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ABSTRACT

The advent of generative AI models is revolutionizing drug discovery, generating
de novo molecules at unprecedented speed. However, accurately identifying and
rescuing drug candidates among countless generated molecules remains an open
problem. The essence of this drug-likeness prediction task lies in constructing a
compact subspace that encompasses majority of approved drugs with only a small
number of unknown compounds (drug candidates) inside. Computational chal-
lenges arises in constructing a decision boundary on an unbound chemical space
that lacks definite negatives, i.e, non drug-likeness. Approved drugs exist highly
dispersed across structural space, making it more harsh to effectively separate
drugs from non-drugs through existing classifiers. Addressing such challenges,
we introduce BOUNDR.E: a novel approach for learning a compact boundary of
drug-likeness through an Expectation-Maximization (EM)-like iterative optimiza-
tion process. Specifically, we refine both the boundary and the distribution of the
embedding space via metric learning, allowing the model to iteratively tighten the
drug-like boundary while pushing non-drug-like compounds outside. Augmented
by integration of biomedical context within knowledge graphs via multi-modal
alignment, our model demonstrates 10% increase in F1 score over the previous
state-of-the-art, along with strongest robustness to cross-dataset validation. Zero-
shot toxic compound filtering and comprehensive drug discovery pipeline case
studies further showcases its utility in large-scale screening of AI-generated com-
pounds. To facilitate in silico drug discovery, we provide the code and benchmark
data under various splitting schemes at: anonymous.4open.science/r/boundr e.

1 INTRODUCTION

(a) Fingerprint (b) GraphMVP
Figure 1: PCA visualization of embedding
spaces of approved drugs (red) and 100k
ZINC compounds (gray).

The expansion of deep generative models for molec-
ular design is transforming the drug discovery land-
scape, generating vast libraries of candidate molecules
with unprecedented speed (Guan et al., 2023; Lee et al.,
2023; Song et al., 2024). However, evaluating the drug-
likeness of these molecules is still a major challenge.
Conventional filters, such as Lipinski’s Rule of Five
(Ro5; Lipinski et al. (1997)) and Quantitative Estimate
of Drug-likeness (QED; Bickerton et al. (2012)), offer
helpful initial screens, but they fail to provide a defini-
tive boundary for drug-like properties (Jin et al., 2018;
Lee et al., 2023; Li et al., 2024). A more precisely defined boundary of drug-likeness is required,
capturing approved drugs while excluding non-drug-like compounds.

However, approved drugs are widely dispersed across chemical space, with an average of only 1.97
drugs sharing the same scaffold. This high dispersion makes it challenging to draw compact bound-
aries for drug-likeness. For example, a one-class hypersphere of drugs often includes all non-drugs
within the drug boundary, regardless of whether Morgan fingerprint or deep learning representation
spaces (Liu et al., 2022) are used (Figure 1, Appendix B). Furthermore, the task of drug-likeness
prediction poses two computational challenges:
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Figure 2: Overview of BOUNDR.E. Step 1 performs multi-modal mixup of two drug spaces: knowledge graph
K and molecular fingerprint S spaces into a unified space U . Step 2 performs EM-like boundary optimization,
where in E-step boundary B is updated and in M-step the latent space Z is updated by pushing the out-boundary
non-drugs further while contracts drugs to the center to yield an optimized drug-like boundary.

1. The absence of a clear negative class. In drug discovery, every compound could poten-
tially be a drug candidate, and there is no definitive set of “non-drugs.”

2. The vastness of chemical space. With an estimated number of 1023 ∼ 1060 synthesizable
compounds (Polishchuk et al., 2013), it is impractical to sample a representative set for
training, and also there is no known ratio of drug-like to non-drug-like compounds.

Existing methods for drug-likeness prediction tend to fall short. Supervised models (Sun et al.,
2022) often generate overly strict decision boundaries by treating unlabeled compounds as hard
negatives, while PU learning approaches (Lee et al., 2022) assume the unlabeled set as a mixture of
tractable positive and negative label distribution, which is unpractical in compound space (Appendix
A.6) Both approaches root on risk minimization which enforces their reliance on the negative set.
Unsupervised models (Li et al., 2024) produce overly broad boundaries that fail to generalize.

One-class classification models (Schölkopf et al., 2001; Tax & Duin, 2004; Ruff et al., 2018), while
promising in mitigating the issue of reliance on ill-defined negatives, their static nature and reliance
on fixed feature space lead to broad boundary and high false positive ratio in open chemical spaces.

To overcome these limitations, we introduce BOUNDR.E, a dynamic approach for predicting drug-
likeness that refines the boundary and the embedding space iteratively using an EM-like optimiza-
tion process, guided by biomedical knowledge alignment (Figure 2). Our method iteratively adapts
the boundary to enclose as many drug-like compounds as possible while pushing non-drug-like
compounds outward through metric learning. By continuously adapting the boundary, BOUNDR.E
improves upon the overly rigid approaches of conventional one-class classification (OCC) models,
ensuring a tighter, more precise boundary for drug-likeness prediction.

For the guidance of biomedical knowledge, we augment the initial embedding space using multi-
modal knowledge alignment, integrating molecular structure with biological and pharmacological
data through a novel knowledge-enhanced mixup technique. This fusion of information allows our
model to capture more biologically meaningful features of drug-likeness, improving performance
in time-based and scaffold-based splits and generalization to unseen chemical scaffolds. Our con-
tributions can be summarized as following: 1) Novel formulation of drug-likeness prediction as
a one-class classification without reliance on negatives. 2) Proposal of EM-like optimization of
both the drug-likeness boundary and the embedding space for accurate drug-likeness prediction. 3)
Knowledge-integrated multi-modal alignment of structure and biomedical knowledge embeddings
for defining drug-likeness with machine learning.

Experimental results demonstrate superior performance in drug-likeness prediction, achieving high
F1-scores and Matthews correlation coefficients (MCC), as well as favorable recommendation per-
formance metrics including Average Precision (AP). Additionally, BOUNDR.E excels in zero-shot
toxic compound filtering, showcasing its cross-dataset generalizability. Comprehensive case studies
further showcase its utility in large-scale screening of AI-generated compounds, offering a highly
efficient solution for initial screening of real-world in silico drug discovery applications.

2 RELATED WORKS

Computational Prediction of Drug-likeness Computational identification of drug-like com-
pounds has long been a focus in drug discovery (Clark & Pickett, 2000), starting with molecular
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descriptor-based metrics including the Rule of Five (Ro5) (Lipinski et al., 1997) and QED (Bick-
erton et al., 2012). However, these methods are limited to acting as “necessary conditions” for
drug-likeness, not as definitive classifiers as pointed out by several studies (Lee et al., 2022; 2023;
Li et al., 2024). Recent graph neural network-based approaches including D-GCAN (Sun et al.,
2022) and DeepDL (Lee et al., 2022) employ binary classifiers and PU learning, but their reliance
on explicit negative sets makes them less effective in open-world chemical spaces where negatives
are undefined. Unsupervised methods, such as DrugMetric (Li et al., 2024), utilize VAE-generated
latent spaces combined with Gaussian Mixture Models (GMMs) to assess drug-likeness.

One-class boundary models One-class classification (OCC) methods aim to define a boundary
around a positive class (e.g., drugs) without relying on negatives, making them more suited for
open-world problems. Techniques like OC-SVM (Schölkopf et al., 2001), Support Vector Data
Description (SVDD) (Tax & Duin, 2004), and DeepSVDD (Ruff et al., 2018) seek to minimize the
volume around positive samples, assuming the feature space to be fixed and optimal. However, their
static nature and reliance on fixed feature spaces often lead to overly broad boundaries and high
false-positive rates in expansive chemical spaces. Our proposed BOUNDR.E model addresses these
limitations by dynamically refining both the boundary and the feature embedding space through an
iterative EM-like process.

Deep Multi-modal alignment Multi-modal alignment or multi-modal learning refers to the pro-
cess of mapping diverse data modalities, such as image, text, video, and audio, into a unified em-
bedding space that enables effective joint learning and generalization across various downstream
tasks (Girdhar et al., 2023). A prominent example of multi-modal alignment is CLIP (Radford et al.,
2021), which learns representations by aligning text descriptions with images through contrastive
learning. Several frameworks extend CLIP-based multi-modal learning through finetuning (Goyal
et al., 2023) or training-free approaches (Zhang et al., 2022) for more robust optimization. One such
method is the recently proposed Geodesic Mixup (Oh et al., 2024), which ensures that multi-modal
mixed samples lie on a geodesic path, preserving the structure of L2-normalized embeddings well
mixed on a hypersphere.

In the biochemical domain, CLOOME (Sanchez-Fernandez et al., 2023) has been proposed to mod-
ify the CLIP loss through leave-one-out boosting with continuous modern Hopfield networks for
chemical and bioassay image alignment. Recently, contrastive learning has also been actively inte-
grated into the fields of drug-target interaction prediction (Ye et al., 2021) and element knowledge
integration (Fang et al., 2022; 2023). Despite the significant advancements in multi-modal learning,
there has not been an attempt to extend such concepts to align the knowledge graph embedding
space with the structural embedding space through multimodal-alignment to construct an approved
drug chemical space for drug-likeness prediction.

3 DEEP DRUG-LIKE BOUNDARY OPTIMIZATION

3.1 PROBLEM DEFINITION

We propose a new perspective on the problem of drug-likeness prediction as constructing a compact
and adaptive one-class boundaryB around drug-like compounds in a theoretically unbounded chemi-
cal space. Let this space of all chemical compounds be denoted as Xcomp, with subset Xdrug ⊂ Xcomp
representing drug-like compounds. The approved drug set Ddrug represents a subset of the Xdrug,
while compound set Dcomp is a biased subset of Xcomp, where its small yet unknown portion are
potential drugs that are to be rescued. (Appendix A.6)

Given the highly dispersed nature of drugs in chemical space and their approval based on both
structure and biomedical knowledge, our framework combines these two modalities into a unified
space for more accurate boundary construction, followed by iterative refinement of a hyperspheri-
cal boundary to capture drug-like compounds (Figure 2). The alignment of the embedding spaces
and the boundary optimization are key to addressing the challenges posed by an unbounded chem-
ical space and the absence of explicit negatives. Notations throughout this paper are organized in
Appendix D.

Knowledge-integrated multi-modal alignment The first step in our framework involves the
alignment of two complementary drug spaces: the structural space S, and the biomedical knowl-
edge space K. The key objective is to learn a structural encoder that can also map non-drugs, which
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Figure 3: Comparison of contrastive losses using structural encoder Eσ and knowledge encoder Eκ. CLIP
enforces pair-wise similarity between knowledge graph and structural embeddings from a single entity. Soft-
ened CLIP allows pair-wise similarity between knowledge graph and structural embeddings to match the prior
similarity matrix (WATC). S-Mix (and K-Mix), KS-Mix performs intra-modality interpolation.

have no corresponding biomedical information, into a biomedical context-enriched space. Each drug
is represented by these two embeddings, which encode different aspects of drug-likeness: molecular
structure and biomedical context. The goal is to unify these embeddings into a common latent space
U , where both structural and knowledge representations of drugs are aligned and consistent.

To achieve this, we introduce a knowledge-integrated multi-modal mixup strategy. This involves
softening the CLIP loss (Radford et al., 2021) to encourage alignment between the two embedding
spaces based on semantic drug similarities as prior knowledge. The alignment is further augmented
with geodesic mixup (Oh et al., 2024), which ensures that the interpolated samples lie on a geodesic
path between the embeddings. By employing this strategy, we create a unified embedding space that
leverages the contexts from both molecular structure and biomedical knowledge, capturing a richer
representation of drug-like properties.

Drug-Like Boundary Optimization Once the multi-modal embeddings are aligned into the uni-
fied space U , we define a hyperspherical boundary B in a latent space Z , which is generated by an
encoder fθ : U → Z . This boundary is characterized by its center c and radius r, and the goal is
to optimize B such that it encapsulates as many drug-like compounds as possible while minimizing
the inclusion of non-drug-like compounds, leading to decreased in-boundary compound ratio ρ.

The optimization of B is an EM-like iterative process, with each iteration improving the compactness
of the boundary and reducing the false-positive rate. The iterative refinement not only adapts the
boundary B but also dynamically adjusts the embedding space Z through the encoder, making the
model more flexible in handling the complex and heterogeneous nature of drug-likeness.

3.2 KNOWLEDGE-INTEGRATED MULTI-MODAL ALIGNMENT

We propose a multi-modal alignment approach, using a knowledge-guided soft CLIP loss augmented
with geodesic mixup, to blend structural and biomedical embeddings into a unified space. This
process ensures smooth transitions between the two distant domains by interpolating embeddings
on a hypersphere (Figure 3).

We begin by aligning two key embedding spaces of: the biomedical knowledge graph embeddings
kdrug ∈ K (Bang et al., 2023) and the molecular structural embeddings sdrug ∈ S (Morgan Fin-
gerprint). This integration is crucial as it enriches drug representations by combining molecular
structures with their biomedical contexts. We train two encoders: a knowledge encoder Eκ : K → U
and a structural encoder Eσ : S → U , where both map their respective embeddings to a unified
latent space U ⊂ Rd. The details of the aligned spaces are explained in Appendix C.1.

