengio et al., 1994). To mitigate these issues, methods such as Xavier (Glorot &
Bengio, 2010) and He initialization (He et al., 2015) were introduced, scaling weights based on input
and output sizes to maintain stable activation throughout the network, effectively preventing dimin-
ished expressiveness in the input domain. These techniques have since become standard practice
and will serve as the starting point of our knot-gathering process. Recent advances have contin-
ued to refine these methods, particularly in the context of deeper and more complex architectures.
For instance, Mishkin & Matas (2016) introduced the initialization of the Sequential Unit Variance
(LSUV), which processes the pre-initialized weights layer by layer to further normalize output vari-
ance. Hanin & Rolnick (2018) highlighted the critical interplay between weight initialization and
modern normalization techniques. Focusing on transformers, Zhu et al. (2021) presented a dynamic
approach that learns optimal initial weights during training to enhance stability and improve conver-
gence. Our method, KGI, shares similar characteristics: layer-wise processing, an emphasis on the
interplay between layers, and compatibility with training. However, driven by knot positioning, we
deem KGI to have the most interpretable mechanism.
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Normalization Normalization can also be understood as localizing the expressive power by con-
straining data flow activation (Huang et al., 2023). It can be applied to hidden states across batch
(Ioffe & Szegedy, 2015), feature (Ba et al., 2016), and group (Wu & He, 2018) dimensions, or di-
rectly to weights (Salimans & Kingma, 2016; Qiao et al., 2019). Although not the focus of this
work (which concerns initialization), the real-time tracking of post-activation distributions through
normalization can facilitate the extension of knot gathering to the training process, as explained in
the Discussion section.

Dynamic activation Just as data can be adapted to activation through normalization, activation
functions can also be adapted to data, giving rise to adaptive or trainable activation functions (Dubey
et al., 2022). Some adaptive functions, such as Swish and cubic splines, learn their shapes based
on heuristic insights (Ramachandran et al., 2017; Scardapane et al., 2019). However, many oth-
ers have formally incorporated the positioning of critical points, such as APL (Adaptive Piecewise
Linear), BDAA (Bi-modal Derivative Activation), linear regression-based activation training, Mex-
ican ReLU, and Gaussian radial basis functions (RBFs) (Agostinelli, 2014; Mishra et al., 2017;
Ertuğrul, 2018; Maguolo et al., 2021; Jiang et al., 2021). The concept of critical point positioning
is made more explicit in KAN (Liu et al., 2023; Yu et al., 2024), where the support of activation
functions dynamically adjusts to that of data—another key inspiration for this work, as discussed
in the Introduction section. Our method stands out by achieving critical point positioning through
weight adjustments, rather than altering activation functions, making it naturally compatible with
commonly-used neural network layers and introducing no overhead to training.

Domain decomposition The techniques discussed above focus on enhancing the local expressive-
ness of a single neural network. Domain decomposition, by contrast, adopts a different perspective:
training multiple neural networks in parallel, each responsible for a sub-region of the input domain.
This method has proven effective for training physics-informed neural networks (PINNs) to emulate
or invert partial differential equations (PDEs; Meng et al., 2020; Shukla et al., 2021; Moseley et al.,
2023), where the underlying functions are too complex for a single global model to capture. The
concept of domain decomposition reinforces our insights into local expressiveness and can directly
benefit from our approach, which explicitly accounts for sub-domain supports.

3 KNOT GATHERING INITIALIZATION

We detail our methodology in this section, beginning with a single layer using ReLU activation and
progressively extending it to MLPs and smooth activation functions.

3.1 SINGLE LAYER

Consider a linear layer with weight W ∈ Rn×m and bias b ∈ Rn, mapping input x ∈ [a, b]m to
output y ∈ Rn by

y = ReLU(z), where z = Wx+ b. (1)

Assume that the weight W and bias b are properly pre-initialized to W0 and b0, for instance, using
He uniform or normal initialization (He et al., 2015). The goal of KGI is to modify W0 and b0 such
that the knot of ReLU, or the root of z = 0, lies within the input domain [a, b]m.

Let x̂ represent the root of z = 0 (e.g., x̂ = −W−1b when m = n). Directly adjusting W0 and b0
to ensure that x̂ lies within [a, b]m is challenging, particularly in high dimensions. However, if we
know the root x̂, it is straightforward to adjust either the weight W0 or the bias b0 while keeping
the other fixed. Thus, we adopt a “knot-sampling and weight-perturbation” strategy.

