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Abstract. State-of-the-art supervised deep learning models perform well
in segmenting abdominal organs from CT scan images when the test
dataset has a similar distribution to the training dataset. The lack of
generalization of deep learning models means that one still needs to label
new data and retrain the models for new datasets in a different environ-
ment. However, expert annotation of multiple organs in volumetric scans
is time-consuming and often prohibitively expensive. Semi-supervised
methods that can leverage unlabeled data together with few labeled data
could be an attractive solution, but existing semi-supervised multiple or-
gans semantic segmentation methods do not perform well. Moreover, CT
scans containing abdominal organs come with a great variety in the real
clinical world with diverse resolutions and fields of view ranging from
only the abdominal region to the whole body CT scan. In this paper, we
propose a two-stage approach where abdomen region segmentation ex-
tracts the abdominal region, which is then fed as input to the abdominal
organs segmentation network; both stages use the UNet architecture-
based network. To leverage unlabeled data, we use FixMatchSeg, which
adapts the semi-supervised classification method, FixMatch, to segmen-
tation tasks. FixMatchSeg uses standard supervised loss with labeled
examples and an unsupervised loss with pseudo labeling and consistency
regularization that can leverage unlabeled samples. Our model improved
the mean dice score from 31.54% to 52.1% on the validation set when
utilizing 2,000 unlabeled training images over the 50 labeled images.
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1 Introduction

Abdominal organ segmentation from CT scan images is an important medical
imaging task with several clinical applications, such as aiding clinicians in di-
agnosing diseases, surgeons in therapy planning, and researchers in quantitative
analysis for population-based studies. In recent years, supervised deep learning
segmentation methods have performed very well on curated datasets where the
⋆ Equal Contribution
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test sets do not have a significant distribution shift compared to the training set
[9]. However, one still needs to label a large number of data and train again, even
for the same task, if the model is intended to be deployed for test data that has
domain shift such as population demography, scanners, a field of view of input
images, etc. For multiple abdominal organs segmentation in 3D scans, manual
annotation is tedious, time-consuming, and expensive. Thus, semi-supervised
methods that leverage several unlabeled samples together with a few labeled
instances can be an attractive solution to develop powerful segmentation mod-
els for new datasets in new environments. FLARE 2022 challenge1 is focused
on pushing the frontiers of semi-supervised segmentation methods. Additionally,
the challenge is interested in building models that are not too big and can run
relatively fast with an economical computing budget.

There are various ways to leverage unlabeled samples in semi-supervised seg-
mentation models such as consistency regularization methods, proxy-label or
pseudo labeling methods, generative models, and graph-based techniques [17].
Among these approaches, consistency regularization and pseudo labeling are
common, widely used, and have shown promising results in both natural im-
ages and medical images [1,2,3,5,12,13]. A simple but effective semi-supervised
classification approach, introduced in FixMatch [20], combines consistency regu-
larization with pseudo-labeling. Upretee et al. [22] show with FixMatchSeg that
FixMatch can be adapted to semantic segmentation tasks, providing promis-
ing results in medical images as well. Hence, we use FixMatchSeg as the semi-
supervised approach for segmenting the abdominal region and abdominal organs.

The challenge provides 50 labeled and 2,000 unlabeled CT images. The task
is to segment 13 abdominal organs, and a separate blind test set that is not
available to the participants is used for the evaluation. One significant difficulty
we saw in the dataset was the distribution shift due to the additional field of
view in the unlabeled and validation set compared to that of the labeled set.
A majority of the labeled images contain only the abdominal region, but the
unlabeled and validation sets have images with the coverage extending up to
the whole body. Similarly, the image size, spacing, and voxel anisotropy of the
images varied very widely, as can be seen in Table 1.

Table 1: Min and Max (top & bottom) image size in pixels and pixel spacing
in mm for various image sets. The unlabeled and validation set images have
remarkably wide variation compared to the training set images.