3.2.1 SOFTENED CLIP LOSS WITH ATC SIMILARITY

In this section, we propose a novel knowledge-integration strategy for multi-modal contrastive learn-
ing. We soften the CLIP loss (Radford et al., 2021) by incorporating semantic similarity (Jiang &
Conrath, 1997) between drugs using Anatomic Therapeutic Chemical (ATC) classification. For a
batch of data D = {(si,ki)}Mi=1, the original CLIP loss is given by:

C(s,k) =
1

M

M∑
i=1

− log
exp(si ⊙ ki/τ)∑M

j=1 exp (si ⊙ kj/τ)
LCLIP =

1

2
(C(s,k) + C(k, s)) (1)
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where C(s,k) is the contrastive loss for structural and knowledge embeddings, si ⊙ ki = Eσ(s) ·
Eκ(k)T represents their dot-product similarity, and τ is the scaling temperature factor.

To introduce prior knowledge of drug similarities, we incorporate an ATC code similarity matrix
WATC = [wi,j ], where wi,j ∈ [0, 1] measures the semantic similarity between drugs i and j. The
modified loss incorporating WATC becomes a weighted sum over the soft labels (Eq. 2):

Csoft(s,k,WATC) =
1

M

M∑
i=1

M∑
j=1

wi,j

(
− log

exp(si ⊙ kj/τ)∑M
l=1 exp(si ⊙ kl/τ)

)
(2)

LsoftCLIP =
1

2
(Csoft(s,k,WATC) + Csoft(k, s,WATC)) (3)

Here, instead of assuming a hard one-hot target where wi,i = 1 and wi,j = 0 for i ̸= j (as of the
original CLIP loss), the soft labels wi,j encourage similarity of drug pair embeddings to match their
semantic similarity. Details of ATC similarity computation are provided in Appendix C.2.

3.2.2 GEODESIC MIXUP FOR EMBEDDING ALIGNMENT

Several studies have reported the problem of “modality gap” in contrastive learning frameworks
including CLIP (Wang & Isola, 2020; Liang et al., 2022). To further improve alignment of the
two domains, we apply geodesic mixup (Oh et al., 2024) to interpolate between embeddings on a
hypersphere, ensuring the points are aligned uniformly in the latent space. Given two points a⃗ and
b⃗, the mixup is performed along the geodesic path:

mλ(⃗a, b⃗) = a⃗
sin(λϑ)

sin(ϑ)
+ b⃗

sin((1− λ)ϑ)

sin(ϑ)

where ϑ = cos−1(⃗a · b⃗), and λ ∼ Beta(α, α). Within the batch of length M , geodesic mixup
interpolates information from data indices i and i′ = M − i with λ and 1− λ fraction, respectively.
This allows smooth interpolation between data pairs, improving consistency within the latent space.

With our formulation, we introduce three forms of mixup (Figure 3):

Structural Mix (S-Mix) Interpolates within the structural embedding space:

CS(s,k) =
1

M

M∑
i=1

−λ log
exp(mλ(si, si′)⊙ ki/τ)∑M

j=1 exp(si ⊙ kj/τ)
− (1− λ) log

exp(mλ(si, si′)⊙ ki′/τ)∑M
j=1 exp(si ⊙ kj/τ)

LS-Mix =
1

2
(CS(s,k) + CS(k, s)) (4)

Knowledge Mix (K-Mix) Interpolates within the knowledge graph embedding space and has the
same formula with S-Mix, except that it is applied to knowledge embedding-side.

LK-Mix =
1

2
(CK(s,k) + CK(k, s)) (5)

Knowledge-Structural Mix (KS-Mix) Interpolates the knowledge and structural embeddings si-
multaneously:

CKS(s,k) =
1

M

M∑
i=1

− log
exp(mλ(si, si′)⊙mλ(ki,ki′)/τ)∑M

j=1 exp(si ⊙ kj/τ)

LKS-Mix =
1

2
(CKS(s,k) + CKS(k, s)) (6)

These interpolations ensure the robustness of embedding space by smoothing the transitions between
similar drugs and ensuring embeddings respect the L2-norm constraint of the hypersphere.

The final multi-modal alignment loss is a weighted sum:

Lmulti-modal = λsoftCLIPLsoftCLIP + LS-Mix + LK-Mix + LKS-Mix (7)

We optimize the parameters of encoders Eσ and Eκ using the Adam optimizer (Kingma, 2014). The
trained structure encoder Eσ is further utilized to project the chemical structural features into the
unified embedding space U for downstream tasks including the drug-likeness boundary generation.
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3.3 EM-LIKE ITERATIVE OPTIMIZATION OF DRUG-LIKENESS BOUNDARY

We formulate the boundary construction as an iterative process inspired by the Expectation-
Maximization (EM) algorithm. The model adjusts the boundary parameters (a hypersphere with
center c ∈ Rd and radius r) in the Expectation (E)-step, while refining the embedding space Z and
its encoder fθ during the Maximization (M)-step. This allows the boundary to evolve throughout
training. The full algorithm is provided in Appendix A.1.

3.3.1 EXPECTATION STEP: BOUNDARY UPDATE

In the E-step, we update c and r to enclose α ≈ 100% of drug-like compounds, keeping the embed-
ding function fθ fixed. Given the set of embedded drug compounds zdrug = {f(x; θ(t)) : x ∈ Xdrug}
at iteration time step t, the boundary parameters are updated as follows:

c(t+1) =
1

|zdrug|
∑

z∈zdrug

z, r(t+1) = Qα
z∈zdrug

(
∥z − c(t+1)∥2

)
, r(t+1)

comp = max
z∈zcomp

(
∥z − c(t+1)∥2

)
,

Here, c(t+1) is the center of the drug-like compounds at iteration t + 1, r(t+1) is the radius of the
smallest hypersphere containing α ≈ 100% of drug-like compounds defined by the α-th percentile
(Qα) of the set of distances ∥z − c(t+1)∥2, and r

(t+1)
comp captures the boundary of all compounds.

Compounds outside the drug-like boundary are treated as pseudo-negatives in the next M-step:

Xout := {x ∈ Xcomp | d(t)(x; θ, c) > r(t+1)},

where d(t)(x; θ, c) = ∥f(x; θ(t))− c(t+1)∥2 is the Euclidean distance from the boundary center.

3.3.2 MAXIMIZATION STEP: EMBEDDING FUNCTION UPDATE

Figure 4: Latent space optimization during M-step. The
margin between drug and compound are increased.

In the M-step, we optimize the embedding
function fθ : U → Z with parameters θ
to reduce the inclusion of non-drug-like com-
pounds inside the boundary while keeping
drug-like compounds near the center. The to-
tal loss function consists of two metric terms:

1. Drug loss Ldrug, which encourages drugs to be located closer the center of the boundary:

Ldrug(θ) =
∑

x∈Xdrug
dt(x; θ, c)

2. Out-boundary loss Lout, which pushes non-drugs labeled as pseudo-negatives during the
E-step to the compound space boundary:

Lout(θ) =
∑

x∈Xout
max

(
r
(t+1)
comp − dt(x; θ, c), 0

)
The loss terms can be interpreted as reducing/increasing the samples’ distances d(x) to 0 and r

(t+1)
comp

for drugs and out-boundary compounds, respectively. We then combine the two loss terms to yield
a total loss described as:

Lboundary(θ) = Ldrug(θ) + λout · Lout(θ) (8)

where λout controls the strength of the out-boundary penalty. This loss iteratively im-
proves the separation between drug-like and non-drug-like compounds, increasing the margin∑

xdrug∈Xdrug

∑
xcomp∈Xcomp

d(xcomp)− d(xdrug) between drugs and compounds (Figure 4).

We show that minimizing the metric loss function (Eq. 8) leads to a boundary B that encapsu-
lates drug-like compounds while excluding non-drug-like ones, improving drug-likeness prediction
accuracy:

Theorem 1 (Reduction of in-boundary non-drugs). Optimizing a neural network encoder with the
distance-based loss function reduces the number of non-drugs inside the boundary |Xin-boundary| be-
tween two successive steps t1 < t2, where L(t1)

drug > L(t2)
drug and L(t1)

out > L(t2)
out .

The proof is provided in Appendix A.2.
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Table 1: Drug-like compound identification performance with time-split setting. Mean and standard deviation
of 10 fold CV are provided. Best performance and its comparable results (paired t-test p < 0.05) are marked in
bold, and second-best are underlined. (Avg: Average)

F1 (↑) IDR (↑) ICR (↓) AUROC (↑) Avg. Precision (↑)
FP-SVM (Boser et al., 1992) 0.665 (0.0126) 0.823 (0.0111) 0.067 (0.0052) 0.963 (0.0021) 0.724 (0.0174)
FP-XGB (Chen & Guestrin, 2016) 0.692 (0.0141) 0.815 (0.0205) 0.055 (0.0048) 0.966 (0.0026) 0.775 (0.0213)

FP-OCSVM (Schölkopf et al., 2001) 0.090 (0.0025) 0.274 (0.0000) 0.489 (0.0101) 0.331 (0.0030) 0.148 (0.0022)
FP-DeepSVDD (Ruff et al., 2018) 0.166 (0.0087) 0.834 (0.0350) 0.840 (0.0381) 0.494 (0.0532) 0.097 (0.0157)

FP-nnPU (Kiryo et al., 2017) 0.608 (0.0239) 0.789 (0.0367) 0.083 (0.0081) 0.944 (0.0049) 0.706 (0.0261)
FP-PU with NN (Li & Liu, 2003) 0.634 (0.0224) 0.791 (0.0296) 0.072 (0.0079) 0.949 (0.0045) 0.720 (0.0214)

DrugMetric (Li et al., 2024)* 0.170 (0.0319) 0.767 (0.1271) 0.760 (0.2028) N/A N/A
D-GCAN (Sun et al., 2022) 0.669 (0.1770) 0.942 (0.0337) 0.160 (0.2808) 0.918 (0.1396) 0.613 (0.1874)
DeepDL (Lee et al., 2022) 0.740 (0.0584) 0.888 (0.0546) 0.054 (0.0225) 0.979 (0.0114) 0.886 (0.0374)

BOUNDR.E 0.826 (0.0486) 0.781 (0.0326) 0.012 (0.0086) 0.973 (0.0075) 0.877 (0.0419)
BOUNDR.EMULT 0.846 (0.0165) 0.799 (0.0184) 0.009 (0.0031) 0.978 (0.0029) 0.908 (0.0096)

∗DrugMetric’s GMM classifier fails to provide prediction probabilities for AUROC and Average Precision calculation

Finally, convergence is determined by the in-boundary compound ratio ρt = |X (t)
in-boundary|/|Xcomp|.

The algorithm stops when the change in ρt between iterations is smaller than a threshold ϵ:
|ρt+1−ρt| < ϵ for npatience consecutive iterations. In addition, we have applied a multi-initialization
technique to avoid the sensitivity to initialization of the EM-like models, as an extension of our
model as BOUNDR.EMULT, further detailed and discussed in Appendix A.5.

Overall, our EM-like framework iteratively refines the boundary and embedding space, resulting in
a compact boundary that effectively excludes non-drug-like compounds. The knowledge-aligned
embeddings of U further enhances the model’s drug-likeness prediction capabilities.

4 EXPERIMENTS

4.1 SETUP

Dataset Approved drug data is sourced from DrugBank v5.1.12 (Knox et al., 2024) and removed
all withdrawn drugs. 100k non-drug compounds are sampled from ZINC20 (Irwin et al., 2020),
limited to clean, annotated entries. We evaluate our model on drug-compound identification under
two split scenarios: scaffold-based and time-based. The scaffold-based split ensures the molecular
scaffolds in train, validation, and test sets are mutually exclusive, using the using the Bemis-Murcko
scaffolds (Bemis & Murcko, 1996). This evaluation scheme is applied to measure the models’
generalizablilty when an unseen scaffold compound is input, where approved drugs exist extremely
sparse in the scaffold space (Appendix C.3.1). In the time-based split, drugs are partitioned based
on their approval year (e.g., drugs approved post-2011 are in the test set), to reflect the temporal
evolution of approved drug properties (Appendix C.3.2). Both split strategies aim to reflect real-
world scenarios, where drug discovery must generalize to unseen chemical scaffolds. The data
splitting strategy are detailed in Appendix C.3.

Baselines We compare our model to established drug-likeness prediction models: DeepDL (Lee
et al., 2022), D-GCAN (Sun et al., 2022), and DrugMetric (Li et al., 2024), as well as several general
machine learning classifiers: SVM (Boser et al., 1992), XGBoost (Chen & Guestrin, 2016), Naive
PU algorithm by Li & Liu (2003) implemented with neural network, nnPU (Kiryo et al., 2017), OC-
SVM (Schölkopf et al., 2001), and DeepSVDD (Ruff et al., 2018). Each general baseline is provided
with molecular fingerprints as input features. Implementation details are provided in Appendix C.6.

4.2 DRUG-COMPOUND IDENTIFICATION PERFORMANCES

We evaluate performance of models in distinguishing approved drugs from ZINC compounds under
both split strategies—time-based split and scaffold-based split. We report the results using F1-score,
MCC, and two metrics: In-boundary Drug Ratio (IDR) and In-boundary Compound Ratio (ICR):

IDR =
|Drugs in boundary|
|Total drugs in test set|

= TPR, ICR =
|Compounds in boundary|
|Total compounds in test set|

= FPR.