We first sample an x̂ from [a, b]m:
x̂ ∼ U(a, b)m. (2)

Given this x̂, two approaches are evident:

1. Bias-Modifying Approach: Fixing the weight at W = W0, the bias is modified to

bKGI = −W0x̂. (3)
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2. Weight-Modifying Approach: Fixing the bias at b = b0, the weight is modified to

WKGI = λWh +Wp, (4)

where Wh is the homogeneous part satisfying Whx̂ = 0, and Wp is the particular part
satisfying Wpx̂+ b0 = 0:

Wh = W0 −
W0x̂x̂

T

x̂Tx̂
, Wp = −b0x̂

T

x̂Tx̂
, (5)

and λ represents any real number and is treated as a hyperparameter. In most cases, setting
λ = 1 is sufficient.

A caveat of using Eqs. (3) or (4) is that all pre-activation outputs, z1(x), z2(x), · · · , zn(x), will
share the same zero, i.e., the sampled x̂. To remove this algorithm-imposed restriction, distinct
x̂ values can be sampled to compute each row of bKGI or WKGI. However, we opt for a simpler
approach: perturbing WKGI and bKGI by a fraction of their pre-initialized counterparts, yielding the
final initialization as

W ∗
0 = αW0 + (1− α)WKGI or b∗0 = αb0 + (1− α)bKGI, (6)

where α ∈ [0, 1] is a hyperparameter, referred to as the perturbation factor. When α > 0, the
knots may no longer be confined to [a, b]m, introducing a trade-off between gathering knots and
preserving randomness. Our experiments suggest that selecting α in the range [0.1, 0.5] provides a
good balance, with performance showing minimal sensitivity to the exact value within this interval.
This leaves the domain bounds, a and b, as the only influential hyperparameters for each layer.

In our experiments, we observed no significant difference in performance between the two ap-
proaches. When a bias-free layer is required, the weight-modifying approach can be employed.
However, as we explain in the Discussion section, the bias-modifying approach is innately compat-
ible with non-affine layers, such as those in CNNs and GCNs.

3.2 MULTIPLE LAYERS

For MLPs, we need to estimate the bounds a and b for each layer based on the activation function
of its preceding layer. Heuristically, we recommend using [0, 1] for ReLU and similar activations,
[−0.8, 0.8] for Tanh, and [0.1, 0.9] for Sigmoid, as these ranges align with their corresponding
function ranges. We avoid the full range of Tanh and Sigmoid because the extreme values are
rarely reached in pre-initialized models. While these suggested ranges can be finetuned for better
performance, they are generally sufficient to make KGI effective. It must be emphasized that our ob-
jective is to increase, rather than to maximize, knot density within the input domain: the perturbation
factor α is intended to remove some of the knots from the input domain.

Alternatively, we provide an automated approach if a representative batch of data is available. For
each layer, we calculate the minimum and maximum of its input, denoted as dmin and dmax, and
determine [a, b] by

[a, b] = [dmin + β(dmax − dmin), dmax − β(dmax − dmin)], (7)

where β ∈ [0, 0.5) creates a margin at both ends. Note that using the mean and variance of the
input is inappropriate when the preceding activation is ReLU (since half of the inputs vanish). With
a and b determined, KGI can be performed, followed by a forward pass to propagate the activated
output to the next layer. This layer-by-layer approach is akin to LSUV (Mishkin & Matas, 2016).
In practice, finding a truly representative batch can be difficult in a high-dimensional space, so we
recommend using the heuristic estimates to ensure stable training dynamics.

3.3 SMOOTH ACTIVATION FUNCTIONS

The concept of a knot can be generalized to smooth activation functions as where they are most
expressive. For example, in smooth variants of linear units, such as ELU, SELU, and GELU (Clevert
et al., 2016; Klambauer et al., 2017; Hendrycks & Gimpel, 2017), as well as functions like Swish
and Mish (Ramachandran et al., 2017; Misra, 2020), z = 0 can naturally serve as the knot. For
more generic activation functions, we provide three consistent perspectives: geometry, information
transmission, and spectral analysis.
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Figure 2: Evidence for z = 0 as a “knot” in Tanh. The mutual information Iµ(Z;Y ) is determined
by Eq. (13), assuming Z ∼ N (µ, 1) and Y = tanh(Z). The spectrogram is computed with the
spatial and frequency domains both discretized into 5000 points.