Images Labeled Unlabeled Validation Set

Image Size (px) [512, 512, 71] [512, 79, 24] [512, 512, 82]
[512, 512, 113] [796, 768, 1059] [512, 512, 1338]

Pixel Spacing (mm) [0.65, 0.65, 2.5] [0.35, 0.35, 0.45] [0.62, 0.62, 0.8]
[0.98, 0.98, 5.0] [1.37, 3.0, 8.0] [1.52, 1.52, 5.05]

1 https://flare22.grand-challenge.org/

https://flare22.grand-challenge.org/
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We propose two key ideas to leverage the unlabeled data and tackle the
data diversity and the domain shift. To leverage the unlabeled data, we use Fix-
MatchSeg [22]. For handling the diversity in size and spacing, and the presence of
non-abdominal regions in unlabeled and validation data, we propose a two-stage
approach: input image fed to an abdomen region segmentation network and an
organ segmentation network that takes the output region extracted by the region
segmentation network as input. Such a two-stage approach has been successfully
used in pancreas segmentation from CT images [24] and in last year’s winning
FLARE submission [23].

2 Method

2.1 Preprocessing

All the input images first go through the following steps:

Set to RAI orientation: Since the majority of images were found to be in
RAI orientation, we automatically set the orientation of all the images to RAI by
extracting the metadata from the images and transforming them in the required
direction using Monai2 library.

Resample input images: We resample the input images of dimensions [x, y, z]
to the target size of [x′, y′, z′] = [128,≥ 128,≥ 64] in axes orthogonal to Sagit-
tal, Coronal and Axial planes respectively. Using the scaling factor f = 128

x ,
resampled input images to the size [128,max(fy, 128),max(fz, 64)] is fed to the
Abdomen Region Segmentor. The region extracted from the Abdomen Region
Segmentor is then similarly resampled to the size of [192,≥ 192,≥ 96] and fed
to the Abdomen Organs Segmentor.

Histogram Normalization: For each input sample, we perform histogram
normalization followed by the intensity normalization to the range [−1, 1] using
HistogramNormalize3 in Monai.

2.2 UNet based Semi-Supervised Abdominal Region and Organs
Segmentation

Two-stage segmentation: Figure 1 shows the pipeline of our two-stage ap-
proach to first segment the abdomen region and then abdominal organs. The
Abdomen Region Segmentor (ARS) is trained for a binary segmentation task
where the foreground is obtained as the convex hull of all the target abdominal
organs. The Abdomen Region Segmentor first finds the largest connected com-
ponent from the ARS foreground predictions, and then the smallest box that
2 https://monai.io/
3 https://docs.monai.io/en/stable/transforms.html#histogramnormalize

https://monai.io/
https://docs.monai.io/en/stable/transforms.html#histogramnormalize
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Fig. 1: The two-stage approach for abdominal organs segmentation. The Ab-
domen Region Segmentor (ARS) is first trained on a binary segmentation task
where the foreground is the convex hull of all the abdominal organs. The ab-
domen region extracted from the ARS output is then fed as input to Abdomen
Organs Segmentor after cropping and resizing.

includes the largest foreground component is extracted as the abdomen region.
The abdomen region is then fed as input to Abdomen Organs Segmentor after
cropping and resizing.

UNet with Dice-CE compound loss: We use UNet [18] with instance nor-
malization [21] from Monai4 for both the networks. We used anisotropic kernels
of size (5, 5, 3) as the last axis has a lower resolution, hence the bigger physical
receptive field can be achieved even with a lower kernel size. Since compound
loss functions have proven to be robust in various medical image segmentation
tasks [14], we used the weighted sum of soft Dice loss [16] without background
(weight 1) and cross-entropy loss (weight 0.25) for training both the models.