IDR, equivalent of True Positive Rate (TPR), reflects how well the boundary captures drug-like com-
pounds, while ICR, representing False Positive Rate (FPR), measures how well non-drug compounds

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Cross-dataset evaluation of drug-like compound identification performance on scaffold-split setting,
trained on PubChem/ChEMBL and evaluated with ZINC20 compounds. Mean and standard deviation of 10
fold CV are provided. Best and its comparable performances (paired t-test p < 0.05) are marked in bold.

Train set PubChem + DrugBank ChEMBL + DrugBank
F1 (↑) Average Precision (↑) AUROC (↑) F1 (↑) Average Precision (↑) AUROC (↑)

FP-SVM 0.268 (0.0194) 0.334 (0.1912) 0.795 (0.0759) 0.371 (0.0519) 0.494 (0.1982) 0.819 (0.0768)
FP-XGB 0.254 (0.0209) 0.320 (0.1181) 0.773 (0.0741) 0.358 (0.0589) 0.469 (0.1839) 0.814 (0.0784)

FP-OCSVM 0.179 (0.0582) 0.366 (0.2717) 0.576 (0.1949) 0.179 (0.0582) 0.366 (0.2717) 0.576 (0.1949)
FP-SVDD 0.151 (0.0033) 0.055 (0.0019) 0.235 (0.0173) 0.151 (0.0033) 0.055 (0.0019) 0.235 (0.0173)
FP-DeepSVDD 0.147 (0.0294) 0.080 (0.0146) 0.415 (0.1224) 0.147 (0.0294) 0.080 (0.0146) 0.415 (0.1224)

FP-nnPU 0.244 (0.0182) 0.240 (0.0816) 0.749 (0.0556) 0.327 (0.0525) 0.380 (0.1999) 0.778 (0.0812)
FP-PU with NN 0.241 (0.0265) 0.228 (0.0556) 0.702 (0.0560) 0.311 (0.0495) 0.396 (0.1701) 0.778 (0.0874)

DeepDL 0.170 (0.0199) 0.092 (0.0112) 0.590 (0.0233) 0.195 (0.0389) 0.102 (0.0196) 0.612 (0.0686)
D-GCAN 0.213 (0.0232) 0.135 (0.0153) 0.685 (0.0436) 0.314 (0.0620) 0.211 (0.0601) 0.737 (0.1076)

BOUNDR.E 0.496 (0.0287) 0.444 (0.0303) 0.873 (0.0167) 0.513 (0.0451) 0.435 (0.0889) 0.869 (0.0258)
BOUNDR.EMULT 0.501 (0.0232) 0.460 (0.0380) 0.875 (0.0157) 0.546 (0.0406) 0.484 (0.0729) 0.876 (0.0267)

are excluded. We also report the AUROC metric to report the models’ capabilities in balancing the
trade-off between TPR and FPR. In addition, we also report Average Precision (AP), Recall@k and
Precision@k to evaluate the quality of recommended compounds (Appendix E.1).

As a result, our model consistently outperforms binary classifiers, PU learners, and one-class clas-
sification models across both split settings. For the time-based split (Table 1), our model achieves
the highest F1, AUROC, and AP, demonstrating its ability to adapt to unseen drug-like compounds.
Results for the scaffold-based split (Appendix E.2) further confirm the robustness of our approach,
highlighting its capacity to generalize across diverse molecular structures.

Cross-dataset evaluation We further tested generalizability through cross-compound dataset
evaluation. Models are first trained on PubChem or ChEMBL compound sets then tested with the
ZINC compounds, with the drug set (DrugBank) and its split setting fixed. As a result, binary classi-
fiers and PU-learning frameworks show heavy decline in performances whereas one-class classsifers
show no effect. BounDr.E demonstrate only moderate decline in both scaffold-based (Table 2) and
time-based (Appendix E.3) splits. This result shows the generalizability of our one-class boundary
approach by not rely on the non-drug set. Experimental details are available in Appendix C.4.

4.3 ZERO-SHOT TOXIC COMPOUND IDENTIFICATION

Table 3: False-positive rate of toxic compound groups. Lowest and
its comparable results (paired t-test p < 0.05) are marked in bold.

Withdrawn Hepatotoxic Cardiotoxic Carcinogenic
FP-XGB 0.96 (0.003) 0.96 (0.003) 0.85 (0.010) 0.93 (0.010)
FP-OCSVM 0.69 (0.002) 0.53 (0.003) 0.25 (0.006) 0.86 (0.001)
FP-nnPU 0.95 (0.009) 0.94 (0.007) 0.87 (0.028) 0.86 (0.017)

DrugMetric∗ N/A 0.77 (0.073) 0.76 (0.118) 0.82 (0.087)
DGCAN 0.91 (0.020) 0.85 (0.023) 0.88 (0.045) 0.95 (0.017)
DeepDL 0.91 (0.016) 0.92 (0.018) 0.85 (0.042) 0.84 (0.025)

BOUNDR.E 0.52 (0.041) 0.54 (0.028) 0.20 (0.019) 0.20 (0.043)
BOUNDR.EMULT 0.51 (0.014) 0.54 (0.009) 0.20 (0.009) 0.19 (0.014)

∗DrugMetric fails to infer scaffolds not present in approved drug and ZINC datasets

To test our model’s capacity to fil-
ter out potentially toxic compounds,
we performed a zero-shot evalua-
tion on toxic compounds from Drug-
Bank’s withdrawn drug list and
toxic compound sets (hepatotoxic,
cardiotoxic, and carcinogenic com-
pounds) (Wu et al., 2023).

As shown in Table 3, our model
demonstrates lower false-positive
rate compared to baseline models,
consistently identifying toxic compounds from diverse categories as out of drug boundary. Further-
more, error analysis on the withdrawn drugs reveal that among the 52% false-positive, most of them
are withdrawn from some regions yet approved in others. These results indicates that our boundary,
along with its integrated biomedical contexts, can effectively generalize to compounds with toxic
properties, offering a promising tool for early-stage toxicity filtering. Full table of baseline model
performances are provided in Appendix E.4.

4.4 EMBEDDING SPACE VISUALIZATION

Figure 5 displays the evolution of our embedding space as the EM-like boundary optimization pro-
ceeds. It is easy to spot that the compounds from ZINC database are being pushed out of the bound-
ary as FDA-approved drugs form more compact space as training epochs increase. The zoomed-in
boxes of each epoch further visualizes how the density of ZINC-compounds decreases as the embed-
ding space is optimized. This visualization effectively demonstrates our model’s ability to iteratively
refine the embedding space, making it increasingly more drug-focused over time.
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Figure 5: PCA visualization of knowledge-aligned embedding space and latent space at each epoch of bound-
ary optimization. Box on the upper-left corner displays the space within the drug-like boundary based on PC1
and PC2. Red circle and gray triangle display the movement of drug and zinc compound samples respectively,
as training proceeds.

Table 4: Drug-like compound identification with EM-like
boundary optimization on embedding space aligned with
different alignment methods. Best and its comparable re-
sults (paired t-test p < 0.05) are marked in bold.

Alignment method F1 (↑) ICR (↓)
No Alignment (only FP) 0.54 (0.032) 0.057 (0.0161)
Manifold Alignment 0.40 (0.045) 0.009 (0.0055)
CLIP 0.59 (0.022) 0.025 (0.0133)
Geodesic Mixup 0.69 (0.045) 0.025 (0.0133)

Ours - softCLIP 0.73 (0.037) 0.018 (0.0066)
Ours 0.83 (0.049) 0.012 (0.0086)

Table 5: Drug-like compound identification
with different classifiers on knowledge-aligned
space. Best and its comparable results (paired
t-test p < 0.05) are marked in bold.

Aligned space F1 (↑) ICR (↓)
+ MLP 0.77 (0.020) 0.046 (0.0053)
+ SVM 0.86 (0.012) 0.050 (0.0050)
+ XGB 0.75 (0.012) 0.019 (0.0023)
+ naive PU 0.82 (0.011) 0.031 (0.0029)
+ DeepSVDD 0.32 (0.079) 0.351 (0.1148)

+ Ours − EM 0.44 (0.162) 0.259 (0.1931)
+ Ours 0.83 (0.049) 0.012 (0.0086)

4.5 ABLATION STUDIES

Effect of multi-modal alignment with softened CLIP loss We compared our softened CLIP loss
with alternative alignment strategies, including CLIP (Radford et al., 2021), Geodesic Mixup, naive
manifold alignment (Ham et al., 2005), and unaligned space (i.e., molecular fingerprints) (Table 4).
Our proposed method significantly improves boundary quality due to the enriched representation that
aligns molecular structure with biomedical knowledge. The resulting embedding space produces a
tighter drug boundary, leading to improved drug-like compound identification performances. The
full ablation study results including each component of S-Mix, K-Mix and KS-Mix are provided in
Appendix E.5, which also support the utility of integrating all the components.

Effect of EM-like optimization We evaluated the advantage of our EM-like boundary optimiza-
tion against traditional binary classifiers, PU learners, and one-class models (Table 5). Our model
achieves the lowest ICR (or FPR), showcasing the strength of iterative boundary refinement, which
iteratively increases the out-boundary compounds (Appendix E.5.1). Figure 6 shows the robust-
ness of our method under increasing compound-to-drug ratios (from 1:1 to 1:100), where our model
maintains performance compared to baselines, as the non-drug compounds vastly outnumber drugs.

These ablations confirm the complementary nature of multi-modal alignment and boundary opti-
mization in improving drug-likeness prediction.

4.6 DISTANCE DISTRIBUTION OF COMPOUNDS IN DIVERSE STAGES

To validate the effectiveness of our distance metric, we analyze the drug-likeness scores for six
compound sets spanning different stages of drug discovery: AI-generated compounds (TargetDiff
(Guan et al., 2023) and MOOD (Lee et al., 2023)), investigational compounds and world-approved
drugs (ZINC20 (Irwin et al., 2020)), withdrawn drugs, and FDA-approved drugs (DrugBank (Knox
et al., 2024)).

Figure 7 shows a clear progression, with compounds moving closer to the center of the drug bound-
ary as they advance through the drug development pipeline. The result reflects the increasing like-
lihood of drug-like properties as a compound matures from early AI-generated candidates to ap-
proved drugs. Our model effectively differentiates AI-generated molecules from investigational and
approved drugs. This ability to rank candidates based on drug-likeness provides a valuable tool for
in silico screening, accelerating early-stage compound prioritization.
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Figure 6: Change of F1 score with the decrease
in drug-compound ratio of the test set.

Figure 7: Distribution of drug-like scores of compound
sets in different drug discovery stages.

4.7 APPLICATION TO RATIONAL TARGETED DRUG DISCOVERY PIPELINES

Table 6: Number of filtered compounds by different filters.

Filtering Method BCR-ABL EGFR CDK6
Total Generated 10,543 (100%) 12,550 (100%) 11,496 (100%)

PAINS filter 10,078 (95.7%) 11,878 (94.6%) 10,996 (95.6%)
Rule of Five 4,997 (47.5%) 6,520 (52.0%) 5,782 (50.3%)
Predicted IC50 2,786 (26.5%) 1,018 (8.10%) 4,734 (41.2%)
BounDr.E 300 (2.8%) 374 (3.00%) 264 (2.3%)

All filters 38 (0.36%) 17 (0.15%) 47 (0.40%)

In this section, we demonstrate the util-
ity of our model for initial screen-
ing and its potential real-world impact
in target-based drug discovery pipeline.
Utilizing three well-known anti-cancer
targets, BCR-ABL, EGFR and CDK6,
we first generated 10k anti-cancer com-
pounds with pocket-aware generative
model (Guan et al. (2023)). Then, we
compared the filtering capability of our approach with property-based filters, detailed in Appendix
E.6.1. The results demonstrate the outstanding filtering ratio of our approach compared to others
(Table 6). Additionally, by initially applying BounDr.E followed by all other filters yielded approx-
imately 0.3% of screened compounds, a very practical number for downstream wet lab validations.
This outcome illustrates how BounDr.E optimizes the workflow by minimizing the initial candidate
pool for downstream experimental validation and simultaneously saving computational resources.

Furthermore, the filtered compound list yield a more distant distribution of compounds from the
initially generated molecules, showing more desirable traditional measures in QED, Rule-of-five and
Synthetic Accessibility Scores (SAS), along with higher probability of identifying existing approved
drugs; imatinib (BCR), erlotinib (EGFR) and ribociclib (CDK6) (Appendix E.6.2).

Lastly, to test our model’s capabilities to be adapted for cancer drug discovery, we trained our model
on a narrower training set containing only cancer drugs (Appendix E.7). This anti-cancer variant,
while showing strictness for toxic compounds, provided a broader boundary for generated anti-
cancer compounds, showcasing our model’s potentials to be tailored for specific therapeutic area.

5 CONCLUSION AND FUTURE WORKS

In this work, we introduced BOUNDR.E, a framework for drug-likeness prediction that combines
knowledge-aligned embeddings with EM-like one-class boundary optimization. By leveraging
structural and biomedical knowledge through a softened CLIP loss, BOUNDR.E creates a robust
multi-modal embedding space. Our experiments show that BOUNDR.E consistently outperforms
state-of-the-art models, excelling at identifying drug-like compounds while effectively filtering out
toxic molecules, with case studies demonstrating its utility as initial screen of drug candidates.