Consider Tanh as an example. We state that z = 0 is its knot based on the following evidence
(illustrated in Figure 2):

1. Geometrically, z = 0 is an inflection point maximizing the slope, indicating that the func-
tion is most sensitive to changes in input around z = 0.

2. When random input Z ∼ N (µ, 1) is passed through Y = tanh(Z), the mutual information
(MI) (MacKay, 2003) between Z and Y is maximized at µ = 0, as detailed in Appendix A.
This suggests that z = 0 is an optimal point for information transmission.

3. The spectrogram of Tanh (from Short-time Fourier transform) shows that high-frequency
components are concentrated near z = 0.

Such analyses can be applied to commonly used activation functions, suggesting that x = 0 often
serves as a natural knot. In cases where the knot is non-zero in a specific activation function, we can
adjust the pre-initialized bias b0 by subtracting the knot, ensuring that Eqs. (3) and (4) still hold.

4 EXPERIMENTS

We conducted seven experiments across different domains and model scales. In this section, we will
first present results from two low-dimensional problems, highlighting the mechanism of KGI via
knot visualization. Following this, we will report on the remaining high-dimensional problems.

Since KGI introduces a mechanism distinct from previous studies and is compatible with most ex-
isting techniques (as reviewed in Section 2.2), we do not use a static baseline in our experiments.
Instead, the baseline, as labeled “No KGI” in the subsequent sections, is tailored to each prob-
lem, incorporating standard practices (such as pre-initialization, normalization, and regularization)
to achieve reasonable performance without KGI. To demonstrate KGI’s robustness and usability, we
do not tune its hyperparameters; we simply estimate the bounds [a, b] from the preceding activation
functions, fixing the homogeneous factor λ = 1 and perturbation factor α = 0.2.

4.1 CURVE AND SURFACE FITTING

We train MLPs to fit a curve and a surface, as shown in Figures 3a and 3c, both characterized by
spiky shapes that require localized expressive power. We explore ten architecture scales, varying in
width W (number of units per layer) and depth D (number of hidden layers, excluding the input and
output layers), and four activation functions: ReLU, LeakyReLU, GELU, and Tanh. The models
are trained using mean squared error (MSE) as the loss function and Adam as the optimizer, with
a learning rate of 10−3. Training is performed for 30,000 epochs on unbatched data. For KGI, we
use the weight-modifying approach, setting the input domain ([a, b]) to [−0.8, 0.8] for Tanh, and
[0.2, 0.8] for the other activation functions.
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(e) Loss after 30000 epochs for curve fitting
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(f) Loss after 30000 epochs for surface fitting

Figure 3: Fitting a curve and a surface with MLPs. (a) and (c) show the targets with Gaussian bell-
shaped spikes, discretized into 1,000 and 200×200 data points, respectively. (b) and (d) display
in-domain knot distributions in the just-initialized (untrained) MLPs using ReLU activation, with
W and D representing network width and depth. The “No KGI” panels show models pre-initialized
with He uniform (He et al., 2015), which are further processed by KGI and shown in the “KGI”
panels. Each scenario includes ten model samples, with Nknot denoting the average number of knots
within the input domains. In (b), all ten model samples are shown, with knots marked by vertical
bars. In (d), a single model sample is visualized, with knots identified at pixels where significant
horizontal or vertical slope changes occur, marked by small dots forming line segment patterns. (e)
and (f) compare final losses for models initialized with and without KGI, accompanied by the loss
histories shown in Figures 5 and 6.
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Before presenting the training results, we visualize the knot distributions in untrained ReLU-based
models, as shown in Figures 3b and 3d. It is shown that, for the same architecture, KGI increases
the knot density within the input domain approximately by three times. A higher density of knots
tends to accelerate convergence and improve the attained local minima, rendering KGI’s mechanism
more interpretable compared to many other methods in enhancing MLP performance.

The training results are presented in Figures 3e and 3f, reporting the final MSE for the different net-
work sizes and activation functions, accompanied by the training histories visualized in Appendix B.
Based on these results:

1. For smaller models, KGI consistently improves both convergence speed and final loss.

2. For larger models that are sufficiently sized for the tasks, the improvement in final loss may
become negligible, but the improvement in convergence speed remains significant.

