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Fast-forward FARGO :
Accelerating Protoplanetary Disk Simulations with Limited Data
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Abstract
Hydrodynamic simulations of planets embedded
in accretion disks around young stars are an essen-
tial tool in the study of planet formation and evo-
lution. However, these simulations are expensive,
and any quantitative comparisons between planet-
formation theory and the observations of planets
will require the execution of at least thousands of
simulations. We present a U-net emulator built to
accelerate the simulation package FARGO. Our
emulator, Freesbee, was pre-trained with disk
surface densities from 940 short, low-resolution
FARGO simulations and fine-tuned using only
10 to 30 longer and higher-resolution simula-
tions. The emulator takes as input the disk den-
sity and embedded planet position from the first
few timesteps of a brief simulation and outputs
the final state 5,000 dynamical times (years at
1 a.u.) later. The emulated disk densities have me-
dian fractional errors (relative to high-resolution
FARGO runs) ranging from 0.9 to 6 percent with
a median value of 3 percent; they are over 106

times faster to compute.

1. Introduction
The field of planet formation theory relies heavily on simu-
lations that model protoplanetary disks and the evolution of
planets within them. Scientists have developed various tools
to study the time evolution of the differential equations that
describe protoplanetary systems. One widely used tool is
the Fast Advection in Rotating Gaseous Objects (FARGO )
code (Benı́tez-Llambay & Masset 2016, Masset 2000), a
parallel hydrodynamics and magnetohydrodynamics code
that simulates planet-disk interactions. Despite the utility of
FARGO, the computational expenses associated with run-
ning such simulations remain a barrier to addressing some
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of the most complex questions in planetary system evolution.
For example, planet migration, which refers to the change
of a planet’s semi-major axis over time, is a process that
can take place over hundreds of thousands of years. Prob-
lems requiring such long-term simulations can often rapidly
increase computational costs.

1.1. Related Work

Machine learning techniques are increasingly being used to
mitigate some of the computational costs associated with
running expensive simulations. For example, Timpe et al.
(2020) describes a data-driven emulator that predicts the
outcome of pairwise collisions between planetary-sized bod-
ies in the late stages of planet formation. Jamieson et al.
(2023) and He et al. (2019) present emulators to accelerate
cosmological dark-matter simulations to predict the large-
scale structure of the Universe. Emulators are being used
in the field of Earth sciences to learn derivatives governing
the chaotic evolution of oceans and atmospheres (Nonnen-
macher & Greenberg, 2021). Across many physical sci-
ence domains, investigators are turning to deep learning to
build fast emulators for computer simulations and digital
twins, aiming to enable parameter exploration and uncer-
tainty quantification (Kasim et al., 2021).

However, the datasets necessary to effectively train and vali-
date a neural network are generally large. Running sufficient
protoplanetary disk evolution simulations to train a tradi-
tional neural network is extremely expensive. U-nets, a type
of Convolutional Neural Network (CNN), may offer a solu-
tion. This architecture, first developed for Biomedical Im-
age Segmentation, has been shown to outperform standard
CNNs when trained with smaller data sets (Ronneberger
et al., 2015). This advantage is likely due to its numerous
shared weights and its inherent equivariance to translation
symmetries. The typical network consists of an encoder,
which contracts the information to a smaller-dimensional
space, and a decoder, which symmetrically reconstructs the
encoded data.

U-net models are already being employed as emulators for
a variety of tasks. For example, in geology, Jiang et al.
(2021) developed an autoregressive residual U-net to predict
the time-dependent subsurface flow for geological systems.
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Bertrand et al. (2023) trained a model that emulates car-
diac electrophysiology simulations and accurately predicts
cardiac activation time maps. In astrophysics, Rouhiainen
et al. (2024) learned a denoising function for cosmological
simulations with a similar architecture.

1.2. Our contribution

In this paper, we introduce Freesbee, a U-net built and
trained in PyTorch (Paszke et al., 2019) to time-evolve the
surface density of protoplanetary disks and accelerate the
FARGO simulations. We pre-trained the network with 1D
surface densities of a wide array of short-duration, low-
resolution FARGO simulations. We then fine-tuned the net-
work on higher-resolution simulations of longer duration.

Section 2 contains a brief background on protoplanetary disk
evolution. Section 3 describes the FARGO simulations used
for pre-training and fine-tuning the network. The network
architecture, training, and validation are outlined in Section
4. The resulting emulations are shown in Section 5. Lastly,
Section 6 concludes with a discussion and summary of our
work and suggests directions for future research.