Several opportunities for improvement remain in our framework. The EM-like strategy still requires
solid approaches for reaching global optima, and lower reliance to initialization points. Further ex-
perimental validation of the screened compounds, including efficacy, toxicity and PK/PD profiles,
may provide more convincing results on the utility data-driven drug filters in drug discovery en-
deavours. In particular, the applicability of our model to specific therapeutic area can be further
elaborated. Nonetheless, we believe our model is a promising complementary solution for prioritiz-
ing drug-like compounds in early-stage development for efficiency in drug discovery.
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A DETAILS IN EM-LIKE BOUNDARY OPTIMIZATION

A.1 ALGORITHM OF EM-LIKE BOUNDARY OPTIMIZATION

Algorithm 1 EM-like Training for Drug Boundary Optimization

Require: Dataset X = {xi}Ni=1 = Xdrug + Xcomp, Learning rate ηθ , Convergence tolerance ϵ
Ensure: Optimized embedding space parameters θ∗ and boundary parameters c∗, r∗

1: Initialize neural network parameters θ(0), boundary parameters c(0), r(0)
2: X ← Eσ(X ) where Eσ is pretrained multi-modal structure encoder

3: ρ(0) =
|X (0)

in-boundary|
|Xcomp| where X (0)

in-boundary :=
{
x | ∥f(xcomp; θ

(0))− c(0)∥2 ≤ r(0)
}

4: Set t = 0
5: while |ρt+1 − ρt| ≥ ϵ do
6: E-step (Boundary update):
7: zdrug ← f(xdrug; θ

(t))

8: c(t+1) ← 1
|zdrug|

∑
zdrug

9: r(t+1) ← max
(
∥zdrug − c(t+1)∥2

)
, r

(t+1)
comp ← max

(
∥zcomp − c(t+1)∥2

)
10: Identify Xout
11: M-step (Embedding function update):
12: Lboundary(θ

(t))← Ldrug(θ
(t), c(t+1), r(t+1)) + λout · Lout(θ

(t), c(t+1), r(t+1))

13: θ(t+1) ← θ(t) − ηθ · Adam
(
∇θL(θ(t), c(t+1), r(t+1))

)
14: ρ(t+1) ← |X (t)

in-boundary|
|Xcomp| where X (t)

in-boundary :=
{
x | ∥f(xcomp; θ

(t+1))− c(t+1)∥2 ≤ r(t+1)
}

15: Increment t← t+ 1
16: end while
17: Return Optimized parameters θ∗, c∗, r∗

A.2 PROOF OF THEOREM 1

To recap, the M-step of the EM-like iterative optimizes the latent space with the following loss
terms:

Ldrug(θ) =
∑

x∈Xdrug

dt(x; θ, c) (9)

Lout(θ) =
∑

x∈Xout

max
(
r(t+1)

comp − dt(x; θ, c), 0
)

(10)

Lboundary(θ) = Ldrug(θ) + λout · Lout(θ) (11)

where dt(x; θ, c) = ∥f(x; θ(t)) − c(t+1)∥2 is the Euclidean distance of samples from the drug
center, and λout is a hyperparameter controlling the strength of the out-boundary penalty. The loss
terms can be interpreted as reducing/increasing the samples’ distances d(x) to 0 and r

(t+1)
comp for drugs

and out-boundary compounds, respectively.

Theorem 1 (Reduction of In-boundary Non-drugs). Optimizing a neural network encoder with
Euclidean distance loss to regress distance of non-drugs toward a radius of rcomp and drugs toward
0 leads to a decrease in the number of non-drugs in boundary |Xin-boundary| between two successive
time steps t1 < t2 where L(t1)

drug > L(t2)
drug and L(t1)

out > L(t2)
out .

To prove this, we will break down the proof to show that the decreasing nature of r and the in-
consistency that arises if the number of points inside an arbitrary threshold ν increases during the
optimization of the Euclidean distance-based loss.

Proposition 1 (Shrinkage of r): As the optimization of the Euclidean distance loss proceeds over
time, the drug boundary radius r, defined as the maximum distance of drug-like points from the
center c, decreases.
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Proof: Let Xdrug ⊂ Rd denote the set of drug-like compounds and c ∈ Rd be a center point. The
drug loss function Ldrug (Eq. 9) is given by:

Ldrug =
∑

x∈Xdrug

d(x) =
∑

x∈Xdrug

∥f(x; θ)− c∥2,

where d(x) represents the Euclidean distance between point f(x; θ) and c.

The objective of the optimization process is to minimize Xdrug by penalizing larger distances more
severely with the square operation, while attracting points further away from c more strongly, and
since the Euclidean distance norm is a strictly convex function, any reductions in the loss Xdrug
implies a reduction in the distance ∥f(x; θ)− c∥2 for each x ∈ Xdrug.

Thus the furthest point x∗ ∈ Xdrug, which determines r, experiences a decrease in distance from c
as the loss function decreases, and therefore, as Ldrug is minimized, r decreases as the optimization
progresses. □

Lemma 1 (Impact of Compounds Inside ν to Lout): The contribution to the out-boundary loss Lout
from points x with d(x) < ν is greater than the contribution from points with d(x) ≥ ν.

Proof: The out-boundary loss Lout (Eq. 10) is given by:

Lout(θ) =
∑

x∈Xout

max (rcomp − d(x), 0) ,

where d(x) represents the Euclidean distance between the compound x and the center c. Consider-
ing the loss contribution of a point x ∈ Xout with distance d(x), the individual contribution to the
loss for this point is

Lout,x = max (rcomp − d(x), 0) .

So, for points x such that x with d(x) < ν with given an arbitrary threshold radius, we have

rcomp − d(x) > rcomp − ν.

On the other hand, for points where d(x) ≤ ν, we have

rcomp − d(x) ≤ rcomp − ν.

Since the out-boundary loss Lout is the sum of the individual contributions for each point in Xcomp,
increasing the number of points for which d(x) < ν will increase the overall loss Lout more than
increasing the number of points with d(x) ≥ ν. Therefore, the points with the threshold radius ν
contribute more to the loss than those outside. Thus, the contributions of points with d(x) < ν is
greater than that of points with d(x) ≥ ν. □

Proposition 2 (Decrease in Points Inside ν): If the out-boundary loss Lout decreases with each
iteration step, that is, L(t2)

out < L(t1)
out , then the number of points x such that d(x) < ν decrease

between steps t1 and t2.

Proof: For given iterative steps t1 and t2, assume that the number of points x such that d(x) < ν
increases between iterative steps, meaning that more points fall within the threshold ν at step t2 than
at step t1. From Lemma 1, we know that the contribution to the out-boundary loss Lout from points
within the threshold ν is greater than the contribution from points outside ν. Specifically, for any
point x where d(x) < ν, the contribution to the loss satisfies

rcomp − d(x) > rcomp − ν.

Thus, if the number of points x such that d(x) < ν increase at step t2, the out-boundary loss Lout at
step t2 should increase relative to its value at step t1, since the points inside ν contribution more to
the loss. This would imply that the loss at step t2, L(t2)

out , is greater than or equal to the loss at step
t1, L(t1)

out .

However, this contradicts the assumption that L(t2)
out < L(t1)

out , i.e., the loss decreases over steps.
Therefore, our assumption that the number of points with d(x) < ν increases between iterations is
false.

Thus, for the optimization process of the out-boundary loss over steps, the number of points x such
that d(x) < ν is decreases between steps t1 and t2. □
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Corollary 1 (Upper Bound of r): The radius r(t1) serves as an upper bound on the maximum
distance of drug-like points from the center at t2 where t1 < t2. As r(t1) > r(t2), fewer compounds
lie inside this radius at t2, implying that the boundary of the drug-like space shrinks and becomes
more compact.

Proof: By Proposition 1, the drug boundary radius r, defined as the maximum distance of drug-like
points from the center, decreases over steps. In other words, r(t2) < r(t1) for t2 > t1, meaning the
boundary becomes tighter as the optimization progresses.

And then, by Proposition 2, the number of points x such that d(x) < ν is decreases over steps for
any fixed threshold radius ν. This implies that between steps t1 and t2. the number of compounds
within the radius r(t2) decreases more than the number of compounds within the radius r(t1).

Since r(t1) encompasses all drug-like points at time t1 and r(t2) < r(t1), we conclude that r(t1)
remains an upper bound on the maximum distance of drug-like points from the center at time t2
even as the boundary shrinks. Therefore, as r decreases with step, the drug boundary become
increasingly compact, with fewer compounds lying within the shrinking boundary. □

Based on the above proofs, we now move on to the proof of Theorem 1.

Proof of Theorem 1: By Proposition 1, we know that the radius r, which represents the boundary
of drug-like points, decreases over steps as the Euclidean distance loss is minimized. This shrinking
boundary implies that the space enclosing the drug-like compounds becomes more compact as the
optimization proceeds from t1 to t2.

From Proposition 2, we concluded that if the out-compound loss Lout decreases over steps, the
number of points inside an arbitrary radius ν decreases. Thus, the number of non-drug points within
the boundary shrinks as t progresses.

By Lemma 1, the contribution to the out-compound loss Lout from non-drug points inside a given
radius ν is larger than from points outside. Hence, as the number of in-boundary points decreases,
the out-compound loss decreases, consistent with the assumption that L(t1)

out > L(t2)
out .

According to the Corollary 1, the drug boundary radius r(t1) serves as an upper bound on the
maximum distance of drug-like points from the center, and this boundary becomes more compact
over steps. As r(t2) < r(t1), fewer non-drug points will lie inside the boundary at step t2. □

Combining these results, we see that as the optimization proceeds, both the drug boundary shrinks
and the number of non-drug points within this boundary decreases. Given that Ldrug and Lout both
decrease between steps t1 and t2, we conclude that the number of non-drug points inside the bound-
ary |Xin-boundary| decreases as well.

A.3 CONVERGENCE CRITERION OF EM-LIKE OPTIMIZATION

For our EM-like optimization algorithm, we applied a convergence criterion based on the in-
boundary compound ratio (ICR) metric. We initially considered using a traditional loss-based con-
vergence criterion, which would directly correspond to the model’s objective of distance minimiza-
tion. However, due to the nature of our distance metric, convergence using a loss-based criterion
proved challenging; it occasionally led to expansions or contractions of the latent space that risked
numerical instability (e.g., overflow/underflow issues). Consequently, we adopted the in-boundary
compound ratio as the convergence criterion with following reasons.

Theoretical Alignment Following the proof of theorem 1 in the Appendix A.2, optimizing the
distance metric inherently results in a decrease in the in-boundary compound ratio. This proof estab-
lishes a theoretical link between loss minimization and our chosen convergence criterion, indicating
that both approaches are consistent with the model’s objectives.

Empirical Stability We conducted experiments to empirically compare the performance of our
model when using the loss-based criterion versus the in-boundary compound ratio (Table 7). The
results show no significant difference in final model accuracy, with a p-value of 0.737 which is
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greater than 0.05 based on a two-sided paired t-test, demonstrating that the two methods converge to
similar solutions. Furthermore, the average number of training epochs needed for convergence was
slightly reduced when using the in-boundary compound ratio, indicating faster stabilization.

Table 7: Performances of BOUNDR.E with two different convergence metrics. (ICR: In-boundary compound
ratio, Avg.: Average)

Convergence metric F1 (↑) IDR (↑) ICR (↓) AUROC (↑) Avg. Precision (↑) Avg. Epochs (↓)
Time-based split
ICR 0.826 (0.0486) 0.781 (0.0326) 0.012 (0.0086) 0.973 (0.0075) 0.877 (0.0419) 47.7 (4.20)
Lboundary 0.833 (0.0463) 0.806 (0.0236) 0.014 (0.0098) 0.973 (0.0071) 0.885 (0.0463) 202.7 (99.20)

Paired t-test p-value 0.737 0.055 0.615 0.956 0.723

Scaffold-based split
ICR 0.655 (0.0209) 0.796 (0.0258) 0.063 (0.0079) 0.938 (0.0049) 0.590 (0.0369) 68.5 (4.39)
Lboundary 0.653 (0.0297) 0.793 (0.0348) 0.063 (0.0059) 0.941 (0.0084) 0.639 (0.0431) 174.2 (21.76)

Paired t-test p-value 0.892 0.594 0.937 0.158 0.040

A.4 COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we provide the detailed computational complexity analysis, further supporting our
model’s efficiency and scalability.

E-step (Boundary Update): The E-step in our model relies on computing the Euclidean distance
from the center, with a time complexity linear in both the number of samples (N ) and the dimen-
sionality (D) of the data, resulting in O(N ×D). This ensures that the boundary update is scalable
even for high-dimensional datasets.

M-step (Neural Network Optimization): In the M-step, the primary computational effort in-
volves neural network optimization. If we denote H as the number of layers, Fh as the num-
ber of operations in layer h, and N as the dataset size, then the complexity for a forward pass is
O(N ·

∑H
h=1 Fh). Given that the backward pass is approximately twice as computationally expen-

sive, the overall complexity for each EM iteration is O(N ×D) +O(N ·
∑H

h=1 Fh).

These complexities illustrate the model’s linear behavior with respect to data size and dimensional-
ity, making it efficient for large-scale drug discovery tasks. To validate these claims empirically, we
trained our model with approximately 200 drugs and 2,000 non-drug compounds around 100 epochs
using single NVIDIA RTX 3090 GPU, and the total training time was consistently under 5 minutes,
demonstrating the alignment between theoretical analysis and practical performance.