In addition, animations of knot distributions during training are provided in our code repository,
visually illustrating how knot gathering improves training dynamics from start to finish. Refer to
our Reproducibility Statement.

4.2 HIGH-DIMENSIONAL PROBLEMS

This section presents five high-dimensional experiments across various domains, tasks, data types,
and network scales. We briefly describe each problem below, with further details on datasets, archi-
tectures, hyperparameters, and metrics provided in Appendix C.

1. CIFAR-10 A benchmark dataset for image classification (Krizhevsky, 2009). The metric
is test accuracy. This experiment evaluates KGI’s performance on a high-dimensional input
domain ([0, 1]32×32×3).

2. Element analysis A probability regression problem on spectral data, where the goal is to
predict the percentage composition of elements in a sample based on its emitted muonic X-
rays (Hillier et al., 2022; Cataldo et al., 2022). The primary metrics include KL-divergence
(as the loss function) and threshold accuracy. This experiment highlights the challenges
posed by real-world scientific data.

3. Stokes Flow Solving the 2D Stokes flow in a square box with a moving lid using a
Physics-Informed Deep Operator Network (PI-DeepONet; Lu et al., 2021). The metric is
the relative L2 error compared to the ground truth. This problem introduces two challenges:
the architecture consists of two MLPs—a branch net processing physical parameters and
a trunk net handling spatial coordinates; besides, the loss function involves higher-order
derivatives with respect to the input coordinates.

4. Disentanglement Disentangling features with autoencoder-based models is highly sen-
sitive to model initialization due to the non-convexity of disentangling losses (Locatello
et al., 2019). We use variational autoencoders (VAEs) to learn disentangled features on the
XY dataset (Cha & Thiyagalingam, 2023), with Joint Entropy Minus Mutual Information
Gap (JEMMIG; Do & Tran, 2020) to measure the alignment between latent variables and
ground-truth factors. We aim to evaluate whether KGI can stabilize training and improve
disentanglement quality.

5. GPT-2 Pretraining GPT-2 (Radford et al., 2019) for causal language modeling. While
this task typically requires a large dataset, such as OpenWebText with eight million docu-
ments (Gokaslan & Gao, 2019), we use WikiText-2 with ∼40,000 documents (Merity et al.,
2017) due to resource limitation. The metric is test accuracy. This experiment tests KGI’s
effectiveness in large-scale models, focusing on the early stages of training.

Alongside the problem-specific metrics mentioned above, we also report two common metrics across
all experiments: the final loss after a sufficiently large number of epochs, and convergence slowness,
which we define as the mean value of the loss curve divided by the initial loss. Geometrically,
convergence slowness represents the relative area under the loss curve.

The metrics are reported in Table 1, with typical training histories illustrated in Figure 4. The
results indicate that KGI consistently enhances model performance to varying extents, with the

8
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Table 1: Losses and metrics for high-dimensional experiments.

LOSS1 SLOWNESS2 METRIC
Problem No KGI KGI No KGI KGI Name No KGI KGI

CIFAR 0.26±0.03 0.18±0.02 0.35±0.03 0.28±0.02 Acc. 46.65±0.31% 47.53±0.27%

Muon 1.26±0.33 0.88±0.30 0.63±0.05 0.59±0.04 Acc. 88.51±3.66% 90.06±4.16%

Stokes 3.33±0.35 1.19±0.09 0.15±0.01 0.09±0.01 Rel. L2 17.88±1.69% 10.45±0.87%

DisEnt3 4.40±0.02 4.41±0.02 0.73±0.16 0.56±0.18 JEMMIG 0.62±0.14 0.71±0.10

GPT-2 1.75±0.13 1.38±0.19 0.15±0.00 0.14±0.01 Acc. 20.56±0.18% 20.89±0.21%

1 Unit of loss: 10−4 in Muon, 10−4 in Stokes, 102 in DisEnt, and 10−2 in GPT-2.
2 Unit of slowness: 10−2 in Muon.
3 The loss for DisEnt does not capture the quality of feature disentanglement, as the reconstruction loss exerts
an adversarial influence, often worsening disentanglement.
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Figure 4: Training histories for high-dimensional experiments, with models initialized using the
same random seed (i.e., not selectively chosen to favor KGI). The only exception is the Disentan-
glement case, where the best models with and without KGI are shown, as disentanglement may fail
depending on initialization, often requiring multiple seeds (Do & Tran, 2020).

improvements on Stokes flow and disentanglement being particularly notable. Additional results
and detailed analyses for each problem are provided in Appendix C.