2. Background
Understanding the evolution of protoplanetary disks and the
formation of planets embedded in them is one of the most
active areas of research in planetary science. Protoplanetary
disks are disks of gas and dust surrounding young stars. They
are the birthplaces of planets, which form from collisions
and accretion of disk material.

The evolution of protoplanetary disks and the planets within
them is a complex process that occurs over millions of years.
Planets and their host disk interact gravitationally, producing
torques that can result in planetary migration and a reshap-
ing of the material within the disk. Planet-disk interactions
are non-trivial and can give rise to non-axisymmetric fea-
tures in the distribution of material in the disk. Studying the
coupled evolution of planetary systems is an ongoing area
of research.

For a more extensive review of planet formation and disk
evolution see Armitage (2020).

3. FARGO Simulations
3.1. Overview

The FARGO code simulates the evolution of protoplanetary
disks by solving hydrodynamics and magnetohydrodynam-
ics equations (i.e. continuity, energy conservation, Navier-
Stokes). A simple N-body simulator is employed to study
the dynamics of the embedded planets.

The disk mass is described by a radial surface density pro-

file:
Σ(r) = Σ0

( r

1 a.u.

)−n

(1)

where Σ0 is the initial surface density at r = 1a.u. and n
the slope of the surface density profile

The physical geometry of the disk is determined by the
aspect ratio:

h(r) =
H

r
= h0

( r

1 a.u.

)f

(2)

where H is the vertical height, h0 is the aspect ratio at
r = 1a.u., and f is the flaring index.

The kinematic viscosity ν, which relates to the rate of gas
diffusion in the disk, depends on the parameter α, the speed
of sound cs, and the vertical height H of the disk as follows:

ν = α cs H (3)

The planets are initialized by defining their initial radial
position and mass, and whether they are allowed to interact
with the disk. Other initial parameters include the duration
of the simulations, angular and radial resolutions, and radial
limits of the system.

3.2. Pre-training Simulations

To pre-train our network, we ran quick, low-resolution
FARGO simulations in NYU’s Greene Supercomputer with
one Jupiter-mass planet and a variety of disk initial con-
ditions to cover part of the parameter space studied in the
literature (e.g. Kanagawa et al. 2015, Zormpas, Apostolos
et al. 2022). The chosen values used for all the variable
parameters are listed in Table 1.

α Σ0 (g/cm) n h0 (H/R0)
{3.0, 1.0} × 10−2 5,658 2 0.1
{3.0, 1.0} × 10−3 1,886 1.5 0.07
{3.0, 1.0} × 10−4 1,698 1.2 0.04
{3.0, 1.0} × 10−5 1,257 0.8 -

- 943 0.5 -
- 629 0.2 -
- - 0.0 -

Table 1. Table of FARGO variable parameters used in our pre-
training dataset. We created simulations with combinations of the
listed parameters.

Our pre-training simulations have a grid resolution of
384(ϕ) × 128(r) and span from 0.4 a.u. to 2.5 a.u.. We
ran the simulations for 25 orbits at 1 a.u. (25 years), with a
time-step of 1/2 a year.

Lastly, we averaged the 2D surface density azimuthally
for each time-step in the pre-training simulations, resulting
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Figure 1. Disk surface density as a function of radius in a.u. from randomly selected FARGO runs. The time evolution is depicted by the
darkening of the lines, where the lightest color represents the initial condition. The pre-training simulations (first three columns, left to
right) span 25 years, while the fine-tuning systems (last column) span 6,000 years.

in 1D surface densities as a function of radius. Figure 1
contains examples of the surface density evolution simulated
with FARGO that were used to pre-train our network.

3.3. Fine-tuning Simulations

For fine-tuning, we used FARGO simulations with higher
resolution of longer duration. We recreated the simulations
from Fung et al. (2014). The grid domain was the same
as for our pre-training, but the numerical resolution was
increased to 864× 256. The simulations were run for 6,000
orbits at 1 au, with a time-step of 100 years.

The values for α, h0, and q (denoting planet mass in solar
masses) are listed in Table 2, and n was fixed to be 1/2.
We prevented the planet from feeling the disk’s influence,
leading to a fixed orbit at 1 a.u. and removing any Σ0 de-
pendence.

As with the pre-training simulations, we calculated the 1D
surface densities as a function of radius for each fine-tuning
simulation time-step by averaging the 2D surface density
over azimuth. The last column of Figure 1 shows examples
of the surface density evolution simulated with FARGO that
were used to fine-tune our network.