A.5 MULTIPLE-EM APPROACH FOR AVOIDANCE OF LOCAL OPTIMA

Avoiding local optima and searching for globally optimal parameters is the core challenge of ma-
chine learning. However, classical EM algorithms, including K-means clustering and GMMs, are
prone to local optima convergence due to their deterministic and hill-climbing nature of monotonic
increase in likelihood, which leads to the model’s sensitivity to initialization conditions.

While our model’s stochasticity applied with mini-batch training through Adam optimizer allows
flexibility to escape monotonic increase and knowledge-aligned embedding space further pro-
vides informative initialization point, we aimed to provide a more direct solution to tackle the
initialization-sensitiveness of our framework.

Inspired by successful strategies in EM-based models, such as the Multiple Expectation maximiza-
tions for Motif Elicitation (MEME) gene motif search algorithm (Bailey & Elkan, 1995), we ini-
tialize our boundary optimization process multiple times from different random seeds (for our ex-
periments, 0 ∼ 9) and retain the best-performing model based on the validation set performance
without any reliance on the test set. This approach has proven effective in enhancing performance
by mitigating the risk of poor local optima. This variant of our model is refered as BOUNDR.EMULT

throughout the manuscript.
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A.6 PROBLEM FORMULATION DETAILS AND COMPARISON WITH PU LEARNING

Our problem setting roots on the idea to rescue any non-drugs from the compound libraries by not
treating any as ‘negative drugs’. This motivation naturally led us to apply an one-class classification
based approach.

On the other hand, PU learning typically assumes that the distribution of unlabeled data, Punlabeled,
can be expressed as a mixture model: Punlabeled ∼ Ppositive + Pnegative. This leads to training objectives
rooted in empirical risk minimization that assume a tractable and bounded space of both positive
and negative examples with the dataset as a representative subset of such space. In this context,
PU methods often aim to minimize classification error with cross entropy-based loss functions by
estimating the contribution of a negative distribution, frequently relying on class prior (ratio of
positive/negative in the dataset) estimates.

Conventional methods in drug-likeness prediction mainly employ binary classification and some-
times Positive-Unlabeled (PU) learning frameworks, seeking to classify compounds by minimizing
the risk of misclassification between positive (drug-like) and negative (non-drug-like) examples with
cross entropy-based objectives. However, these approaches rely on defined negative sets or a rep-
resentative dataset from Pnegative distribution, which may not be feasible in the vast and partially
known chemical space.

In contrast, our formulation of the drug-likeness prediction task does not assume a well-defined
Pnegative. The chemical space is vast, partially explored, and inherently complex, with any sampled
“negative” set non-representative of the true distribution of non-drug compounds. Therefore, instead
of attempting to estimate a boundary between positive and potential negatives, we propose a one-
class classification framework that constructs a drug-likeness boundary to capture the compact space
of drug-like compounds directly, optimized based on distance-based metric learning terms. We
summarize the key differences between binary classification, PU-learning and our proposed problem
definition of drug-likeneess prediction in Table 8.

Table 8: Key differences between binary classification, PU-learning setting and proposed definition of drug-
likeness prediction.

Binary classification PU-learning One-class Drug-likeness prediction

Goal Decision boundary between
positive and negative

Decision boundary between positive
and unseen negative

Boundary around positives
(here, approved drugs)

Train set composition Positive + Negative Positive + Unlabeled Drug + Compound

Positive data distribution Positives (Ppositive) Positives (Ppositive) Xdrugs as subset of Xcompound

Unlabeled data
distribution - (Only negative data) Ppositive + Pnegative (unseen) Xcompound

Assumption of
unlabeled dataset - Representative of Ppositive and Pnegative Biased subset of intractable Xcompound

Characteristics Strong reliance to negative set,
lower generalizability

Reliance to unlabeled set,
lower generalizability

Low reliance to compound set,
higher generalizability

Objective Risk minimization with
cross-entropy

Risk minimization with class prior
and cross-entropy Metric learning (one-class hypersphere)

B INITIAL STUDY DETAILS

Scaffold-based distribution of approved drugs We analyzed 2,610 approved drugs from Drug-
Bank using the Bemis-Murcko scaffold split, which partitions molecules into rings and the linker
atoms between them. This decomposition resulted in 1,324 unique scaffold sets, with an average of
1.97 molecules per scaffold. These findings indicate a well-dispersed distribution of approved drugs
in the chemical space, with minimal structural overlap. Notably, 1,074 scaffold sets (81.1%) con-
tained only a single compound, further emphasizing the low scaffold redundancy among approved
drugs.

Evaluating how models generalize to unseen scaffolds is crucial given the extreme sparsity of the
scaffold distribution and its potential impact on model generalization, which encouraged us to per-
form a scaffold-based splitting scheme, further detailed in Appendix C.3.
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Distribution of approved drugs in representation spaces To explore the spatial distribution of
approved drugs and non-drug compounds, we represented the structural features of 2,610 approved
drugs and 100k ZINC compounds in two distinct spaces: Morgan fingerprints and pretrained Graph-
MVP embeddings (Liu et al., 2022). Morgan fingerprints, a type of circular fingerprint, capture
molecular structure by encoding atom environments within a specified radius. Each substructure,
or circular neighborhood of bonds, is hashed into a bitstring, where each bit indicates the presence
or absence of specific substructures in the molecule. This approach creates a fixed-length binary
vector, efficiently capturing the molecular topology. In contrast, GraphMVP uses a GNN-based en-
coder, pretrained to align 2D and 3D molecular structures, to generate embeddings that reflect both
graph-level and spatial information about molecules.

For each representation space, we calculated the center point of the drug embeddings (centroid)
and defined the drug boundary as the maximum distance from the centroid to any drug. We then
computed the distance of all 100k ZINC compounds from this centroid to determine the in-boundary
compound ratio (ICR).

Our results indicate that all 100k ZINC compounds were positioned within the drug hypersphere
in both the Morgan Fingerprint and GraphMVP spaces. Specifically, the maximum distance of
approved drugs from the centroid (i.e., the drug radius) was consistently smaller than the maximum
distance of ZINC compounds, confirming that non-drug compounds are distributed further from the
drug center in both embedding spaces (Table 9).

Table 9: Distribution of drugs and compounds in the two latent spaces. Max: Maximum; ICR: In-boundary
compound ratio.

Representation Max. Drug distance Max. Compound distance ICR

GraphMVP 29.33 25.78 1.0
Morgan Fingerprint 12.02 10.01 1.0

C EXPERIMENTAL DETAILS

C.1 MULTI-MODAL ALIGNMENT SPACES

Biomedical knowledge graph space To represent the biomedical context of drugs, we use em-
beddings from DREAMwalk (Bang et al., 2023), which has shown efficacy in tasks of drug-disease
association prediction and drug repurposing. DREAMwalk employs a heterogeneous skip-gram
model to encode entities from the Multi-scale Interactome (MSI) network (Ruiz et al., 2021) into a
300-dimensional vector space. The MSI network integrates information on drugs, genes, diseases,
and Gene Ontology terms, enriching each drug representation with biomedical knowledge. We uti-
lize the embeddings of 1,449 approved drugs from DREAMwalk for alignment with their structural
representations.

Molecular Fingerprint Space For the structural representation of drugs, we use Morgan Finger-
prints, a widely adopted method that encodes molecular structures based on substructure patterns. In
this study, we employ 1,024-dimensional Morgan Fingerprints for multi-modal alignment, capturing
the structural diversity of the molecules.

C.2 SEMANTIC DRUG SIMILARITY CALCULATION WITH ATC CODES

Anatomical Therapeutic Chemical Classification of drugs The ATC classification system cat-
egorizes drugs based on their therapeutic, pharmacological, and chemical properties. Each drug
is assigned a unique ATC code that reflects its primary mechanism of action and target area. The
hierarchy is naturally a tree-structured acyclic graph, and on the highest level (Level 1) exists 14
foundational categories, including A (Alimentary tract and metabolism), B (Blood and blood form-
ing organs), C (Cardiovascular system), and more.

A direct modeling of such complex hierarchical structure as prior knowledge in model training is
challenging. In order to retain the essence of the hierarchical ATC relationships without complex ad-
justments to the architecture that may significantly increase computational overhead and complicate
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the model training process, we utilized the concept of semantic similarities between terms within
the hierarchy and integrated them as prior knowledge to our softened CLIP loss.

Information Content (IC) We adopt the semantic similarity measure introduced by Jiang & Con-
rath (1997). To quantify the semantic similarity of drugs within the ATC hierarchy, we first need
to calculate the Information Content (IC) of each entity. IC measures how informative an entity
is, based on its frequency or position within a hierarchical structure. For a term c, IC is inversely
proportional to the number of child terms Nchild(c), meaning that terms with fewer descendants
have higher IC, as they provide more specific information. The IC for a term in a tree-structured
hierarchy is computed as:

IC(c) = 1− log(Nchild(c) + 1)

log(Nchild(root))
This formulation ensures that IC values are normalized within the range [0, 1], where the root entity
has an IC of 0.

Semantic Similarity Given two entities c1 and c2 and their Most Informative Common Ancestor
(MICA), the semantic distance between them is calculated as:

dist(c1, c2) = IC(c1) + IC(c2)− 2× IC
(
MICA(c1, c2)

)
Since the maximum possible distance is 2 (when IC is 1 for both entities), we normalize the distance
into a similarity score in the range [0, 1) using the following equation:

sim(c1, c2) = 1−
(

dist(c1, c2)
2

)
We compute pairwise similarities for all drugs based on their ATC codes, generating a similarity
matrix S ∈ Rn×n, where n is the number of approved drugs.

C.3 DATA SPLITTING SCHEMES

Two data splitting schemes are employed to rigorously evaluate model generalizability to unseen
compounds: a scaffold-based split, which ensures structurally novel compounds appear in the test
set, and a time-based split, where drugs approved after a certain time point are assigned to the test
set. Since the structural complexity of approved drugs tends to increase over time, with molecular
properties diverging (Stegemann et al., 2023), the time-based split is considered a more challenging
evaluation compared to scaffold-based splits.

To simulate real-world drug discovery conditions, where the chemical space is much larger than the
number of approved drugs, we follow a multi-step procedure: first, split the approved drugs into
train-valid-test sets in an 8:1:1 ratio, then sample 10 times the number of test drugs from the 100k
ZINC compounds to account for the larger compound space.

C.3.1 SCAFFOLD-BASED SPLIT

In drug discovery, scaffold diversity is a key concern, as new drugs often emerge from novel scaf-
folds that were previously untested. The scaffold-split evaluation aligns closely with these real-world
scenarios, making it a more rigorous and realistic test of generalization than a random split, where
similar scaffolds are likely to appear in both training and test sets.

Drugs are first grouped based on their scaffolds, defined using Bemis-Murcko scaffolds (Bemis &
Murcko, 1996), which capture core molecular ring systems and linkers, ensuring that structurally
similar drugs are grouped together. Then, the scaffold sets are split into 10 parts for 10-fold cross-
validation (CV), with an 8:1:1 ratio for train, validation, and test sets. Each fold ensures that test
sets contain unseen scaffolds. The 100k ZINC compounds are also grouped by Bemis-Murcko
scaffolds, then split similarly to match the number of drug scaffolds in each fold. For the test set,
ZINC scaffolds are sampled to include 10 times the number of drugs.

Our pilot study demonstrates how prediction performance significantly decreases when using
scaffold-split compared to randomly splitted setting (Table 10), indicating that the model’s ability to
handle unseen scaffolds is inherently more challenging. This underscores the necessity of scaffold-
split as a more appropriate evaluation scheme for understanding the impact of scaffold sparsity and
further evaluate the models’ generalizability.
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Table 10: Prediction performances of BounDr.E when applied on different split schemes. Our model displays
significant decrease in prediction performances when applied with scaffold split, a splitting scheme to evalutate
the models’ generalizability in the sparse distribution of approved drugs’ scaffolds. The best performance and
comparable values (p-value < 0.05) are marked in bold.

F1 IDR ICR AUROC Average Precision
Scaffold-based split 0.655 (0.0209) 0.796 (0.0258) 0.063 (0.0079) 0.938 (0.0049) 0.590 (0.0369)
Random split 0.689 (0.0142) 0.742 (0.0291) 0.041 (0.0060) 0.942 (0.0037) 0.663 (0.0379)
Paired t-test p-value 4.4E-4 4.6E-4 1.6E-04 0.082 0.008

C.3.2 TIME-BASED SPLIT

The properties of approved drugs have evolved over the past decades, particularly with the emer-
gence of new therapeutic modalities and technologies. For example, kinase-targeted drugs and
biologics became prominent in the 2000s, leading to an increase in molecular complexity, larger
molecular weights, and drugs that often fall outside traditional Rule-of-5 constraints (DeGoey et al.,
2017). Additionally, the advancement of drug delivery systems has allowed for a higher range of
LogP values (lower solubility) among approved drugs (Vargason et al., 2021).

Drugs are first split based on their approval date, with approximate splits of 8:1:1 for train, validation,
and test sets. The cut-off years are 2000 and 2011. Drugs approved before 2000 are assigned to the
training set, those approved between 2000 and 2010 to the validation set, and drugs approved after
2011 to the test set. Then, The ZINC compound scaffolds are sampled following the same procedure
as the scaffold-based split, ensuring 10 times more compounds in the test set.

To validate that our time-based split reflects these temporal trends, we have conducted a detailed
analysis of drug properties over the periods represented in our dataset (Table 11). Specifically,
we tracked changes in key chemical characteristics (e.g., molecular weight, LogP, polar surface
area) across different temporal splits, observing clear shifts that align with known trends in drug
development.