5 DISCUSSION

The number of knots in piecewise linear neural networks has been explored as an intuitive and in-
terpretable measure of their expressive power. We directly leverage this concept to enhance the
practical performance of MLPs by increasing knot density within the input domain during weight
initialization, a technique we refer to as Knot Gathering Initialization (KGI). KGI consists of three
steps: sample a knot from the input domain, adjust the weight or bias to accommodate that knot,
and perturb the weight or bias to diversify the knots across different output dimensions. This ap-
proach can be naturally extended to smooth activation functions, broadening the applicability of
the knot concept. KGI consistently improves accuracy and convergence speed across various tested
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real-world tasks, including image classification, time-series regression, physics-informed operator
learning, representation disentanglement, and large language model pretraining.

5.1 ARCHITECTURAL AND TRAINING COMPATIBILITY

While this paper focuses on MLPs, KGI is formally compatible with non-affine architectures such
as CNNs, GCNs, and LoRA (LeCun et al., 1998; Kipf & Welling, 2017; Hu et al., 2022). These
architectures comprise layers of the form z = Wx + b prior to activation, but with W subject
to specific structural constraints. For instance, in convolutional and graph convolutional layers, W
follows a fixed sparsity pattern with tied elements. In LoRA, W takes the form W = Wp +AB,
where Wp is the pretrained weight, and A and B are unconstrained low-rank matrices for finetuning.
Such prescribed weight structures preclude our weight-modifying approach (Eq. (4)) but still support
our bias-modifying approach (Eq. (3)). Nevertheless, such formal compatibility does not guarantee
KGI’s effectiveness for these layers, which requires future investigation.

In addition to increasing knot density prior to training, we may also explore maintaining it through-
out training. Knot gathering is also formally compatible with training if we treat W0 and b0 in
Section 3.1 as the current weight and bias and apply knot gathering through Eq. (3) or (4) to reg-
ulate them. The mean and variance of the hidden state can be tracked during training, similar to
normalization techniques (Ioffe & Szegedy, 2015; Ba et al., 2016; Wu & He, 2018), and used to
dynamically sample the knot x̂; as a particular case, if x̂ is anchored to the tracked mean, knot
gathering becomes deterministic, introducing no stochasticity. Potential side effects may include
overfitting and unstable gradients. More experiments are needed to assess these issues.

REPRODUCIBILITY STATEMENT

The code for this paper, including the implementation of KGI, Jupyter notebooks and datasets for
running experiments, and training logs, will be made publicly available after the review process. For
the review phase, the code (with git history removed) is included in the Supplementary Material. The
Supplementary Material also contains animations of knot distributions during training, illustrating
how knot gathering improves training dynamics.

Experiments involving stochastic processes were conducted with fixed pseudo-random seeds to en-
sure reproducibility. All figures and tables in this paper, except for Figure 1, can be reproduced with
a single click with the provided training logs.
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A INFORMATION TRANSMISSION THROUGH TANH

Sample Z ∼ N (µ, 1), i.e., a Gaussian random variable with mean µ and variance 1. With Y =
tanh(Z), we aim to calculate the mutual information (MI) between Z and Y .

The MI, as denoted by Iµ(Z;Y ), is defined by (MacKay, 2003)

Iµ(Z;Y ) = Hµ(Y )−Hµ(Y |Z), (8)

where Hµ(Y ) is the entropy of Y , and Hµ(Y |Z) the conditional entropy of Y given Z. Since
Y = tanh(Z) is a deterministic transformation of Z, the conditional entropy Hµ(Y |Z) vanishes,
simplifying Iµ(Z;Y ) to Hµ(Y ).