FixMatchSeg to leverage unlabeled images: We implemented FixMatch-
Seg [22] to leverage the unlabeled examples for both the segmentation networks.
4 https://docs.monai.io/en/stable/networks.html#unet

https://docs.monai.io/en/stable/networks.html#unet
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The segmentation model’s prediction on a weakly augmented version of an in-
put image is used as ground truth (pseudo-label) and the loss is computed with
the model’s prediction on a strongly augmented version of the same image. The
input sample with pseudo-label is used in training only when the average of
the pixel-wise max of the softmax prediction is higher than a certain threshold,
that is only the samples where the model is confident enough. The transforma-
tions for weak and strong augmentations and the hyperparameters including the
confidence threshold for pseudo-label are described in subsection 3.2.

Improving inference speed and reducing resource consumption: We
JIT-compile our models5 to convert them to torchscripts. TorchScript stores its
definitions in a graph rather than dynamically. It combines numerous opera-
tors (kernels) into a single one, making inference quicker. Additionally, to make
inference faster, we use torch.jit.optimize_for_inference6.

2.3 Post-processing

We use the following post-processing steps in the provided order.

a. We use a sliding window inference with 25% overlap between consecutive
windows. When combining the multiple predictions in the overlap regions, we
weight the confidence of each prediction using a Gaussian kernel (σ = 0.125)
with its mean placed at the window center. The assumption for using such
a kernel is that the network makes better predictions for the organs in the
central region of the input image.

b. We use KeepLargestConnectedComponent7 from Monai to keep the largest
connected component with connectivity set to 1.

3 Experiments

3.1 Dataset and evaluation measures8

The FLARE 2022 dataset is curated from more than 20 medical groups under the
license permission, including MSD [19], KiTS [8,7], AbdomenCT-1K [15], and
TCIA [4]. The training set includes 50 labeled CT scans with pancreas disease;
2000 unlabeled CT scans with liver, kidney, spleen, or pancreas diseases. The val-
idation set includes 50 CT scans with liver, kidney, spleen, or pancreas diseases.
The testing set includes 200 CT scans where 100 cases have liver, kidney, spleen,
or pancreas diseases and the other 100 cases have uterine corpus endometrial,

5 https://pytorch.org/docs/stable/generated/torch.jit.script.html
6 https://pytorch.org/docs/stable/generated/torch.jit.optimize_for_inference.html
7 https://docs.monai.io/en/stable/transforms.html#keeplargestconnectedcomponent
8 This section, as suggested in the challenge guideline, is copied from the template

provided by the challenge organizers.

https://pytorch.org/docs/stable/generated/torch.jit.script.html
https://pytorch.org/docs/stable/generated/torch.jit.optimize_for_inference.html
https://docs.monai.io/en/stable/transforms.html#keeplargestconnectedcomponent
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urothelial bladder, stomach, sarcomas, or ovarian diseases. The metadata does
not contain disease, demography, and center or scanner information.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve.

3.2 Implementation details

Environment settings: The development environments and requirements are
presented in Table 2.

Table 2: Development environments and requirements.
Linux version Ubuntu 20.04.4 LTS
CPU Intel® Core™ i9-9820X CPU @ 3.30GHz
RAM 16× 4 GB; 3200 MT/s
GPU NVIDIA GeForce GTX 1080 Ti 11GB and NVIDIA TITAN

Xp 12 GB
CUDA version 11.7
Programming language Python 3.8.10
Deep learning framework PyTorch (Torch 1.12, Monai 0.9.0)
Specific dependencies pytorch_lightning
Link to code https://github.com/naamiinepal/flare-2022

Data Augmentation Strategy: FixMatchSeg needs weak and strong aug-
mentation. The transformations for weak and strong augmentation were selected
from the transformations used by nnU-Net [9,10]. The following augmentations,
in order, were performed to the input images of the segmentor network.

Weak augmentation:

a. Randomly rotate by 15◦ in all directions with 0.9 probability with bilinear
interpolation for image and nearest neighbor for the label with zero padding.

b. Randomly zoom, with zoom value sampled from a Uniform distribution in
the range (0.8, 1.3) with 0.9 probability, with trilinear interpolation.

c. Randomly crop with size (128, 128, 64) for Abdomen Region Segmentor and
(192, 192, 96) for Abdomen Organs Segmentor. If the input size for this step
is less than the crop size, we zero pad instead of cropping.