4. Neural Network
4.1. Architecture

Freesbee is a U-net built to take as inputs the 1D surface

α h0 q
0.001 0.03 0.0001
0.01 0.04 0.001
0.1 0.06 0.01
- 0.07 -
- 0.08 -
- 0.1 -

Table 2. Table of FARGO variable parameters used in our fine-
tuning simulations. We created simulations with all possible com-
binations of the listed parameters. We chose Σ0 to be 0.005, but
due to the planet’s orbit being fixed, the evolution does not depend
on the value of Σ0.

density at three different time-steps along with the planet
position and to output the 1D surface density and planet po-
sition at a later time-step. The planet position was appended
as a float at the end of the surface density. For the pre-
training we chose tin = {1, 5, 10} as the input time-steps
and tout = 35 as the output time-step. For the fine-tuning,
tin = {1, 5, 10} and tout = 60.

The U-net architecture consists of an encoder or contracting
path followed by a decoder or expanding path (see Fig. 2).
The encoder captures context by gradually reducing the spa-
tial dimensions of the inputs through convolutional and pool-
ing layers, extracting hierarchical features from the input
data. The decoder employs upsampling and convolutional
layers to increase the resolution of the features extracted
by the encoder and constructs an output of the same size
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Figure 2. U-net architecture diagram. Each convolutional block contains two 1D convolutional layers with batch normalization and the
ReLu activation function. The contracting path with 1D MaxPool layers between convolutional blocks is the encoder. The decoder is
the expanding path, with 1D transpose convolution operations applied between convolutional blocks. Features from the encoder are
concatenated to the corresponding decoder block via skip connections.

as the input, preserving the contextual information learned
in the contracting stage. Features from the encoder are con-
catenated to the corresponding decoder blocks through skip
connections.

We employed the Adam optimizer (Kingma & Ba, 2014)
with a learning rate of 0.001 to minimize the L1 loss. Addi-
tionally, a learning rate scheduler was implemented, reduc-
ing the learning rate by a factor of 0.9 every 30 epochs. The
architecture’s hyperparameters were optimized using the
Weights and Biases development platform (Biewald, 2020),
and are listed in Appendix A.

4.2. Training and Validation

The network underwent pre-training for 100 epochs and the
model parameters corresponding to the lowest validation
loss were used to initialize the fine-tuning training. We then
trained the network for an additional 100 epochs with a
range of N = {10, 15, 20, 25, 30} of the high-resolution
simulations.

The fine-tuning training was carried out four separate times
for each N , cross-validating with 10 different validation
simulations. For every N , the lowest validation loss in each
of the four runs was recorded. Figure 3 illustrates the mean
validation loss for each N , and the standard deviation from
each of the four cross-validation runs.

Finally, to assess the pre-training utility, we trained the
model using just the fine-tuning data for each N . Similarly
to the fine-tuning, we trained the model four times for each
N , cross-validating with 10 different simulations each time.
The best validation losses were recorded, and their mean
and standard deviation were plotted on Figure 3 alongside
the pre-trained and fine-tuned model for comparison.

5. Results
We compared the network’s performance with and without
pre-training and for N = {10, 15, 20, 25, 30}. Figure 3
illustrates the dependence of the minimum validation L1
loss on the number of simulations used for training for both
the pre-trained and non-pre-trained models. We found that
the pre-trained model yields lower validation losses, with
the lowest corresponding to N = 30.

Figure 3. Minimum validation L1 loss as a function of the number
of fine-tuning training FARGO simulations N . The error bars rep-
resent the standard deviation over each of the four cross-validation
runs for every N .

We visualized the 60th time-step surface densities for val-
idation systems as predicted by the pre-trained and fine-
tuned model with N = 30. Figure 4 compares these simu-
lated surface densities and their emulated counterparts for
a few validation examples. The median fractional errors
of the validation emulated disk densities compared to the
high-resolution FARGO runs ranged from 0.9 to 6 percent
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Figure 4. Surface density and residuals of the 60th time-step for fine-tuning validation systems. The top panel in each row contains surface
density plots as a function of radius, where the blue dotted lines depict the emulations and the black solid lines depict the simulations. The
midpoint of the y-axis is labeled on each top panel. The bottom panels in each row show the residuals as a solid purple line, with a y-axis
range of ±1× 104 g/cm2and a dotted gray line across 0 g/cm2. The radial range for all panels is 0.4−2.5 a.u.

and had a median value of 3 percent. Our network is also
equipped to predict planetary positions. However, we have
not included a visualization of this capability because the
fine-tuning simulations had fixed planets at 1 a.u.. Conse-
quently, the network’s ability to accurately determine the
planet’s position is technically trivial in this scenario.