To determine Hµ(Y ), we need the probability density function (PDF) of Y . The PDF of Z is

pZ(z) =
1√
2π

exp

(
− (z − µ)2

2

)
. (9)

The derivative of y = tanh(z) is

dy

dz
= 1− tanh2(z) = 1− y2. (10)

The PDF of Y is given by the change of variables formula:

pY (y) = pZ(z)

∣∣∣∣dzdy
∣∣∣∣ , (11)

where z = tanh−1(y). Substituting Eqs. (9) and (10) into (11), we obtain the explicit form of
pY (y):

pY (y) =
1√
2π

exp

(
− (tanh−1(y)− µ)2

2

)
1

1− y2
. (12)

Note that the transformation Y = tanh(Z) compresses the real line into the interval (−1, 1). Based
on the definition of entropy, we eventually obtain

Iµ(Z;Y ) = Hµ(Y ) = −
∫ 1

−1

pY (y) log pY (y) dy. (13)

Due to the complex form of pY (y), analytical evaluation of the above integral is difficult. We
compute it numerically, varying µ in interval [−5, 5], and the results are displayed in the middle
panel of Figure 2.

B TRAINING HISTORY FOR CURVE AND SURFACE FITTING

Complementing Figures 3e and 3f, Figures 5 and 6 present the training history for curve and surface
fitting, respectively, across the considered network sizes and activation functions.
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Figure 5: Loss histories in curve fitting. These models are initialized with the same random seed
(i.e., not selected individually to favor KGI).
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Figure 6: Loss histories in surface fitting. These models are initialized with the same random seed
(i.e., not selected individually to favor KGI).
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C DETAILS ON HIGH-DIMENSIONAL EXPERIMENTS

C.1 CIFAR-10

CIFAR-10 (Krizhevsky, 2009) serves as a standard benchmark dataset for image classification, in-
cluding 60,000 32 × 32 color images, evenly distributed across 10 distinct classes. Our MLP com-
prises three linear layers with output sizes 256, 128, and 10, using ReLU activation. We employ
cross entropy as the loss function and Adam as the optimizer, with a learning rate of 10−3. Training
is conducted over 10,000 epochs with a batch size of 512. For KGI, we apply the weight-modifying
approach over the interval [a, b] = [0, 1], with the weights pre-initialized by He uniform. The re-
sults, presented in Table 1 and Figure 4, indicate that the MLP struggled with this task, achieving a
test accuracy slightly below 50%. However, the usage of KGI led to accelerated convergence and
improved accuracy.

C.2 MUON SPECTROSCOPY

Muon spectroscopy is a powerful technique for elemental analysis (Hillier et al., 2022; Cataldo
et al., 2022). Negative muons are implanted into a material and captured by its atoms, which then
emit muonic X-rays as they relax in energy. These X-rays provide a unique fingerprint of the mate-
rial’s chemical composition, with their energy characteristic of the capturing atoms. The technique
applies to a wide range of materials, including those in cultural heritage, energy technologies, ad-
vanced engineering, biomaterials, and green technologies. Quantifying elemental composition can
be challenging due to spectral complexity.

In this experiment, we predict the elemental composition of samples from their muon spectra. The
original dataset (Butler & Hillier, 2024) provides spectra with 4,000 energy points, spanning from 0
to 8,000 keV. To make the problem more challenging, we process the data by truncating the second
half of the spectra and decimating the first half by a factor of two, resulting in 1,000 energy points per
spectrum up to 4,000 keV. The output corresponds to the percentage composition of three elements:
silver, gold, and aluminum. A representative spectrum is illustrated in Figure 7.

The MLP used in this experiment consists of three hidden layers, each with 128 units and ReLU
activations. At the output layer, we apply softmax to normalize the predictions into probability
distributions. In the KGI approach, weight modification is applied within the range [a, b] = [0, 1],
with the weights pre-initialized using He uniform. The model is optimized using Adam with a
learning rate of 10−3 and trained for 5,000 epochs with a batch size of 512. KL-divergence serves as
the loss function, while performance is evaluated using a 1% threshold accuracy metric—predictions
are considered accurate if they fall within 1% of the ground truth. As shown in Table 1 and Figure 4,
KGI noticeably accelerates convergence and improves accuracy.
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Figure 7: Muon spectroscopy data example. The dataset contains 10,000 samples, each with 1,000
data points. 6,000 samples are used for training, and 4,000 for testing.
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C.3 STOKES FLOW

Physics-informed machine learning (PIML) is a rapidly growing field (Karniadakis et al., 2021),
primarily targeting forward and inverse problems involving PDEs. The key idea behind PIML is
to incorporate the underlying physics or PDEs directly into the neural network, often through the
loss function, to enhance accuracy and generalization while requiring less data. In this study, we
investigate the effectiveness of KGI within the PIML framework.