Strong augmentation, with a probability of 0.9:

a. Gaussian Random Noise with mean µ = 0 and σ = 0.1

https://github.com/naamiinepal/flare-2022
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b. Gaussian smoothing with σ sampled from the Uniform distribution from the
range (0.25, 1.5).

c. Multiplying the intensity by a factor sampled from the Uniform distribution
from the range (0.7, 1.3).

d. Gamma correction by a factor sampled from the Uniform distribution from
the range (0.65, 1.5).

e. Simulating low resolution by scaling down the image by a factor sampled
from the Uniform distribution from the range (0.5, 1) by using the near-
est neighbor interpolation and upscaling to the same shape using trilinear
interpolation.

Table 3: Hyperparamenters for Abdomen Region Segmentor
Network initialization Kaiming Uniform [6]
Batch size* 4
Gradient Accumulation Batches 64
Patch size 128× 128× 64

Total epochs 100
Optimizer Adam [11] with betas=(0.9, 0.999)
Initial learning rate (LR) 0.01
Lr decay schedule ReduceLROnPlateu with the patience of 3 epochs
Training time 6.678 hours
Loss Function Dice-CE Compound Loss
Number of model parameters 637,425
Number of flops 7.156G

* One patient’s input is randomly cropped twice during the weak augmentation
(see section 3.2) to give two input samples to the segmentors, which are sent in a single
batch.

Table 4: Hyperparamenters for Abdomen Organs Segmentor
Network initialization Kaiming Uniform [6]
Batch size* 2
Gradient Accumulation Batches 64
Patch size 192× 192× 96

Total epochs 50
Optimizer Adam [11] with betas=(0.9, 0.999)
Initial learning rate (LR) 0.05
Lr decay schedule ReduceLROnPlateu with the patience of 3 epochs
Training time 19.02 hours
Loss Function Dice-CE Compound Loss
Number of model parameters 1.989M
Number of flops 42.345G
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4 Results and discussion

4.1 Quantitative results on validation set

Table 5: Dice Similarity Coefficient (DSC) comparison between training the
model with only annotated images and training it using unlabeled images. Here,
the model’s mean DSC after using unlabeled images is higher than the DSC
when using solely annotated images.

Organ Without Unlabeled Images With Unlabeled Images
Aorta 0.6482 0.7786
Duodenum 0.1459 0.3345
Esophagus 0.3137 0.5225
Gallbladder 0.2187 0.3603
Inferior Vena Cava 0.5403 0.634
Left Adrenal Gland 0.0400 0.3521
Left Kidney 0.3381 0.5147
Liver 0.5907 0.8453
Pancreas 0.2032 0.4003
Right Adrenal Gland 0.0644 0.3406
Right Kidney 0.3334 0.493
Spleen 0.5068 0.6993
Stomach 0.1562 0.4978
Average 0.3154 0.521

Table 5 shows that our method leverages the unlabeled data, improving the mean
dice score to 0.521 from 0.3154 when not using the unlabeled data. However, the
overall dice score is not high compared to the leaderboard which achieved 0.9064 on
the validation set. From our preliminary qualitative analysis, it seems that the abdomen
localization could not be accurately done when the input images had whole-body CT
scans or regions outside the abdomen. In particular, a large majority of the labeled
examples did not have a field of view outside the abdomen regions but the unlabeled
and validation set had regions outside the abdomen. It seems that the model was unable
to train properly due to this domain shift.

4.2 Qualitative results on validation set

The segmentation findings for two successfully segmented images (case 21 and case 35)
and two difficult-to-segment images (case 42 and case 44) are shown in Figure 2 and
Figure 3, respectively.

Some images also have some organs missing (case 31 has the left kidney missing
and case 44 has the right kidney missing). Our model is not robust against such cases.