Table 11: Molecular properties averaged over drugs in the train set (approved before 2011) and test set (ap-
proved since 2011). Drugs in the test set show significant difference from the train set drugs, according to the
temporal evolution of approved drugs. (Ro5: Number of passed criterions with the Lipinski’s Rule of Five)

Ro5 Molecular Weight LogP Polar Surface Area
Train (Before 2011) 3.652739 398.120084 2.142421 100.041105
Test (Since 2011) 3.379032 540.368339 2.937724 137.452177

Paired t-test p-value 0.000396 0.000583 0.024349 0.033635

C.4 CROSS-COMPOUND DATASET EVALUATION

We have further performed the performed cross-dataset validation using PubChem and ChEMBL.
PubChem contains a vast array of bioassays covering numerous biological targets, while ChEMBL
provides curated information on chemical compounds linked to bioactivity against biological targets.
These external repositories are widely recognized for their breadth and diversity in assay-centric
compound data. We have carefully examined how these datasets complement our original validation
set, ZINC20, and their distributions compared with approved drug distribution.

Specifically, we first measured the distributions of three key molecular properties in drug discovery:
molecular weight (Mw), LogP and polar surface area (PSA) (Figure 8). The distances between
the distributions were computed using 1-Wasserstein distance metric, which display the similarity
between ChEMBL compounds and DrugBank approved drugs, followed by PubChem then ZINC20
compounds.

However, the pairwise Tanimoto similarity distribution of molecular fingerprint between DrugBank
and other three compound sets reveal that PubChem molecules display the highest average similarity
(0.112) compared to ZINC20 (0.111) and ChEMBL (0.013) (Figure 9) Overall, the dissimilarity
between datasets demonstrate the uniqueness of each database, and these discrepancies necessitate
cross-dataset evaluation for testing the generalizability of drug-likeness prediction models.
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Figure 8: Distribution of molecular properties of DrugBank, ZINC20,
PubChem and ChEMBL datasets. The numbers between the distribu-
tions represent the Wasserstein distance between the two distributions.

Figure 9: Distribution of
pairwise similarities between
DrugBank and compound
datasets.

C.5 MODEL PARAMETERIZATION AND TRAINING DETAILS

The chosen hyperparameter search space (Table 12) aligns with prior work in drug-likeness predic-
tion and molecular property prediction, where 2-3 layers with 256-1024 dimensions are commonly
used due to their balance between expressiveness and computational efficiency. The selected con-
figuration was validated through a search on a validation set.

Multi-modal alignment Our multi-modal alignment encoders consists of 2-layer multi-layer
perceptrons (MLPs) with LayerNorm and ReLU activation. The aligned space is set to
output dimension=512. The model is trained using the Adam optimizer (Kingma, 2014) with
a learning rate=0.001 and batch size=32.

EM-like boundary optimization For models requiring boundary optimization, we use a 2-layer
MLP architecture with LayerNorm, ReLU activations, and a hidden dimension=512. When
generating latent spaces, the output dimension is set to 2. The model is trained with the Adam
optimizer (Kingma, 2014) using a learning rate=0.0005 and batch size=1024.

Table 12: Hyperparameter search space and selected values.

Parameter Search space Selected value
Alignment hidden dim [512] 512
Alignment num layers [2,3] 2
Alignment drop out [None, 0.1] 0.1
λsoft (Soft CLIP loss weight) [0.01, 0.1, 0.5, 1] 0.1

Boundary hidden dim [128,512,1024] 512
Boundary out dim [2,16,128,512] 2
Boundary num layers [2,3,4] 2
Boundary drop out [None, 0.1] 0.1
Boundary learning rate [1e-4, 5e-4, 1e-3] 5e-4
Boundary batch size [256, 512, 1024] 1024
α (drug boundary percentile) [90, 95, 99, 99.9, 100] 95
λout (out-boundary loss weight) [0.1, 1, 1.5, 2] 1

C.6 BASELINES

C.6.1 DRUG-LIKENESS PREDICTION MODELS

DrugMetric DrugMetric1 (Li et al., 2024) is an unsupervised drug-likeness prediction model
based on JT-VAE (Jin et al., 2018) and Gaussian Mixture Models (GMMs). JT-VAE encodes
molecules as tree-structured graphs of predefined substructures, with the VAE generating a latent
space that follows a Gaussian distribution. Ensemble of GMMs are applied to model this latent
space for predicting drug-likeness, and the drug-likeness score is computed using a Wasserstein
distance-based metric.

1github.com/renly0313/DrugMetric
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DeepDL DeepDL2 (Lee et al., 2022) introduces two models: (1) an unsupervised LSTM-based
model for drug-likeness scoring and (2) a PU learning-based Graph Convolutional Network (GCN)
for binary drug-likeness classification. The LSTM model predicts the next token likelihood based
on a molecule’s string representation, aggregating these probabilities into a drug-likeness score. As
this method does not perform strict classification, we focus on the PU learning GCN for comparison.

D-GCAN D-GCAN3 (Sun et al., 2022) is a graph convolution attention network designed for bi-
nary drug-likeness classification. The model encodes molecular subgraphs into atom-level vector
embeddings using graph convolutional layers, followed by graph attention layers, global sum pool-
ing, and dense layers to learn representations from molecular structures. We reproduce results using
the official repository.

C.6.2 GENERAL CLASSIFIERS

To comprehensively evaluate our model’s performance in drug-likeness prediction, we compare
it against a range of classifiers for binary classification, PU-learning, and one-class classification
tasks. Each model is trained on Morgan fingerprint vectors of dimension 1,024 as molecular input
representations.

For comparisons with plain MLP-based architectures, we ensured that both our model and the base-
lines had identical numbers of layers and parameters. Specifically, each baseline was adjusted to
match the total parameter count and architectural capacity of our model, ensuring comparable ex-
pressibility. For machine learning-based baseline models, we conducted limited search across a
range of hyperparameters, including number of estimators. This search was performed using cross-
validation to ensure that the most effective configurations were applied consistently across all mod-
els.

Binary classifiers For binary classification of drugs and non-drugs, we compare our model with
traditional machine learning classifiers, including Support Vector Machine (SVM) (Boser et al.,
1992) and eXtreme Gradient Boosting (XGBoost) (Chen & Guestrin, 2016). XGBoost is a
gradient-boosting framework that excels in handling structured data and is widely used for molec-
ular property prediction tasks due to its ability to capture complex patterns in sparse input spaces.
SVM constructs a hyperplane (or multiple hyperplanes) to separate data points in high-dimensional
space, often using a Radial Basis Function (RBF) kernel to model nonlinear decision boundaries.
Both models have demonstrated strong performance in molecular property prediction, often surpass-
ing neural network-based models for certain biological endpoints (Wu et al., 2023). For XGBoost
model, we searched its number of estimators parameter among [50, 100, 200] and chose
100 as the best parameter.

PU-learning baselines Positive-Unlabeled (PU) learning algorithms are well-suited for scenarios
where only positive examples (drug-like compounds) and a large set of unlabeled examples are
available. We benchmark our model against two PU-learning methods:

• Naive PU (Li & Liu, 2003): This method uses the Rocchio classification algorithm, which
computes centroids for the positive class and an unlabeled set to form a decision boundary.
We adapt this approach with a neural network classifier identical to our model to capture
more complex decision boundaries in molecular data.

• nnPU (Kiryo et al., 2017): nnPU is an advanced PU-learning algorithm that mitigates over-
fitting by introducing a non-negative correction term in the risk estimator. This method has
shown strong empirical performance in cases where positive and unlabeled data exhibit sig-
nificant overlap, providing a more robust solution for PU-learning tasks in drug discovery.

One-Class Classification Baselines One-class classification methods are designed to distinguish a
single target class (e.g., drug-like compounds) from all other compounds without explicitly modeling
the negative class. We evaluate the following one-class models:

2github.com/SeonghwanSeo/DeepDL
3github.com/JinYSun/D-GCAN
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• OCSVM (Schölkopf et al., 2001): One-Class Support Vector Machines (OCSVM) esti-
mate the support of a high-dimensional distribution, fitting a hyperplane that encompasses
most of the positive (drug-like) examples. This is widely used in anomaly detection tasks,
including outlier detection in chemical spaces.

• SVDD (Tax & Duin, 2004): Support Vector Data Description (SVDD) is an extension
of SVMs for one-class classification, which minimizes the radius of a hypersphere that en-
closes the positive data points. The method is particularly effective in constructing compact
decision boundaries around the positive class.

• DeepSVDD (Ruff et al., 2018): DeepSVDD extends SVDD by utilizing deep neural net-
works to learn a transformation of input data into a latent space, where the decision bound-
ary is optimized. This method is well-suited for handling high-dimensional and non-linear
representations of molecular structures, making it a strong baseline for drug-likeness pre-
diction tasks in high-dimensional spaces.

D NOTATION

Data Sets

Xcomp the set of all chemical compounds Xin-boundary the set of non-drugs inside the boundary

Xdrug the set of drug-like compounds zdrug the set of embedded drug compounds

Xout the set of pseudo-negatives D the set of batch data

Embedding Spaces and Arrays

S the structural embedding space scomp the structural embedding vector

K the biomedical knowledge embedding space kdrug the knowledge embedding vector

U the unified latent space Z the latent space at EM-like training

Functions

Eσ a structural encoder from space S to U C(·) the contrastive loss function

Eκ a knowledge encoder from space K to U L(·) the loss function

fθ an encoder from space U to Z ⊙ the dot-product similarity operator

B a hyperspherical boundary d(·) the Euclidean distance from the boundary
center

Parameters

c the center of the drug-like compounds ρ the in-boundary compound ratio

r the radius of the smallest hypersphere τ the scaling temperature factor

rcomp the radius for all compounds η learning rate

t the number of iteration steps ϵ convergence tolerance

θ neural network parameters ν an arbitrary threshold radius

E ADDITIONAL EVALUATION RESULTS

E.1 RANK-BASED EVALUATION

Since the core concept of our drug-likeness prediction problem lies in treating compound dataset
as potential drugs, using classification-centric metrics including F1 score, is not perfectly fit for
evaluation of drug-likeness prediction. Since our dataset does not have absolute negative samples,
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we here provide further evaluation of models using average precision, precision@k and recall@k
metrics in Table 13. These metrics further measure how well models identify drug-like compounds
among the vast chemical space.

Table 13: Drug-like compound ranking performance with time-based split setting. Mean and standard devia-
tion of 10 fold cross-validation are provided. Best performances marked in bold and second-best underlined.

Avg. Precision Prec@50 Prec@100 Prec@200 Rec@50 Rec@100 Rec@200

FP-SVM 0.724 (0.0174) 0.852 (0.0160) 0.777 (0.0090) 0.540 (0.0067) 0.344 (0.0065) 0.627 (0.0072) 0.871 (0.0108)

FP-XGB 0.775 (0.0213) 0.868 (0.0458) 0.773 (0.0155) 0.538 (0.0117) 0.350 (0.0185) 0.623 (0.0125) 0.868 (0.0188)

FP-OCSVM 0.148 (0.0022) 0.280 (0.0000) 0.180 (0.0100) 0.132 (0.0023) 0.113 (0.0000) 0.145 (0.0081) 0.212 (0.0037)

FP-SVDD 0.143 (0.0022) 0.240 (0.0000) 0.144 (0.0049) 0.108 (0.0040) 0.097 (0.0000) 0.116 (0.0040) 0.174 (0.0064)

FP-DeepSVDD 0.097 (0.0157) 0.098 (0.0569) 0.106 (0.0420) 0.101 (0.0274) 0.040 (0.0230) 0.085 (0.0339) 0.164 (0.0442)

FP-nnPU 0.706 (0.0261) 0.846 (0.0457) 0.713 (0.0279) 0.500 (0.0101) 0.341 (0.0184) 0.575 (0.0225) 0.807 (0.0163)

FP-PU 0.720 (0.0214) 0.864 (0.0367) 0.712 (0.0248) 0.502 (0.0147) 0.348 (0.0148) 0.574 (0.0200) 0.810 (0.0237)

DeepDL 0.886 (0.0374) 0.976 (0.0233) 0.846 (0.0393) 0.513 (0.0172) 0.448 (0.0215) 0.777 (0.0390) 0.942 (0.0289)

DGCAN 0.613 (0.1874) 0.512 (0.2461) 0.464 (0.2520) 0.499 (0.1687) 0.217 (0.1047) 0.393 (0.2126) 0.884 (0.2857)

BOUNDR.E 0.877 (0.0419) 0.970 (0.0205) 0.901 (0.0435) 0.562 (0.0108) 0.391 (0.0083) 0.727 (0.0351) 0.907 (0.0205)

BOUNDR.EMULT 0.908 (0.0096) 0.988 (0.0098) 0.923 (0.0135) 0.569 (0.0070) 0.398 (0.0040) 0.744 (0.0108) 0.918 (0.0113)

E.2 DRUG-COMPOUND IDENTIFICATION WITH SCAFFOLD SPLIT

Drug-compound identification performances with scaffold split are provided in Table 14.

Table 14: Drug-like compound identification performance with scaffold-split setting. Mean and standard devi-
ation of 10 fold cross-validation are provided. Best performances marked in bold and second-best underlined.