Following Leng et al. (2024), we consider the 2-D Stokes flow in a square box with a moving lid,
governed by the following system of PDEs and boundary conditions:

µ

(
∂2u

∂x2
+

∂2u

∂y2

)
− ∂p

∂x
= 0, x ∈ (0, 1), y ∈ (0, 1);

µ

(
∂2v

∂x2
+

∂2v

∂y2

)
− ∂p

∂y
= 0, x ∈ (0, 1), y ∈ (0, 1);

∂u

∂x
+

∂v

∂y
= 0, x ∈ (0, 1), y ∈ (0, 1);

u(x, 1) = u1(x), v(x, 1) = 0, x ∈ (0, 1);

u(x, 0) = v(x, 0) = p(x, 0) = 0, x ∈ (0, 1);

u(0, y) = v(0, y) = 0, y ∈ (0, 1);

u(1, y) = v(1, y) = 0, y ∈ (0, 1),

(14)

where {u, v}(x, y) denotes the velocity field, p(x, y) is the pressure field, and µ is the dynamic
viscosity, fixed at 0.01. The zero-pressure boundary condition at the bottom (p(x, 0) = 0) is imposed
solely to fix the constant component of p. Our goal is to learn an operator that maps the lid velocity
û(x, 0) to the full solution {u, v, p}(x, y), as shown in Figure 8a.

The physics-informed DeepONet (Lu et al., 2021), designed for operator learning with universal
approximation capabilities, is used as the architecture, as illustrated in Figure 8b. Both the branch
and trunk networks consist of three hidden layers with 128 neurons each, using Tanh activation.
For KGI, we employ the bias-modifying approach, setting the input domain [a, b] = [−0.8, 0.8] for
all the hidden layers, pre-initialized by Xavier normal. We sample 1200 instances of û(x, 0) from a
Gaussian process, using 1000 for training without the ground truth solutions. The L2 error relative to
the ground truth for the remaining 200 instances serves as the metric for accuracy and generalization.
Training is conducted over 50,000 iterations, each using a batch of 50 û(x, 0) instances, with a
learning rate of 10−3 for the Adam optimizer.

The results presented in Table 1 and Figure 4 demonstrate that with KGI, the PDE loss is reduced
by a factor of three and continues to converge rapidly. The test error decreases from ∼18% to
∼10%. These improvements, achieved solely by initialization, are outstanding in the context of
PIML, highlighting the strong potential of KGI in this field.

C.4 DISENTANGLEMENT

A key characteristic of learned representations is disentanglement, where the latent space is struc-
tured by distinct, independent generative factors of variation. This structure not only reveals in-
sights into the underlying data but also enables controlled manipulation of specific data attributes.
One classic approach for achieving disentanglement is through VAE-based models (Higgins et al.,
2017). These models regularize the latent space using the KL-divergence, encouraging the latent
distribution to align with a standard normal distribution, thereby promoting latent independence.
However, due to the non-convex nature of the loss function in VAE-based models, successful dis-
entanglement is highly sensitive to initialization (Locatello et al., 2019). If an early training stage
results in an entangled latent space, the model will struggle to separate generative factors later on.

In this experiment, we employ a VAE model with MLP backbones and ReLU activations on the
XY dataset from Cha & Thiyagalingam (2023). The dataset consists of 33×33 images, each of
size 64×64 and containing a circle with varying x and y positions. The encoder is composed of
three linear layers with sizes 1024, 512, and 128, each using ReLU activations. This is followed
by two separate layers of size two, which generate the mean and log-variance of the two latent
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Figure 8: Solving the 2-D Stokes flow in a square box with a moving lid using a physics-informed
DeepONet. Panel (a) shows the input û(x, 0) in the top plot and the corresponding output fields
{u, v, p}(x, y) in the bottom plot. Panel (b) illustrates the use of three separate DeepONet modules,
all with the same architecture, to predict the velocity and pressure fields. These predicted fields are
then substituted into Eq. (14) to calculate the PDE loss for backpropagation, with the derivatives
computed by automatic differentiation.