Our results demonstrate that Freesbee is significantly
faster than FARGO in time-evolving protoplanetary disk
surface densities. Freesbee can emulate 5,000-year time
evolution in the order of milliseconds. In contrast, FARGO
requires approximately three hours on state-of-the-art GPU
cluster hardware. Freesbee is at least 106 times faster
than FARGO, underscoring its efficiency and potential for
large-scale, high-resolution studies of protoplanetary disk
dynamics.

6. Discussion and Future Work
In just milliseconds, our model can successfully emulate
the 5,000 years of planetary system evolution that typically
requires around 3 GPU hours to simulate using FARGO.
Such a dramatic improvement in computational speed can

facilitate more extensive parameter space explorations, en-
able the study of long-term disk evolution, and ultimately
allow for quantitative comparisons between the theory and
the observations of planet populations.

Even though the fine-tuning systems have a fixed orbit and
therefore a constant planet position of 1 a.u., the planets
in our pre-training systems do interact with the disk and
feel torques that may push them inwards or outwards. We
know planets have the ability to change their semi-major
axis, making Freesbee’s ability to track planet positions
crucial for simulating planetary migration. Thus, fine-tuning
Freesbee with simulations depicting planet migration is
a sensible next step and part of our short-term research plan.

A key functional test of Freesbee that we aim to imple-
ment is whether the emulated results agree with established
analytical results on planet formation. For example, there
is a relationship between the depth of the gap that forms
in a disk and the disk/planet properties, illustrated in Fig-
ure 1 of Kanagawa et al. (2015). Therefore, an effective
test would be to verify that the emulations exhibit the ex-
pected dependence of gap depth on system parameters. Such
tests can verify that the emulator is accurate in a physical



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Fast-forward FARGO

sense. Moreover, although we did not observe a noticeable
relationship between residuals and simulation parameters,
this initial observation warrants a more extensive formal
analysis.

Future work should also focus on optimizing both the input
and output time-steps. Our initial choice of tin was based on
a visual inspection of the emulated systems when compared
to simulations. We observed an overall decline in emulation
quality when the model was trained with earlier time-steps.
However, the aim is to strike a balance between good model
performance and low computational cost. While this study
serves as a proof of concept, a systematic optimization of
input and output parameters is an important next step to
enhance the model’s predictive capabilities.

We originally did not use all of the available high-resolution
simulations for fine-tuning because one of our goals is to
explore the minimum number of simulations required for
our model to effectively emulate planetary system evolution.
Because simulations are computationally expensive, deter-
mining the minimal data requirement is crucial to reduce
computational costs. While our results indicate that more
training data generally improves performance, we will con-
tinue working on identifying methods to reduce resource
usage without compromising accuracy.

The current implementation works on 1D, azimuthally aver-
aged disk profiles. The complete 2D surface density contains
more information about the gap and disk morphology due
to non-axisymmetric features that can arise in the surface
density profile of disks containing migrating planets. Thus,
Freesbee is currently being modified to accommodate
two-dimensional inputs and outputs.

Lastly, it is important to note that Freesbee was validated
solely through cross-validation, which may have limitations
in fully assessing its performance. Future work should focus
on extensive testing with a broader range of simulations
to provide more robust validation and further enhance the
reliability and applicability of the emulator
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A. Architecture Parameters

Layer Channels Kernel Stride Padding
conv enc11 3-64 3 1 1
conv enc12 64-64 3 1 1
maxpool1 64-64 2 2 0

conv enc21 64-128 3 1 1
conv enc22 128-128 3 1 1
maxpool2 128-128 2 2 0

conv enc31 128-256 3 1 1
conv enc32 256-256 3 1 1
maxpool3 256-256 2 2 0

conv enc41 256-512 3 1 1
conv enc42 512-512 3 1 1
maxpool4 512-512 2 2 0

conv enc51 512-1024 3 1 1
conv enc52 1024-1024 3 1 1

upconv1 1024-512 2 2 0
conv dec11 1024-512 3 1 1
conv dec12 512-512 3 1 1

upconv2 512-256 2 2 0
conv dec21 512-256 3 1 1
conv dec22 256-256 3 1 1

upconv3 256-128 2 2 0
conv dec31 256-128 3 1 1
conv dec32 128-128 3 1 1

upconv4 128-64 2 2 0
conv dec41 128-64 3 1 1
conv dec42 64-64 3 1 1
conv dec51 64-1 1 1 0

The top (bottom) of the table describes the encoder (decoder) configuration.