MCC (↑) F1 (↑) IDR (↑) ICR (↓) IDR/ICR (↑)

FP-SVM 0.597 (0.0120) 0.597 (0.0090) 0.951 (0.0286) 0.122 (0.0061) 7.798 (0.2746)

FP-XGB 0.599 (0.0166) 0.602 (0.0181) 0.941 (0.0281) 0.118 (0.0112) 8.059 (0.6524)

FP-OCSVM 0.060 (0.1159) 0.179 (0.0582) 0.551 (0.2165) 0.446 (0.0172) 1.223 (0.4332)

FP-SVDD -0.132 (0.0287) 0.151 (0.0033) 0.881 (0.0203) 0.970 (0.0022) 0.909 (0.0211)

FP-DeepSVDD -0.120 (0.1607) 0.147 (0.0294) 0.834 (0.1787) 0.938 (0.0423) 0.890 (0.1871)

FP-nnPU 0.546 (0.0213) 0.550 (0.0182) 0.923 (0.0385) 0.146 (0.0110) 6.362 (0.4021)

FP-PU 0.549 (0.0239) 0.555 (0.0188) 0.907 (0.0491) 0.135 (0.0130) 6.776 (0.5185)

DrugMetric -0.028 (0.0794) 0.160 (0.0238) 0.692 (0.2932) 0.690 (0.3452) 1.115 (0.3095)

D-GCAN 0.599 (0.0340) 0.594 (0.0456) 0.859 (0.0966) 0.109 (0.2808) 8.145 (1.9174)

DeepDL 0.528 (0.0298) 0.523 (0.0403) 0.889 (0.0608) 0.137 (0.0248) 6.661 (0.8857)

BOUNDR.E 0.626 (0.0211) 0.655 (0.0209) 0.796 (0.0258) 0.063 (0.0079) 12.808 (1.4438)

E.3 CROSS-DATASET EVALUATION RESULTS

We extended our experiments to cross-dataset evaluation two additional well-established datasets:
PubChem and ChEMBL. Both datasets encompass a wide range of chemical scaffolds and molecular
properties, making them suitable for testing our model’s ability to generalize across varied chemical
spaces. As shown in Table 15, our model maintains stable prediction performance across these
diverse datasets, demonstrating its ability to generalize effectively beyond the training data.

E.4 ZERO-SHOT TOXIC COMPOUND IDENTIFICATION

E.4.1 FULL TABLE OF MODEL PERFORMANCES

We provide the full table of zero-shot toxic compound identification performances on all baseline
models in Table 16. DrugMetric in particular fails to yield predictions for withdrawn compound set
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Table 15: Drug-like compound identification performance on time-split setting with cross-dataset evaluation
setting. Mean and standard deviation of 10 fold cross-validation are provided. Best performances marked in
bold and second-best underlined.

PubChem + DrugBank ChEMBL + DrugBank

F1 IDR ICR Avg. Precision AUROC F1 IDR ICR Avg. Precision AUROC

FP-SVM 0.268 (0.0194) 0.835 (0.0734) 0.434 (0.0174) 0.334 (0.1912) 0.795 (0.0759) 0.371 (0.0519) 0.681 (0.1427) 0.195 (0.0200) 0.494 (0.1982) 0.819 (0.0768)

FP-XGB 0.254 (0.0209) 0.810 (0.0804) 0.451 (0.0197) 0.320 (0.1181) 0.773 (0.0741) 0.358 (0.0589) 0.675 (0.1411) 0.206 (0.0213) 0.469 (0.1839) 0.814 (0.0784)

FP-OCSVM 0.179 (0.0582) 0.551 (0.2165) 0.446 (0.0172) 0.366 (0.2717) 0.576 (0.1949) 0.179 (0.0582) 0.551 (0.2165) 0.446 (0.0172) 0.366 (0.2717) 0.576 (0.1949)

FP-SVDD 0.151 (0.0033) 0.881 (0.0203) 0.970 (0.0022) 0.055 (0.0019) 0.235 (0.0173) 0.151 (0.0033) 0.881 (0.0203) 0.970 (0.0022) 0.055 (0.0019) 0.235 (0.0173)

FP-DeepSVDD 0.147 (0.0294) 0.834 (0.1787) 0.938 (0.0423) 0.080 (0.0146) 0.415 (0.1224) 0.147 (0.0294) 0.834 (0.1787) 0.938 (0.0423) 0.080 (0.0146) 0.415 (0.1224)

FP-nnPU 0.244 (0.0182) 0.833 (0.0727) 0.504 (0.0637) 0.240 (0.0816) 0.749 (0.0556) 0.327 (0.0525) 0.666 (0.1337) 0.241 (0.0374) 0.380 (0.1999) 0.778 (0.0812)

FP-PU 0.241 (0.0265) 0.664 (0.1219) 0.379 (0.0528) 0.228 (0.0556) 0.702 (0.0560) 0.311 (0.0495) 0.653 (0.1477) 0.250 (0.0311) 0.396 (0.1701) 0.778 (0.0874)

DeepDL 0.170 (0.0199) 0.764 (0.0754) 0.598 (0.0481) 0.092 (0.0112 0.590 (0.0233) 0.195 (0.0389) 0.681 (0.1329) 0.530 (0.1553) 0.102 (0.0196) 0.612 (0.0686)

Ours 0.501 (0.0232) 0.759 (0.0441) 0.126 (0.0148) 0.460 (0.0380) 0.875 (0.0157) 0.513 (0.0451) 0.746 (0.0281) 0.117 (0.0190) 0.435 (0.0889) 0.869 (0.0258)

since JTVAE is capable of encoding only the scaffolds present in the training set, in this case the
combined set of ZINC and DrugBank approved drugs.

Table 16: False-positive rate of toxic compound groups. The best performances and the comparable values
(paired t-test p-value < 0.05) are marked in bold.

Withdrawn Hepatotoxic Cardiotoxic Carcinogenic

FP-SVM 0.98 (0.001) 0.98 (0.001) 0.86 (0.006) 0.98 (0.002)

FP-XGB 0.96 (0.003) 0.96 (0.003) 0.85 (0.010) 0.93 (0.010)

FP-SVDD 0.95 (0.002) 0.93 (0.002) 0.92 (0.003) 0.99 (0.001)

FP-OCSVM 0.69 (0.002) 0.53 (0.003) 0.25 (0.006) 0.86 (0.001)

FP-DeepSVDD 0.81 (0.022) 0.80 (0.020) 0.87 (0.032) 0.56 (0.063)

FP-PU 0.95 (0.007) 0.94 (0.005) 0.87 (0.021) 0.85 (0.009)

FP-nnPU 0.95 (0.009) 0.94 (0.007) 0.87 (0.028) 0.86 (0.017)

DrugMetric∗ N/A 0.77 (0.073) 0.76 (0.118) 0.82 (0.087)

DGCAN 0.91 (0.020) 0.85 (0.023) 0.88 (0.045) 0.95 (0.017)

DeepDL 0.91 (0.016) 0.92 (0.018) 0.85 (0.042) 0.84 (0.025)

BOUNDR.E 0.52 (0.041) 0.54 (0.028) 0.20 (0.019) 0.20 (0.043)

BOUNDR.EMULT 0.51 (0.014) 0.54 (0.009) 0.20 (0.009) 0.19 (0.014)

∗DrugMetric fails to infer scaffolds not present in approved drug and ZINC datasets

E.4.2 ERROR ANALYSIS ON ”PARTIALLY-WITHDRAWN” DRUGS

Figure 10: Partially-withdrawn
drug ratio between in- and out-
drug-boundary sets.

We conducted an in-depth error analysis on the false-positive with-
drawn drugs predicted as ”in-drug-boundary” by our model, identi-
fying a trend of predictions involving drugs referred to as “partially-
withdrawn”—drugs that are approved in some regions but withdrawn
in others, in contrary to “fully-withdrawn” drugs. This category rep-
resents complex cases where the criteria for withdrawal may vary.

Our analysis across 10 trials revealed a significantly higher presence
of partially-withdrawn drugs in the in-drug-boundary predicted set
(61.2%) compared to out-drug-boundary ones (38.8%) with p-value
of 7.8E-3 (paired t-test) (Fig. 10). This suggests that our model’s
predictions reflect real-world complexities in regulatory approval,
while maintaining a false positive ratio of 0.52, with 60% of these
false positives falling into this partially-withdrawn category.
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Table 17: Drug-like compound identification with EM-like boundary optimization on embedding space aligned
with alignment method ablations on time-based split scheme. Best performance and comparable values in bold.

Alignment method F1 (↑) IDR (↑) ICR (↓) AUROC (↑) Avg. Precision (↑)

Ours w/ Original CLIP 0.727 (0.0365) 0.670 (0.0605) 0.018 (0.0066) 0.801 (0.0506) 0.755 (0.0481)

Ours w/o S,K-mix 0.466 (0.1705) 0.745 (0.1058) 0.270 (0.3446) 0.818 (0.1825) 0.420 (0.1995)

Ours w/o KS-mix 0.604 (0.2238) 0.858 (0.0734) 0.241 (0.3782) 0.849 (0.2091) 0.576 (0.2546)

No alignment (only FP) 0.539 (0.0324) 0.571 (0.0176) 0.057 (0.0161) 0.907 (0.0144) 0.557 (0.0461)

Ours (softened CLIP + S,K,KS-mix) 0.826 (0.0486) 0.781 (0.0326) 0.012 (0.0086) 0.973 (0.0075) 0.877 (0.0419)

E.5 ADDITIONAL ABLATION STUDY RESULTS

E.5.1 EFFECT OF EM-LIKE OPTIMIZATION

The core advantage of our method lies in its iterative updates to both the decision boundary and the
encoder. Unlike other classifiers including MLP, which relies on fixed embeddings, our algorithm
dynamically adjusts the feature space and boundary across multiple iterations as following:

Figure 11: Iterative improvement of out-
boundary compound ratio. Line plot shows the
average over 10 trials, and area between maxi-
mum and minimum values are colored.

1. An initial, coarse boundary is set using the
contrastive embeddings.

2. The encoder refines these embeddings based
on feedback from the initial boundary, adjust-
ing the representation.

3. A new boundary is established using these re-
fined embeddings.

4. This process repeats, allowing the model to
fine-tune both the decision criteria and the fea-
ture space.

This iterative refinement can also be seen in Figure 11,
where the ratio of out-boundary compounds increases
and converges over time with each EM iteration. This
progressive refinement demonstrates the limitations of a
static MLP approach, reinforcing the necessity of our iterative EM-like strategy for accurate bound-
ary learning.

E.5.2 EFFECT OF MULTI-MODAL ALIGNMENT WITH SOFTENED CLIP LOSS

Our multi-modal alignment loss encompases four modules; softened-CLIP loss, S and K-mix, and
KS-mix. While softened-CLIP loss is designed to integrate prior knowledge as ATC semantic sim-
ilarity, geodesic mixup-inspired loss terms—S-mix, K-mix, and KS-mix—facilitate the learning of
the intermediate space between conflicting representations. Specifically:

• S-mix & K-mix: These loss terms focus on intra-space interpolation within the struc-
tural (S-mix) and knowledge-based (K-mix) embeddings, respectively. By encouraging the
model to interpolate between known data points, it learns a smoother and more continuous
embedding space, reducing sensitivity to local conflicts.

• KS-mix: This component specifically targets inter-space interpolation, blending structural
and biomedical representations. It creates synthetic data points that reflect a balanced com-
promise between structural and biomedical features, enabling the model to harmonize in-
consistencies and achieve a unified representation.

We evaluated the performance of the model by selectively removing each component the final setup
(Table 17). The results indicate that each component contributes uniquely to the model’s perfor-
mance. Replacing the softened CLIP loss with the original CLIP loss brought 10 percent point
loss in F1 score, highlighting the importance of knowledge integration in our model’s accurate per-
formances. Removing both S-mix and K-mix resulted in a drop of 36 percent points in F1 score,
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indicating their contribution to aligning embeddings across diverse drug classes and scaffolds in
each of structural and knowledge spaces. Additionally, without KS-mix, the model showed a reduc-
tion of 22 percent point in F1 score, underscoring the importance of a balanced contribution from
both structural and semantic features.

Overall, our results show that the combination of all three strategies yields the best performance,
with a synergistic effect that improves both classification accuracy and stability, effectively integrat-
ing knowledge and simultaneously resolving conflicts between structural and biomedical spaces.

E.6 FILTERING AI-GENERATED ANTI-CANCER MOLECULES

E.6.1 DETAILS ON UTILIZED PROPERTY-BASED FILTERING CRITERIA

PAINS filter The PAINS (Pan-Assay Interference Compounds) filter is designed to identify and
eliminate molecules that are likely to produce false-positive results in high-throughput screening
assays. These compounds often interfere with biological assays through non-specific mechanisms
such as covalent binding, redox activity, or fluorescence interference. The PAINS filter operates by
detecting specific substructures known to cause assay interference. In our pipeline, each compound
is scanned against a comprehensive library of PAINS substructure patterns. Compounds that do not
contain any of these substructures are considered clean and retained for further analysis. This filter
ensures that the remaining molecules have a reduced likelihood of assay-related artifacts, enhancing
the reliability of downstream predictions.

Lipinksi’s Rule of 5 Lipinski’s Rule of Five (Ro5) is a widely accepted guideline to assess the
drug-likeness of a molecule based on its physicochemical properties. The rule includes four criteria:

1. Molecular Weight must be less than or equal to 500 Daltons.
2. LogP (Partition Coefficient) must be less than or equal to 5, ensuring favorable lipophilicity.
3. No more than 5 hydrogen bond donors (sum of OH and NH groups).
4. No more than 10 hydrogen bond acceptors (sum of O and N atoms).