features. The decoder mirrors the encoder, followed by a sigmoid activation function to facilitate
reconstruction. Training is performed for 1000 epochs with a batch size of 64, optimized by Adam
with a learning rate of 5 × 10−5. The VAE loss is the sum of the reconstruction loss and the KL-
divergence from the latent distributions to the standard normal distribution. We aim to encode the
images into independent latent variables, as shown in Figure 9.
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0.0

0.5
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Encode

Disentangled (x, y)

Figure 9: A perfectly disentangled latent space of the XY dataset (Cha & Thiyagalingam, 2023).
The colored circles and their encoded positions demonstrate that perfect disentanglement does not
necessitate ordering or monotonicity in latent variables. Additionally, the spacing between rows and
columns in the latent space is not required to be uniform.

The models are pre-initialized using PyTorch’s default initialization, which differs from He uniform
by the absence of the

√
3 scaling factor. In applying KGI, we use the weight-modifying approach

over the interval [a, b] = [−0.1, 1.1] for the input layer, as the input images contain only values of
zero and one. For the other hidden layers in the encoder, we set [a, b] = [0.2, 0.8]. For the layers
responsible for generating the mean and log-variance, we calculate the minimum and maximum
values of their inputs before training and use them as a and b, since the final encoder layer has no
activation function. To constrain the decoder, we similarly compute the minimum and maximum
values of the reparameterized outputs before training and use them as a and b. For the other hidden
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layers of the decoder, we set [a, b] = [0.49, 0.51]. The reason disentanglement is facilitated by a
narrow interval in the decoder remains unclear to us.

As shown in Table 1, KGI not only significantly improves the mean of JEMMIG but also reduces
its variance. This indicates that KGI effectively addresses the non-convexity of disentanglement by
enhancing local expressiveness. Figure 4 displays the JEMMIG history of the best models with and
without KGI, both of which successfully achieve disentanglement, with KGI accelerating conver-
gence. In the failed cases, JEMMIG remains mostly flat. Among the ten tested seeds, disentangle-
ment was successfully achieved seven times with KGI and four times without it, based on a visual
inspection of the JEMMIG history. The learned latent spaces corresponding to the best models with
and without KGI are visualized in Figure 10.

No KGI KGI

Figure 10: Disentangled latent features. The visualized models are those with the highest JEMMIG
scores, one using KGI and the other without, corresponding to the two JEMMIG histories shown
in Figure 4. Although these two cases appear similar, KGI increases the likelihood of achieving
successful disentanglement as seen here.

C.5 GPT-2 PRETRAINING

Large language models (LLMs) are gaining significant prominence, making them an ideal testbed
for evaluating novel methodologies (Zhao et al., 2023). In this experiment, we pretrain GPT-2 from
scratch (Radford et al., 2019). While a larger dataset like OpenWebText (Gokaslan & Gao, 2019),
with eight million documents, is ideal for training convergence, resource constraints lead us to use
the smaller Wiki-Text-2 dataset (Merity et al., 2017), which contains 40,000 documents. Therefore,
the findings presented here primarily reflect KGI’s impact during the early stages of pretraining. We
train the model for 120 epochs, which correspond to approximately 45,000 steps of backpropagation,
using a batch size of six and a learning rate of 5× 10−4.

GPT-2 includes five types of linear layers, which together account for the majority of its parameters:

1. attn.attn projects token embeddings into queries, keys, and values for self-attention.
2. attn.proj projects the output of self-attention back to the model’s hidden size.
3. mlp.fc projects the output of self-attention into a higher-dimensional space.
4. mlp.proj projects the activated higher-dimensional output back to the hidden size.
5. lm head maps the model’s hidden states to vocabulary logits for language modeling.

To apply KGI, we assign the interval [a, b] = [0, 1] for the mlp.proj layer, as its preceding
activation function is GELU, while using [a, b] = [−1, 1] for the remaining layers. Note that in
Huggingface, GPT-2 implements all above linear layers (except lm head) using Conv1D, which
must be replaced with nn.Linear to apply KGI.

As shown in Figure 4, KGI leads to faster convergence of the training loss. While evaluation ac-
curacy (presented in Table 1) shows a subtle improvement with KGI, we do not claim conclusive
effectiveness because this experiment only covers the early stages of training, with perplexity re-
maining at the 104 level. Still, it hints at the potential of KGI for improving the training dynamics
of large-scale models, including LLMs.
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