4.3 Segmentation efficiency results

The model validation was performed by running a docker container on a Ubuntu 20.04
desktop with the following specifications.
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(a) a coronal slice;
C21

(b) an axial slice (c) ground truth (d) model segmenta-
tion

(e) a coronal slice;
C35

(f) an axial slice (g) ground truth (h) model segmenta-
tion

Fig. 2: The well-segmented images with mean DSC 0.71(C21) and 0.70(C35)
are shown above. They have smaller file sizes and solely include CT scans of the
abdomen. The model performs well in these circumstances because the annotated
images include CT scans restricted to the abdomen areas.

(a) a coronal slice;
C42

(b) an axial slice (c) ground truth (d) model segmenta-
tion

(e) a coronal slice;
C44

(f) an axial slice (g) ground truth (h) model segmenta-
tion

Fig. 3: The challenging examples with mean DSC 0.28(C42) and 0.23(C44) are
shown above. These CT scans cover a wider area of the body, such as the entire
body. Though in the case of patient 42, the image is restricted to the abdomen
area, it contains a diseased right kidney whose size and intensity are unusual.
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– CPU: Intel® Xeon(R) W-2133 CPU @ 3.60GHz × 12
– GPU: NVIDIA QUADRO RTX5000 (16G)
– RAM: 32G (Available memory 28G)
– Driver Version: 510.60.02
– CUDA Version: 11.6
– Docker version 20.10.13

The average running time, GPU memory usage, AUC of the GPU time, and CPU
time of the model evaluation are given in Table 6. The running time, memory usage,
and the AUC of both GPU and CPU curves were all observed on the 50 validation cases
provided by the challenge’s organizers. In the example with a file size of 463 MB and
more than 1000 slices (case 50), the maximum values of running time, GPU memory,
Area under GPU memory-time curve, and Area under CPU utilization-time curve were
found to be 34.02 seconds, 6.231 GB, 144.879 GBs, and 789.77 %s, respectively.

Table 6: Average time of execution, GPU memory used, area under GPU
memory-time curve, and area under CPU utilization-time curve for the 50 vali-
dation cases
Running Time Maximum GPU

Memory
Area under GPU
Memory-Time
Curve

Area under CPU
Utilization-Time
Curve

10.2456 s 4.3975 GB 27.275 GBs 256.7952 %s

4.4 Limitation and future work

While the model seems to perform satisfactorily on input CT scans with the field of
view restricted to the abdominal regions only. The large majority of the labeled training
images are of this type. However, the unlabeled training images and the validation set
images have domain shifts with a much larger field of view extending up to the whole
body scan. We believe that our method’s pseudo-labeling approach could not provide
good pseudo-labels on the unlabeled images with this domain shift when training the
abdomen region segmenter. Poor abdomen region segmentation then naturally leads to
poor segmentation of the organs as the organs segmenter will not get the right input.
Similarly, our method does not address the missing organs and domain shift due to
disease which makes it difficult to provide accurate segmentation of these cases.

A more detailed analysis of the failure cases and quantitative analysis such as the
correlation of dice scores vs input field of view and abdomen region segmenter metrics
will provide better insight into the issues with the current method. Since the two-
stage approach can be fragile when the first stage performs poorly, exploring end-to-
end coarse-to-fine models with networks taking both coarse and fine resolution images
together is another interesting direction. Finally, semi-supervised methods other than
FixMatchSeg and using self-supervision for pre-training can be explored.
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5 Conclusion

FixMatchSeg was able to leverage the unlabeled data, improving the segmentation
performance from 0.3154 mean DSC (only labeled data) to 0.521 DSC when adding
the unlabeled data. The final segmentation performance has reasonably low compared
to the leaderboard toppers. We believe this to be due to the inability of our method to
handle the domain shift between the labeled and unlabeled images, and the validation-
test images. However, a more detailed error and failure analysis are needed in the future
together with the exploration of other semi-supervised methods.

Acknowledgments We declare that the segmentation method we implemented for
participation in the FLARE 2022 challenge has not used any pre-trained models or
additional datasets other than those provided by the organizers. The proposed solution
is fully automatic without any manual intervention.
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