Compounds that adhere to all four criteria are considered to have favorable pharmacokinetic proper-
ties, such as good oral bioavailability and permeation, and are retained for further consideration. By
applying this rule, we effectively filter out molecules that are less likely to succeed in later stages of
drug development due to poor absorption or bioavailability.

Predicted IC50 Binding affinity prediction is a critical step for assessing the potential biological
activity of a compound. We employed XGBoost models to predict IC50 values, which represent the
concentration of a compound required to inhibit a biological process by 50%. These models were
trained on bioassay datasets from with IC50 values in ChEMBL database, specifically: BCR-ABL
(CHEMBL2096618), EFGR (CHEMBL203), and CDK6 (CHEMBL2508) (accessed 16 November
2023).

The input features for these models were Morgan molecular fingerprints, which capture key struc-
tural and functional aspects of each compound. Compounds predicted to have an IC50 below 10 µM
are classified as ”active” and retained. This threshold was selected to balance the need for potent bi-
ological activity with the feasibility of further development, ensuring that only promising candidates
proceed to subsequent stages of evaluation.

E.6.2 CHARACTERISTICS OF IN-DRUG-BOUNDARY COMPOUNDS

In this section, we provide detailed experimental results in investigating the potentials of our model
as a complementary data-driven filter in a AI-driven rational drug discovery pipeline. To be specific,
our model can serve as an efficient, early-stage filtering tool that can significantly narrow down the
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search space in large chemical libraries, thereby easing the computational burden on subsequent
analyses.

Figure 12: Distribution of molecular properties of Targetdiff generated molecules on BCR protein pocket
(PDB: 1OPJ) and its filtered sets. BOUNDR.E-filtered set shows more distant distribution of molecular proper-
ties from the original 10k molecules.

Table 18: Various traditional drug-likeness measures of Targetdiff generated molecules and filtered sets. Most
desirable values are in bold. (SAS: Synthetic Accessibility Score; Avg.: Average)

Target protein BCR (PDB: 1OPJ) EGFR (PDB: 4HJO) CDK6 (PDB: 5L2T)

Groups SAS (↓) Avg. QED (↑) Ro5 ratio (↑) SAS (↓) Avg. QED (↑) Ro5 ratio (↑) SAS (↓) Avg. QED (↑) Ro5 ratio (↑)

TargetDiff 10k 4.956 0.425 0.474 5.562 0.410 0.521 5.378 0.384 0.507

Random sampled* 4.958 0.426 0.475 5.586 0.409 0.514 5.353 0.382 0.508

BounDr.E filtered 4.930 0.433 0.532 5.477 0.413 0.546 5.523 0.392 0.532
∗ Repeated 100 times

We applied our model to filter 10,000 AI-generated compounds from TargetDiff, using three widely-
known anti-cancer targets: BCR, EGFR and CDK6, each targeted by cancer drugs imatinib, erlotinib
and ribociclib, respectively. After screening with our drug boundary, we retained 300, 374 and 264
in-boundary compounds for each target. For comparison, we randomly sampled the equal amount
of molecules (repeated 100 times) and measured key molecular properties of the filtered drugs,
including polar surface area (PSA), molecular weight (Mw), and logP.

Figure 12 highlights a significant shift in key drug-like properties in the BOUNDR.E-filtered com-
pounds compared to randomly sampled compounds generated for BCR. Furthermore, Table 18
shows a marked increase in average QED, Ro5-passing ratio and Synthetic Accessibility Score
(SAS), implying the sampled compounds are more drug-like whens cross-measured through con-
ventional metrics. In detail, the Wasserstein distance of the three properties from the starting 10k
compounds reveal that our filtering strategy significantly alters the distribution of the key molecular
properties of filtered compounds (Table 19).

Table 19: Properties of filtered Targetdiff-generated molecules and their distributional distance from to the
original distribution of 10k generated molecules for three protein targets (BCR, EGFR, CDK6). (W-distance:
1-Wasserstein distance)

Groups
W-distance from BCR-10k W-distance from EGFR-10k W-distance from CDK6-10k

Mw PSA logP Mw PSA logP Mw PSA logP

Random sampled 6.122 2.205 0.058 6.882 2.566 0.099 5.997 5.584 0.266

BounDr.E filtered 17.695 1.979 0.187 16.834 2.298 0.168 10.903 5.032 0.135

∗ Repeated 100 times

In addition, the Probability Density Function (PDF) of approved drugs, imatinib, erlotinib and ri-
bociclib among the three properties also increased, implying identifying the approved drugs among
the filtered molecules is more likely with our filtered set (Table .
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Table 20: PDF of approved drugs with the distribution of three key molecular properties on different filtered
sets, originated from 10k generated molecules for three protein targets (BCR, EGFR, CDK6). (Mw: Molecular
weight; PSA: Polar surface area)

Groups
PDF of imatinib (BCR) PDF of Erlotinib (EGFR) PDF of Ribociclib (CDK6)

Mw PSA logP Mw PSA logP Mw PSA logP

TargetDiff 10k 4.00E-03 1.02E-03 2.26E-01 2.88E-03 5.10E-03 2.14E-01 3.64E-03 9.49E-03 2.06E-01

Random sampled* 4.02E-03 1.03E-03 2.27E-01 2.84E-03 5.05E-03 2.14E-01 3.68E-03 9.57E-03 2.06E-01

BounDr.E filtered 3.94E-03 1.05E-03 2.32E-01 3.09E-03 5.32E-03 2.26E-01 3.49E-03 8.87E-01 2.18E-01
∗ Repeated 100 times

The Wasserstein distance and Probability Density Function (PDF) of imatinib properties are mea-
sured using gaussian KDE. The properties of the approved drugs are computed with rdkit python
package.

These findings demonstrate the practical utility of our model in filtering AI-generated compounds,
enabling efficient virtual screening and improving the quality of early-stage candidates.

E.7 ANTI-CANCER SPECIFIC BOUNDR.E RESULTS

In this section, we provide experimental results on the anti-cancer variant of our model, demonstrat-
ing our model’s potential real-world impact in targeted drug discovery.

One of the strengths of our one-class boundary approach is its adaptability to domain-specific con-
texts by relying solely on the input positive labels. To explore this flexibility, we newly designed
and conducted a concept study, using anti-cancer drugs. We first filtered our training set to in-
clude only drugs classified under the ATC code ‘L’ (Antineoplastic and immunomodulating agents),
which specifically targets the anti-cancer domain. This narrowed training set of 239 drugs allowed
our model to learn a more focused boundary representative of the anti-cancer chemical space. We
investigated this anti-cancer BounDr.E model with two scenarios:

Broader boundary for anti-cancer compounds When filtering the 10k generated compounds
with anti-cancer target protein pocket as conditions, the anti-cancer-boundary obtained much higher
ratio of drug candidates compared to the general drug boundary, which means the model adequately
learned the protein target context of anti-cancer drugs (Table 21).

Table 21: Filtering anti-cancer target-based generated molecules with general BounDr.E and anti-cancer-
BounDr.E models. Approximately 10k molecules were generated and filtered for BCR, EGFR and CDK6,
three well-known anti-cancer targets. Compared to general BounDr.E model, Anti-cancer-BounDr.E model
recommends more candidates, according to the generated compounds’ context.

Filtering Method BCR EGFR CDK6

Total Generated 10,543 (100%) 12,550 (100%) 11,496 (100%)

Anti-cancer BounDr.E 434 (3.9%) 434 (3.9%) 495 (4.9%)

General BounDr.E 300 (2.8%) 374 (3.0%) 264 (2.3%)

Strict boundary in toxic compound filtering On contrary and interestingly, false-positive ratio
on toxic and carcinogenic compounds was significantly reduced when applying the anti-cancer-
specific boundary, highlighting the model’s ability to filter out irrelevant or potentially harmful
compounds more effectively (Table 22) with more compact boundary, while encompassing the con-
texts of anti-cancer drugs. The results imply that our model’s anti-cancer variant, while providing
a broader boundary for anti-cancer generated compounds, shows strictness for toxic compounds,
tailored for anti-cancer drug discovery.
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Table 22: Toxic compound filtering comparison with best performances marked in bold. The anti-cancer
BounDr.E model displays significant reduction in false positive rate compared to general BounDr.E model.

Withdrawn Hepatotoxic Cardiotoxic Carcinogenic

General BounDr.E 0.523 (0.0414) 0.541 (0.0284) 0.207 (0.0190) 0.208 (0.0436)

Anti-cancer BounDr.E 0.195 (0.0363) 0.151 (0.029) 0.149 (0.0356) 0.148 (0.0321)

Paired t-test p-val 2.30E-09 6.80E-12 2.20E-04 1.00E-03

E.8 STATISTICAL VALIDATION RESULTS

In this section, we provide the statistical validation results for the tables in the main text (Tables
1 ∼ 5), computed with one-sided paired t-test to compare the significance compared to the best
performing models.
Table 23: Statistical validation for drug-like compound identification performance with time-split setting (Table
1). Mean and standard deviation of 10 fold CV are provided. Best performance and its comparable results
(paired t-test p < 0.05) are marked in bold.

F1 (↑) IDR (↑) ICR (↓) AUROC (↑) Avg. Precision (↑)

SVM 1.0 1.0 1.0 1.0 1.0

XGB 1.0 1.0 1.0 1.0 1.0

OCSVM 1.0 1.0 1.0 1.0 1.0

DeepSVDD 1.0 0.9999 1.0 1.0 1.0

nnPU 1.0 1.0 1.0 1.0 1.0

naive PU 1.0 1.0 1.0 1.0 1.0

DrugMetric* 1.0 1.0 1.0 1.0 1.0

DGCAN 0.9947 Best 0.9311 0.9988 0.8841

DeepDL 0.9999 0.9905 0.9999 Best 0.4459

BounDrE 0.8596 1.0 0.7531 0.661 0.9444

BounDrEMult Best 1.0 Best 0.07378 Best

Table 24: Statistical validation for cross-dataset evaluation of drug-like compound identification performance
on scaffold-split setting, trained on PubChem/ChEMBL and evaluated with ZINC20 compounds (Table 2).
One-sided paired t-test p-values of 10 trials compared to the best model are provided. Best and its comparable
performances (paired t-test p < 0.05) are marked in bold.

Train set
PubChem + DrugBank ChEMBL + DrugBank

F1 (↑) Average Precision (↑) AUROC (↑) F1 (↑) Average Precision (↑) AUROC (↑)

SVM 1.0 0.9981 0.9985 1.0 0.9204 0.9765

XGB 1.0 0.9714 0.9939 1.0 Best 0.9735

OCSVM 1.0 1.0 1.0 1.0 0.9997 1.0

DeepSVDD 1.0 1.0 1.0 1.0 0.9999 1.0

nnPU 1.0 1.0 0.9999 1.0 1.0 0.9976

PU 1.0 1.0 1.0 1.0 1.0 0.9957

DGCAN 1.0 1.0 1.0 1.0 0.9997 0.998

DeepDL 1.0 1.0 1.0 1.0 0.9999 1.0

BOUNDR.E 0.765 0.820 0.603 0.9488 0.8918 0.9542

BOUNDR.EMULT Best Best Best Best 0.560 Best
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Table 25: Statistical validation for false-positive rate of toxic compound groups (Table 3). One-sided paired
t-test p-values of 10 trials compared to the best model are provided. Lowest and its comparable results (paired
t-test p < 0.05) are marked in bold.

Withdrawn Hepatotoxic Cardiotoxic Carcinogenic

XGB 1.0 1.0 1.0 1.0

OCSVM 1.0 Best 1.0 1.0

nnPU 1.0 1.0 1.0 1.0

DrugMetric N/A 0.9616 0.9995 1.0

DGCAN 1.0 1.0 1.0 1.0

DeepDL 1.0 1.0 1.0 1.0

BOUNDR.E 0.8639 0.8571 0.7272 0.8735

BOUNDR.EMULT Best 0.9875 Best Best
∗DrugMetric fails to infer scaffolds not present in approved drug and ZINC datasets

Table 26: Statistical validation for drug-
like compound identification with EM-like
boundary optimization on embedding space
aligned with different alignment methods
(Table 4). One-sided paired t-test p-values
of 10 trials compared to the best model are
provided. Lowest and its comparable results
(paired t-test p < 0.05) are marked in bold.

Alignment method F1 (↑) ICR (↓)

No Alignment (only FP) 1.0 0.7489

Manifold Alignment 1.0 Best

CLIP 1.0 0.4685

Geodesic Mixup 0.9998 0.001325

Ours - softCLIP 0.9992 8.50E-06

Ours Best 9.86E-08

Table 27: Statistical validation for drug-like compound
identification with different classifiers on knowledge-
aligned space (Table 5). Best performance in bold and sec-
ond best underlined. One-sided paired t-test p-values of 10
trials compared to the best model are provided. Lowest and
its comparable results (paired t-test p < 0.05) are marked
in bold.

Aligned space F1 (↑) ICR (↓)

+ MLP 1.0 1.0

+ SVM Best 0.9863

+ XGB 1.0 1.0

+ naive PU 1.0 0.9999

+ DeepSVDD 1.0 1.0

+ Ours − EM 1.0 0.9978

+ Ours 0.9816 Best
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